Elevated temperatures diminish the effects of a highly resistant rice variety on the brown planthopper
1.
Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382. https://doi.org/10.1038/nature06949 (2008).
CAS Article PubMed ADS Google Scholar
2.
NASA. Global Vital Signs: Vital Signs of the Planet https://climate.nasa.gov/ (2019).
3.
Pachauri, R. K. et al. Climate Change 2014: synthesis report. Fifth Assessment Report on the Intergovernmental Panel on Climate Change 151. Geneva, Switzerland. (2014)
4.
Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x (2002).
Article ADS Google Scholar
5.
Forrest, J. R. K. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54. https://doi.org/10.1016/j.cois.2016.07.002 (2016).
Article PubMed Google Scholar
6.
Food and Agriculture Organisation of the United Nations. FAOSTAT Crops http://www.fao.org/faostat/en/#home (2019).
7.
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620. https://doi.org/10.1126/science.1204531 (2011).
CAS Article PubMed ADS Google Scholar
8.
Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148. https://doi.org/10.1371/journal.pone.0217148 (2019).
CAS Article PubMed PubMed Central Google Scholar
9.
Ali, M. P. et al. Will climate change affect outbreak patterns of planthoppers in Bangladesh?. PLoS ONE https://doi.org/10.1371/journal.pone.0091678 (2014).
Article PubMed PubMed Central Google Scholar
10.
Ali, M. P. et al. Increased temperature induces leaffolder outbreak in rice field. J. Appl. Entomol. 143, 867–874. https://doi.org/10.1111/jen.12652 (2019).
Article Google Scholar
11.
Hu, G. et al. Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: immigration or local reproduction? PLoS ONE 9, e88973 (2014).
12.
Yukawa, J. et al. Northward range expansion by Nezara viridula (Hemiptera: Pentatomidae) in Shikoku and Chugoku Districts, Japan, possibly due to global warming. Appl. Entomol. Zool. 44, 429–437 (2009).
Article Google Scholar
13.
Horgan, F. G. Integrating gene deployment and crop management for improved rice resistance to Asian planthoppers. Crop Prot. 110, 21–33 (2018).
CAS Article Google Scholar
14.
Ali, M. P. et al. Establishing next-generation pest control services in rice fields: eco-agriculture. Sci. Rep. 9, 1–9 (2019).
Article Google Scholar
15.
Horgan, F. G. et al. Effects of vegetation strips, fertilizer levels and varietal resistance on the integrated management of arthropod biodiversity in a tropical rice ecosystem. Insects 10, 328 (2019).
Article Google Scholar
16.
Horgan, F. G. Potential for an impact of global climate change on insect herbivory in cereal crops. In Crop Protection Under Climate Change (eds Jabran, K. et al.) 101–144 (Springer, Berlin, 2020).
Google Scholar
17.
Fujita, D., Kohli, A. & Horgan, F. G. Rice resistance to planthoppers and leafhoppers. Crit. Rev. Plant Sci. 32, 162–191 (2013).
CAS Article Google Scholar
18.
Horgan, F. G. et al. Virulence of brown planthopper (Nilaparvata lugens) populations from South and South East Asia against resistant rice varieties. Crop Prot. 78, 222–231 (2015).
Article Google Scholar
19.
Khush, G. S. & Virk, P. S. IR Varieties and Their Impact (International Rice Research Institute, Los Baños, Philippines, 2005).
Google Scholar
20.
Ren, J. et al. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Sci. Rep. 6, 37645 (2016).
CAS Article ADS Google Scholar
21.
Horgan, F. G. & Ferrater, J. B. Benefits and potential trade-offs associated with yeast-like symbionts during virulence adaptation in a phloem-feeding planthopper. Entomol. Exp. Appl. 163, 112–125 (2017).
Article Google Scholar
22.
Horgan, F. G., Garcia, C. P. F., Haverkort, F., de Jong, P. W. & Ferrater, J. B. Changes in insecticide resistance and host range performance of planthoppers artificially selected to feed on resistant rice. Crop Prot. 127, 104963. https://doi.org/10.1016/j.cropro.2019.104963 (2020).
CAS Article PubMed PubMed Central Google Scholar
23.
Ferreter, J. B. et al. Varied responses by yeast-like symbionts during virulence adaptation in a monophagous phloem-feeding insect. Arthropod-Plant Interact. 9, 215–224 (2015).
Article Google Scholar
24.
Ferrater, J. B., de Jong, P. W., Dicke, M., Chen, Y. H. & Horgan, F. G. Symbiont-mediated adaptation by planthoppers and leafhoppers to resistant rice varieties. Arthropod-Plant Interact. 7, 591–605. https://doi.org/10.1007/s11829-013-9277-9 (2013).
Article Google Scholar
25.
Lee, Y. H. & Hou, R. F. Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugensStål. J. Insect Physiol. 33, 851–860 (1987).
Article Google Scholar
26.
Hongoh, Y. & Ishikawa, H. Uric acid as a nitrogen resource for the brown planthopper, Nilaparvata lugens: studies with synthetic diets and aposymbiotic insects. Zool. Sci. 14, 581–586 (1997).
CAS Article Google Scholar
27.
Pan, Y. et al. Identification of brown planthopper resistance gene Bph32 in the progeny of a rice dominant genic male sterile recurrent population using genome-wide association study and RNA-seq analysis. Mol. Breed. 39, 72 (2019).
Article Google Scholar
28.
Stevenson, P. C., Kimmins, F. M., Grayer, R. J. & Raveendranath, S. Schaftosides from rice phloem as feeding inhibitors and resistance factors to brown planthopper, Nilaparvata lugens. Entomol. Exp. Appl. 80, 246–249 (1996).
Article Google Scholar
29.
Uawisetwathana, U. et al. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics 15, 151. https://doi.org/10.1007/s11306-019-1616-0 (2019).
CAS Article PubMed Google Scholar
30.
Saxena, R. C. & Okech, S. H. Role of plant volatiles in resistance of selected rice varieties to brown planthopper, Nilaparvata lugens (Stål)(Homoptera; Delphacidae). J. Chem. Ecol. 11, 1601–1616 (1985).
CAS Article Google Scholar
31.
Kamolsukyeunyong, W. et al. Identification of spontaneous mutation for broad-spectrum brown planthopper resistance in a large, long-term fast neutron mutagenized rice population. Rice 12, 16 (2019).
Article Google Scholar
32
Nguyen, C. D. et al. The development and characterization of near-isogenic and pyramided lines carrying resistance genes to brown planthopper with the genetic background of japonica rice (Oryza sativa L.). Plants 8, 498 (2019).
CAS Article Google Scholar
33.
Salim, M. & Saxena, R. C. Temperature stress and varietal resistance in rice: effects on whitebackedplanthopper. Crop Sci. 31, 1620–1625. https://doi.org/10.2135/cropsci1991.0011183X003100060048x (1991).
Article Google Scholar
34.
Wang, B.-J., Xu, H.-X., Zheng, X.-S., Fu, Q. & Lu, Z.-X. High temperature modifies resistance performances of rice varieties to brown planthopper, Nilaparvata lugens (Stål). Rice Sci. 17, 334–338. https://doi.org/10.1016/S1672-6308(09)60036-6 (2010).
CAS Article Google Scholar
35.
Havko, N. E., Kapali, G., Das, M. R. & Howe, G. A. Stimulation of insect herbivory by elevated temperature outweighs protection by the jasmonate pathway. Plants 9, 172 (2020).
Article Google Scholar
36.
Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F. & Stewart, C. N. Jr. Smelling global climate change: mitigation of function from plant volatile organic compounds. Trends Ecol. Evol. 24, 323–331 (2009).
Article Google Scholar
37.
Horgan, F. G., Arida, A., Ardestani, G. & Almazan, M. L. P. Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS ONE 15, e0235506 (2020).
CAS Article Google Scholar
38.
Srinivas, M., Devi, R. S., Varmaand, N. R. G. & Jagadeeshwar, R. Interactive effect of temperature and CO2 on resistance of rice genotypes to brown planthopper, Nilaparvata lugens (Stål.). J. Entomol. Zool. Stud. 8, 600–602 (2020).
Google Scholar
39.
Zhang, L., Wu, J. & Chen, B. Influence of temperature and light on expression of resistance in rice to the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). J. South China Agric. Univ. 11, 64–70 (1990).
Google Scholar
40.
Romena, S. & Saxena, R. Screening for resistance to whitebacked planthopper, Sogatella furcifera (Horvath): effect of temperature on seedling damage (Pest Control Council of the Philippines, Cebu City (Philippines), 1988).
Google Scholar
41.
Horgan, F. G. et al. Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stål), in rice infested at different growth stages across a gradient of nitrogen applications. Field Crops Res. 217, 53–65. https://doi.org/10.1016/j.fcr.2017.12.008 (2018).
Article PubMed PubMed Central Google Scholar
42.
Neven, L. G. Physiological responses of insects to heat. Postharvest Biol. Technol. 21, 103–111 (2000).
CAS Article Google Scholar
43.
Bühler, A., Lanzrein, B. & Wille, H. Influence of temperature and carbon dioxide concentration on juvenile hormone titre and dependent parameters of adult worker honey bees (Apis mellifera L). J. Insect Physiol. 29, 885–893 (1983).
Article Google Scholar
44.
Foissac, X., Edwards, M., Du, J., Gatehouse, A. & Gatehouse, J. Putative protein digestion in a sap-sucking homopteran plant pest (rice brown plant hopper; Nilaparvata lugens: Delphacidae)—identification of trypsin-like and cathepsin B-like proteases. Insect Biochem. Mol. Biol. 32, 967–978 (2002).
CAS Article Google Scholar
45.
MacMillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).
CAS Article Google Scholar
46.
Vailla, S., Muthusamy, S., Konijeti, C., Shanker, C. & Vattikuti, J. L. Effects of elevated carbon dioxide and temperature on rice brown planthopper, Nilaparvata lugens (Stål) populations in India. Curr. Sci. 116, 988 (2019).
CAS Article Google Scholar
47.
Wang, B., Xu, H., Zheng, X., Fu, Q. & Lu, X. Effect of temperature on resistance of rice to brown planthopper, Nilaparvata lugens. Chin. J. Rice Sci. 24, 443–446 (2010).
Google Scholar
48.
Ji, R. et al. A salivary endo-β-1, 4-glucanase acts as an effector that enables the brown planthopper to feed on rice. Plant Physiol. 173, 1920–1932 (2017).
CAS Article Google Scholar
49.
Venkatesh, J. & Kang, B.-C. Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity. Curr. Opin. Plant Biol. 50, 9–17 (2019).
CAS Article Google Scholar
50.
Murai, M. & Kiritani, K. Influence of parental age upon the offspring in the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera: Deltocephalidae). Appl. Entomol. Zool. 5, 189–201 (1970).
Article Google Scholar
51.
Lu, K. et al. Nutritional signaling regulates vitellogenin synthesis and egg development through juvenile hormone in Nilaparvata lugens (Stål). Int. J. Mol. Sci. 17, 269 (2016).
Article Google Scholar
52.
Thoeun, H. C. Observed and projected changes in temperature and rainfall in Cambodia. Weather Clim. Extremes 7, 61–71 (2015).
Article Google Scholar
53.
PAGASA. Observed Climate Trends and Projected Climate Change in the Philippines. (Philippine Athmospheric, Geophysical and Astronomical Services Administration (PAGASA), Philippines, (2018).
54.
Yu Media Group. Weather Atlas: weather around the world – list of countries. http://www.weather-atlas.com/en/countries (2020).
55
You, L. L. et al. Driving pest insect populations: agricultural chemicals lead to an adaptive syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae). Sci. Rep. https://doi.org/10.1038/srep37430 (2016).
Article PubMed PubMed Central Google Scholar
56.
Ge, L. Q. et al. Molecular basis for insecticide-enhanced thermotolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae). Mol. Ecol. 22, 5624–5634. https://doi.org/10.1111/mec.12502 (2013).
CAS Article PubMed Google Scholar More
