More stories

  • in

    The spreading of the invasive sacred ibis in Italy

    1.
    Wittenberg, R. & Cock, M. J. W. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices (CABI, Wallingford, 2001).
    Google Scholar 
    2.
    Genovesi, P. Eradications of invasive alien species in Europe: a review. Biol. Invas. 7, 127–133 (2005).
    Article  Google Scholar 

    3.
    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).
    PubMed  Article  Google Scholar 

    5.
    Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).
    Article  Google Scholar 

    6.
    David, P. et al. Impacts of invasive species on food webs: a review of empirical data. In Advances in Ecological Research (eds Bohan, D. A. et al.) 1–60 (Academic Press, Cambridge, 2017).
    Google Scholar 

    7.
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. 113, 11261–11265 (2016).
    CAS  PubMed  Article  Google Scholar 

    8.
    Blackburn, T. M. & Ewen, J. G. Parasites as drivers and passengers of human-mediated biological invasions. EcoHealth 14, 61–73 (2017).
    PubMed  Article  Google Scholar 

    9.
    Volponi, S. & Emiliani, D. Presenza e riproduzione di due specie di Ciconiiformi esotici con formazione di ibridi nelle zone umide ravennati del Parco del Delta del Po. Convegno Inanellatori Ital. 10, 1 (2008).
    Google Scholar 

    10.
    Negri, A. et al. Mitochondrial DNA and microsatellite markers evidence a different pattern of hybridization in red-legged partridge (Alectoris rufa) populations from NW Italy. Eur. J. Wildl. Res. 59, 407–419 (2013).
    Article  Google Scholar 

    11.
    Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).
    CAS  Article  Google Scholar 

    12.
    Little, M. N. et al. The influence of riparian invasion by the terrestrial shrub Lonicera maackii on aquatic macroinvertebrates in temperate forest headwater streams. Biol. Invas. https://doi.org/10.1007/s10530-020-02349-8 (2020).
    Article  Google Scholar 

    13.
    Falk-Petersen, J., Bøhn, T. & Sandlund, O. T. On the numerous concepts in invasion biology. Biol. Invas. 8, 1409–1424 (2006).
    Article  Google Scholar 

    14.
    Helmstedt, K. J. et al. Prioritizing eradication actions on islands: it’s not all or nothing. J. Appl. Ecol. 53, 733–741 (2016).
    Article  Google Scholar 

    15.
    Moon, K., Blackman, D. A. & Brewer, T. D. Understanding and integrating knowledge to improve invasive species management. Biol. Invas. 17, 2675–2689 (2015).
    Article  Google Scholar 

    16.
    European Commission DG ENV. More rigorous studies needed to evaluate impact of invasive birds. Sci. Environ. Policy 1 (2011).

    17.
    Strubbe, D., Shwartz, A. & Chiron, F. Concerns regarding the scientific evidence informing impact risk assessment and management recommendations for invasive birds. Biol. Conserv. 144, 2112–2118 (2011).
    Article  Google Scholar 

    18.
    Bertolino, S. et al. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).
    Article  Google Scholar 

    19.
    Graham, S. et al. Opportunities for better use of collective action theory in research and governance for invasive species management. Conserv. Biol. 33, 275–287 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    del Hoyo, J., Elliot, A. & Sargatal, J. Handbook of the Birds of the World (Lynx Edicions, Barcelona, 1992).
    Google Scholar 

    21.
    Kopij, G. Breeding ecology of the Sacred Ibis Threskiornis aethiopicus in the Free State, South Africa. S. Afr. J. Wildl. Res. 29, 25–30 (1999).
    Google Scholar 

    22.
    del Hoyo, J. & Collar, N. HBW and Birdlife International Illustrated Checklist of the Birds of the World. Vol: Non-passerines (2014).

    23.
    Robert, H., Lafontaine, R., Delsinne, T. & Beudels-Jamar, R. Risk analysis of the Sacred ibis Threskiornis aethiopicus (Royal Belgian Institute of Natural Sciences, Brussels, 2013).
    Google Scholar 

    24.
    Yésou, P. & Clergeau, P. Sacred Ibis: a new invasive species in Europe. Bird. World 18, 517–526 (2006).
    Google Scholar 

    25.
    Clergeau, P. & Yésou, P. Behavioural flexibility and numerous potential sources of introduction for the Sacred Ibis: causes of concern in Western Europe?. Biol. Invas. 8, 1381–1388 (2006).
    Article  Google Scholar 

    26.
    Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. & Vilà, M. More than “100 worst” alien species in Europe. Biol. Invas. 20, 1611–1621 (2018).
    Article  Google Scholar 

    27.
    Carpegna, F., Della Toffola, M., Alessandria, G. & Re, A. L’Ibis sacro Threskiornis aethiopicus nel Parco Naturale Lame del Sesia e sua presenza in Piemonte. Avocetta 23, 82 (1999).
    Google Scholar 

    28.
    Marion, L. Is the Sacred ibis a real threat to biodiversity? Long-term study of its diet in non-native areas compared to native areas. C. R. Biol. 336, 207–220 (2013).
    PubMed  Article  Google Scholar 

    29.
    Novarini, N. & Stival, E. Wading birds predation on Bufotes viridis (Laurenti, 1768) in the Ca’ Vallesina wetland (Ca’ Noghera, Venice, Italy). Boll. Mus. Storia Nat. Venezia 67, 71–75 (2017).
    Google Scholar 

    30.
    Clergeau, P., Reeber, S., Bastian, S. & Yésou, P. L. profil alimentaire de l’Ibis sacré Threskiornis aethiopicus introduit en France métropolitaine: espèce généraliste ou spécialiste. Rev. Ecol. Terre Vie 65, 331–342 (2010).
    Google Scholar 

    31.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    32.
    Pavia, M. L. nuova Banca Dati del Gruppo Piemontese Studi Ornitologici. Tichodroma 6, 152 (2017).
    Google Scholar 

    33.
    Saporetti, F. Abundance, phenology and geographical distribution in relation to habitat of Tringa species in N Italy: a summary of data from the Italian online portal www.ornitho.it. Wader Study 122, 60–70 (2015).
    Article  Google Scholar 

    34.
    iNaturalist. iNaturalist (2020) (accessed 29 April 2020). https://www.inaturalist.org.

    35.
    Bibby, C., Burgess, N., Hill, D. & Mustoe, S. Bird Census Techniques 2nd edn. (Academic Press, Cambridge, 2000).
    Google Scholar 

    36.
    Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, Oxford, 2001).
    Google Scholar 

    37.
    Thomas, L. et al. Distance software: design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5–14 (2010).
    PubMed  Article  Google Scholar 

    38.
    Fasola, M. & Ruiz, X. The value of rice fields as substitutes for natural wetlands for Waterbirds in the Mediterranean region. Colon. Waterbirds 19, 122–128 (1996).
    Article  Google Scholar 

    39.
    Fasola, M., Rubolini, D., Merli, E., Boncompagni, E. & Bressan, U. Long-term trends of heron and egret populations in Italy, and the effects of climate, human-induced mortality, and habitat on population dynamics. Popul. Ecol. 52, 59–72 (2010).
    Article  Google Scholar 

    40.
    Fasola, M. & Cardarelli, E. Long-term changes in the food resources of a guild of breeding Ardeinae (Aves) in Italy. Ital. J. Zool. 82, 238–250 (2014).
    Google Scholar 

    41.
    Fasola, M., Merli, E., Boncompagni, E. & Rampa, A. Monitoring heron populations in Italy, 1972–2010. J. Heron Biol. Conserv. 1, 1–10 (2011).
    Google Scholar 

    42.
    Ter Braak, C., Van Strien, A., Meijer, R. & Verstrael, T. Analysis of monitorng data with many missing values: which method? In Proc. 12th Int. Conf. IBCC EOAC Noordwijkerhout Neth. 663–673 (1994).

    43.
    Gregory, R. D. et al. Developing indicators for European birds. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 269–288 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Pannekoek, J. & van Strien, A. TRIM 3 Manual. TRends and Indices for Monitoring data. Stat. Neth. Voorbg. Neth. Research Paper No. 0102, 1–57 (2001).

    45.
    Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and Practice of Statistics in Biological Research (W.H. Freeman, New York, 1995).
    Google Scholar 

    46.
    La Sorte, F. A. et al. Opportunities and challenges for big data ornithology. The Condor 120, 414–426 (2018).
    Article  Google Scholar 

    47.
    Camerano, P., Giannetti, F., Terzuolo, P. G. & Guiot, E. La Carta Forestale del Piemonte—Aggiornamento 2016 (IPLA S.p.A.—Regione Piemonte, Turin, 2017).
    Google Scholar 

    48.
    Guisan, A., Thuille, W. & Zimmerman, N. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).
    Google Scholar 

    49.
    Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).
    Article  Google Scholar 

    50.
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).
    Article  Google Scholar 

    51.
    Chatterjee, S. & Hadi, A. S. Regression Analysis by Example (Wiley, Hoboken, 2006).
    Google Scholar 

    52.
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Divers. Distrib. 17, 43–57 (2011).
    Article  Google Scholar 

    53.
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).
    Article  Google Scholar 

    54.
    Treggiari, A. A., Gagliardone, M., Pellegrino, I. & Cucco, M. Habitat selection in a changing environment: the relationship between habitat alteration and Scops Owl (Aves: Strigidae) territory occupancy. Ital. J. Zool. 80, 574–585 (2013).
    Article  Google Scholar 

    55.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS): assessing the accuracy of distribution models. J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    56.
    Heckmann, M. & Burk, L. Gridsampler—a simulation tool to determine the required sample size for repertory grid studies. J. Open Res. Softw. 5, 2 (2017).
    Article  Google Scholar 

    57.
    Guisan, A., Graham, C. H., Elith, J. & Huettmann, F. Sensitivity of predictive species distribution models to change in grain size. Divers. Distrib. 13, 332–340 (2007).
    Article  Google Scholar 

    58.
    Marion, L. & Marion, P. Première installation spontanée d’une colonie d’Ibis Sacré Threskiornis aethiopicus, au Lac de Grand-Lieu. Données préliminaires sur la production en jeunes et sur le régime alimentaire. Alauda 62, 275–280 (1994).
    Google Scholar 

    59.
    ONCFS. L’Ibis sacré (2020). http://www.oncfs.gouv.fr/La-lutte-contre-les-especes-exotiques-envahissantes-ru152/LIbis-sacre-ar282. Accessed 31 July 2020.

    60.
    Yésou, P., Clergeau, P., Bastian, S., Reeber, S. & Maillard, J.-F. The Sacred Ibis in Europe: ecology and management. Br. Birds 110, 197–212 (2017).
    Google Scholar 

    61.
    Herring, G. & Gawlik, D. E. Potential for successful population establishment of the nonindigenous sacred ibis in the Florida Everglades. Biol. Invas. 10, 969–976 (2008).
    Article  Google Scholar 

    62.
    Chen, K. & Hetherington, W. Sacred ibis nest control ineffective: environmentalist. Taipei Times 4 (2018).

    63.
    Bird Ecology Study Group. African Sacred Ibis in Taiwan (2020). https://besgroup.org/2019/01/28/african-sacred-ibis-in-taiwan/. Accessed 31 July 2020.

    64.
    Grussu, M. Checklist of the birds of Sardinia. Aves Ichnusae 4, 3–55 (2001).
    Google Scholar 

    65.
    Chane, M. & Balakrishnan, M. Population structure, feeding habits and activity patterns of the African Sacred ibis (Threskiornis aethiopicus) in Dilla Kera area, southern Ethiopia. Ethiop. J. Biol. Sci. 15, 93–105 (2016).
    Google Scholar 

    66.
    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
    Article  Google Scholar 

    67.
    Grussu, M. Gli uccelli alloctoni in Sardegna: una checklist aggiornata. Mem. Della Soc. Ital. Sci. Nat. E Mus. Civ. Storia Nat. Milano 36, 65 (2008).
    Google Scholar 

    68.
    Ranghetti, L. et al. Testing estimation of water surface in Italian rice district from MODIS satellite data. Int. J. Appl. Earth Observ. Geoinform. 52, 284–295 (2016).
    ADS  Article  Google Scholar 

    69.
    Fasola, M., Cardarelli, E., Pellitteri-Rosa, D. & Ranghetti, L. The recent decline of heron populations in Italy and the changes in rice cultivation practice. In 25th International Ornithological Congress. Ornithological Science (The Ornithological Society of Japan, 2014).

    70.
    Delmastro, G. B. Il gambero della Louisiana Procambarus clarkii (Girard, 1852) in Piemonte: nuove osservazioni su distribuzione, biologia, impatto e utilizzo (Crustacea: Decapoda: Cambaridae). Riv. Piemontese Storia Nat. 38, 61–129 (2017).
    Google Scholar 

    71.
    Bernini, G. et al. Complexity of biogeographic pattern in the endangered crayfish Austropotamobius italicus in northern Italy: molecular insights of conservation concern. Conserv. Genet. 17, 141–154 (2016).
    Article  Google Scholar 

    72.
    Fàbregas, M. C., Guillén-Salazar, F. & Garcés-Narro, C. The risk of zoological parks as potential pathways for the introduction of non-indigenous species. Biol. Invas. 12, 3627–3636 (2010).
    Article  Google Scholar 

    73.
    Brichetti, P. & Fracasso, G. Ornitologia Italiana. 1 Gaviidae-Falconidae (Alberto Perdisa editore, Bologna, 2003).
    Google Scholar 

    74.
    Wasef, S. Mitogenomic diversity in Sacred Ibis Mummies sheds light on early Egyptian practices. PLoS ONE 14, e0223964 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Fasola, M. & Alieri, R. Conservation of heronry Ardeidae sites in North Italian agricultural landscapes. Biol. Conserv. 62, 219–228 (1992).
    Article  Google Scholar 

    76.
    Cocchi, R. & Volponi, S. Information on measures and related costs in relation to species included on the Union list—Threskiornis aethiopicus. Tech. Note Prep. IUCN Eur. Comm. ISPRA Ozzano Emilia Italy (2020).

    77.
    Smits, R., Van Horssen, P. & Van Der Winden, J. A Risk Analysis of the Sacred Ibis in the Netherlands: Including Biology and Management Options of this Invasive Species (Bureau Waardenburg Consultants for Environment & Ecology, Culemborg, 2010).
    Google Scholar 

    78.
    Byers, J. E. et al. Directing research to reduce the impacts of nonindigenous species. Conserv. Biol. 16, 630–640 (2002).
    Article  Google Scholar 

    79.
    Heath, J. A. & Frederick, P. C. Trapping White Ibises with rocket nets and mist nets in the Florida Everglades. J. Field Ornithol. 74, 187–192 (2003).
    Article  Google Scholar 

    80.
    Gurevitch, J. & Padilla, D. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19, 470–474 (2004).
    PubMed  Article  Google Scholar 

    81.
    Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. & Gemmell, N. J. Are invasive species the drivers of ecological change?. Trends Ecol. Evol. 20, 470–474 (2005).
    PubMed  Article  Google Scholar 

    82.
    Vaslin, M. Predaction de l’Ibis sacré sur des colonies des sternes et des guifettes. Ornithos 12, 106–109 (2005).
    Google Scholar 

    83.
    Evans, T. & Blackburn, T. M. Global variation in the availability of data on the environmental impacts of alien birds. Biol. Invas. 22, 1027–1036 (2020).
    Article  Google Scholar 

    84.
    Clergeau, P., Fourcy, D., Reeber, S. & Yésou, P. New but nice? Do alien sacred ibises Threskiornis aethiopicus stabilize nesting colonies of native spoonbills Platalea leucorodia at Grand-Lieu Lake, France?. Oryx 44, 533–538 (2010).
    Article  Google Scholar 

    85.
    Bremner, A. & Park, K. Public attitudes to the management of invasive non-native species in Scotland. Biol. Conserv. 139, 306–314 (2007).
    Article  Google Scholar  More

  • in

    Applying the economic concept of profitability to leaves

    Leaf profitability
    We calculated the economic profitability of leaves and analysed the patterns in relation to leaf size, environment and durability (longevity). There was wide variation in leaf profitability with a mean value (± SD) of 3.4 ± 3.5% day−1 and 5th/95th percentile range of 0.29–10.3% day−1. There are no previous studies reporting leaf profitability values for direct comparison, but they can be re-calculated based on published values for leaf payback time. For example, Williams et al.21 reported payback time values in several Piper species from a Mexican rainforest, corresponding to leaf profitability values between 0.01 and 33% day−1. Poorter et al.23 calculated payback times corresponding to leaf profitability values of 1.25–50% day−1 , depending on species type, light environment, and growth conditions (very high values were observed for seedlings grown under non-limiting, hydroponic conditions). The mean values of our study are lower, but in line with values calculated from payback time of Kikuzawa and Lechowicz25 (2.2 ± 2% day−1), because they consider the mean labour time and the favourable period length, as we also applied in our calculations (see “Methods” and Supplementary File S2 online).
    One factor that could influence profitability is the size of a production unit. For example, a large leaf may imply a higher cost required for structural support; therefore, the changes in profitability will depend on how gains and expenses vary with size. As it turned out, we found that leaf profitability was positively related to leaf size (Fig. 2A), but the percentage of variance explained was not especially high (R2 = 0.07, P  More

  • in

    Shift in polar benthic community structure in a fast retreating glacial area of Marian Cove, West Antarctica

    Impact of glacial retreat on the benthic ecosystem
    Most enriched POM δ13C concentration in the inner cove location (B2) indicates a potential melt-water input near the glacier (Table S2). The δ13C signature of diatoms showed a similar spatial concentration gradient along the cove, but was slightly more enriched than POM δ13C. This signature of freshwater influence has also been detected in other Antarctic regions. For example, the enriched δ13C of POM and diatoms in Potter Cove was recently reported16. In the enclosed environment beneath glaciers, δ13C might be enriched due to increased HCO3− utilization and production of organic materials17. The POM and diatom δ15N concentrations showed the lack of parallel gradients over the study area. The POM δ15N, especially phytoplankton values, is affected by their nutrient sources. Snow melt-water input occasionally appears from the local creeks throughout the Marian Cove, and the melt-water is associated with the nutrient input as well. Thus, the POM and diatom δ15N concentrations seemed to reflect the melt-water input throughout the cove.
    The coastline of the inner locations (B1–B2;  More

  • in

    Contribution to unravel variability in bowhead whale songs and better understand its ecological significance

    1.
    Würsig, B. & Clark, C. W. Behavior. in The bowhead whale (eds. Burns, J. J., Montague, J. & Cowles, C. J.) 157–199 (the Society for Marine Mammalogy, 1993).
    2.
    Stafford, K. M., Moore, S. E., Laidre, K. L. & Heide-Jørgensen, M. P. Bowhead whale springtime song off West Greenland. J. Acoust. Soc. Am. 124, 3315–3323 (2008).
    PubMed  Article  ADS  Google Scholar 

    3.
    Delarue, J., Laurinolli, M. & Martin, B. Bowhead whale (Balaena mysticetus) songs in the Chukchi Sea between October 2007 and May 2008. J. Acoust. Soc. Am. 126, 3319–3328 (2009).
    PubMed  Article  ADS  Google Scholar 

    4.
    Tervo, O. M., Christoffersen, M. F., Parks, S. E., Kristensen, R. M. & Madsen, P. T. Evidence for simultaneous sound production in the bowhead whale (Balaena mysticetus). J. Acoust. Soc. Am. 130, 2257–2262 (2011).
    PubMed  Article  ADS  Google Scholar 

    5.
    Tervo, O. M., Parks, S. E., Christoffersen, M. F., Miller, L. A. & Kristensen, R. M. Annual changes in the winter song of bowhead whales (Balaena mysticetus) in Disko Bay, Western Greenland . Mar. Mammal Sci. 27, E241–E252 (2011).
    Article  Google Scholar 

    6.
    Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).
    CAS  PubMed  Article  ADS  Google Scholar 

    7.
    Collins, S. Vocal fighting and flirting: the functions of birdsong. in Nature’s Music 39–79 (Elsevier, Amsterdam, 2004).

    8.
    Johnson, H. D., Stafford, K. M., George, J. C., Ambrose, W. G. & Clark, C. W. Song sharing and diversity in the Bering-Chukchi-Beaufort population of bowhead whales (Balaena mysticetus), spring 2011. Mar. Mammal Sci. 31, 902–922 (2015).
    Article  Google Scholar 

    9.
    Cholewiak, D. M., Cerchio, S., Jacobsen, J. K., Urbán-R, J. & Clark, C. W. Songbird dynamics under the sea: acoustic interactions between humpback whales suggest song mediates male interactions. R. Soc. Open Sci. 5, 171298 (2018).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    10.
    Murray, A., Dunlop, R. A., Noad, M. J. & Goldizen, A. W. Stereotypic and complex phrase types provide structural evidence for a multi-message display in humpback whales (Megaptera novaeangliae). J. Acoust. Soc. Am. 143, 980–994 (2018).
    PubMed  Article  ADS  Google Scholar 

    11.
    Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, e79422 (2013).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    12.
    Rekdahl, M. L. et al. Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins. 15 (2018).

    13.
    Darling, J. D., Acebes, J. M. V., Frey, O., Jorge Urbán, R. & Yamaguchi, M. Convergence and divergence of songs suggests ongoing, but annually variable, mixing of humpback whale populations throughout the North Pacific. Sci. Rep. 9, 7002 (2019).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    14.
    Garland, E. C. et al. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J. Acoust. Soc. Am. 133, 560–569 (2013).
    PubMed  Article  ADS  Google Scholar 

    15.
    Garland, E. C. et al. The devil is in the detail: Quantifying vocal variation in a complex, multi-levelled, and rapidly evolving display. J. Acoust. Soc. Am. 142, 460–472 (2017).
    PubMed  Article  ADS  Google Scholar 

    16.
    Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proc. R. Soc. B Biol. Sci. 285, 20182088 (2018).
    Article  Google Scholar 

    17.
    Tervo, O. M., Parks, S. E. & Miller, L. A. Seasonal changes in the vocal behavior of bowhead whales (Balaena mysticetus) in Disko Bay, Western-Greenland. J. Acoust. Soc. Am. 126, 1570–1580 (2009).
    PubMed  Article  ADS  Google Scholar 

    18.
    Payne, K. & Payne, R. Large scale changes over 19 years in songs of humpback whales in Bermuda. Ethology 68, 89–114 (1985).
    Google Scholar 

    19.
    Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: historical context and discussion of current classification issues. Mar. Mammal Sci. 29, E312–E332 (2013).
    Article  Google Scholar 

    20.
    Kowarski, K., Moors-Murphy, H., Maxner, E. & Cerchio, S. Western North Atlantic humpback whale fall and spring acoustic repertoire: Insight into onset and cessation of singing behavior. J. Acoust. Soc. Am. 145, 2305–2316 (2019).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    21.
    Stafford, K. M. et al. Spitsbergen’s endangered bowhead whales sing through the polar night. Endanger. Spec. Res. 18, 95–103 (2012).
    Article  Google Scholar 

    22.
    Stafford, K. M., Lydersen, C., Wiig, Ø. & Kovacs, K. M. Extreme diversity in the songs of Spitsbergen’s bowhead whales. Biol. Lett. 14, 20180056 (2018).

    23.
    Boertmann, D., Kyhn, L. A., Witting, L. & Heide-Jørgensen, M. P. A hidden getaway for bowhead whales in the Greenland Sea. Polar Biol. 38, 1315–1319 (2015).
    Article  Google Scholar 

    24.
    André, M. et al. Listening to the deep: live monitoring of ocean noise and cetacean acoustic signals. Mar. Pollut. Bull. 63, 18–26 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Bioacoustics Research Program. Raven Pro: Interactive sound analysis software (Version 1.5). (The Cornell Lab of Ornithology, 2014).

    26.
    Wilden, I., Herzel, H., Peters, G. & Tembrock, G. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 9, 171–196 (1998).
    Article  Google Scholar 

    27.
    Bonett, D. G. Confidence interval for a coefficient of quartile variation. Comput. Stat. Data Anal. 50, 2953–2957 (2006).
    MathSciNet  MATH  Article  Google Scholar 

    28.
    Demšar, J. et al. Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 2349–2353 (2013).
    MATH  Google Scholar 

    29.
    Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).
    MathSciNet  MATH  Article  Google Scholar 

    30.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E. & Tatham, R. L. Multidimensional scaling. in Multivariate data analysis: A global perspective 539–582 (Upper Saddle River, NJ: Pearson, 2010).

    31.
    Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
    MATH  Article  Google Scholar 

    32.
    Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M. & Perona, I. An extensive comparative study of cluster validity indices. Pattern Recognit. 46, 243–256 (2013).
    Article  Google Scholar 

    33.
    Ahonen, H. et al. The underwater soundscape in western Fram Strait: breeding ground of Spitsbergen’s endangered bowhead whales. Mar. Pollut. Bull. 123, 97–112 (2017).
    CAS  PubMed  Article  Google Scholar 

    34.
    Ljungblad, D. K., Thompson, P. O. & Moore, S. E. Underwater sounds recorded from migrating bowhead whales, Balaena mysticetus, in 1979. J. Acoust. Soc. Am. 71, 477–482 (1982).
    Article  ADS  Google Scholar 

    35.
    Kroodsma, D. E. Reproductive development in a female songbird: differential stimulation by quality of male song. Science 192, 574–575 (1976).
    CAS  PubMed  Article  ADS  Google Scholar 

    36.
    Byers, B. E. & Kroodsma, D. E. Female mate choice and songbird song repertoires. Anim. Behav. 77, 13–22 (2009).
    Article  Google Scholar 

    37.
    Payne, K. The progressively changing songs of humpback whales: A window on the creative process in a wild animal. in The origins of music 135–150 (2000).

    38.
    Parsons, E. C. M., Wright, A. J. & Gore, M. A. The nature of humpback whale (Megaptera novaeangliae) song. J. Mar. Anim. Their Ecol. 1, 22–31 (2008).
    Google Scholar 

    39.
    Van Parijs, S. M., Lydersen, C. & Kovacs, K. M. Vocalizations and movements suggest alternative mating tactics in male bearded seals. Anim. Behav. 65, 273–283 (2003).
    Article  Google Scholar 

    40.
    Ballentine, B., Hyman, J. & Nowicki, S. Vocal performance influences female response to male bird song: an experimental test. Behav. Ecol. 15, 163–168 (2004).
    Article  Google Scholar 

    41.
    Podos, J., Huber, S. K. & Taft, B. Bird song: the interface of evolution and mechanism. Annu. Rev. Ecol. Evol. Syst. 35, 55–87 (2004).
    Article  Google Scholar 

    42.
    Podos, J. A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae). Evolution 51, 537–551 (1997).
    PubMed  Article  Google Scholar 

    43.
    Moseley, D. L., Lahti, D. C. & Podos, J. Responses to song playback vary with the vocal performance of both signal senders and receivers. Proc. R. Soc. B Biol. Sci. 280, 20131401 (2013).
    Article  Google Scholar 

    44.
    Reby, D. et al. Evidence of biphonation and source–filter interactions in the bugles of male North American wapiti (Cervus canadensis). J. Exp. Biol. 219, 1224–1236 (2016).
    CAS  PubMed  Article  Google Scholar 

    45.
    Aubin, T., Jouventin, P. & Hildebrand, C. Penguins use the two-voice system to recognize each other. Proc. R. Soc. B Biol. Sci. 267, 1081–1087 (2000).
    CAS  Article  Google Scholar 

    46.
    Fitch, W. T., Neubauer, J. & Herzel, H. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Anim. Behav. 63, 407–418 (2002).
    Article  Google Scholar 

    47.
    Volodina, E. V., Volodin, I. A., Isaeva, I. V. & Unck, C. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology 112, 815–825 (2006).
    Article  Google Scholar 

    48.
    Volodin, I. A. & Nagaylik, M. M. Cues to orientation of a caller to a listener in biphonic and non-biphonic close range contact calls in the dhole (Cuon alpinus). 11 (2006).

    49.
    Miller, P. J. O., Samarra, F. I. P. & Perthuison, A. D. Caller sex and orientation influence spectral characteristics of “two-voice” stereotyped calls produced by free-ranging killer whales. J. Acoust. Soc. Am. 121, 3932 (2007).
    PubMed  Article  ADS  Google Scholar 

    50.
    Schoenfuss, H. L. et al. The anatomy of the larynx of the bowhead whale, Balaena mysticetus, and its sound-producing functions. Anat. Rec. 297, 1316–1330 (2014).
    Article  Google Scholar 

    51.
    Root-Gutteridge, H. et al. A lifetime of changing calls: North Atlantic right whales, Eubalaena glacialis, refine call production as they age. Anim. Behav. 137, 21–34 (2018).
    Article  Google Scholar 

    52.
    Mercado, E., Herman, L. M. & Pack, A. A. Song copying by humpback whales: themes and variations. Anim. Cogn. 8, 93–102 (2005).
    PubMed  Article  Google Scholar 

    53.
    Zoloth, S. & Green, S. Monkey vocalizations and human speech: Parallels in perception?. Brain. Behav. Evol. 16, 430–442 (1979).
    CAS  PubMed  Article  Google Scholar 

    54.
    Soltis, J., Leong, K. & Savage, A. African elephant vocal communication II: rumble variation reflects the individual identity and emotional state of callers. Anim. Behav. 70, 589–599 (2005).
    Article  Google Scholar 

    55.
    Brady, B., Hedwig, D., Trygonis, V. & Gerstein, E. Classification of Florida manatee (Trichechus manatus latirostris ) vocalizations. J. Acoust. Soc. Am. 147, 1597–1606 (2020).
    PubMed  Article  ADS  Google Scholar 

    56.
    Murray, S. O., Mercado, E. & Roitblat, H. L. Characterizing the graded structure of false killer whale (Pseudorca crassidens ) vocalizations. J. Acoust. Soc. Am. 104, 1679–1688 (1998).
    CAS  PubMed  Article  ADS  Google Scholar 

    57.
    Karlsen, J. D., Bisther, A., Lydersen, C., Haug, T. & Kovacs, K. M. Summer vocalisations of adult male white whales (Delphinapterus leucas) in Svalbard, Norway. 10 (2002).

    58.
    Nemiroff, L. & Whitehead, H. Structural characteristics of pulsed calls of long-finned pilot whales Globicephala melas. Bioacoustics 19, 67–92 (2009).
    Article  Google Scholar 

    59.
    Dunlop, R. A., Noad, M. J., Cato, D. H. & Stokes, D. The social vocalization repertoire of east Australian migrating humpback whales (Megaptera novaeangliae). J. Acoust. Soc. Am. 122, 2893 (2007).
    PubMed  Article  ADS  Google Scholar 

    60.
    Clark, C. W. The acoustic repertoire of the Southern right whale, a quantitative analysis. Anim. Behav. 30, 1060–1071 (1982).
    Article  Google Scholar 

    61.
    Trygonis, V., Gerstein, E., Moir, J. & McCulloch, S. Vocalization characteristics of North Atlantic right whale surface active groups in the calving habitat, southeastern United States. J. Acoust. Soc. Am. 134, 4518–4531 (2013).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    62.
    Janik, V. M. Pitfalls in the categorization of behaviour: a comparison of dolphin whistle classification methods. Anim. Behav. 57, 133–143 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Tougaard, J. & Eriksen, N. Analysing differences among animal songs quantitatively by means of the Levenshtein distance measure. Behaviour 143, 239–252 (2006).
    Article  Google Scholar 

    64.
    Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: tests using humpback whale song. Behaviour 149, 1413–1441 (2012).
    Article  Google Scholar 

    65.
    Garland, E. C. et al. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations. Conserv. Biol. 29, 1198–1207 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Koski, W. R., Davis, R. A., Miller, G. W. & Withrow, D. E. Reproduction. in The bowhead whale (eds. Burns, J. J., Montague, J. J. & Cowles, C. J.) 239–274 (The Society for Marine Mammalogy, 1993).

    67.
    Heide-Jørgensen, M. P., Laidre, K. L., Quakenbush, L. T. & Citta, J. J. The Northwest Passage opens for bowhead whales. Biol. Lett. 8, 270–273 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Laxon, S. W. et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 40, 732–737 (2013).
    Article  ADS  Google Scholar 

    69.
    Stafford, K. M., Lydersen, C., Wiig, ø. & Kovacs, K. M. Data from: Extreme diversity in the songs of Spitsbergen’s bowhead whales. Dryad, Dataset. https://doi.org/https://doi.org/10.5061/dryad.1ck400f (2018). More

  • in

    Metal concentrations in coastal sharks from The Bahamas with a focus on the Caribbean Reef shark

    1.
    Mendil, D. et al. Determination of trace metal levels in seven fish species in lakes in Tokat, Turkey. Food Chem. 90, 175–179 (2005).
    CAS  Article  Google Scholar 
    2.
    Kennish, M. J. Pollution in estuaries and coastal marine waters. J. Coast. Res. 12, 27–49 (1994).
    Google Scholar 

    3.
    de Souza Machado, A. A., Spencer, K., Kloas, W., Toffolon, M. & Zarfl, C. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total Environ. 541, 268–281 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Mamtani, R., Stern, P., Dawood, I. & Cheema, S. Metals and disease: A global primary health care perspective. J. Toxicol. 2011, 1–11 (2011).
    Article  CAS  Google Scholar 

    5.
    van Dam, J. W., Negri, A. P., Uthicke, S. & Mueller, J. F. Chemical pollution on coral reefs: Exposure and ecological effects. In Ecological Impacts of Toxic Chemicals (eds Sanchez-Bayo, F. et al.) 187–211 (Bentham Science Publishers, Oak Park, 2011).
    Google Scholar 

    6.
    Dong, W. et al. Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. PeerJ 4, e2282 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Morcillo, P., Esteban, M. A. & Cuesta, A. Mercury and its toxic effects on fish. AIMS Environ. Sci. 4, 386 (2017).
    CAS  Article  Google Scholar 

    8.
    Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E. & Hoffman, L. C. Heavy metal accumulation and toxicity in smoothhound (Mustelus mustelus) shark from Langebaan Lagoon, South Africa. Food Chem. 190, 871–878 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Fisher, N. S. & Reinfelder, J. R. The trophic transfer of metals in marine systems. In Metal Speciation and Bioavailability in Aquatic Systems, Vol. 3 (eds. Tessier, A. & Turner, D. R.) 407–411, 363–406 (Wiley, Chichester, 1995).

    10.
    Ali, H. & Khan, E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ. Chem. Lett. 16, 903–917 (2018).
    CAS  Article  Google Scholar 

    11.
    Domi, N., Bouquegneau, J. M. & Das, K. Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis. Mar. Environ. Res. 60, 551–569 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Rumbold, D., Wasno, B., Hammerschlag, N. & Volety, A. Mercury accumulation in sharks from the coastal waters of Southwest Florida. Arch. Environ. Contam. Toxicol. 67, 402–412 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Lee, C. S. et al. Declining mercury concentrations in bluefin tuna reflect reduced emissions to the North Atlantic Ocean. Environ. Sci. Technol. 50, 12825–12830 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Merly, L. et al. Blood plasma levels of heavy metals and trace elements in white sharks (Carcharodon carcharias) and potential health consequences. Mar. Pollut. Bull. 142, 85–92 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Fisk, A. T., Tittlemier, S. A., Pranschke, J. L. & Norstrom, R. J. Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland sharks. Ecology 83, 2162–2172 (2002).
    Article  Google Scholar 

    16.
    Buck, D. G. et al. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 687, 956–966 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Tiktak, G. P. et al. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. Mar. Pollut. Bull. 160, 111701 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Boening, D. W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 40, 1335–1351 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Sevcikova, M., Modra, H., Slaninova, A. & Svobodova, Z. Metals as a cause of oxidative stress in fish: A review. Vet. Med. 56, 537–546 (2011).
    CAS  Article  Google Scholar 

    20.
    Bezerra, M. F., Lacerda, L. D. & Lai, C. T. Trace metals and persistent organic pollutants contamination in batoids (Chondrichthyes: Batoidea): A systematic review. Environ. Pollut. 248, 684–695 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Cortés, E. Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci. 56, 707–717 (1999).
    Article  Google Scholar 

    22.
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Shipley, O. N., Gallagher, A. J., Shiffman, D. S., Kaufman, L. & Hammerschlag, N. Diverse resource-use strategies in a large-bodied marine predator guild: Evidence from differential use of resource subsidies and intraspecific isotopic variation. Mar. Ecol. Prog. Ser. 623, 71–83 (2019).
    ADS  Article  Google Scholar 

    24.
    Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31, 395–407 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the Anthropocene. Trends Ecol. Evol. 34, 369–383 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Dent, F. & Clarke, S. State of the global market for shark products. FAO Fisheries and Aquaculture Technical Paper, 590 (2015).

    27.
    Buchan, K. C. The Bahamas. Mar. Pollut. Bull. 41, 94–111 (2000).
    CAS  Article  Google Scholar 

    28.
    Brooks, E. J., Sloman, K. A., Sims, D. W. & Danylchuk, A. J. Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endanger. Spec. Res. 13, 231–243 (2011).
    Article  Google Scholar 

    29.
    Zhu, Y., Newman, S. P., Reid, W. D. & Polunin, N. V. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160 (2019).
    Article  Google Scholar 

    30.
    Burgess, G. H. & Fordham, S. V. Regional overviews. In Sharks, Rays & Chimaeras: The Status of Chondrichthyan Fishes (eds. Fowler, S. L. et al.) 461 (IUCN/SSG Shark Specialist Group, Gland, 2005).

    31.
    Sherman, K. D. et al. Contemporary and emerging fisheries in The Bahamas—Conservation and management challenges, achievements and future directions. Fish. Manag. Ecol. 25, 319–331 (2018).
    Article  Google Scholar 

    32.
    Ward-Paige, C. A. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).
    Article  Google Scholar 

    33.
    Hammerschlag, N., Gallagher, A. J., Wester, J., Luo, J. & Ault, J. S. Don’t bite the hand that feeds: Assessing ecological impacts of provisioning ecotourism on an apex marine predator. Funct. Ecol. 26, 567–576 (2012).
    Article  Google Scholar 

    34.
    Graham, F. et al. Use of marine protected areas and exclusive economic zones in the subtropical western North Atlantic Ocean by large highly mobile sharks. Divers. Distrib. 22, 534–546 (2016).
    Article  Google Scholar 

    35.
    Chapman, D. D., Pikitch, E. K., Babcock, E. A. & Shivji, M. S. Deep-diving and diel changes in vertical habitat use by Caribbean reef sharks Carcharhinus perezi. Mar. Ecol. Prog. Ser. 344, 271–275 (2007).
    ADS  Article  Google Scholar 

    36.
    Shipley, O. N. et al. Horizontal and vertical movements of Caribbean reef sharks (Carcharhinus perezi): Conservation implications of limited migration in a marine sanctuary. R. Soc. Open Sci. 4, 160611 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Shipley, O. N. et al. Fine-scale movement and activity patterns of Caribbean reef sharks (Carcharhinus perezi) in the Bahamas. Environ. Biol. Fish. 101, 1097–1104 (2018).
    Article  Google Scholar 

    38.
    Rosa, R.S., Mancini, P., Caldas, J.P., Graham, R.T. Carcharhinus perezi. The IUCN Red List of Threatened Species 2006: e.T60217A12323052. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60217A12323052.en (2006). Accessed 23 Aug 19.

    39.
    Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84) (2017).

    40.
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC Press, Boca Raton, 2017).
    Google Scholar 

    41.
    Adams, D. H. & McMichael, R. H. Jr. Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish. Bull. 97, 372–379 (1999).
    Google Scholar 

    42.
    Matulik, A. G. et al. Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Mar. Polllut. Bull. 116, 357–364 (2017).
    CAS  Article  Google Scholar 

    43.
    Gelsleichter, J., Sparkman, G., Howey, L. A., Brooks, E. J. & Shipley, O. N. Elevated accumulation of the toxic metal mercury in the Critically Endangered oceanic whitetip shark Carcharhinus longimanus from the northwestern Atlantic Ocean. Endanger. Spec. Res. 43, 267–279 (2020).
    Article  Google Scholar 

    44.
    Hammerschlag, N., Skubel, R. A., Sulikowski, J., Irschick, D. J. & Gallagher, A. J. A comparison of reproductive and energetic states in a marine apex predator (the tiger shark, Galeocerdo cuvier). Physiol. Biochem. Zool. 91, 933–942 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Froese, R., & Pauly, D. FishBase, version (06/2017). World Wide Web Electronic Publication (2017). Accessed 23 Aug 19.

    46.
    Pikitch, E. K., Chapman, D. D., Babcock, E. A. & Shivji, M. S. Habitat use and demographic population structure of elasmobranchs at a Caribbean atoll (Glover’s Reef, Belize). Mar. Ecol. Prog. Ser. 302, 187–197 (2005).
    ADS  Article  Google Scholar 

    47.
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Castro-González, M. I. & Méndez-Armenta, M. Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Pharmacol. 26, 263–271 (2008).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    49.
    Amirah, M. N., Afiza, A. S., Faizal, W. I. W., Nurliyana, M. H. & Laili, S. Human health risk assessment of metal contamination through consumption of fish. J. Environ. Pollut. Hum. Health 1, 1–5 (2013).
    Google Scholar 

    50.
    Lyons, K. et al. Species-specific characteristics influence contaminant accumulation trajectories and signatures across ontogeny in three pelagic shark species. Environ. Sci. Technol. 53, 6997–7006 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Rejomon, G., Nair, M. & Joseph, T. Trace metal dynamics in fishes from the southwest coast of India. Environ. Monit. Assess. 167, 243–255 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Shipley, O. N. et al. Trophodynamics and mercury bioaccumulation in reef and open-ocean fishes from The Bahamas with a focus on two teleost predators. Mar. Ecol. Prog Ser. 608, 221–232 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Karimi, R., Fisher, N. S. & Folt, C. L. Multielement stoichiometry in aquatic invertebrates: When growth dilution matters. Am. Nat. 176, 699–709 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Choy, C. A., Popp, B. N., Kaneko, J. J. & Drazen, J. C. The influence of depth on mercury levels in pelagic fishes and their prey. Proc. Natl. Acad. Sci. U. S. A. 106, 13865–13869 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Lacerda, L. D., Goyanna, F., Bezerra, M. F. & Silva, G. B. Mercury concentrations in tuna (Thunnus albacares and Thunnus obesus) from the Brazilian Equatorial Atlantic Ocean. B Eniviron. Contam. Toxicol. 98, 49–155 (2017).
    Google Scholar 

    56.
    Lee, C. S. & Fisher, N. S. Methylmercury uptake by diverse marine phytoplankton. Limnol. Oceanogr. 61, 1626–1639 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Mohammed, A. & Mohammed, T. Mercury, arsenic, cadmium and lead in two commercial shark species (Sphyrna lewini and Caraharinus porosus) in Trinidad and Tobago. Mar. Pollut. Bull. 119, 214–218 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Burger, J. et al. Metal levels in fish from the Savannah River: potential hazards to fish and other receptors. Environ Res 89, 85–97 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Kim, S. W. et al. Heavy metal accumulation in and food safety of shark meat from Jeju island, Republic of Korea. PLoS ONE 14, e0212410 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Roesijadi, G. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol. 22, 81–113 (1992).
    CAS  Article  Google Scholar 

    61.
    Palmiter, R. D. The elusive function of metallothioneins. Proc. Natl. Acad. Sci. U. S. A. 95, 8428–8430 (1998).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Pagenkopf, G. K. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Environ. Sci. Technol. 17, 342–347 (1983).
    ADS  CAS  Article  Google Scholar 

    63.
    Playle, R. C. Modelling metal interactions at fish gills. Sci. Total Environ. 219, 147–163 (1998).
    ADS  CAS  Article  Google Scholar 

    64.
    Barrera-García, A. et al. Trace elements and oxidative stress indicators in the liver and kidney of the blue shark (Prionace glauca). Comp. Biochem. Physiol. A 165, 483–490 (2013).
    Article  CAS  Google Scholar 

    65.
    Dhanakumar, S., Solaraj, G. & Mohanraj, R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotox. Environ. Safe 113, 145–151 (2015).
    CAS  Article  Google Scholar 

    66.
    Buchanan, K. et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83, 301–309 (2012).
    Article  Google Scholar 

    67.
    Bergés-Tiznado, M. E. et al. Mercury and selenium in muscle and target organs of Scalloped Hammerhead Sharks Sphyrna lewini of the SE Gulf of California: Dietary intake, molar ratios, loads, and human health risks. Arch. Environ. Contam. Toxicol. 69, 440–452 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar  More

  • in

    Increase maize productivity and water use efficiency through application of potassium silicate under water stress

    1.
    Faostat, F. Available online, http://www.fao.org/faostat/en/#data.QC. Accessed Jan 2018.
    2.
    MAL, R. Ministry of Agricultural and Land Reclamation. Economic Affairs Sector, study of statistics for animal, poultry and fish wealth. Egypt. Minist. Agric. Land Reclam., 18, 145–159 (2008).

    3.
    Al-Keraby, F. Egypt country report. Global Agenda for, 73 (2000).

    4.
    El-Beltagy, A. & Abo-Hadeed, A. The Main Pillars of the National Program for maximizing the Water-Use Efficiency in the Old Land (The Research and Development Council, Ministry of Agriculture and Land Reclamation (MOALR), Giza, Egypt, 2008).
    Google Scholar 

    5.
    Kandil, E. E., Abdelsalam, N. R., Mansour, M. A., Ali, H. M. & Siddiqui, M. H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 10, 1–11 (2020).
    Article  CAS  Google Scholar 

    6.
    Mohamed, A. E. & Makki, E. K. Wheat response to irrigation scheduling. Univ. Khartoum J. Agric. Sci. (Sudan) 13(1) (2019).

    7.
    Change, I. P. O. C. Climate change 2007: impacts, adaptation and vulnerability. Genebra, Suíça (2001).

    8.
    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).
    ADS  Article  Google Scholar 

    9.
    Tezara, W., Mitchell, V., Driscoll, S. & Lawlor, D. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914–917 (1999).
    ADS  CAS  Article  Google Scholar 

    10.
    Du, N., Guo, W., Zhang, X. & Wang, R. Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiol. Plant. 32, 839–848 (2010).
    Article  Google Scholar 

    11.
    Gholami, R. & Zahedi, S. M. Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J. Plant Nutr. 42, 2057–2069 (2019).
    CAS  Article  Google Scholar 

    12.
    Zahedi, S. M., Moharrami, F., Sarikhani, S. & Padervand, M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 10, 1–18 (2020).
    Article  CAS  Google Scholar 

    13.
    Cakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89, 1–16 (2004).
    Article  Google Scholar 

    14.
    Igbadun, H. E., Tarimo, A. K., Salim, B. A. & Mahoo, H. F. Evaluation of selected crop water production functions for an irrigated maize crop. Agric. Water Manag. 94, 1–10 (2007).
    Article  Google Scholar 

    15.
    Tariq, J. & Usman, K. Regulated deficit irrigation scheduling of maize crop. 2009. Sarhad J. Agric. 25, 441–450 (2009).
    Google Scholar 

    16.
    Singh, L. et al. Efficient techniques to increase water use efficiency under rainfed eco-systems. J. AgriSearch 1, 193–200 (2014).
    Google Scholar 

    17.
    Al-Mansor, A., El-Gindy, A., Hegazi, M., El-Bagoury, K. & Abd El-Hady, S. Effect of surface and subsurface trickle irrigation on yield and water use efficiency of tomato crop under deficit irrigation conditions. Misr J. Agric. Eng. 32, 1021–1040 (2015).
    Article  Google Scholar 

    18.
    Schmidt, R., Zhang, X. & Chalmers, D. Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels. J. Plant Nutr. 22, 1763–1773 (1999).
    CAS  Article  Google Scholar 

    19.
    Kandil, E. E., Abdelsalam, N. R., Aziz, A. A. A. E., Ali, H. M. & Siddiqui, M. H. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. SUGAR TECH 22, 782–791 (2020).
    CAS  Article  Google Scholar 

    20.
    Liang, Y., Sun, W., Si, J. & Römheld, V. Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant. Pathol. 54, 678–685 (2005).
    CAS  Article  Google Scholar 

    21.
    Hattori, T. et al. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. 123, 459–466 (2005).
    CAS  Article  Google Scholar 

    22.
    Liang, Y., Sun, W., Zhu, Y.-G. & Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147, 422–428 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Maghsoudi, K., Emam, Y. & Ashraf, M. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk. J. Bot. 39, 625–634 (2015).
    CAS  Google Scholar 

    24.
    Ibrahim, H. I., Sallam, A. M. & Shaban, K. A. Impact of irrigation rates and potassium silicate fertilizer on seed production and quality of Fahl Egyptian clover and soil properties under saline conditions. Am.-Eurasian J. Agric. Environ. Sci. 15, 1245–1255 (2015).
    Google Scholar 

    25.
    El-Naggar, M. E. et al. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials 10, 739 (2020).
    CAS  PubMed Central  Article  Google Scholar 

    26.
    Romero-Aranda, M. R., Jurado, O. & Cuartero, J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 163, 847–855 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Eneji, A. E. et al. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J. Plant Nutr. 31, 355–365 (2008).
    CAS  Article  Google Scholar 

    28.
    Liu, J., Han, C., Sheng, X., Liu, S. & Qi, X. in Oral Presentation at 5th International Conference on Si Agriculature. 13–18.

    29.
    Ali, A. M., Ibrahim, S. M. & Abou-Amer, I. Water deficit stress mitigation by foliar application of potassium silicate for sugar beet grown in a saline calcareous soil. Egypt. J. Soil Sci. 59, 15–23 (2019).
    Google Scholar 

    30.
    Mosa, W. F., Ali, H. M. & Abdelsalam, N. R. The utilization of tryptophan and glycine amino acids as safe alternatives to chemical fertilizers in apple orchards. Environ. Sci. Pollut. Res., 1–9. https://doi.org/10.1007/s11356-020-10658-7 (2020).

    31.
    Fouda, M. M. et al. Impact of high throughput green synthesized silver nanoparticles on agronomic traits of onion. Int. J. Biol. Macromol. 149, 1304–1317 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Abdelsalam, N. R. et al. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol. 133, 1008–1018 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Janislampi, K. W. Effect of silicon on plant growth and drought stress tolerance (2012).

    34.
    Balakhnina, T. & Borkowska, A. Effects of silicon on plant resistance to environmental stresses. Int. Agrophys. 27, 225–232 (2013).
    CAS  Article  Google Scholar 

    35.
    Gao, L. et al. Nitrogen fertilizer management and maize straw return modulate yield and nitrogen balance in sweet corn. Agronomy 10, 362 (2020).
    CAS  Article  Google Scholar 

    36.
    Page, A., Miller, R. & Keeney, D. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (American Society of Agronomy, Soil Science Society of America, Madison, 1982).
    Google Scholar 

    37.
    Israelsen, D. & Hansen, V. Flow of water into and through soils. In Irrigation Principles and Practices 3rd edn (Willey, New York, 1962). https://doi.org/10.2136/sssaj1963.03615995002700020010x

    38.
    Kjeldahl, C. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 22, 366 (1883).
    Article  Google Scholar 

    39.
    AOAC. Official Methods of Analysis (Association of Official Analytical Chemists, Rockville, 1990).
    Google Scholar 

    40.
    Steel, R. G. Pinciples and procedures of statistics a biometrical approach. Report No. 0070610282 (1997).

    41.
    CoStat, V. Cohort software798 light house Ave. PMB320, Monterey, CA93940, and USA. email: info@ cohort. com and Website: http://www.cohort.com. DownloadCoStatPart2. html (2005).

    42.
    Elgamaal, A. A. & Maswada, H. F. Response of three yellow maize hybrids to exogenous salicylic acid under two irrigation intervals. Asian J. Crop Sci. 5, 264–274 (2013).
    Article  Google Scholar 

    43.
    Shi, Q., Zeng, X., Li, M., Tan, X. & Xu, F. Effects of different water management practices on rice growth. Water-Wise Rice Prod. 1, 3–14 (2002).
    Google Scholar 

    44.
    Comas, L. H., Trout, T. J., DeJonge, K. C., Zhang, H. & Gleason, S. M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 212, 433–440 (2019).
    Article  Google Scholar 

    45.
    Song, L., Jin, J. & He, J. Effects of severe water stress on maize growth processes in the field. Sustainability 11, 5086 (2019).
    Article  Google Scholar 

    46.
    Zhang, H. et al. Response of maize yield components to growth stage-based deficit irrigation. Agron. J. 111, 3244–3252 (2019).
    Article  Google Scholar 

    47.
    Shedeed, S. I. Assessing effect of potassium silicate consecutive application on forage maize plants (Zea mays L.). J. Innov. Pharm. Biol. Sci. 5, 119–127 (2018).
    CAS  Article  Google Scholar 

    48.
    Mikhael, B., Awad-Allah, M. & Gewaily, E. Effect of irrigation intervals and silicon sources on the productivity of broadcast-seeded Sakha 107 rice cultivar. J. Plant Prod. 9, 1055–1062 (2018).
    Article  Google Scholar 

    49.
    Ren, J., Guo, J., Xing, X., Qi, G. & Yuan, Z. Preliminary study on yield increase effects and yield increase mechanism of silicate fertilizer on maize. J. Maize Sci. 10, 86–87 (2002).
    Google Scholar 

    50.
    Ahmad, A., Afzal, M., Ahmad, A. & Tahir, M. Effect of foliar application of silicon on yield and quality of rice (Oryza Sativa L). Cercet. Agron. Mold. 46, 21–28 (2013).
    Article  Google Scholar 

    51.
    Pilon, C., Soratto, R. P. & Moreno, L. A. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 53, 1605–1614 (2013).
    Article  Google Scholar 

    52.
    Abdeen, S. & Mancy, A. A melioration of water stress effect on sorghum plant growth and water use efficiency by application of potassium silicate and salicylic acid. Bull. Fac. Agric. Cairo Univ. 69, 43–52 (2018)
    Google Scholar 

    53.
    Sepaskhah, A. R. & Khajehabdollahi, M. H. Alternate furrow irrigation with different irrigation intervals for maize (Zea mays L.). Plant Prod. Sci. 8, 592–600 (2005).
    Article  Google Scholar 

    54.
    Artyszak, A. Effect of silicon fertilization on crop yield quantity and quality—a literature review in Europe. Plants 7, 54 (2018).
    CAS  PubMed Central  Article  Google Scholar 

    55.
    Zahedi, S. M., Karimi, M. & Teixeira da Silva, J. A. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 100, 25–31 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Hasanuzzaman, M., Alam, M. M., Nahar, K., Ahamed, K. U. & Fujita, M. Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust. J. Crop Sci. 8, 631 (2014).
    CAS  Google Scholar  More

  • in

    Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture

    1.
    FAO. The State of World Fisheries and Aquaculture 2018. (Food and Agriculture Organization of the United Nations, 2018).
    2.
    Zuo, Z.-H., Shang, B.-J., Shao, Y.-C., Li, W.-Y. & Sun, J.-S. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol. 86, 160–168. https://doi.org/10.1016/j.fsi.2018.11.003 (2019).
    CAS  Article  PubMed  Google Scholar 

    3.
    Hoseinifar, S. H., Sun, Y., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429. https://doi.org/10.3389/fmicb.2018.02429 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B. & Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 433, 50–61. https://doi.org/10.1016/j.aquaculture.2014.05.048 (2014).
    Article  Google Scholar 

    5.
    Lieke, T. et al. Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev. Aquac. 12, 943–965. https://doi.org/10.1111/raq.12365 (2019).
    Article  Google Scholar 

    6.
    Noga, E. J. Fish Disease: Diagnosis and Treatment. Vol. 2nd Edn 143–148 (Wiley, 2011).

    7.
    Haugarvoll, E., Bjerkås, I., Nowak, B. F., Hordvik, I. & Koppang, E. O. Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J. Anat. 213, 202–209. https://doi.org/10.1111/j.1469-7580.2008.00943.x (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Zhang, Z., Swain, T., Bøgwald, J., Dalmo, R. A. & Kumari, J. Bath immunostimulation of rainbow trout (Oncorhynchus mykiss) fry induces enhancement of inflammatory cytokine transcripts, while repeated bath induce no changes. Fish Shellfish Immunol. 26, 677–684. https://doi.org/10.1016/j.fsi.2009.02.014 (2009).
    CAS  Article  PubMed  Google Scholar 

    9.
    Jeney, G. & Anderson, D. P. Enhanced immune response and protection in rainbow trout to Aeromonas salmonicida bacterin following prior immersion in immunostimulants. Fish Shellfish Immunol. 3, 51–58. https://doi.org/10.1006/fsim.1993.1005 (1993).
    Article  Google Scholar 

    10.
    Steinberg, C. E. W. Ecology of Humic Substances in Freshwaters: Determinants from Geochemistry to Ecological Niches. Vol. 1 (Springer, 2003).

    11.
    Haitzer, M., Höss, S., Traunspurger, W. & Steinberg, C. E. W. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms—A review. Chemosphere 37, 1335–1362. https://doi.org/10.1016/S0045-6535(98)00117-9 (1998).
    ADS  CAS  Article  PubMed  Google Scholar 

    12.
    Thurman, E. M. Organic Geochemistry of Natural Waters. Vol. 1 (Nijhoff, M./Junk, W. Publishers, 1985).

    13.
    IHSS. What are Humic Substances? http://humic-substances.org .

    14.
    Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103. https://doi.org/10.1016/j.aquatox.2007.03.013 (2007).
    CAS  Article  PubMed  Google Scholar 

    15.
    Yamin, G. et al. The protective effect of humic substances and water and sludge from a recirculating aquaculture system on Aeromonas salmonicida infection in common carp (Cyprinus carpio). J. Fish Dis. 40, 1783–1790. https://doi.org/10.1111/jfd.12645 (2017).
    CAS  Article  PubMed  Google Scholar 

    16.
    Kodama, H., Denso & Nakagawa, T. Protection against atypical Aeromonas salmonicida infection in carp (Cyprinus carpio L.) by oral administration of humus extract. J. Vet. Med. Sci. 69, 405–408, https://doi.org/10.1292/jvms.69.405 (2007).

    17.
    Fierro-Coronado, J. A. et al. Dietary fulvic acid effects on survival and expression of immune-related genes in Litopenaeus vannamei challenged with Vibrio parahaemolyticus. Aquac. Res. 49, 3218–3227. https://doi.org/10.1111/are.13789 (2018).
    CAS  Article  Google Scholar 

    18.
    Gao, Y. et al. Effects of fulvic acid on growth performance and intestinal health of juvenile loach Paramisgurnus dabryanus (Sauvage). Fish Shellfish Immunol. 62, 47–56. https://doi.org/10.1016/j.fsi.2017.01.008 (2017).
    CAS  Article  PubMed  Google Scholar 

    19.
    Saebelfeld, M., Minguez, L., Griebel, J., Gessner, M. O. & Wolinska, J. Humic dissolved organic carbon drives oxidative stress and severe fitness impairments in Daphnia. Aquat. Toxicol. 182, 31–38. https://doi.org/10.1016/j.aquatox.2016.11.006 (2017).
    CAS  Article  PubMed  Google Scholar 

    20.
    Steinberg, C. E. W. et al. Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652, 223–236 (2010).
    CAS  Article  Google Scholar 

    21.
    Hseu, Y.-C. et al. Humic acid induced genotoxicity in human peripheral blood lymphocytes using comet and sister chromatid exchange assay. J. Hazard. Mater. 153, 784–791. https://doi.org/10.1016/j.jhazmat.2007.09.024 (2008).
    CAS  Article  PubMed  Google Scholar 

    22.
    Savy, D. et al. Quantitative structure-activity relationship of humic-like biostimulants derived from agro-industrial by products and energy crops. Front. Plant Sci. 11, 581. https://doi.org/10.3389/fpls.2020.00581 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Pörs, Y. & Steinberg, C. E. Humic substances delay aging of the photosynthetic apparatus of Chara hispida. J. Phycol. 48, 1522–1529. https://doi.org/10.1111/jpy.12012 (2012).
    CAS  Article  PubMed  Google Scholar 

    24.
    Muscolo, A., Sidari, M., Francioso, O., Tugnoli, V. & Nardi, S. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J. Chem. Ecol. 33, 115–129. https://doi.org/10.1007/s10886-006-9206-9 (2007).
    CAS  Article  PubMed  Google Scholar 

    25.
    Gilbert, M., Bährs, H., Steinberg, C. E. W. & Wilhelm, C. The artificial humic substance HS1500 does not inhibit photosynthesis of the green alga Desmodesmus armatus in vivo but interacts with the photosynthetic apparatus of isolated spinach thylakoids in vitro. Photosynth. Res. https://doi.org/10.1007/s11120-018-0513-0 (2018).
    Article  PubMed  Google Scholar 

    26.
    Perdue, E. M. in Encyclopedia of Inland Waters (ed Gene E. Likens) 806–819 (Academic Press, 2009).

    27.
    Chen, J., Gu, B., LeBoeuf, E. J., Pan, H. & Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 48, 59–68. https://doi.org/10.1016/S0045-6535(02)00041-3 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Lieke, T., Zhang, X., Steinberg, C. E. & Pan, B. Overlooked risks of biochars: Persistent free radicals trigger neurotoxicity in Caenorhabditis elegans. Environ. Sci. Technol. 52, 7981–7987. https://doi.org/10.1021/acs.est.8b01338 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Liao, S., Pan, B., Li, H., Zhang, D. & Xing, B. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ. Sci. Technol. 48, 8581–8587. https://doi.org/10.1021/es404250a (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Yuan, Y. et al. Electron transfer capacity as a rapid and simple maturity index for compost. Biores. Technol. 116, 428–434. https://doi.org/10.1016/j.biortech.2012.03.114 (2012).
    CAS  Article  Google Scholar 

    31.
    Scott, D. T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E. & Lovley, D. R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32, 2984–2989. https://doi.org/10.1021/es980272q (1998).
    ADS  CAS  Article  Google Scholar 

    32.
    Abdel-Tawwab, M., Abdel-Rahman, A. M. & Ismael, N. E. M. Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280, 185–189, https://doi.org/10.1016/j.aquaculture.2008.03.055 (2008).

    33.
    Sanmanee, N. & Areekijseree, M. The effects of fulvic acid on copper bioavailability to porcine oviductal epithelial cells. Biol. Trace Elem. Res. 135, 162–173. https://doi.org/10.1007/s12011-009-8508-5 (2010).
    CAS  Article  PubMed  Google Scholar 

    34.
    Hasan, M. & Soto, D. Improving Feed Conversion Ratio and Its Impact on Reducing Greenhouse Gas Emissions in Aquaculture. (FAO, 2017).

    35.
    Besson, M. et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 116, 100–109 (2016).
    Article  Google Scholar 

    36.
    Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375. https://doi.org/10.1016/j.dci.2011.07.002 (2011).
    CAS  Article  PubMed  Google Scholar 

    37.
    Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fisheries 9, 211–268. https://doi.org/10.1023/A:1008924418720 (1999).
    Article  Google Scholar 

    38.
    Meinelt, T. et al. Humic substances affect physiological condition and sex ratio of swordtail (Xiphophorus helleri Heckel). Aquat. Sci. 66, 239–245. https://doi.org/10.1007/s00027-004-0706-9 (2004).
    Article  Google Scholar 

    39.
    Bly, J. E., Quiniou, S. M. & Clem, L. W. Environmental effects on fish immune mechanisms. Dev. Biol. Stand. 90, 33–43 (1997).
    CAS  PubMed  Google Scholar 

    40.
    Conde-Sieira, M., Chivite, M., Míguez, J. M. & Soengas, J. L. Stress effects on the mechanisms regulating appetite in teleost fish. Front. Endocrinol. 9, https://doi.org/10.3389/fendo.2018.00631 (2018).

    41.
    Kalamarz-Kubiak, H. in Corticosteroids (ed Ali Gamal Al-Kaf) Chap. 7, 183–155 (InTechOpen, 2018).

    42.
    Timofeyev, M. A. et al. Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton). Sci. Total Environ. 366, 673–681. https://doi.org/10.1016/j.scitotenv.2006.02.003 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    43.
    Xin, Z. et al. Species sensitivity analysis of heavy metals to freshwater organisms. Ecotoxicology 24, 1621–1631. https://doi.org/10.1007/s10646-015-1500-2 (2015).
    CAS  Article  PubMed  Google Scholar 

    44.
    Demers, N. E. & Bayne, C. J. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol. 21, 363–373. https://doi.org/10.1016/S0145-305X(97)00009-8 (1997).
    CAS  Article  PubMed  Google Scholar 

    45.
    Dupré-Crochet, S., Erard, M. & Nüβe, O. ROS production in phagocytes: why, when, and where?. J. Leukoc. Biol. 94, 657–670. https://doi.org/10.1189/jlb.1012544 (2013).
    CAS  Article  PubMed  Google Scholar 

    46.
    Geng, X. et al. Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish Shellfish Immunol. 31, 400–406. https://doi.org/10.1016/j.fsi.2011.06.006 (2011).
    CAS  Article  PubMed  Google Scholar 

    47.
    Fries, C. & Tripp, M. Depression of phagocytosis in Mercenaria following chemical stress. Dev. Comp. Immunol. 4, 233–244. https://doi.org/10.1016/S0145-305X(80)80027-9 (1980).
    CAS  Article  PubMed  Google Scholar 

    48.
    Sesti-Costa, R., Baccan, G. C., Chedraoui-Silva, S. & Mantovani, B. Effects of acute cold stress on phagocytosis of apoptotic cells: The role of corticosterone. NeuroImmunoModulation 17, 79–87. https://doi.org/10.1159/000258690 (2010).
    CAS  Article  PubMed  Google Scholar 

    49.
    Narnaware, Y. K., Baker, B. I. & Tomlinson, M. G. The effect of various stresses, corticosteroids and adrenergic agents on phagocytosis in the rainbow trout Oncorhynchus mykiss. Fish Physiol. Biochem. 13, 31–40. https://doi.org/10.1007/BF00004117 (1994).
    CAS  Article  PubMed  Google Scholar 

    50.
    Dhabhar, F. S. & McEwen, B. S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behav. Immun. 11, 286–306 (1997).
    CAS  Article  Google Scholar 

    51.
    Adel, M., Abedian Amiri, A., Zorriehzahra, J., Nematolahi, A. & Esteban, M. Á. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum). Fish Shellfish Immunol. 45, 841–847, https://doi.org/10.1016/j.fsi.2015.06.010 (2015).

    52.
    Christybapita, D., Divyagnaneswari, M. & Michael, R. D. Oral administration of Eclipta alba leaf aqueous extract enhances the non-specific immune responses and disease resistance of Oreochromis mossambicus. Fish Shellfish Immunol. 23, 840–852. https://doi.org/10.1016/j.fsi.2007.03.010 (2007).
    CAS  Article  PubMed  Google Scholar 

    53.
    Ragland, S. A. & Criss, A. K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 13, https://doi.org/10.1371/journal.ppat.1006512 (2017).

    54.
    Ansorg, R. & Rochus, W. Studies on the antimicrobial effect of natural and synthetic humic acids (author’s transl). Arzneimittelforschung 28, 2195–2198 (1978).
    CAS  PubMed  Google Scholar 

    55.
    Hertkorn, N. et al. Comparative analysis of partial structures of a peat humic and fulvic acid using one-and two-dimensional nuclear magnetic resonance spectroscopy. J. Environ. Qual. 31, 375–387. https://doi.org/10.2134/jeq2002.3750 (2002).
    CAS  Article  PubMed  Google Scholar 

    56.
    Zheng, X. et al. Comparing electron donating/accepting capacities (EDC/EAC) between crop residue-derived dissolved black carbon and standard humic substances. Sci. Total Environ. 673, 29–35. https://doi.org/10.1016/j.scitotenv.2019.04.022 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Weil, J. A. & Bolton, J. R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Vol. 2 (Wiley, 2007).

    58.
    Hopkins, K. D. Reporting fish growth: A review of the basics 1. J. World Aquac. Soc. 23, 173–179. https://doi.org/10.1111/j.1749-7345.1992.tb00766.x (1992).
    Article  Google Scholar 

    59.
    Fulton, T. W. The Rate of Growth of Fishes. 141–241 (Scotland, 1904).

    60.
    Barnham, C. A. & Baxter, A. F. Condition Factor, K, for Salmonid Fish. (Department of Primary Industries, 2003).

    61.
    Secombes, C. J. in Techniques in Fish Immunology Vol. 1 (eds J. S. Stolen et al.) 137–154 (SOS Publications, 1990).

    62.
    Chettri, J. K., Holten-Andersen, L. & Buchmann, K. Factors influencing in vitro respiratory burst assays with head kidney leucocytes from rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 33, 593–602. https://doi.org/10.1111/j.1365-2761.2010.01160.x (2010).
    CAS  Article  PubMed  Google Scholar 

    63.
    Crampe, M., Farley, S. R., Langston, A. & Pulsford, A. L. in Methodology in Fish Diseases Research (eds A.C. Barnes, G.A. Davidson, M. P. Hiney, & D. McIntosh) 81–91 (Fisheries Research Services, 1998).

    64.
    Begemann, H. & Rastetter, J. Atlas of Clinical Haematology 9–21 (Springer, Berlin, 1972).
    Google Scholar 

    65.
    Sitja-Bobadilla, A., Palenzuela, O. & Alvarez-Pellitero, P. Immune response of turbot, Psetta maxima (L.) (Pisces: Teleostei), to formalin-killed scuticociliates (Ciliophora) and adjuvanted formulations. Fish Shellfish Immunol. 24, 1–10, https://doi.org/10.1016/j.fsi.2007.06.007 (2008).

    66.
    Siwicki, A. in Fish Diseases Diagnosis and Preventions Methods Vol. 1 (eds A.K. Siwicki, D.P. Anderson, & J. Waluga) 105–111 (Wydawnictwo Instytutu Rybactwa Strodladowego, 1993).

    67.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).
    CAS  Article  Google Scholar 

    68.
    Amado, L. L. et al. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: Application to evaluate microcystins toxicity. Sci. Total Environ. 407, 2115–2123. https://doi.org/10.1016/j.scitotenv.2008.11.038 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    69.
    Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods. Vol. 3 115–120 (Wiley, 2015).

    70.
    Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252. https://doi.org/10.2307/1266041 (1964).
    Article  Google Scholar 

    71.
    Siegal, S. & Castellan Jr., N. J. Nonparametric Statistics for the Behavioral Sciences. (McGraw-Hill, 1988).

    72.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57, 289–300 (1995). More

  • in

    Aerial drone observations identified a multilevel society in feral horses

    1.
    Grueter, C. C., Qi, X., Li, B. & Li, M. Multilevel societies. Curr. Biol. 27, 984–986 (2017).
    Article  CAS  Google Scholar 
    2.
    Grueter, C. C., Matsuda, I., Zhang, P. & Zinner, D. Multilevel societies in primates and other mammals: Introduction to the special issue. Int. J. Primatol. 33, 993–1001 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Matsuda, I. et al. Comparisons of intraunit relationships in nonhuman primates living in multilevel social systems. Int. J. Primatol. 33, 1038–1053 (2012).
    Article  Google Scholar 

    4.
    Papageorgiou, D. et al. The multilevel society of a small-brained bird. Curr. Biol. 29, R1120–R1121 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Grueter, C. C. et al. Multilevel Organisation of Animal Sociality. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.05.003 (2020).
    Article  PubMed  Google Scholar 

    6.
    Schreier, A. L. & Swedell, L. The fourth level of social structure in a multi-level society: ecological and social functions of clans in Hamadryas Baboons. Am. J. Primatol. 71, 948–955 (2009).
    PubMed  Article  Google Scholar 

    7.
    Snyder-Mackler, N., Beehner, J. C. & Bergman, T. J. Defining higher levels in the multilevel societies of Geladas (Theropithecus gelada). Int. J. Primatol. 33, 1054–1068 (2012).
    Article  Google Scholar 

    8.
    Whitehead, H. et al. Multilevel societies of female sperm whales (Physeter macrocephalus) in the Atlantic and Pacific: Why are they so different?. Int. J. Primatol. 33, 1142–1164 (2012).
    Article  Google Scholar 

    9.
    Tong, W., Shapiro, B. & Rubenstein, D. I. Genetic relatedness in two-tiered plains zebra societies suggests that females choose to associate with kin. Behaviour 152, 2059–2078 (2015).
    Article  Google Scholar 

    10.
    Rubenstein, D. I. & Hack, M. Ecology and social structure of the Gobi khulan Equus hemionus subsp. in the Gobi B National Park, Mongolia. In Sexual Selection in Primates: New and Comparative Perspectives 266–279 (2004). https://doi.org/10.1017/CBO9780511542459.017.

    11.
    Ozogany, K. & Vicsek, T. Modeling leadership hierarchy in multilevel animal societies. Cornell Univ. Libr. Phys. arXiv:1403.0260 (2014).

    12.
    Swedell, L. & Plummer, T. A papionin multilevel society as a model for hominin social evolution. Int. J. Primatol. 33, 1165–1193 (2012).
    Article  Google Scholar 

    13.
    Linklater, W. L. Adaptive explanation in socio-ecology: Lessons from the equidae. Biol. Rev. 75, 1–20 (2000).
    CAS  PubMed  Article  Google Scholar 

    14.
    Forcina, G. et al. From groups to communities in western lowland gorillas. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2019 (2019).
    Article  Google Scholar 

    15.
    Zhang, P., Li, B., Qi, X., MacIntosh, A. J. J. & Watanabe, K. A proximity-based social network of a group of Sichuan snub-nosed monkeys (Rhinopithecus roxellana). Int. J. Primatol. 33, 1081–1095 (2012).
    CAS  Article  Google Scholar 

    16.
    de Silva, S., Schmid, V. & Wittemyer, G. Fission–fusion processes weaken dominance networks of female Asian elephants in a productive habitat. Behav. Ecol. 28, 243–252 (2016).
    Article  Google Scholar 

    17.
    Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The socioecology of elephants: Analysis of the processes creating multitiered social structures. Anim. Behav. 69, 1357–1371 (2005).
    Article  Google Scholar 

    18.
    Qi, X. G. et al. Satellite telemetry and social modeling offer new insights into the origin of primate multilevel societies. Nat. Commun. https://doi.org/10.1038/ncomms6296 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Stead, S. M. & Teichroeb, J. A. A multi-level society comprised of one-male and multi-male core units in an African colobine (Colobus angolensis ruwenzorii). PLoS ONE 14, e0217666 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ward, A. & Webster, M. Attraction, Alignment and repulsion: how groups form and how they function. In Sociality: The Behaviour of Group-Living Animals 29–54 (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-28585-6_3.

    21.
    Aureli, F., Schaffner, C. M., Asensio, N. & Lusseau, D. What is a subgroup? How socioecological factors influence interindividual distance. Behav. Ecol. 23, 1308–1315 (2012).
    Article  Google Scholar 

    22.
    Maciej, P., Patzelt, A., Ndao, I., Hammerschmidt, K. & Fischer, J. Social monitoring in a multilevel society: A playback study with male Guinea baboons. Behav. Ecol. Sociobiol. 67, 61–68 (2013).
    PubMed  Article  Google Scholar 

    23.
    Bergman, T. J. Experimental evidence for limited vocal recognition in a wild primate: Implications for the social complexity hypothesis. In Proceedings of the Royal Society B: Biological Sciences 277, 3045–3053 (Royal Society, London, 2010).

    24.
    Bowler, M., Knogge, C., Heymann, E. W. & Zinner, D. Multilevel societies in new world primates? Flexibility may characterize the organization of Peruvian red uakaris (Cacajao calvus ucayalii). Int. J. Primatol. 33, 1110–1124 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Hemelrijk, C. K. Towards the integration of social dominance and spatial structure. Anim. Behav. 59, 1035–1048 (2000).
    CAS  PubMed  Article  Google Scholar 

    27.
    Miller, R. Seasonal movements and home ranges of feral horse bands in Wyoming’s Red Desert. J. Range Manag. 36, 199 (1983).
    Article  Google Scholar 

    28.
    Miller, R. & Dennisto, R. H. I. Interband dominance in feral horses. Z. Tierpsychol. 51, 41–47 (1979).
    Article  Google Scholar 

    29.
    Feh, C. Relationships and communication in socially natural horse herds. In The Domestic Horse: The Origins, Development and Management of its Behaviour (eds Mills, D. S. & McDonnell, S. M.) 83–93 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    30.
    Boyd, L., Scorolli, A., Nowzari, H. & Bouskila, A. Social organization of wild equids. In Wild Equids: Ecology, Management, and Conservation (eds Ransom, J. I. & Kaczensky, P.) 7–22 (Johns Hopkins University Press, Baltimore, 2016).
    Google Scholar 

    31.
    Ringhofer, M. et al. Comparison of the social systems of primates and feral horses: Data from a newly established horse research site on Serra D’Arga, northern Portugal. Primates 58, 479–484 (2017).
    PubMed  Article  Google Scholar 

    32.
    Inoue, S. et al. Spatial positioning of individuals in a group of feral horses: A case study using drone technology. Mammal Res. 64, 249–259 (2019).
    Article  Google Scholar 

    33.
    Inoue, S., Yamamoto, S., Ringhofer, M., Mendonça, R. S. & Hirata, S. Lateral position preference in grazing feral horses. Ethology 00, 1–9 (2019).
    Google Scholar 

    34.
    Ringhofer, M. et al. Herding mechanisms to maintain the cohesion of a harem group: two interaction phases during herding. J. Ethol. 38, 71–77. https://doi.org/10.1007/s10164-019-00622-5 (2019).
    Article  Google Scholar 

    35.
    Go, C. K. et al. A mathematical model of herding in horse-harem group. J. Ethol. https://doi.org/10.1007/s10164-020-00656-0 (2020).
    Article  Google Scholar 

    36.
    Young, D. et al. Package ‘Mixtools’ Title Tools for Analyzing Finite Mixture Models. J Stat Software. 32(6), 1–29. https://doi.org/10.18637/jss.v032.i06 (2009).

    37.
    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
    Article  Google Scholar 

    38.
    Torney, C. J. et al. Inferring the rules of social interaction in migrating caribou. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170385 (2018).
    Article  Google Scholar 

    39.
    Pun, A., Birch, S. A. J. & Baron, A. S. Infants use relative numerical group size to infer social dominance. Proc. Natl. Acad. Sci. 113, 2376–2381 (2016).
    CAS  PubMed  Article  ADS  Google Scholar 

    40.
    Berger, J. Organizational systems and dominance in feral horses in the Grand Canyon. Behav. Ecol. Sociobiol. 2, 131–146 (1977).
    Article  Google Scholar 

    41.
    de Silva, S. & Wittemyer, G. A comparison of social organization in Asian elephants and African savannah elephants. Int. J. Primatol. 33, 1125–1141 (2012).
    Article  Google Scholar 

    42.
    Zhang, P., Watanabe, K., Li, B. & Qi, X. Dominance relationships among one-male units in a provisioned free-ranging band of the Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in the Qinling Mountains, China. Am. J. Primatol. 70, 634–641 (2008).
    PubMed  Article  Google Scholar 

    43.
    Grueter, C. & Zinner, D. Nested societies. Convergent adaptations of baboons and snub-nosed monkeys? Primate Rep. 70, 1–98 (2004).

    44.
    Rubenstein, D. I. & Hack, M. Natural and sexual selection and the evolution of multi-level societies: Insights from zebras with comparisons to primates. In Sexual Selection in Primates: New and Comparative Perspectives 266–279 (2004). https://doi.org/10.1017/CBO9780511542459.017.

    45.
    Grueter, C. C. & Van Schaik, C. P. Evolutionary determinants of modular societies in colobines. Behav. Ecol. 21, 63–71 (2010).
    Article  Google Scholar 

    46.
    Gray, M. E. An infanticide attempt by a free-roaming feral stallion (Equus caballus). Biol. Lett. 5, 23–25 (2009).
    PubMed  Article  Google Scholar 

    47.
    Boyd, L. & Keiper, R. Behavioural ecology of feral horses. In The Domestic Horse: The Origins, Development and Management of its Behaviour (eds Mills, D. S. & McDonnell, S. M.) 55–82 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    48.
    Christensen, J. W., Ladewig, J., Søndergaard, E. & Malmkvist, J. Effects of individual versus group stabling on social behaviour in domestic stallions. Appl. Anim. Behav. Sci. 75, 233–248 (2002).
    Article  Google Scholar 

    49.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar 

    50.
    Hoppitt, W. J. E. & Farine, D. R. Association indices for quantifying social relationships: How to deal with missing observations of individuals or groups. Anim. Behav. 136, 227–238 (2018).
    Article  Google Scholar 

    51.
    Calenge, C. & Fortmann-Roe, S. Package ‘ adehabitatHR ’ v0.4.18. R CRAN Repos. (2020).

    52.
    Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002).
    MathSciNet  PubMed  Article  Google Scholar 

    53.
    Hinde, R. A. Interactions, relationships and social structure. Man New Ser. 11, 1–17 (1976).
    Google Scholar 

    54.
    King, A. J., Sueur, C., Huchard, E. & Cowlishaw, G. A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Anim. Behav. 82, 1337–1345 (2011).
    Article  Google Scholar 

    55.
    Cairns, S. J. & Schwager, S. J. A comparison of association indices. Anim. Behav. 35, 1454–1469 (1987).
    Article  Google Scholar 

    56.
    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J Stat Software https://doi.org/10.18637/jss.v022.i0 (2007).
    Article  Google Scholar 

    57.
    Croft, D. P., Madden, J. R., Franks, D. W. & James, R. Hypothesis testing in animal social networks. Trends Ecol. Evol. 26, 502–507 (2011).
    PubMed  Article  Google Scholar 

    58.
    Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y. & Croft, D. P. Calculating effect sizes in animal social network analysis. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13429 (2020).
    Article  Google Scholar 

    59.
    Weiss, M. N. et al. Common permutations of animal social network data are not appropriate for hypothesis testing using linear models. bioRxiv 1–26 (2020). https://doi.org/10.1101/2020.04.29.068056.

    60.
    Sosa, S. et al. A multilevel statistical toolkit to study animal social networks: Animal Network Toolkit ( ANT ) R package. bioRxiv 347005 (2018). https://doi.org/10.1101/347005

    61.
    Sosa, S. Social network analysis. In International Encyclopedia of the Social & Behavioral Sciences 2nd Edn, 1–18 (eds Vonk, J. & Shackleford, T. K.) (Springer, Berlin, 2018). https://doi.org/10.1016/B978-0-08-097086-8.10563-X.
    Google Scholar 

    62.
    Damien Farine. Animal Social Network Inference and Permutations for Ecologists in R using asnipe. Methods in Ecology and Evolution. 4(12), 1187–1194. https://doi.org/10.1111/2041-210X.12121 (2014).

    63.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media 361–362 (2009). More