Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird
1.
Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
CAS PubMed Article Google Scholar
2.
Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science (80-) 366, eaar2016 (2019).
CAS Article Google Scholar
3.
Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. 108, 3047–3052 (2011).
ADS CAS Article Google Scholar
4.
Foster, J. A. & McVey Neufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).
CAS PubMed Article Google Scholar
5.
Clarke, G. et al. The microbiome-gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).
CAS PubMed Article Google Scholar
6.
Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).
CAS PubMed Article Google Scholar
7.
Hoban, A. E. et al. The microbiome regulates amygdala-dependent fear recall. Mol. Psychiatry 23, 1134–1144 (2018).
CAS PubMed Article Google Scholar
8.
Magnusson, K. R. et al. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140 (2015).
CAS PubMed Article Google Scholar
9.
Ogbonnaya, E. S. et al. Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol. Psychiat. 78, e7–e9 (2015).
PubMed Article Google Scholar
10.
Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317 (2011).
PubMed Article Google Scholar
11.
Stilling, R. M. et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut–brain axis?. Neurochem. Int. 99, 110–132 (2016).
CAS PubMed Article Google Scholar
12.
Davidson, G. L., Raulo, A. & Knowles, S. C. L. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.06.014 (2020).
Article PubMed Google Scholar
13.
Davidson, G. L., Cooke, A. C., Johnson, C. N. & Quinn, J. L. The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philos. Trans. R. Soc. B Biol. https://doi.org/10.1098/rstb.2017.0286 (2018).
Article Google Scholar
14.
Morand-Ferron, J., Cole, E. F. & Quinn, J. L. Studying the evolutionary ecology of cognition in the wild: a review of practical and conceptual challenges. Biol. Rev. 91, 367–389 (2016).
PubMed Article Google Scholar
15.
Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, Princeton, 2019).https://doi.org/10.2307/j.ctvs32s6b
Google Scholar
16.
De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 107, 14691–14696 (2010).
ADS PubMed PubMed Central Article Google Scholar
17.
Gillingham, M. A. F. et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00035 (2019).
Article PubMed PubMed Central Google Scholar
18.
Costa, S., Lopes, I., Proença, D. N., Ribeiro, R. & Morais, P. V. Diversity of cutaneous microbiome of Pelophylax perezi populations inhabiting different environments. Sci. Total Environ. 572, 995–1004 (2016).
ADS CAS PubMed Article Google Scholar
19.
Knutie, S. A., Chaves, J. A. & Gotanda, K. M. Human activity can influence the gut microbiota of Darwin’s finches in the Galapagos Islands. Mol. Ecol. 28, 2441–2450 (2019).
PubMed Article Google Scholar
20.
Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the Wild Black Howler Monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).
PubMed Article CAS PubMed Central Google Scholar
21.
Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
22.
Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
CAS PubMed PubMed Central Article Google Scholar
23.
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
24.
Pan, D. & Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5, 108–119 (2013).
PubMed PubMed Central Article Google Scholar
25.
Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2182 (2020).
Article Google Scholar
26.
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
ADS CAS PubMed Article Google Scholar
27.
Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).
CAS PubMed Article Google Scholar
28.
Fava, F. et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int. J. Obes. 37, 216–223 (2013).
CAS Article Google Scholar
29.
Wu, G. D. et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65, 63–72 (2016).
CAS PubMed Article Google Scholar
30.
Zimmer, J. et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 66, 53–60 (2012).
CAS PubMed Article Google Scholar
31.
Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
32.
Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).
PubMed PubMed Central Article Google Scholar
33.
Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. U. S. A. 116, 23588–23593 (2019).
CAS PubMed PubMed Central Article Google Scholar
34.
Bolnick, et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
MathSciNet PubMed Article Google Scholar
35.
Li, W., Dowd, S. E., Scurlock, B., Acosta-Martinez, V. & Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 96, 557–567 (2009).
CAS PubMed Article PubMed Central Google Scholar
36.
Ezra-Nevo, G., Henriques, S. F. & Ribeiro, C. The diet-microbiome tango: how nutrients lead the gut brain axis. Curr. Opin. Neurobiol. 62, 122–132 (2020).
CAS PubMed Article PubMed Central Google Scholar
37.
Psaltopoulou, T. et al. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann. Neurol. 74, 580–591 (2013).
PubMed Article PubMed Central Google Scholar
38.
Carlson, A. L. et al. Infant gut microbiome associated with cognitive development. Biol. Psychiatry 83, 148–159 (2018).
PubMed Article PubMed Central Google Scholar
39.
Dunn, J. C., Cole, E. F. & Quinn, J. L. Personality and parasites: Sex-dependent associations between avian malaria infection and multiple behavioural traits. Behav. Ecol. Sociobiol. 65, 1459–1471 (2011).
Article Google Scholar
40.
Cole, E. F., Morand-Ferron, J., Hinks, A. E. & Quinn, J. L. Cognitive ability influences reproductive life history variation in the wild. Curr. Biol. 22, 1808–1812 (2012).
CAS PubMed Article Google Scholar
41.
Seed, A. & Mayer, C. Problem Solving. in APA handbook of comparative psychology: Perception, learning, and cognition, Vol. 2 601–625 (American Psychological Association, 2017).
42.
Cole, E. F., Cram, D. L. & Quinn, J. L. Individual variation in spontaneous problem-solving performance among wild great tits. Anim. Behav. 81, 491–498 (2011).
Article Google Scholar
43.
Morand-Ferron, J., Cole, E. F., Rawles, J. E. C. & Quinn, J. L. Who are the innovators? A field experiment with 2 passerine species. Behav. Ecol. 22, 1241–1248 (2011).
Article Google Scholar
44.
Quinn, J. L., Cole, E. F., Reed, T. E. & Morand-Ferron, J. Environmental and genetic determinants of innovativeness in a natural population of birds. Philos. Trans. R. Soc. Biol. B Sci. 371, 20150184 (2016).
Article CAS Google Scholar
45.
Ducatez, S., Clavel, J. & Lefebvre, L. Ecological generalism and behavioural innovation in birds: technical intelligence or the simple incorporation of new foods?. J. Anim. Ecol. 84, 79–89 (2015).
PubMed Article Google Scholar
46.
Reader, S. M. & MacDonald, K. Environmental variability and primate behavioural flexibility. Anim. Innov. https://doi.org/10.1093/acprof:oso/9780198526223.003.0004 (2012).
Article Google Scholar
47.
Biard, C. et al. Growing in cities: an urban penalty for wild birds? A study of phenotypic differences between urban and rural great tit chicks (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00079 (2017).
Article Google Scholar
48.
Teyssier, A. et al. Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).
ADS CAS PubMed Article Google Scholar
49.
Escallón, C., Belden, L. K. & Moore, I. T. The cloacal microbiome changes with the breeding season in a wild bird. Integr. Org. Biol. https://doi.org/10.1093/iob/oby009 (2019).
Article Google Scholar
50.
Waite, D. W. & Taylor, M. W. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00223 (2014).
Article PubMed PubMed Central Google Scholar
51.
Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).
PubMed PubMed Central Article CAS Google Scholar
52.
Knutie, S. A. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J. Appl. Ecol. 57, 536–547 (2020).
CAS Article Google Scholar
53.
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
CAS PubMed PubMed Central Article Google Scholar
54.
Veľký, M., Kaňuch, P. & Krištín, A. Food composition of wintering great tits (Parus major): habitat and seasonal aspects. Folia Zool. 60, 228–236 (2011).
Article Google Scholar
55.
Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural white-crowned Sparrows. Front. Ecol. Evol. 6, 148 (2018).
Article Google Scholar
56.
Rosshart, S. P. et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171, 1015–1028 (2017).
CAS PubMed PubMed Central Article Google Scholar
57.
Griffin, A. S. & Guez, D. Innovation and problem solving: a review of common mechanisms. Behav. Process. 109, 121–134 (2014).
Article Google Scholar
58.
Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).
PubMed PubMed Central Article Google Scholar
59.
Maniscalco, J. W. & Rinaman, L. Vagal interoceptive modulation of motivated behavior. Physiology 33, 151–167 (2018).
CAS PubMed PubMed Central Article Google Scholar
60.
Bruce-Keller, A. J. et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77, 607–615 (2015).
PubMed Article PubMed Central Google Scholar
61.
Greyson-Gaito, C. J. et al. Into the wild: microbiome transplant studies need broader ecological reality. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2834 (2020).
Article Google Scholar
62.
Roager, H. M. & Dragsted, L. O. Diet-derived microbial metabolites in health and disease. Nutr. Bull. 44, 216–227 (2019).
Article Google Scholar
63.
Möhle, L. et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15, 1945–1956 (2016).
PubMed Article CAS PubMed Central Google Scholar
64.
Cryan, J. F. et al. The microbiota-gut-dbrain axis. Physiol. Rev. 99, 1877–2013 (2019).
CAS PubMed Article PubMed Central Google Scholar
65.
Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).
CAS PubMed Article PubMed Central Google Scholar
66.
O’Connor, R. J. Identification guide to European Passerines L. Svensson. Auk 102, (1985).
67.
Khan, G., Kangro, H. O., Coates, P. J. & Heath, R. B. Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J. Clin. Pathol. 44, 360–365 (1991).
CAS PubMed PubMed Central Article Google Scholar
68.
Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).
CAS PubMed Article Google Scholar
69.
Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859) 133, 49–54 (1991).
Article Google Scholar
70.
Serrano-Davies, E., O’Shea, W. & Quinn, J. L. Individual foraging preferences are linked to innovativeness and personality in the great tit. Behav. Ecol. Sociobiol. 71, 161 (2017).
Article Google Scholar
71.
Aplin, L. M., Sheldon, B. C. & McElreath, R. Conformity does not perpetuate suboptimal traditions in a wild population of songbirds. Proc. Natl. Acad. Sci. U. S. A. 114, 7830–7837 (2017).
CAS PubMed PubMed Central Article Google Scholar
72.
O’Shea, W., Serrano-Davies, E. & Quinn, J. L. Do personality and innovativeness influence competitive ability? An experimental test in the great tit. Behav. Ecol. 28, 1435–1444 (2017).
Article Google Scholar
73.
Shutt, J. D. et al. Gradients in richness and turnover of a forest passerine’s diet prior to breeding: a mixed model approach applied to faecal metabarcoding data. Mol. Ecol. 29, 1199–1213 (2020).
PubMed Article Google Scholar
74.
Crouch, N. M. A., Lynch, V. M. & Clarke, J. A. A re-evaluation of the chemical composition of avian urinary excreta. J. Ornithol. 161, 17–24 (2020).
Article Google Scholar
75.
Fouhy, F. et al. Perinatal factors affect the gut microbiota up to four years after birth. Nat. Commun. 10, 1517 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
76.
Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U. S. A. 102, 2567–2572 (2005).
ADS CAS PubMed PubMed Central Article Google Scholar
77.
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
78.
R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org/ (2014).
79.
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
CAS PubMed Article Google Scholar
80.
Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife https://doi.org/10.7554/eLife.01102 (2013).
Article PubMed PubMed Central Google Scholar
81.
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7, https://CRAN.R-project.org/package=lme4. R Packag. version (2014).
82.
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).
Article Google Scholar
83.
Zakrzewski, M. et al. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics https://doi.org/10.1093/bioinformatics/btw725 (2017).
Article PubMed Google Scholar More