More stories

  • in

    Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912

    1.
    Singh, S. P., Häder, D.-P. & Sinha, R. P. Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res. Rev. 9, 79–90 (2010).
    CAS  PubMed  Article  Google Scholar 
    2.
    Montgomery, B. L. Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. Curr. Opin. Plant Biol. 37, 18–23 (2017).
    CAS  PubMed  Article  Google Scholar 

    3.
    Huang, L., McCluskey, M. P., Ni, H. & LaRossa, R. A. Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J. Bacteriol. 184, 6845–6858 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Hideg, É., Jansen, M. K. & Strid, Å. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18, 107–115 (2013).

    5.
    Shick, J. M. & Dunlap, W. C. Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64, 223–262 (2002).
    CAS  PubMed  Article  Google Scholar 

    6.
    Oren, A. & Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?. Fems. Microbiol. Lett. 269, 1–10 (2007).
    CAS  PubMed  Article  Google Scholar 

    7.
    Llewellyn, C. A. & Airs, R. L. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Marine Drugs 8, 1273–1291 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Garcia-Pichel, F. & Castenholz, R. W. Occurence of UV-absorbing, Mycosporine-like compounds among cyanobacterial isolates and estimates of their screening capacity. Appl. Environ. Microbiol. 59, 163–169 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Schmid, D., Cornelia, S. & Fred, Z. UV-A sunscreen from red algae for protection against premature skin aging. Cosmetics 2004, 139–143 (2004).
    Google Scholar 

    10.
    Liddell, P. A. et al. Mimicry of carotenoid function in photosynthesis: synthesis and photophysical properties of a carotenopyropheophorbide. Photochem. Photobiol. 36, 641–645 (1982).
    CAS  Article  Google Scholar 

    11.
    Derikvand, P., Llewellyn, C. A. & Purton, S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur. J. Phycol. 52, 43–56 (2016).
    Article  CAS  Google Scholar 

    12.
    Rastogi, R. P. et al. Ultraviolet radiation and cyanobacteria. J. Photochem. Photobiol. B 141, 154–169 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Sun-screening bioactive compounds mycosporine-like amino acids in naturally occurring cyanobacterial biofilms: role in photoprotection. J. Appl. Microbiol. 119, 753–762 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Portwich, A. & Garcia-Pichel, F. Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC 6912. Arch. Microbiol. 172, 187–192 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Waditee-Sirisattha, R., Kageyama, H., Fukaya, M., Rai, V. & Takabe, T. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica. Fems Microbiol. Lett. 362, fnv198 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    16.
    Conde, F. R., Churio, M. S. & Previtali, C. M. The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem. Photobiol. Sci. 3, 960–967 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Gao, Q. & Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol. 9, 791–802 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Balskus, E. P. & Walsh, C. T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329, 1653–1656 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Pope, M. A. et al. O-Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413. ChemBioChem 16, 320–327 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Portwich, A. & Garcia-Pichel, F. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp strain PCC 6912. Phycologia 42, 384–392 (2003).
    Article  Google Scholar 

    21.
    Challis, G. L. & Naismith, J. H. Structural aspects of non-ribosomal peptide biosynthesis. Curr. Opin. Struct. Biol. 14, 748–756 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Gao, Q. & Garcia-Pichel, F. An ATP-grasp ligase involved in the last biosynthetic step of the iminomycosporine shinorine in Nostoc punctiforme ATCC 29133. J. Bacteriol. 193, 5923–5928 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Maeda, H. & Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wu, D. et al. Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214–219 (2012).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Busch, A. W. U. & Montgomery, B. L. Distinct light-, stress-, and nutrient-dependent regulation of multiple tryptophan-rich sensory protein (TSPO) genes in the cyanobacterium Fremyella diplosiphon. Plant Signal Behav. 12, e1293221 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Gan, F. et al. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345, 1312–1317 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Ho, M. Y. & Bryant, D. A. Global transcriptional profiling of the cyanobacterium Chlorogloeopsis fritschii PCC 9212 in far-red light: insights into the regulation of chlorophyll d synthesis. Front. Microbiol. 10, 465 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Airs, R. L. et al. Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett. 588, 3770–3777 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Zheng, Z., Gao, S. & Wang, G. Far red light induces the expression of LHCSR to trigger nonphotochemical quenching in the intertidal green macroalgae Ulva prolifera. Algal Res. 40, 101512 (2019).
    Article  Google Scholar 

    31.
    Kono, M., Yamori, W., Suzuki, Y. & Terashima, I. Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. Plant Cell Physiol. 58, 35–45 (2017).
    CAS  PubMed  Google Scholar 

    32.
    Ma, K. Two new algae from Indian Soil. Ann. Bot. 14, 457–464 (1950).
    Article  Google Scholar 

    33.
    Garcia-Pichel, F., Wingard, C. E. & Castenholz, R. W. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59, 170–176 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Singh, S. P., Klisch, M., Sinha, R. P. & Hader, D. P. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: a bioinformatics study. Genomics 95, 120–128 (2010).
    CAS  PubMed  Article  Google Scholar 

    35.
    Osborn, A. R. et al. De novo synthesis of a sunscreen compound in vertebrates. Elife 4, e05919 (2015).
    PubMed Central  Article  PubMed  Google Scholar 

    36.
    Osborn, A. R. et al. Evolution and distribution of C7-cyclitol synthases in prokaryotes and eukaryotes. ACS Chem. Biol. 12, 979–988 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Carreto, J. I., Carignan, M. O. & Montoya, N. G. A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Mar. Biol. 146, 237–252 (2005).
    CAS  Article  Google Scholar 

    38.
    Bandaranayake, W. M. Mycosporines: are they nature’s sunscreens?. Nat. Prod. Rep. 15, 159–172 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kultschar, B., Dudley, E., Wilson, S. & Llewellyn, C. A. Intracellular and extracellular metabolites from the cyanobacterium Chlorogloeopsis fritschii, PCC 6912, during 48 hours of UV-B exposure. Metabolites 9, 74 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    40.
    Busch, A. W. U., WareJoncas, Z. & Montgomery, B. L. Tryptophan-rich sensory protein/translocator protein (TSPO) from cyanobacterium Fremyella diplosiphon binds a broad range of functionally relevant tetrapyrroles. Biochemistry 56, 73–84 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Prasanna, R. et al. Rediscovering cyanobacteria as valuable sources of bioactive compounds. Prikl. Biokhim. Mikrobiol. 46, 133–147 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Kobayashi, M., Rodriguez, R., Lara, C. & Omata, T. Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp. strain PCC 7942. J. Biol. Chem. 272, 27197–27201 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Llewellyn, C. A., Airs, R. L., Farnham, G. & Greig, C. Synthesis, regulation and degradation of carotenoids under low level UV-B radiation in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912. Front. Microbiol. 11, 163 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  PubMed  Article  Google Scholar 

    46.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    47.
    Pinto, F., Pacheco, C. C., Ferreira, D., Moradas-Ferreira, P. & Tamagnini, P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE 7, e34983 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).
    Google Scholar 

    49.
    Tjaden, B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 16, 1 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    McClure, R. et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41, e140 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Genetic origins and diversity of bushpigs from Madagascar (Potamochoerus larvatus, family Suidae)

    1.
    Hansford, J. et al. Early holocene human presence in Madagascar evidenced by exploitation of avian megafauna. Sci. Adv. 4, 1–7 (2018).
    Article  Google Scholar 
    2.
    Douglass, K. et al. A critical review of radiocarbon dates clarifies the human settlement of Madagascar. Quat. Sci. Rev. 221, 105878 (2019).
    Article  Google Scholar 

    3.
    Pierron, D. et al. Genomic landscape of human diversity across Madagascar. Proc. Natl. Acad. Sci. USA 114, E6498–E6506 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Anderson, A. et al. New evidence of megafaunal bone damage indicates late colonization of Madagascar. PLoS ONE 13, 1–14 (2018).
    Google Scholar 

    5.
    Blench, R. New palaeozoogeographical evidence for the settlement of Madagascar. Azania Archaeol. Res. Afr. 42, 69–82 (2007).
    Google Scholar 

    6.
    Beaujard, P. The first migrants to Madagascar and their introduction of plants: Linguistic and ethnological evidence. Azania 46, 169–189 (2011).
    Article  Google Scholar 

    7.
    Rakotozafy, L. M. A. & Goodman, S. M. Contribution à l’étude zooarchéologique de la région du Sud-ouest et extrême Sud de Madagascar sur la base des collections de l’ICMAA de l’Université d’Antananarivo. Taloha 14–15 (2005).

    8.
    Boivin, N., Crowther, A., Helm, R. & Fuller, D. Q. East Africa and Madagascar in the Indian Ocean world. J. World Prehistory 26, 213–281 (2013).
    Article  Google Scholar 

    9.
    Wright, H. T. et al. Early Seafarers of the Comoro Islands: The Dembeni Phase of the IXth-Xth Centuries AD. Azania Archaeol. Res. Africa 19, 13–59 (1984).
    Google Scholar 

    10.
    Krause, D. W. et al. Late cretaceous terrestrial vertebrates from Madagascar: Implications for Latin American biogeography 1. Ann. Missouri Bot. Gard. 93, 178–208 (2006).
    Article  Google Scholar 

    11.
    Roger, F., Ratovonjato, J., Vola, P. & Uilenberg, G. Ornithodoros porcinus ticks, bushpigs, and African swine fever in Madagascar. Exp. Appl. Acarol. 25, 263–269 (2001).
    CAS  PubMed  Article  Google Scholar 

    12.
    Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Venter, J., Ehlers-Smith, Y. & Seydack, A. Potamochoerus larvatus—Bushpig. 1–5 (The Red List of Mammals of South Africa, Swaziland and Lesotho, 2016).

    14.
    Andrianjakarivelo, V. Artiodactyla: Potamochoerus larvatus, Bush Pig. In The Natural History of Madagascar (eds Goodman, S. M. & Benstead, J. B.) 1365–1367 (The University of Chicago Press, Chicago, 2003).

    15.
    Grubb, P. The Afrotropical Suids (Phacochoerus, Hylochoerus, and Potamochoerus). In Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan (ed. William, L. R. O.) 66–101 (International Union for the Conservation of Nature, Gland, 1993).
    Google Scholar 

    16.
    Forsyth, C. I. 5. On the Species of Potamochœrus, the Bush-Pigs of the Ethiopian Region. Proc. Zool. Soc. London 65, 359–370 (2009).
    Article  Google Scholar 

    17.
    Vercammen, P., Seydack, A. & Oliver, W. The Bush Pigs (Potamochoerus larvatus and P. porcus). In Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan (ed. William, L. R. O.) 93–101 (IUCN SSC Pigs and Peccaries Specialist Group and IUCN SSC Hippo Specialist Group, Gland, 1993).
    Google Scholar 

    18.
    Funaioli, U. & Simonetta, A. M. The mammalian fauna of the somali republic: Status and conservation problems. Monit. Zool. Ital. Suppl. 1, 285–347 (1966).
    Google Scholar 

    19.
    Stuart, C. & Stuart, T. Chris and Tilde Stuart’s field guide to the mammals of southern Africa (R. Curtis Books Pub., Sanibel Island, 1988).
    Google Scholar 

    20.
    Blench, R. M. Archaeology, Language, and the African Past (Altamira Press, Lanham, 2006).
    Google Scholar 

    21.
    Alpers, E. A. Littoral society in Mozambique. In Cross Currents and Community Networks: The History of the Indian Ocean World (eds Ray, H. P. & Alpers, E. A.) 123–141 (Oxford University Press, Oxford, 2007).
    Google Scholar 

    22.
    Oura, C. A. L., Powell, P. P. & Parkhouse, R. M. E. African swine fever: A disease characterized by apoptosis. J. Gen. Virol. 79, 1427–1438 (1998).
    CAS  PubMed  Article  Google Scholar 

    23.
    Ravaomanana, J. et al. Assessment of interactions between African swine fever virus, bushpigs (Potamochoerus larvatus), Ornithodoros ticks and domestic pigs in north-western Madagascar. Transbound. Emerg. Dis. 58, 247–254 (2011).
    CAS  PubMed  Article  Google Scholar 

    24.
    Cecchi, G. & Mattioli, R. C. Global geospatial datasets for African trypanosomiasis management: a review. Progr. Afr. Trypanos. Tech. Sci. Ser. 9, 1–39 (2009).
    Google Scholar 

    25.
    Munangandu, H. M., Siamudaala, V., Munyeme, M. & Nalubamba, K. S. A review of ecological factors associated with the epidemiology of wildlife Trypanosomiasis in the Luangwa and Zambezi Valley Ecosystems of Zambia. Interdiscip. Perspect. Infect. Dis. 2012, 1–13 (2012).
    Article  Google Scholar 

    26.
    Gibbs, E. P. The public health risks associated with wild and feral swine. Rev. Sci. Tech. 16, 594–598 (1997).
    CAS  PubMed  Article  Google Scholar 

    27.
    Patton, D. & Gu, H. China has culled more than 900,000 pigs due to African swine fever. Reuters (2018).

    28.
    Ploshnitsa, A. I., Goltsman, M. E., Macdonald, D. W., Kennedy, L. J. & Sommer, S. Impact of historical founder effects and a recent bottleneck on MHC variability in Commander Arctic foxes (Vulpes lagopus). Ecol. Evol. 2, 165–180 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Klein, J. Origin of major histocompatibility complex polymorphism: The trans-species hypothesis. Hum. Immunol. 19, 155–162 (1987).
    CAS  PubMed  Article  Google Scholar 

    30.
    Ho, C. S. et al. Nomenclature for factors of the SLA system, update 2008. Tissue Antigens 73, 307–315 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Renard, C. et al. The genomic sequence and analysis of the swine major histocompatibility complex. Genomics 88, 96–110 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Ka, S. et al. HLAscan: Genotyping of the HLA region using next-generation sequencing data. BMC Bioinform. 18, 1–11 (2017).
    Article  CAS  Google Scholar 

    33.
    Fan, W. et al. Shared class II MHC polymorphisms between humans and chimpanzees. Hum. Immunol. 26, 107–121 (1989).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb). 96, 7–21 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Flajnik, M. F., Canel, C., Kramer, J. & Kasahara, M. Which came first, MHC class I or class II?. Immunogenetics 33, 295–300 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Borghans, J. A. M., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Spurgin, L. G. & Richardson, D. S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc. Biol. Sci. 277, 979–988 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Hughes, A. L. & Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proc. Natl. Acad. Sci. 86, 958–962 (1989).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Hughes, A. L. & Nei, M. Evolution of the major histocompatibility complex: Independent origin of nonclassical class I genes in different groups of mammals. Mol. Biol. Evol. 6, 559–579 (1989).
    CAS  PubMed  Google Scholar 

    40.
    Penn, D. J. & Ilmonen, P. Major histocompatibility complex (MHC). in Encyclopedia of Life Sciences 1–7 (John Wiley & Sons, Ltd, 2001). https://doi.org/10.1038/npg.els.0000919.

    41.
    Bonneaud, C., Pérez-Tris, J., Federici, P., Chastel, O. & Sorci, G. Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution (N. Y.). 60, 383 (2006).
    CAS  Google Scholar 

    42.
    Schatz, G. E. Endemism in the Malagasy flora. In Diversity and Endemism in Madagascar (eds Lourenço, W. R. & Goodman, S. M.) 1–10 (2000).

    43.
    Lowden, S. et al. Application of Sus scrofa microsatellite markers to wild suiformes. Conserv. Genet. 3, 347–350 (2002).
    CAS  Article  Google Scholar 

    44.
    Gongora, J., Morales, S., Bernal, J. E. & Moran, C. Phylogenetic divisions among Collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences. Mol. Phylogenet. Evol. 41, 1–11 (2006).
    CAS  PubMed  Article  Google Scholar 

    45.
    Lee, C. et al. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing. Immunogenetics 70, 401–417 (2018).
    CAS  PubMed  Article  Google Scholar 

    46.
    Kim, K. I. et al. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19–25 (2002).
    CAS  PubMed  Article  Google Scholar 

    47.
    Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the Cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144 (1991).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Giuffra, E. et al. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785–1791 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Ishiguro, N., Naya, Y., Horiuchi, M. & Shinagawa, M. A Genetic method to distinguish crossbred inobuta from Japanese Wild Boars. Zool. Sci. 19, 1313–1319 (2002).
    CAS  Article  Google Scholar 

    50.
    Fajardo, V. et al. Differentiation of European wild boar (Sus scrofa scrofa) and domestic swine (Sus scrofa domestica) meats by PCR analysis targeting the mitochondrial D-loop and the nuclear melanocortin receptor 1 (MC1R) genes. Meat Sci. 78, 314–322 (2008).
    CAS  PubMed  Article  Google Scholar 

    51.
    Firestone, K. B. Phylogenetic relationships among quolls revisited: The mtDNA control region as a useful tool. J. Mamm. Evol. 7, 1–22 (2000).
    Article  Google Scholar 

    52.
    Randi, E. et al. Evolution of the mitochondrial DNA control region and cytochrome b genes and the inference of phylogenetic relationships in the avian genus Lophura (Galliformes). Mol. Phylogenet. Evol. 19, 187–201 (2001).
    CAS  PubMed  Article  Google Scholar 

    53.
    Jiang, J. et al. Mitochondrial genome and nuclear markers provide new insight into the evolutionary history of macaques. PLoS ONE 11, 1–19 (2016).
    Google Scholar 

    54.
    Chen, L. et al. Intraspecific mitochondrial genome comparison identified CYTB as a high-resolution population marker in a new pest Athetis lepigone. Genomics 111, 744–752 (2019).
    CAS  PubMed  Article  Google Scholar 

    55.
    Gongora, J. et al. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33, 339–348 (2004).
    CAS  PubMed  Article  Google Scholar 

    56.
    Wang, J. et al. Phylogenetic relationships of pig breeds from Shandong province of China and their influence by modern commercial breeds by analysis of mitochondrial DNA sequences. Ital. J. Anim. Sci. 9, 248–254 (2010).

    57.
    García, G., Vergara, J. & Lombardi, R. Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay. Genet. Mol. Biol. 34, 329–337 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Lopez, J., Hurwood, D., Dryden, B. & Fuller, S. Feral pig populations are structured at fine spatial scales in tropical Queensland, Australia. PLoS One 9, e91657 (2014).

    59.
    Dun, G., Li, X., Cao, H., Zhou, R. & Li, L. Variations of melanocortin receptor 1 (MC1R) gene in three pig breeds. J. Genet. Genomics 34, 777–782 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    Chang, A. C. Y. et al. Phenotype-based identification of host genes required for replication of African swine fever virus. J. Virol. 80, 8705–8717 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Bitzer, A., Basler, M. & Groettrup, M. Chaperone BAG6 is dispensable for MHC class I antigen processing and presentation. Mol. Immunol. 69, 99–105 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Stam, M. et al. Centromeric/pericentromeric junction within the MHC locus on chromosome 7 in pig. In XXXI Conference of the International Society for Animal Genetics, Amsterdam, Netherlands (2008).

    63.
    Groenen, M. A. M. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Stucky, B. J. SeqTrace: A graphical tool for rapidly processing DNA sequencing chromatograms. J. Biomol. Tech. 23, 90–93 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
    CAS  PubMed  Article  Google Scholar 

    66.
    Watanobe, T. et al. Genetic relationship and distribution of the Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (Sus scrofa riukiuanus) analysed by mitochondrial DNA. Mol. Ecol. 8, 1509–1512 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gongora, J. et al. Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zool. Scr. 40, 327–335 (2011).
    Article  Google Scholar 

    68.
    Larson, G. et al. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proc. Natl. Acad. Sci. 104, 4834–4839 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Mona, S., Randi, E. & Tommaseo-Ponzetta, M. Evolutionary history of the genus Sus inferred from Cytochrome b sequences. Mol. Phylogenet. Evol. 45, 757–762 (2007).
    CAS  PubMed  Article  Google Scholar 

    70.
    Niebert, M. & Tönjes, R. R. Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J. Virol. 79, 649–654 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Gongora, J. & Moran, C. Nuclear and mitochondrial evolutionary analyses of Collared, White-lipped, and Chacoan peccaries (Tayassuidae). Mol. Phylogenet. Evol. 34, 181–189 (2005).
    CAS  PubMed  Article  Google Scholar 

    72.
    Hassanin, A. et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).
    PubMed  Article  Google Scholar 

    73.
    Wu, G. S. et al. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biol. 8, R245 (2007).

    74.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).
    Article  Google Scholar 

    76.
    Gadagkar, S. R., Rosenberg, M. S. & Kumar, S. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. J. Exp. Zool. B. Mol. Dev. Evol. 304, 64–74 (2005).
    PubMed  Article  CAS  Google Scholar 

    77.
    Tonini, J., Moore, A., Stern, D., Shcheglovitova, M. & Ortí, G. Concatenation and species tree methods exhibit Statistically indistinguishable accuracy under a range of simulated conditions. PLoS Curr. 7, 1–15 (2015).
    Google Scholar 

    78.
    Arcila, D., Petry, P. & Ortí, G. Phylogenetic relationships of the family Tarumaniidae (Characiformes) based on nuclear and mitochondrial data. Neotrop. Ichthyol. 16, 16–19 (2018).
    Article  Google Scholar 

    79.
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    81.
    Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & Mclnerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    82.
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    83.
    Weaver, S. et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).
    CAS  PubMed  PubMed Central  Google Scholar 

    85.
    Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).

    86.
    Pond, S. L. K. & Frost, S. D. W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).
    CAS  Article  Google Scholar 

    87.
    Awadi, A. et al. Positive selection and climatic effects on MHC class II gene diversity in hares (Lepus capensis) from a steep ecological gradient. Sci. Rep. 8, 11514 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    88.
    Garrigan, D. & Hedrick, P. W. Perspective: Detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution 57, 1707–1722 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9, 678–687 (1992).
    CAS  PubMed  Google Scholar 

    91.
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
    ADS  CAS  PubMed  Article  Google Scholar 

    92.
    Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. In Mammalian Protein Metabolism, 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.

    93.
    Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    94.
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    95.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    96.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss075 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    97.
    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1006650 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    98.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Rambaut, A. FigTree v1.4.3. Molecular evolution, phylogenetics and epidemiology (2016).

    100.
    Radimilahy, C. Mahilaka: An Archaeological Investigation of an Early Town in Northwestern Madagascar (PhD Dissertation) (Acta Universitatis Upsaliensis, Uppsala, 1998).
    Google Scholar 

    101.
    Walsh, M. T. Island subsistence: Hunting, trapping and the translocation of wildlife in the Western Indian Ocean. Azania Archaeol. Res. Africa 42, 83–113 (2007).
    Google Scholar 

    102.
    Li, J. et al. Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity (Edinb). 105, 274–281 (2010).
    CAS  PubMed  Article  Google Scholar 

    103.
    Kijas, J. M. H. et al. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150, 1177–1185 (1998).

    104.
    Arauco-Shapiro, G., Schumacher, K. I., Boersma, D. & Bouzat, J. L. The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus). PLoS ONE 15, 1–20 (2020).
    Article  CAS  Google Scholar 

    105.
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Froeschke, G. & Sommer, S. MHC Class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol. Biol. Evol. 22, 1254–1259 (2005).
    CAS  PubMed  Article  Google Scholar 

    107.
    Froeschke, G. & Sommer, S. Insights into the complex associations between MHC Class II DRB polymorphism and multiple gastrointestinal parasite infestations in the striped mouse. PLoS ONE 7, e31820 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Yanagida, T. et al. Genetics of the pig tapeworm in Madagascar reveal a history of human dispersal and colonization. PLoS One 9, e109002 (2014).

    109.
    Braae, U. C. et al. Taenia solium taeniosis/cysticercosis and the co-distribution with schistosomiasis in Africa. Parasites Vectors 8, 1–14 (2015).
    Article  Google Scholar 

    110.
    Macpherson, C. N. L. & Craig, P. S. Trichinella in Africa and the nelsoni affair. In Parasitic Helminths and Zoonoses in Africa (eds Macpherson, C. & Craig, P.) 83–100 (Springer, Netherlands, 1991). https://doi.org/10.1007/978-94-011-3054-7_4.

    111.
    Sarovich, D. S. et al. Phylogenomic analysis reveals an Asian origin for African Burkholderia pseudomallei and further supports Melioidosis Endemicity in Africa. mSphere 1, 1–12 (2016).

    112.
    Kaesler, E. et al. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol. Ecol. 26, 5629–5645 (2017).
    CAS  PubMed  Article  Google Scholar 

    113.
    Kloch, A., Babik, W., Bajer, A., Siński, E. & Radwan, J. Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol. Ecol. 19(Suppl 1), 255–265 (2010).
    PubMed  Article  Google Scholar 

    114.
    Kusza, S. et al. Transcription specificity of the class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex and comparison with class Ia genes. Anim. Genet. 42, 510–520 (2011).
    CAS  PubMed  Article  Google Scholar 

    115.
    Chardon, P. et al. Sequence of the swine major histocompatibility complex region containing all non-classical class I genes. Tissue Antigens 57, 55–65 (2001).
    CAS  PubMed  Article  Google Scholar 

    116.
    Le Gal, F. A. et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int. Immunol. 11, 1351–1356 (1999).
    PubMed  Article  Google Scholar 

    117.
    Fournel, S. et al. Cutting edge: Soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164, 6100–6104 (2000).
    CAS  PubMed  Article  Google Scholar 

    118.
    Hunt, J. S., Langat, D. K., McIntire, R. H. & Morales, P. J. The role of HLA-G in human pregnancy. Reprod. Biol. Endocrinol. 4, 1–8 (2006).
    Article  CAS  Google Scholar 

    119.
    Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637–650 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    120.
    Jori, F. & Bastos, A. D. S. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    121.
    Brown, V. R. & Bevins, S. N. A Review of African Swine fever and the potential for introduction into the United States and the possibility of subsequent establishment in feral swine and native ticks. Front. Vet. Sci. 5, 1–18 (2018).
    ADS  Article  Google Scholar 

    122.
    Fowler, M. E. Husbandry and diseases of captive wild swine and peccaries. Rev. Sci. Tech. 15, 141–154 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    A green wave of saltmarsh productivity predicts the timing of the annual cycle in a long-distance migratory shorebird

    1.
    Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B 280, 20130016 (2013).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14, 1183–1190 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Diez, J. M. et al. Forecasting phenology: From species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).
    PubMed  Article  Google Scholar 

    5.
    Post, E., Pedersen, C., Wilmers, C. C. & Forchhammer, M. C. Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc. R. Soc. Lond. B Biol. Sci. 275, 2005–2013 (2008).
    Google Scholar 

    6.
    Primack, R. B. et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 142, 2569–2577 (2009).
    Article  Google Scholar 

    7.
    Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).
    CAS  PubMed  Article  Google Scholar 

    8.
    Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).
    Article  Google Scholar 

    9.
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).
    Article  Google Scholar 

    10.
    Dawson, A. Control of the annual cycle in birds: Endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B Biol. Sci. 363, 1621–1633 (2008).
    Article  Google Scholar 

    11.
    Buehler, D. & Piersma, T. Travelling on a budget: Predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B-Biol. Sci. 363, 247–266 (2008).
    Article  Google Scholar 

    12.
    Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–950 (1999).
    Article  Google Scholar 

    13.
    Moller, A. P. Heritability of arrival date in a migratory bird. Proc. R. Soc. Lond. B Biol. Sci. 268, 203–206 (2001).
    CAS  Article  Google Scholar 

    14.
    Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
    Article  Google Scholar 

    15.
    Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B Biol. Sci. 278, 3437–3443 (2011).
    Article  Google Scholar 

    16.
    Conklin, J. R., Battley, P. F., Potter, M. A. & Fox, J. W. Breeding latitude drives individual schedules in a trans-hemispheric migrant bird. Nat. Commun. 1, 67 (2010).
    ADS  PubMed  Article  CAS  Google Scholar 

    17.
    Holmes, R. T. Latitudinal differences in the breeding and molt schedules of Alaskan Red-backed Sandpipers (Calidris alpina). Condor 73, 93–99 (1971).
    Article  Google Scholar 

    18.
    Briedis, M., Hahn, S. & Adamík, P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 17, 11 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Sandercock, B. K., Lank, D. B. & Cooke, F. Seasonal declines in the fecundity of arctic-breeding sandpipers: Different tactics in two species with an invariant clutch size. J. Avian Biol. 30, 460–468 (1999).
    Article  Google Scholar 

    20.
    Langin, K. M. & P. P. M. ,. Breeding latitude and timing of spring migration in songbirds crossing the Gulf of Mexico. J. Avian Biol. 40, 309–316 (2009).
    Article  Google Scholar 

    21.
    Lappalainen, J. & Tarkan, A. S. Latitudinal gradients in onset date, onset temperature and duration of spawning of roach. J. Fish Biol. 70, 441–450 (2007).
    Article  Google Scholar 

    22.
    Ben-David, M. Timing of reproduction in wild mink: The influence of spawning Pacific salmon. Can. J. Zool. 75, 376–382 (1997).
    Article  Google Scholar 

    23.
    Burr, Z. M. et al. Later at higher latitudes: Large-scale variability in seabird breeding timing and synchronicity. Ecosphere 7, e01283 (2016).
    Article  Google Scholar 

    24.
    Briedis, M. et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J. Avian Biol. 47, 743–748 (2016).
    Article  Google Scholar 

    25.
    Lourenço, P. M. et al. Repeatable timing of northward departure, arrival and breeding in Black-tailed Godwits Limosa l. limosa, but no domino effects. J. Ornithol. 152, 1023–1032 (2011).
    Article  Google Scholar 

    26.
    Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: Phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).
    PubMed  Article  Google Scholar 

    27.
    Renfrew, R. B. et al. Phenological matching across hemispheres in a long-distance migratory bird. Divers. Distrib. 19, 1008–1019 (2013).
    Article  Google Scholar 

    28.
    Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84 (2012).
    Article  Google Scholar 

    29.
    Bertness, M. D. & Ellison, A. M. Determinants of pattern in a New England salt marsh plant community. Ecol. Monogr. 57, 129–147 (1987).
    Article  Google Scholar 

    30.
    Hoekstra, J. M., Molnar, J. L., Jennings, M., Revenga, C. & Spalding, M. D. The Atlas of Global Conservation, Vol. 67 (University of California Press, California, 2010).
    Google Scholar 

    31.
    Kirwan, M. L., Guntenspergen, G. R. & Morris, J. T. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 15, 1982–1989 (2009).
    ADS  Article  Google Scholar 

    32.
    Lowther, P. E., Douglas, H. D. III. & Gratto-Trevor, C. L. Willet (Tringa semipalmata). Birds N. Am. Online https://doi.org/10.2173/bna.579 (2001).
    Article  Google Scholar 

    33.
    Tomkins, I. R. the summer schedule of the Eastern Willet in Georgia. Wilson Bull. 27, 291–296 (1955).
    Google Scholar 

    34.
    Howe, M. A. Social organization in a nesting population of eastern Willets (Catoptrophorus semipalmatus). Auk 99, 88–102 (1982).
    Article  Google Scholar 

    35.
    Gratto-Trevor, C. L. The North American Bander’s Manual for Banding Shorebirds (North Am. Band. Counc. Publ. Comm, Point Reyes CA, 2004).
    Google Scholar 

    36.
    Minton, C. et al. Initial results from light level geolocator trials on Ruddy Turnstone Arenaria interpres reveal unexpected migration route. Wader Study Group Bull. 117, 9–14 (2010).
    Google Scholar 

    37.
    Gosler, A. G. Birds in the hand. In Bird Ecology and Conservation: A Handbook of Techniques (eds Sutherland, W. J. et al.) 85–118 (Oxford University Press, Oxford, 2004).
    Google Scholar 

    38.
    Sumner, M. D., Wotherspoon, S. J. & Hindell, M. A. Bayesian estimation of animal movement from archival and satellite tags. PLoS ONE 4, e7324 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    R Core Team. R: A Language and Environment for Statistical Computing (The R Foundation, Vienna, 2020).
    Google Scholar 

    40.
    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89, 221–236 (2020).
    PubMed  Article  Google Scholar 

    41.
    Lisovski, S., Bauer, S., Emmenegger, T. & Lisovski, M. S. Package ‘GeoLight’ (2012).

    42.
    Wotherspoon, S., Sumner, M. & Lisovski, S. TwGeos: Basic data processing for light-level geolocation archival tags. Version 00-1 (2016).

    43.
    Tonra, C. M. et al. Concentration of a widespread breeding population in a few critically important nonbreeding areas: Migratory connectivity in the Prothonotary Warbler. Condor 121, duz019 (2019).
    Article  Google Scholar 

    44.
    Porter, R. & Smith, P. A. Techniques to improve the accuracy of location estimation using light-level geolocation to track shorebirds. Wader Study Group Bull. 120, 147–158 (2014).
    Google Scholar 

    45.
    Battley, P. F. & Conklin, J. R. Geolocator wetness data accurately detect periods of migratory flight in two species of shorebird. Wader Study 124, 112–119 (2017).
    Article  Google Scholar 

    46.
    Burger, J. et al. Migration and over-wintering of Red Knots (Calidris canutus rufa) along the Atlantic Coast of the United States. Condor 114, 302–313 (2012).
    Article  Google Scholar 

    47.
    Cooper, N. W., Hallworth, M. T. & Marra, P. P. Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird. J. Avian Biol. 48, 209–219 (2017).
    Article  Google Scholar 

    48.
    Lisovski, S. et al. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3, 603–612 (2012).
    Article  Google Scholar 

    49.
    Burger, J., Niles, L. J., Porter, R. R. & Dey, A. D. Using geolocator data to reveal incubation periods and breeding biology in Red Knots Calidris canutus rufa. Wader Study Group Bull. 119, 26–36 (2012).
    Google Scholar 

    50.
    Bulla, M. et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature 540, 109–113 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    51.
    Bates, D. et al. Package ‘lme4’. Version 1, 17 (2018).
    Google Scholar 

    52.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 

    53.
    Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).
    Article  Google Scholar 

    54.
    Spano, D., Cesaraccio, C., Duce, P. & Snyder, R. L. Phenological stages of natural species and their use as climate indicators. Int. J. Biometeorol. 42, 124–133 (1999).
    ADS  Article  Google Scholar 

    55.
    Oregon State University Integrated Plant Protection Center. http://pnwpest.org/US/ (2015).

    56.
    Baskerville, G. L. & Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50, 514–517 (1969).
    Article  Google Scholar 

    57.
    van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664 (2012).
    Article  Google Scholar 

    58.
    Kölzsch, A. et al. Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J. Anim. Ecol. 84, 272–283 (2015).
    PubMed  Article  Google Scholar 

    59.
    Fitzjarrald, D. R., Acevedo, O. C. & Moore, K. E. Climatic consequences of leaf presence in the eastern United States. J. Clim. 14, 598–614 (2001).
    ADS  Article  Google Scholar 

    60.
    Burger, J. & Shisler, J. Nest-site selection of Willets in a New Jersey salt marsh. Wilson Bull. 90, 599–607 (1978).
    Google Scholar 

    61.
    Turner, R. E. Geographic Variations in Salt Marsh Macrophyte Production: A Review http://agris.fao.org/agris-search/search/display.do?f=2012/OV/OV201207875007875.xml;US19770198479 (1976).

    62.
    Pezeshki, S. R. & DeLaune, R. D. A comparative study of above-ground productivity of dominant U.S. Gulf Coast marsh species. J. Veg. Sci. 2, 331–338 (1991).
    Article  Google Scholar 

    63.
    Morris, J., Sundberg, K. & Hopkinson, C. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26, 78–84 (2013).
    Article  Google Scholar 

    64.
    Dai, T. & Wiegert, R. G. Ramet population dynamics and net aerial primary productivity of Spartina alterniflora. Ecology 77, 276–288 (1996).
    Article  Google Scholar 

    65.
    Gallagher, J. L., Reimold, R. J., Linthurst, R. A. & Pfeiffer, W. J. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia Salt Marsh. Ecology 61, 303–312 (1980).
    Article  Google Scholar 

    66.
    Stroud, L. M. & Cooper, A. W. Color-Infrared Aerial Photographic Interpretation and Net Primary Productivity of a Regularly-Flooded North Carolina Salt Marsh http://repository.lib.ncsu.edu/dr/handle/1840.4/1681 (1969).

    67.
    Reidenbaugh, T. G. Productivity of cordgrass, Spartina alterniflora, estimated from live standing crops, mortality, and leaf shedding in a Virginia salt marsh. Estuaries 6, 57–65 (1983).
    Article  Google Scholar 

    68.
    Squiers, E. R. & Good, R. E. Seasonal changes in the productivity, caloric content, and chemical composition of a population of salt-marsh cord-grass (Spartina alterniflora). Chesap. Sci. 15, 63–71 (1974).
    Article  Google Scholar 

    69.
    Morris, J. & Sundberg, K. Aboveground biomass data from control sites in a Spartina alterniflora-dominated salt marsh at Law’s Point, Rowley River, Plum Island Ecosystem, MA (2012).

    70.
    Cranford, P. J., Gordon, D. C. & Jarvis, C. M. Measurement of cordgrass, Spartina alterniflora, production in a macrotidal estuary, Bay of Fundy. Estuaries 12, 27–34 (1989).
    Article  Google Scholar 

    71.
    Hatcher, B. G. & Mann, K. H. Above-ground production of marsh cordgrass (Spartina alterniflora) near the northern end of its range. J. Fish. Board Can. 32, 83–87 (1975).
    Article  Google Scholar 

    72.
    Rohatgi, A. Web Plot Digitizer, V 3.9 http://arohatgi.info/WebPlotDigitizer/ (2015).

    73.
    Morris, J. T. & Haskin, B. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71, 2209–2217 (1990).
    Article  Google Scholar 

    74.
    Curtin, F. Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Res. Synth. Methods 8, 312–320 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Müller, J. & Hothorn, T. Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests. Eur. J. For. Res. 123, 219–228 (2004).
    Article  Google Scholar 

    76.
    Tomkins, I. R. The Willets of Georgia and South Carolina. Wilson Bull. 77, 151–167 (1965).
    Google Scholar 

    77.
    Morrison, R. I. G. & Ross, R. K. Atlas of Nearctic Shorebirds on the Coast of South America (Canadian Wildlife Service, Ottawa, 1989).
    Google Scholar 

    78.
    Merchant, D. et al. Shorebird Conservation in Brazil and Delaware Bay. In North American Migratory Bird Conservation Act Annual Report 2016–2017 (2017).

    79.
    Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29, 343–369 (1998).
    Article  Google Scholar 

    80.
    Meltofte, H., Piersma, T., Boyd, H., Mccaffery, B. J. & Tulp, I. Y. M. Effects of climate variation on the breeding ecology of Artic shorebirds. Meddelelser Om Groenl. Biosci. 59, 45 (2007).
    Google Scholar 

    81.
    Willson, M. F. & Womble, J. N. Vertebrate exploitation of pulsed marine prey: A review and the example of spawning herring. Rev. Fish Biol. Fish. 16, 183–200 (2006).
    Article  Google Scholar 

    82.
    Mizrahi, D. S. & Peters, K. A. Relationships between sandpipers and horseshoe crab in Delaware Bay: A synthesis. In Biology and Conservation of Horseshoe Crabs (eds Tanacredi, J. et al.) 65–87 (Springer, Berlin, 2009).
    Google Scholar 

    83.
    Johansson, J. & Jonzén, N. Effects of territory competition and climate change on timing of arrival to breeding grounds: A game-theory approach. Am. Nat. 179, 463–474 (2012).
    PubMed  Article  Google Scholar 

    84.
    Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 363, 399–410 (2008).
    Article  Google Scholar 

    85.
    Hatchwell, B. J. An Experimental study of the effects of timing of breeding on the reproductive success of common guillemots (Uria aalge). J. Anim. Ecol. 60, 721–736 (1991).
    Article  Google Scholar 

    86.
    McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

    87.
    Ruskin, K. J. et al. Demographic analysis demonstrates systematic but independent spatial variation in abiotic and biotic stressors across 59 percent of a global species range. The Auk 134, 903–916 (2017).

    88.
    Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 5, 509–521 (2016).
    Article  Google Scholar 

    89.
    Daan, S., Dijkstra, C., Drent, R. & Meijer, T. Food supply and the annual timing of avian reproduction. In Proceedings of the International Ornithological Congress vol. 19 392–407 (University of Ottawa Press, Ottawa, 1988).

    90.
    Krebs, C. T. & Burns, K. A. Long-term effects of an oil spill on populations of the salt-marsh crab Uca pugnax. Science 197, 484–487 (1977).
    ADS  CAS  PubMed  Article  Google Scholar 

    91.
    Williams, R. B. & Murdoch, M. B. Potential Importance of Spartina alterniflora in Conveying Zinc, Manganese, and Iron into Estuarine Food Chains in Conveying Zinc, Manganese, and Iron into Estuarine Food Chains (Radiobiological Lab, Bureau of Commercial Fisheries, Beaufort, NC, 1969).
    Google Scholar 

    92.
    Anthes, N. Long-distance migration timing of Tringa sandpipers adjusted to recent climate change: Capsule evidence for earlier spring migration of Tringa sandpipers after warmer winters, but no clear pattern concerning autumn migration timing. Bird Study 51, 203–211 (2004).
    Article  Google Scholar 

    93.
    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).
    Article  Google Scholar 

    94.
    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    95.
    Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: Evolution and plasticity in Pacific salmon. Evol. Appl. 1, 252–270 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Australian long-finned pilot whales (Globicephala melas) emit stereotypical, variable, biphonic, multi-component, and sequenced vocalisations, similar to those recorded in the northern hemisphere

    1.
    Tyack, P. L. & Clark, C. W. Communication and acoustic behaviour of dolphins and whales. In Hearing by Whales and Dolphins (eds Au, W. L. et al.) 156–224 (Springer, New York, 2000).
    Google Scholar 
    2.
    Au, W. W. L. The Sonar of Dolphins (Springer, Berlin, 1993).
    Google Scholar 

    3.
    Filatova, O. A. et al. Call diversity in the North Pacific killer whale populations: implications for dialect evolution and population history. Anim. Behav. 83, 595–603. https://doi.org/10.1016/j.anbehav.2011.12.013 (2012).
    Article  Google Scholar 

    4.
    Ding, W., Wuersig, B. & Evans, W. E. Whistles of bottlenose dolphins: comparisons among populations. Aquat. Mamm. 21, 65–77 (1995).
    Google Scholar 

    5.
    Caldwell, M. C. & Caldwell, D. D. Statistical evidence for individual signature whistles in Pacific whitesided dolphin Lagenorhynchus obliquidens. Cetology 3, 1–9 (1971).
    Google Scholar 

    6.
    Erbe, C. et al. Review of underwater and in-air sounds emitted by Australian and Antarctic marine mammals. Acoust. Aust. 45, 179–241. https://doi.org/10.1007/s40857-017-0101-z (2017).
    Article  Google Scholar 

    7.
    Sayigh, L. S., Esch, H. C., Wells, R. S. & Janik, V. M. Facts about signature whistles of bottlenose dolphins Tursiops truncatus. Anim. Behav. 74, 1631–1642. https://doi.org/10.1016/j.anbehav.2007.02.018 (2007).
    Article  Google Scholar 

    8.
    Herzing, D. L. Clicks, whistles and pulses: passive and active signal use in dolphin communication. Acta Astronaut. 105, 534–537. https://doi.org/10.1016/j.actaastro.2014.07.003 (2014).
    ADS  Article  Google Scholar 

    9.
    Ford, J. K. B. Acoustic behaviour of resident killer whales (Orcinus orca) off Vancouver Island, British Columbia. Can. J. Zool. 67, 727–745. https://doi.org/10.1139/z89-105 (1989).
    Article  Google Scholar 

    10.
    Miller, P. J. O., Shapiro, A. D., Tyack, P. L. & Solow, A. R. Call-type matching in vocal exchanges of free-ranging resident killer whales, Orcinus orca. Anim. Behav. 67, 1099–1107. https://doi.org/10.1016/j.anbehav.2003.06.017 (2004).
    Article  Google Scholar 

    11.
    Herzing, D. L. Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquat. Mamm. 22, 61–79 (1996).
    Google Scholar 

    12.
    Weilgart, L. & Whitehead, H. Coda communication by sperm whales (Physeter macrocephalus) off the Galápagos Islands. Can. J. Zool. 71, 744–752. https://doi.org/10.1139/z93-098 (1993).
    Article  Google Scholar 

    13.
    Dawson, S. M. Clicks and communication: the behavioural and social contexts of hector’s dolphin vocalizations. Ethology 88, 265–276. https://doi.org/10.1111/j.1439-0310.1991.tb00281.x (1991).
    Article  Google Scholar 

    14.
    Sørensen, P. M. et al. Click communication in wild harbour porpoises (Phocoena phocoena). Sci. Rep. 8, 9702. https://doi.org/10.1038/s41598-018-28022-8 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Karlsen, J. et al. Summer vocalisations of adult male white whales (Delphinapterus leucas) in Svalbard, Norway. Polar Biol. 25, 808–817. https://doi.org/10.1007/s00300-002-0415-6 (2002).
    Article  Google Scholar 

    16.
    Murray, S. O., Mercado, E. & Roitblat, H. L. Characterizing the graded structure of false killer whale (Pseudorca crassidens) vocalizations. J. Acoust. Soc. Am. 104, 1679–1688. https://doi.org/10.1121/1.424380 (1998).
    ADS  CAS  Article  PubMed  Google Scholar 

    17.
    Quick, N., Callahan, H. & Read, A. J. Two-component calls in short-finned pilot whales (Globicephala macrorhynchus). Mar. Mamm. Sci. 34, 155–168. https://doi.org/10.1111/mms.12452 (2018).
    Article  Google Scholar 

    18.
    Aplan, J. D., Melillo-Sweeting, K. & Reiss, D. Biphonal calls in Atlantic spotted dolphins (Stenella frontalis): bitonal and burst-pulse whistles. Bioacoustics 27, 145–164. https://doi.org/10.1080/09524622.2017.1300105 (2018).
    Article  Google Scholar 

    19.
    Vester, H., Hallerberg, S., Timme, M. & Hammerschmidt, K. Vocal repertoire of long-finned pilot whales (Globicephala melas) in northern Norway. J. Acoust. Soc. Am. 141, 4289–4299. https://doi.org/10.1121/1.4983685 (2017).
    ADS  Article  PubMed  Google Scholar 

    20.
    Ford, J. K. B. A catalogue of underwater calls produced by killer whales (Orcinus orca) in British Columbia. Can. Data Rep. Fish. Aquat. Sci. 633, 165 (1987).
    Google Scholar 

    21.
    Wellard, R., Pitman, R. L., Durban, J. & Erbe, C. Cold call: the acoustic repertoire of Ross Sea killer whales (Orcinus orca, Type C) in McMurdo Sound, Antarctica. R. Soc. Open Sci. 7, 191228. https://doi.org/10.1098/rsos.191228 (2020).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Steiner, W. W. Species-specific differences in pure tonal whistle vocalizations of five western North Atlantic dolphin species. Behav. Ecol. Sociobiol. 9, 241–246. https://doi.org/10.1007/bf00299878 (1981).
    Article  Google Scholar 

    23.
    Tyack, P. L. Development and social functions of signature whistles in bottlenose dolphins Tursiops truncatus. Bioacoustics 8, 21–46. https://doi.org/10.1080/09524622.1997.9753352 (1997).
    Article  Google Scholar 

    24.
    Mishima, Y. et al. Individuality embedded in the isolation calls of captive beluga whales (Delphinapterus leucas). Zool. Lett. 1, 27. https://doi.org/10.1186/s40851-015-0028-x (2015).
    Article  Google Scholar 

    25.
    Azzolin, M., Papale, E., Lammers, M. O., Gannier, A. & Giacoma, C. Geographic variation of whistles of the striped dolphin (Stenella coeruleoalba) within the Mediterranean Sea. J. Acoust. Soc. Am. 134, 694–705. https://doi.org/10.1121/1.4808329 (2013).
    ADS  Article  PubMed  Google Scholar 

    26.
    Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS ONE 10, e0121711. https://doi.org/10.1371/journal.pone.0121711 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Fouda, L. et al. Dolphins simplify their vocal calls in response to increased ambient noise. Biol. Lett. 14, 20180484. https://doi.org/10.1098/rsbl.2018.0484 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Oremus, M. et al. Worldwide mitochondrial DNA diversity and phylogeography of pilot whales (Globicephala spp.). Biol. J. Linnean Soc. 98, 729–744. https://doi.org/10.1111/j.1095-8312.2009.01325.x (2009).
    Article  Google Scholar 

    29.
    Olson, P. A. Pilot Whales: Globicephala melas and G macrorhynchus. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 847–852 (Academic Press, Cambridge, 2009).
    Google Scholar 

    30.
    Bloch, D. & Lastein, L. Morphometric segregation of long-finned pilot whales in eastern and western North Atlantic. Ophelia 38, 55–68. https://doi.org/10.1080/00785326.1993.10429924 (1993).
    Article  Google Scholar 

    31.
    Rogan, E. et al. Distribution, abundance and habitat use of deep diving cetaceans in the North-East Atlantic. Deep Sea Res. Part II 141, 8–19. https://doi.org/10.1016/j.dsr2.2017.03.015 (2017).
    Article  Google Scholar 

    32.
    Kemper, C. et al. Cetacean captures, strandings and mortalities in South Australia 1881–2000, with special reference to human interactions. Aust. Mammal. 27, 37–47. https://doi.org/10.1071/AM05037 (2005).
    Article  Google Scholar 

    33.
    Minton, G., Reeves, R. & Braulik, G. The IUCN Red List of Threatened Species. (2018).

    34.
    Hamilton, V., Evans, K., Raymond, B., Betty, E. & Hindell, M. A. Spatial variability in responses to environmental conditions in Southern Hemisphere long-finned pilot whales. Mar. Ecol. Prog. Ser. 629, 207–218. https://doi.org/10.3354/meps13109 (2019).
    ADS  Article  Google Scholar 

    35.
    Nemiroff, L. & Whitehead, H. Structural characteristics of pulsed calls of long-finned pilot whales Globicephala melas. Bioacoustics 19, 67–92. https://doi.org/10.1080/09524622.2009.9753615 (2009).
    Article  Google Scholar 

    36.
    Zwamborn, E. M. J. & Whitehead, H. Repeated call sequences and behavioural context in long-finned pilot whales off Cape Breton, Nova Scotia, Canada. Bioacoustics 26, 169–183. https://doi.org/10.1080/09524622.2016.1233457 (2017).
    Article  Google Scholar 

    37.
    Visser, F. et al. Vocal foragers and silent crowds: context-dependent vocal variation in Northeast Atlantic long-finned pilot whales. Behav. Ecol. Sociobiol. 71, 170. https://doi.org/10.1007/s00265-017-2397-y (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Erbe, C. Underwater passive acoustic monitoring and noise impacts on marine fauna- a workshop report. Acoust. Aust. 41, 211–217 (2013).
    Google Scholar 

    39.
    Watkins, W. A. The Harmonic Interval: Fact or Artefact in Spectral Analysis of Pulse Trains 15–43 (Pergamon Press, Oxford, 1967).
    Google Scholar 

    40.
    Taruski, A. G. The whistle repertoire of the North Atlantic pilot whale (Globicephala melaena) and its relationship to behavior and environment. In Behavior of Marine Animals: Current Perspectives in Research (eds Winn, H. E. & Olla, B. L.) 345–368 (Springer US, New York, 1979).
    Google Scholar 

    41.
    Rendell, L. E., Matthews, J. N., Gill, A., Gordon, J. C. D. & Macdonald, D. W. Quantitative analysis of tonal calls from five odontocete species, examining interspecific and intraspecific variation. J. Zool. 249, 403–410. https://doi.org/10.1111/j.1469-7998.1999.tb01209.x (1999).
    Article  Google Scholar 

    42.
    Lesage, V., Barrette, C., Kingsley, M. C. S. & Sjare, B. The effect of vessel noise on the vocal behaviour of belugas in the St. Lawrence River Estuary, Canada. Mar. Mamm. Sci. 15, 65–84. https://doi.org/10.1111/j.1748-7692.1999.tb00782.x (1999).
    Article  Google Scholar 

    43.
    Ding, W., Würsig, B. & Evans, W. E. Comparison of whistles among seven odontocete species. In Sensory Systems of Marine Mammals (eds Kastelein, R. A. et al.) 299–323 (DeSpil Publishers, Woerden, 1995).
    Google Scholar 

    44.
    Baron, S. C., Martinez, A., Garrison, L. P. & Keith, E. O. Differences in acoustic signals from Delphinids in the western North Atlantic and northern Gulf of Mexico. Mar. Mamm. Sci. 24, 42–56. https://doi.org/10.1111/j.1748-7692.2007.00168.x (2008).
    Article  Google Scholar 

    45.
    May-Collado, L. J. & Wartzok, D. A comparison of bottlenose dolphin whistles in the Atlantic Ocean: factors promoting whistle variation. J. Mammal. 89, 1229–1240. https://doi.org/10.1644/07-mamm-a-310.1 (2008).
    Article  Google Scholar 

    46.
    Oswald, J., Rankin, S. & Barlow, J. To whistle or not to whistle? Geographic variation in the whistling behaviour of small odontocetes. Aquat. Mamm. 34, 288–302. https://doi.org/10.1578/AM.34.3.2008.288 (2008).
    Article  Google Scholar 

    47.
    Ward-Geiger, L. I., Silber, G. K., Baumstark, R. D. & Pulfer, T. L. Characterization of ship traffic in right whale critical habitat. Coastal Manag. 33, 263–278. https://doi.org/10.1080/08920750590951965 (2005).
    Article  Google Scholar 

    48.
    Weilgart, L. S. & Whitehead, H. Vocalizations of the North Atlantic pilot whale (Globicephala melas) as related to behavioral contexts. Behav. Ecol. Sociobiol. 26, 399–402. https://doi.org/10.1007/bf00170896 (1990).
    Article  Google Scholar 

    49.
    Cato, D. H. & McCauley, R. D. Australian research in ambient sea noise. Acoust. Aust. 30, 1–13 (2009).
    Google Scholar 

    50.
    Busnel, R. G. & Dziedzic, A. Acoustic signals of pilot whale Globicephala melaena and of the porpoises Delphinus delphis and Phocoena phocoena. In Whales, Dolphins, and Porpoise (ed. Norris, K. S.) 604–648 (University of California Press, Berkeley, 1966).
    Google Scholar 

    51.
    Matthews, J. N., Rendell, L. E., Gordon, J. C. D. & Macdonald, D. W. A review of frequency and time parameters of cetacean tonal calls. Bioacoustics 10, 47–71. https://doi.org/10.1080/09524622.1999.9753418 (1999).
    Article  Google Scholar 

    52.
    Davies, J. L. The Southern Form of the Pilot Whale. J. Mammal. 41, 29–34. https://doi.org/10.2307/1376514 (1960).
    Article  Google Scholar 

    53.
    Scheer, M. Call vocalisations recorded among short-finned pilot whales (Globicephala macrorhynchus) off Tenerife, Canary Islands. Aquat. Mamm. 39, 306–313. https://doi.org/10.1578/AM.39.3.2013.306 (2013).
    Article  Google Scholar 

    54.
    Wellard, R., Erbe, C., Fouda, L. & Blewitt, M. Vocalisations of killer whales (Orcinus orca) in the Bremer Canyon, Western Australia. PLoS ONE 10, e0136535. https://doi.org/10.1371/journal.pone.0136535 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Curé, C. et al. Pilot whales attracted to killer whale sounds: acoustically-mediated interspecific interactions in cetaceans. PLoS ONE 7, e52201. https://doi.org/10.1371/journal.pone.0052201 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Stenersen, J. & Simila, T. Norwegian Killer Whales (Tringa, Wales, 2004).
    Google Scholar 

    57.
    De Stephanis, R. et al. Mobbing-like behavior by pilot whales towards killer whales: a response to resource competition or perceived predation risk?. Acta Ethologica 18, 69–78. https://doi.org/10.1007/s10211-014-0189-1 (2015).
    Article  Google Scholar 

    58.
    Alves, A. et al. Vocal matching of naval sonar signals by long-finned pilot whales (Globicephala melas). Mar. Mamm. Sci. 30, 1248–1257. https://doi.org/10.1111/mms.12099 (2014).
    Article  Google Scholar 

    59.
    Visser, I. N. et al. First record of predation on false killer whales (Pseudorca crassidens) by killer whales (Orcinus orca). Aquat. Mamm. 36, 195–204 (2010).
    Article  Google Scholar 

    60.
    Filatova, O. A., Fedutin, I. D., Nagaylik, M. M., Burdin, A. M. & Hoyt, E. Usage of monophonic and biphonic calls by free-ranging resident killer whales (Orcinus orca) in Kamchatka, Russian Far East. Acta Ethologica 12, 37–44. https://doi.org/10.1007/s10211-009-0056-7 (2009).
    Article  Google Scholar 

    61.
    Hall, M. L. A review of hypotheses for the functions of avian duetting. Behav. Ecol. Sociobiol. 55, 415–430. https://doi.org/10.1007/s00265-003-0741-x (2004).
    Article  Google Scholar 

    62.
    Robinson, A. The biological significance of bird song in Australia. Emu 48, 291–315. https://doi.org/10.1071/MU948291 (1949).
    Article  Google Scholar 

    63.
    Levin, R. N. Song behaviour and reproductive strategies in a duetting wren, Thryothorus nigricapillus: I Removal experiments. Anim. Behav. 52, 1093–1106. https://doi.org/10.1006/anbe.1996.0257 (1996).
    Article  Google Scholar 

    64.
    Hall, M. L. A Review of Vocal Duetting in Birds. Advances in the Study of Behavior 67–121 (Academic Press, Cambridge, 2009).
    Google Scholar 

    65.
    Constantine, R., Brunton, D. H. & Dennis, T. Dolphin-watching tour boats change bottlenose dolphin (Tursiops truncatus) behaviour. Biol. Conserv. 117, 299–307. https://doi.org/10.1016/j.biocon.2003.12.009 (2004).
    Article  Google Scholar 

    66.
    Wellard, R. et al. Killer whale (Orcinus orca) predation on beaked whales (Mesoplodon spp.) in the Bremer Sub-Basin, Western Australia. PLoS ONE 11, e0166670. https://doi.org/10.1371/journal.pone.0166670 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Exon, N. F., Hill, P. J., Mitchell, C. & Post, A. Nature and origin of the submarine Albany canyons off southwest Australia. Aust. J. Earth Sci. 52, 101–115. https://doi.org/10.1080/08120090500100036 (2005).
    Article  Google Scholar 

    68.
    Salgado-Kent, C., Parnum, I., Wellard, R., Erbe, C. & Fouda, L. Habitat preferences and distribution of killer whales (Orcinus orca) in the Bremer Sub-Basin, Australia. Report CMST 2017–15 by the Centre for Marine Science and Technology, Curtin University, for the National Environmental Science Programme; Perth, Australia (2017).

    69.
    Bronshtein, I. N., Semendyayev, K. A., Musiol, G. & Muhlig, H. Handbook of Mathematics 6th edn, 129–268 (Springer, New York, 2015).
    Google Scholar 

    70.
    Fleiss, J. L. & Cohen, J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Meas. 33, 613–619. https://doi.org/10.1177/001316447303300309 (1973).
    Article  Google Scholar 

    71.
    Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174. https://doi.org/10.2307/2529310 (1977).
    CAS  Article  MATH  Google Scholar  More

  • in

    Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population

    1.
    Garroway, C. J. et al. Fine-scale genetic structure in a wild bird population: The role of limited disperal and environmentally based selection as causal factors. Evolution 67, 3488–3500. https://doi.org/10.1111/evo.12121 (2013).
    CAS  Article  PubMed  Google Scholar 
    2.
    Reudink, M. W. et al. Linking isotopes and panmixia: High within-colony variation in feather δ2H, δ13C, and δ15N across the range of the American White Pelican. PLoS ONE 11, e0150810. https://doi.org/10.1371/journal.pone.0150810 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Ward, R. D., Skibinski, D. O. & Woodwark, M. Protein heterozygosity, protein structure, and taxonomic differentiation. In Evolutionary Biology, Vol. 26 (eds Hecht M.K., Wallace B., & Macintyre R.J.) 73–159 (Springer, New York, 1992).

    4.
    White, T. A., Fotherby, H. A., Stephens, P. A. & Hoelzel, A. R. Genetic panmixia and demographic dependence across the North Atlantic in the deep-sea fish, blue hake (Antimora rostrata). Heredity 106, 690–699. https://doi.org/10.1038/hdy.2010.108 (2011).
    CAS  Article  PubMed  Google Scholar 

    5.
    Mayr, E. Animal Species and Evolution. (Belknap Press of Harvard University Press, Cambridge, 1963).

    6.
    Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).
    Article  PubMed  Google Scholar 

    7.
    Küpper, C. et al. High gene flow on a continental scale in the polyandrous Kentish plover Charadrius alexandrinus. Mol. Ecol. 21, 5864–5879 (2012).
    Article  Google Scholar 

    8.
    Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16, 1765–1785. https://doi.org/10.1111/j.1365-294X.2006.03197.x (2007).
    CAS  Article  PubMed  Google Scholar 

    9.
    Ibarguchi, G., Gaston, A. J. & Friesen, V. L. Philopatry, morphological divergence, and kin groups: Structuring in thick-billed murres Uria lomvia within a colony in Arctic Canada. J. Avian Biol. 42, 134–150. https://doi.org/10.1111/j.1600-048X.2010.05023.x (2011).
    Article  Google Scholar 

    10.
    Griesser, M. Referential calls signal predator behavior in a group-living bird species. Curr. Biol. 18, 69–73. https://doi.org/10.1016/j.cub.2007.11.069 (2008).
    CAS  Article  PubMed  Google Scholar 

    11.
    Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Innes, R. J. et al. Genetic relatedness and spatial associations of dusky-footed woodrats (Neotoma fuscipes). J. Mammal. 93, 439–446. https://doi.org/10.1644/11-mamm-a-171.1 (2012).
    Article  Google Scholar 

    13.
    Foerster, K., Valcu, M., Johnsen, A. & Kempenaers, B. A spatial genetic structure and effects of relatedness on mate choice in a wild bird population. Mol. Ecol. 15, 4555–4567. https://doi.org/10.1111/j.1365-294X.2006.03091.x (2006).
    CAS  Article  PubMed  Google Scholar 

    14.
    Planes, S. & Fauvelot, C. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56, 378–399. https://doi.org/10.1111/j.0014-3820.2002.tb01348.x (2002).
    CAS  Article  PubMed  Google Scholar 

    15.
    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: Isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).
    CAS  Article  PubMed  Google Scholar 

    16.
    Ribolli, J. et al. Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil. Conserv. Genet. 18, 67–76. https://doi.org/10.1007/s10592-016-0882-x (2017).
    Article  Google Scholar 

    17.
    Weis, A. E. & Kossler, T. M. Genetic variation in flowering time induces phenological assortative mating: Quantitative genetic methods applied to Brassica rapa. Am. J. Bot. 91, 825–836. https://doi.org/10.3732/ajb.91.6.825 (2004).
    Article  PubMed  Google Scholar 

    18.
    Coulson, M., Bradbury, I. & Bentzen, P. Temporal genetic differentiation: Continuous v. discontinuous spawning runs in anadromous rainbow smelt Osmerus mordax (Mitchill). J. Fish Biol. 69, 209–216 (2006).
    Article  Google Scholar 

    19.
    Woody, C. A., Olsen, J., Reynolds, J. & Bentzen, P. Temporal variation in phenotypic and genotypic traits in two sockeye salmon populations, Tustumena Lake, Alaska. Trans. Am. Fish. Soc. 129, 1031–1043 (2000).
    Article  Google Scholar 

    20.
    Cooley, J. R., Simon, C. & Marshall, D. C. Temporal separation and speciation in periodical cicadas. Bioscience 53, 151–157. https://doi.org/10.1641/0006-3568(2003)053[0151:TSASIP]2.0.CO;2 (2003).
    Article  Google Scholar 

    21.
    Rolshausen, G., Hobson, K. A. & Schaefer, H. M. Spring arrival along a migratory divide of sympatric blackcaps (Sylvia atricapilla). Oecologia 162, 175–183. https://doi.org/10.1007/s00442-009-1445-3 (2009).
    ADS  Article  PubMed  Google Scholar 

    22.
    Friesen, V. L. et al. Sympatric speciation by allochrony in a seabird. Proc. Natl. Acad. Sci. U.S.A. 107, 18589–18594 (2007).
    ADS  Article  Google Scholar 

    23.
    Braga-Silva, A. & Galetti, P. M. Evidence of isolation by time in freshwater migratory fish Prochilodus costatus (Characiformes, Prochilodontidae). Hydrobiologia 765, 159–167. https://doi.org/10.1007/s10750-015-2409-8 (2016).
    Article  Google Scholar 

    24.
    Schreiber, E. & Burger, J. Biology of Marine Birds (CRC Press, Boca Raton, 2001).
    Google Scholar 

    25.
    Lawrence, H. A., Lyver, P. O. B. & Gleeson, D. M. Genetic panmixia in New Zealand’s Grey-faced Petrel: Implications for conservation and restoration. Emu 114, 249–258. https://doi.org/10.1071/MU13078 (2014).
    Article  Google Scholar 

    26.
    Cristofari, R. et al. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds. PLoS ONE 10, e0117981. https://doi.org/10.1371/journal.pone.0117981 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Avise, J. C., Nelson, W. S., Bowen, B. W. & Walker, D. Phylogeography of colonially nesting seabirds, with special reference to global matrilineal patterns in the sooty tern (Sterna fuscata). Mol. Ecol. 9, 1783–1792 (2000).
    CAS  Article  Google Scholar 

    28.
    Votier, S. C. & Sherley, R. B. Seabirds. Curr. Biol. 27, R448–R450. https://doi.org/10.1016/j.cub.2017.01.042 (2017).
    CAS  Article  PubMed  Google Scholar 

    29.
    Hughes, B. J., Martin, G. R., Giles, A. D. & Reynolds, S. J. Long-term population trends of Sooty Terns Onychoprion fuscatus: Implications for conservation status. Popul. Ecol. 59, 213–224. https://doi.org/10.1007/s10144-017-0588-z (2017).
    Article  Google Scholar 

    30.
    Reynolds, S. J. et al. Long-term dietary shift and population decline of a pelagic seabird—A health check on the tropical Atlantic?. Glob. Change Biol. 25, 1383–1394. https://doi.org/10.1111/gcb.14560 (2019).
    ADS  Article  Google Scholar 

    31.
    Schreiber, E. et al. In Birds of North America No. 665 (eds A Poole & F Gill) 1–32 (American Ornithologists’ Union, Washington, DC, 2002).

    32.
    Maxwell, S. M. & Morgan, L. E. Foraging of seabirds on pelagic fishes: Implications for management of pelagic marine protected areas. Mar. Ecol. Prog. Ser. 481, 289–303 (2013).
    ADS  Article  Google Scholar 

    33.
    Ashmole, N. P. The biology of the Wideawake or Sooty Tern Sterna fuscata on Ascension Island. Ibis 103b, 297–351 (1963).
    Article  Google Scholar 

    34.
    Hughes, B. J., Martin, G. R. & Reynolds, S. J. Cats and seabirds: Effects of feral Domestic Cat Felis silvestris catus eradication on the population of Sooty Terns Onychoprion fuscata on Ascension Island, South Atlantic. Ibis 150, 122–131. https://doi.org/10.1111/j.1474-919X.2008.00838.x (2008).
    Article  Google Scholar 

    35.
    ArcGIS Desktop: Release 10.2 (Environmental Systems Research Institute, Redlands, CA, USA, 2013).

    36.
    Garrett, L. J., Dawson, D. A., Horsburgh, G. J. & Reynolds, S. J. A multiplex marker set for microsatellite typing and sexing of sooty terns Onychoprion fuscatus. BMC Res. Notes 10, 756 (2017).
    Article  Google Scholar 

    37.
    Dawson, D. A. Genomic analysis of passerine birds using conserved microsatellite loci. PhD thesis, University of Sheffield, UK, (2007).

    38.
    Dawson, D. A., dos Remedios, N. & Horsburgh, G. J. A new marker based on the avian spindlin gene that is able to sex most birds, including species problematic to sex with CHD markers. Zoo Biol. 35, 533–545. https://doi.org/10.1002/zoo.21326 (2016).
    CAS  Article  PubMed  Google Scholar 

    39.
    Rousset, F. GENEPOP ’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).
    Article  PubMed  Google Scholar 

    40.
    Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573. https://doi.org/10.1038/nprot.2010.116 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    de Jager, D., Swarts, P., Harper, C. & Bloomer, P. Friends and family: A software program for identification of unrelated individuals from molecular marker data. Mol. Ecol. Resour. 17, e225–e233. https://doi.org/10.1111/1755-0998.12691 (2017).
    Article  PubMed  Google Scholar 

    42.
    Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: Increasing your power. Oikos 108, 643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x (2005).
    Article  Google Scholar 

    43.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x (2007).
    Article  PubMed  Google Scholar 

    44.
    Torati, L. S. et al. Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins. BMC Genet. 20, 13. https://doi.org/10.1186/s12863-018-0711-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x (2004).
    CAS  Article  PubMed  Google Scholar 

    46.
    Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 1, 71–75 (2007).
    Article  Google Scholar 

    47.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
    CAS  Article  PubMed  Google Scholar 

    49.
    Earl, D. A. & von Holdt, B. M. Structure harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
    Article  Google Scholar 

    50.
    Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. Related: An R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15, 557–561. https://doi.org/10.1111/1755-0998.12323 (2015).
    Article  PubMed  Google Scholar 

    51.
    Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185. https://doi.org/10.1017/S0016672300033620 (1996).
    Article  Google Scholar 

    53.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x (2011).
    Article  PubMed  Google Scholar 

    55.
    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).
    Article  Google Scholar 

    56.
    Smouse, P. E., Peakall, R. O. D. & Gonzales, E. V. A. A heterogeneity test for fine-scale genetic structure. Mol. Ecol. 17, 3389–3400. https://doi.org/10.1111/j.1365-294X.2008.03839.x (2008).
    Article  PubMed  Google Scholar 

    57.
    Banks, S. C. & Peakall, R. O. D. Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol. Ecol. 21, 2092–2105. https://doi.org/10.1111/j.1365-294X.2012.05485.x (2012).
    Article  PubMed  Google Scholar 

    58.
    Jacob, G., Prévot, A.-C. & Baudry, E. Feral Pigeons (Columba livia) prefer genetically similar mates despite inbreeding depression. PLoS ONE 11, e0162451. https://doi.org/10.1371/journal.pone.0162451 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Double, M. C., Peakall, R., Beck, N. R. & Cockburn, A. Dispersal, philopatry, and infidelity: Dissecting local genetic structure in superb fairy-wren (Malurus cyaneus). Evolution 59, 625–635. https://doi.org/10.1111/j.0014-3820.2005.tb01021.x (2005).
    CAS  Article  PubMed  Google Scholar 

    60.
    R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (2019).

    61.
    rcompanion: Functions to support extension education program evaluation (2017).

    62.
    Bicknell, A. W. J. et al. Population genetic structure and long-distance dispersal among seabird populations: Implications for colony persistence. Mol. Ecol. 21, 2863–2876. https://doi.org/10.1111/j.1365-294X.2012.05558.x (2012).
    CAS  Article  PubMed  Google Scholar 

    63.
    Palestis, B. G. The role of behaviour in tern conservation. Curr. Zool. 60, 500–514 (2014).
    Article  Google Scholar 

    64.
    Lebreton, J. D., Hines, J. E., Pradel, R., Nichols, J. D. & Spendelow, J. A. Estimation by capture-recapture of recruitment and dispersal over several sites. Oikos 101, 253–264. https://doi.org/10.1034/j.1600-0706.2003.11848.x (2003).
    Article  Google Scholar 

    65.
    Bicknell, A. W. J. et al. Intercolony movement of pre-breeding seabirds over oceanic scales: Implications of cryptic age-classes for conservation and metapopulation dynamics. Divers. Distrib. 20, 160–168. https://doi.org/10.1111/ddi.12137 (2014).
    Article  Google Scholar 

    66.
    Hughes, B. J., Martin, G. R. & Reynolds, S. J. Sooty Terns Onychoprion fuscatus on Ascension Island in the south Atlantic are a reproductively isolated population. Revista Brasileira de Ornitologia 18, 194–198 (2010).
    Google Scholar 

    67.
    Robertson, W. B. Jr. Transatlantic migration of juvenile sooty terns. Nature 223, 632–634 (1969).
    ADS  Article  Google Scholar 

    68.
    Peck, D. R. & Congdon, B. C. Reconciling historical processes and population structure in the sooty tern Sterna fuscata. J. Avian Biol. 35, 327–335 (2004).
    Article  Google Scholar 

    69.
    Conradt, L. & Roper, T. J. Deciding group movements: Where and when to go. Behav. Proc. 84, 675–677. https://doi.org/10.1016/j.beproc.2010.03.005 (2010).
    Article  Google Scholar 

    70.
    Sonsthagen, S. A., Talbot, S. L., Lanctot, R. B. & McCracken, K. G. Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck. Mol. Ecol. 19, 647–657. https://doi.org/10.1111/j.1365-294X.2009.04495.x (2010).
    Article  PubMed  Google Scholar 

    71.
    Hatchwell, B. J. Cryptic kin selection: Kin structure in vertebrate populations and opportunities for kin-directed cooperation. Ethology 116, 203–216. https://doi.org/10.1111/j.1439-0310.2009.01732.x (2010).
    Article  Google Scholar 

    72.
    Péron, G. et al. Capture–recapture models with heterogeneity to study survival senescence in the wild. Oikos 119, 524–532. https://doi.org/10.1111/j.1600-1706.2009.17882.x (2010).
    Article  Google Scholar 

    73.
    Prince, P. A., Rothery, P., Croxall, J. P. & Wood, A. G. Population dynamics of Black-browed and Grey-headed Albatrosses Diomedea melanophris and D. chrysostoma at Bird Island, South Georgia. Ibis 136, 50–71. https://doi.org/10.1111/j.1474-919X.1994.tb08131.x (1994).
    Article  Google Scholar 

    74.
    Monteiro, L. R. & Furness, R. W. Speciation through temporal segregation of Madeiran storm petrel (Oceanodroma castro) populations in the Azores?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 945–953. https://doi.org/10.1098/rstb.1998.0259 (1998).
    Article  PubMed Central  Google Scholar 

    75.
    Dobson, F. S., Becker, P. H., Arnaud, C. M., Bouwhuis, S. & Charmantier, A. Plasticity results in delayed breeding in a long-distant migrant seabird. Ecol. Evol. 7, 3100–3109. https://doi.org/10.1002/ece3.2777 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    76.
    Casagrande, S., Dell’Omo, G., Costantini, D. & Tagliavini, J. Genetic differences between early-and late-breeding Eurasian kestrels. Evol. Ecol. Res. 8, 1029–1038 (2006).
    Google Scholar 

    77.
    Danchin, É., Giraldeau, L.-A., Valone, T. J. & Wagner, R. H. Public information: From nosy neighbors to cultural evolution. Science 305, 487–491. https://doi.org/10.1126/science.1098254 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    78.
    Boulinier, T., McCoy, K. D., Yoccoz, N. G., Gasparini, J. & Tveraa, T. Public information affects breeding dispersal in a colonial bird: Kittiwakes cue on neighbours. Biol. Lett. 4, 538–540. https://doi.org/10.1098/rsbl.2008.0291 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    79.
    Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial breeder with weak interannual breeding-site fidelity. Anim. Behav. 124, 125–133. https://doi.org/10.1016/j.anbehav.2016.12.011 (2017).
    Article  Google Scholar 

    80.
    Reusch, T. B., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. U.S.A. 102, 2826–2831. https://doi.org/10.1073/pnas.0500008102 (2005).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86. https://doi.org/10.1126/science.aan4380 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    82.
    Durant, J. M., Krasnov, Y. V., Nikolaeva, N. G. & Stenseth, N. C. Within and between species competition in a seabird community: Statistical exploration and modeling of time-series data. Oecologia 169, 685–694. https://doi.org/10.1007/s00442-011-2226-3 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    83.
    Cury, P. M. et al. Global seabird response to forage fish depletion—One-third for the birds. Science 334, 1703–1706. https://doi.org/10.1126/science.1212928 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10, e0129342. https://doi.org/10.1371/journal.pone.0129342 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    85.
    Feare, C. J. & Lesperance, C. Intra- and inter-colony movements of breeding adult Sooty Terns in Seychelles. Waterbirds 25, 52–55. https://doi.org/10.1675/1524-4695(2002)025[0052:IAIMOB]2.0.CO;2 (2002).
    Article  Google Scholar 

    86.
    Grémillet, D. & Boulinier, T. Spatial ecology and conservation of seabirds facing global climate change: A review. Mar. Ecol. Prog. Ser. 391, 121–137. https://doi.org/10.3354/meps08212 (2009).
    ADS  Article  Google Scholar 

    87.
    Colchero, F., Bass, O. L., Zambrano, R. & Gore, J. A. Clustered nesting and vegetation thresholds reduce egg predation in Sooty Terns. Waterbirds 33, 169–178. https://doi.org/10.1675/063.033.0205 (2010).
    Article  Google Scholar  More

  • in

    Modified Ziziphus spina-christi stones as green route for the removal of heavy metals

    1.
    Vilaseca, M., Gutiérrez, M. C., López-Grimau, V., López-Mesas, M. & Crespi, M. Biological treatment of a textile effluent after electrochemical oxidation of reactive dyes. Water Environ. Res. 82, 176–182 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Mahmood, Q., Mahnoor, A., Shahida, S., Tahir, M. & Ali, S. Cadmium contamination in water and soil. In Cadmium Toxic (eds Hasanuzzaman, M. et al.) 141–161 (Elsevier, Amsterdam, Toler. Plants, 2018).
    Google Scholar 

    3.
    Wasi, S., Tabrez, S. & Ahmad, M. Toxicological effects of major environmental pollutants: an overview. Environ. Monit. Assess. 185, 2585–2593 (2013).
    PubMed  Article  Google Scholar 

    4.
    Malik, A. Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ. Int. 33, 122–138 (2007).
    CAS  PubMed  Article  Google Scholar 

    5.
    Asere, T. G., Stevens, C. V. & Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: a review. Sci. Total Environ. 676, 706–720 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Shakoor, M. B. et al. Remediation of arsenic contaminated water using agricultural wastes as biosorbents. Crit. Rev. Environ. Sci. Technol. 46, 467–499 (2016).
    CAS  Article  Google Scholar 

    7.
    Bilal, M., et al. Waste biomass adsorbents for copper removal from industrial wastewater—a review. J. Hazard. Mater. 263Pt 2, 322–333 (2013).

    8.
    Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J. & Ismadji, S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 44, 19–41 (2009).
    CAS  Article  Google Scholar 

    9.
    Ofomaja, A. E. & Ho, Y. S. Effect of pH on cadmium biosorption by coconut copra meal. J. Hazard. Mater. 139, 356–362 (2007).
    CAS  PubMed  Article  Google Scholar 

    10.
    Saied, S., Gebauer, J., Hammer, K. & Buerkert, A. Ziziphus spina-christi (L.) willd: a multipurpose fruit tree. Genet. Resour. Crop Evol. 55, 929–937 (2008).
    Article  Google Scholar 

    11.
    Omri, A. & Benzina, M. Characterization of activated carbon prepared from a new raw lignocellulosic material: Ziziphus Spina-Christi seeds. J. Soc. Chim. Tunisie 14, 175–183 (2012).
    Google Scholar 

    12.
    Nazif, N.M. Phytoconstituents of Zizyphus spina-christi L. fruits and their antimicrobial activity. Food Chem. 76, 77–81 (2002).
    CAS  Article  Google Scholar 

    13.
    Amoo, I. A. & Atasie, V. N. Nutritional and functional properties of Tamarindus Indica Pulp and Zizyphus spina-christi fruit and seed. J. Food Agric. Environ. 10, 16–19 (2012).
    CAS  Google Scholar 

    14.
    Osman, M. A. & Ahmed, M. A. Chemical and proximate composition of (Zizyphus spina-christi) Nabag Fruit. Nutr. Food Sci. 39, 70–75 (2009).
    Article  Google Scholar 

    15.
    Ngah, W. S. W. & Hanafiah, M. A. K. M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935–3948 (2008).
    Article  CAS  Google Scholar 

    16.
    Gautam, R.K., Chattopadhyaya, M.C. & Sharma, S.K. Biosorption of heavy metals: recent trends and challenges Ravindra. In Wastewater Reuse and Management; (Sharma, S.K., Sanghi, R., Eds).; Springer: Berlin, 305–322 (2013).

    17.
    Park, D., Yun, Y.-S. & Park, J. M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 15, 86–102 (2010).
    CAS  Article  Google Scholar 

    18.
    Won, S. W., Kotte, P., Wei, W., Lim, A. & Yun, Y.-S. Biosorbents for recovery of precious metals. Bioresour. Technol. 160, 203–212 (2014).
    CAS  PubMed  Article  Google Scholar 

    19.
    Patel, S. Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies. Rev. Environ. Sci. Bio/Technol. 11, 365–380 (2012).
    CAS  Article  Google Scholar 

    20.
    Volesky, B. Biosorption and me. Water Res. 41, 4017–4029 (2007).
    CAS  PubMed  Article  Google Scholar 

    21.
    Vijayaraghavan, K. & Yun, Y. S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26, 266–291 (2008).
    CAS  PubMed  Article  Google Scholar 

    22.
    Acar, F. N. & Eren, Z. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mater. 137, 909–914 (2006).
    CAS  PubMed  Article  Google Scholar 

    23.
    Reddy, B. R., Mirghaffari, N. & Gaballah, I. Removal and recycling of copper from aqueous solutions using treated Indian barks. Resour. Conserv. Recycl. 21, 227–245 (1997).
    Article  Google Scholar 

    24.
    Su, P., Zhang, J., Tang, J. & Zhang, C. Preparation of nitric acid modified powder activated carbon to remove trace amount of Ni(II) in aqueous solution. Water Sci. Technol. 80, 86–97 (2019).
    CAS  PubMed  Article  Google Scholar 

    25.
    Sciban, M., Klasnja, M. & Skrbic, B. Modified softwood sawdust as adsorbent of heavy metal ions from water. J. Hazard. Mater. 136, 266–271 (2006).
    CAS  PubMed  Article  Google Scholar 

    26.
    Taty-Costodes, V. C., Fauduet, H., Porte, C. & Delacroix, A. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 105, 121–142 (2003).
    CAS  PubMed  Article  Google Scholar 

    27.
    Gupta, V. K., Jain, C. K., Ali, I., Sharma, M. & Saini, V. K. Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 37, 4038–4044 (2003).
    CAS  PubMed  Article  Google Scholar 

    28.
    Polatoğlu, I. & Karataş, D. Modeling of molecular interaction between catechol and tyrosinase by DFT. J. Mol. Struct. 1202, 127192 (2020).
    Article  CAS  Google Scholar 

    29.
    Omar, A., Ezzat, H., Elhaes, H. & Ibrahim, M. A. Molecular modeling analyses for modified biopolymers. Biointerface Res. Appl. Chem. 11(1), 7847–7859 (2021).
    Google Scholar 

    30.
    Badry, R. et al. Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. J. Mol. Struct. 1224, 129013 (2021).
    CAS  Article  Google Scholar 

    31.
    Menazea, A. A. et al. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Comput. Theor. Chem. 1189, 112980 (2020).
    CAS  Article  Google Scholar 

    32.
    Al-Bagawi, A. H., Bayoumy, A. M. & Ibrahim, M. A. Molecular modeling analyses for graphene functionalized with Fe3O4 and NiO. Heliyon 6(7), e04456 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Assirey, E. A., Sirry, S. M., Burkani, H. A. & Ibrahim, M. Biosorption of zinc(II) and cadmium(II) using Ziziphus spina stones. J. Comput. Theor. Nanosci. 15, 3102–3108 (2018).
    CAS  Article  Google Scholar 

    34.
    Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater 23rd edn. (American Public Health Association (APHA), Washington, DC, 2017).
    Google Scholar 

    35.
    Zhang, B. et al. Biosorption characteristics of Bacillus gibsonii S-2 waste biomass for removal of lead (II) from aqueous solution. Environ. Sci. Pollut. Res. Int. 20, 1367–1373 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918).
    CAS  Article  Google Scholar 

    37.
    Frisch, M. et al. Gaussian 09, revision C.01 (Gaussian, Inc., Wallingford, 2009).

    38.
    Becke, A. D. Density-functional thermochemistry—III: the role of exact exchange. Chem. Phys. 98, 5648 (1993).
    ADS  CAS  Google Scholar 

    39.
    Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).
    ADS  CAS  Article  Google Scholar 

    40.
    Miehlich, B., Savin, A., Stoll, H. & Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989).
    ADS  CAS  Article  Google Scholar 

    41.
    Jin, Y., Zhang, Y., Lü, Q. & Cheng, X. Biosorption of methylene blue by chemically modified cellulose waste. J. Wuhan Univ. Technol. Sci. Ed. 29, 817–823 (2014).
    CAS  Article  Google Scholar 

    42.
    Calero, M., Pérez, A., Blázquez, G., Ronda, A. & Martín-Lara, M. A. Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead. Ecol. Eng. 58, 344–354 (2013).
    Article  Google Scholar 

    43.
    Abdolali, A. et al. Characterization of a multi-metal binding biosorbent: chemical modification and desorption studies. Bioresour. Technol. 193, 477–487 (2015).
    CAS  PubMed  Article  Google Scholar 

    44.
    Brigida, A. I. S., Calado, V. M. A., Goncalves, L. R. B. & Coelho, M. A. Z. Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 79, 832–838 (2010).
    CAS  Article  Google Scholar 

    45.
    Herrera-Franco, P. J. & Valadez-Gonzalez, A. A. Study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 36, 597–608 (2005).
    Article  CAS  Google Scholar 

    46.
    Mao, J., Won, S. W., Choi, S. B., Lee, M. W. & Yun, Y. S. Surface modification of the Corynebacterium Glutamicum biomass to increase carboxyl binding site for basic dye molecules. Biochem. Eng. J. 46, 1–6 (2009).
    Article  CAS  Google Scholar 

    47.
    Ramana, D. K. V., Reddy, K. D. H., Kumar, B. N., Harinath, Y. & Seshaiah, K. Removal of nickel from aqueous solutions by citric acid modified Ceiba Pentandra Hulls: equilibrium and kinetic studies. Can. J. Chem. Eng. 90, 111–119 (2012).
    CAS  Article  Google Scholar 

    48.
    Martín-Lara, M. A., Pagnanelli, F., Mainelli, S., Calero, M. & Toro, L. Chemical treatment of olive Pomace: effect on acid-basic properties and metal biosorption capacity. J. Hazard. Mater. 2012(156), 448–457 (2012).
    Google Scholar 

    49.
    Shadreck, M., Chigondo, F., Shumba, M., Nyamunda, B. C. & Edith, S. Removal of chromium (VI) from aqueous solution using chemically modified orange (Citrus Cinensis) peel. IOSR J. Appl. Chem. 6, 66–75 (2013).
    Article  Google Scholar 

    50.
    Olu-owolabi, B. I., Oputu, O. U., Adebowale, K. O., Ogonsolu, O. & Olujimi, O. O. Biosorption of Cd2+ and Pb2+ ions onto mango stone and cocoa pod waste: kinetic and equilibrium studies. Sci. Res. Essays 7, 1614–1629 (2012).
    CAS  Article  Google Scholar 

    51.
    Adhiambo, O.R., Lusweti, K.J. & Morang’a, G.Z. Biosorption of Pb2+ and Cr2+ Using Moringa oleifera and their adsorption isotherms. Sci. J. Anal. Chem., 3, 100–108 (2015).

    52.
    Ofomaja, A. E., Naidoo, E. B. & Modise, S. J. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder. J. Environ. Manag. 91, 1674–1685 (2010).
    CAS  Article  Google Scholar 

    53.
    Min, S. H., Han, J. S., Shin, E. W. & Park, J. K. Improvement of cadmium ion removal by base treatment of juniper fiber. Water Res. 38, 1289–1295 (2004).
    CAS  PubMed  Article  Google Scholar 

    54.
    Kapoor, A. & Viraraghavan, T. Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227 (1997).
    CAS  Article  Google Scholar 

    55.
    Vijayaraghavan, K. & Yun, Y. S. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of reactive black 5 from aqueous solution. J. Hazard. Mater. 141, 45–52 (2007).
    CAS  PubMed  Article  Google Scholar 

    56.
    Alslaibi, T.M., Abustan, I., Ahmad, M.A. & Abu Foul, A. Comparative studies on the olive stone activated carbon adsorption of Zn2+, Ni2+, and Cd2+from synthetic wastewater. Desalin. Water Treat., 54, 166–177 (2015).

    57.
    Papageorgiou, S. K. et al. Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mater. 137, 1765–1772 (2006).
    CAS  PubMed  Article  Google Scholar 

    58.
    Usman, A. R. A. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley Egypt. Geoderma 144, 334–343 (2008).
    ADS  CAS  Article  Google Scholar 

    59.
    Gilbert, U. A., Emmanuel, I. U., Adebanjo, A. A. & Olalere, G. A. Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: defatted Carica papaya seeds. Biomass Bioenergy 35, 2517–2525 (2011).
    Article  CAS  Google Scholar 

    60.
    Jimoh, T. O., Yisa, J., Ajai, A. I. & Musa, A. Kinetics and thermodynamics studies of the biosorption of Pb(II), Cd(II) and Zn(II) ions from aqueous solution by sweet orange (Citrus sinensis) seeds. Int. J. Mod. Chem. 4, 19–37 (2013).
    CAS  Google Scholar 

    61.
    Shawabkeh, R., Al-Harahsheh, A., Hami, M. & Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel 83, 981–985 (2004).
    CAS  Article  Google Scholar 

    62.
    Politzer, P. & Murray, J.S. Molecular electrostatic potentials. In Concepts and Applications, (Theoretical and Computational Chemistry), 1st edn.; Murray, J.S., Sen, K., Eds.; Elsevier: Amsterdam, 3, 649–660 (1996).

    63.
    Ibrahim, A., Elhaes, H., Meng, F. & Ibrahim, M. Effect of hydration on the physical properties of glucose. Biointerface Res. Appl. Chem. 8, 4114–4118 (2019).
    Google Scholar 

    64.
    Ibrahim, A., Elhaes, H., Ibrahim, M., Yahia, I. S. & Zahran, H. Y. Molecular modeling analyses for polyvinylidene X (X=F, Cl, Br and I). Biointerface Res. Appl. Chem. 9, 3890–3893 (2019).
    CAS  Article  Google Scholar 

    65.
    Ezzat, H. et al. Mapping the molecular electrostatic potential of carbon nanotubes. Biointerface Res. Appl. Chem. 8, 3539–3542 (2018).
    CAS  Google Scholar 

    66.
    Msaada, A. et al. Industrial wastewater decolorization by activated carbon from Ziziphus lotus. Desalin. Water Treat. 126, 296–305 (2018).
    Article  CAS  Google Scholar 

    67.
    Msaad, A., Belbahloul, M., El Hajjaji, S. & Zouhri, A. Comparison of novel Ziziphus lotus adsorbent and industrial carbon on methylene blue removal from aqueous solutions. Water Sci. Technol. 78(10), 2055–2063 (2018).
    CAS  PubMed  Article  Google Scholar 

    68.
    Msaad, A., Belbahloul, M., El Hajjaji, S., Zouhri, A. Synthesis of H3PO4 activated carbon from Ziziphus lotus (Z. mauritiana) leaves: optimization using RSM and cationic dye adsorption. Desalin. Water Treat. 153, 288–299 (2019).
    CAS  Article  Google Scholar  More

  • in

    Diversity, dynamics, direction, and magnitude of high-altitude migrating insects in the Sahel

    1.
    Dingle, H. & Drake, A. What is migration?. Bioscience 57, 113–121 (2007).
    Article  Google Scholar 
    2.
    Dingle, H. Migration: The Biology of Life on the Move (Oxford University Press, Oxford, 2014).
    Google Scholar 

    3.
    Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).
    PubMed  Article  Google Scholar 

    4.
    Maiga, I. H., Lecoq, M. & Kooyman, C. Ecology and management of the Senegalese grasshopper Oedaleus senegalensis (Krauss 1877) (Orthoptera: Acrididae) in West Africa. Ann. Soc. Entomol. Fr. 44, 271–288 (2008).
    Article  Google Scholar 

    5.
    Glick, P. A. The distribution of insects, spiders, and mites in the air. United States Department of Agriculture, Technical Bulletin 673, (1939).

    6.
    Rainey, R. C. Migration and Meteorology (Clarendon Press, Oxford, 1989).
    Google Scholar 

    7.
    Cheke, R. A. et al. A migrant pest in the Sahel: the Senegalese grasshopper Oedaleus senegalensis. Philos. Trans. R. Soc. B 328, 539–553 (1990).
    ADS  Google Scholar 

    8.
    Chapman, J. W., Reynolds, D. R. & Smith, A. D. Migratory and foraging movements in beneficial insects: a review of radar monitoring and tracking methods. Int. J. Pest Manag. 50, 225–232 (2004).
    Article  Google Scholar 

    9.
    Reynolds, D. R., Chapman, J. W. & Harrington, R. The migration of insect vectors of plant and animal viruses. Adv. Virus Res. 67, 453–517 (2006).
    CAS  PubMed  Article  Google Scholar 

    10.
    Garms, R., Walsh, J. F. & Davies, J. B. Studies on the reinvasion of the Onchocerciasis Control Programme in the Volta River basin by Simulium damnosum s.l. with emphasis on the sout-western areas. Tropenmed. Parasitol. 30, 345–362 (1979).
    CAS  PubMed  Google Scholar 

    11.
    Sellers, R. F. Weather, host and vector–their interplay in the spread of insect-borne animal virus diseases. J. Hyg. (Lond) 85, 65–102 (1980).
    CAS  Article  Google Scholar 

    12.
    Ming, J. et al. Autumn southward ‘return’ migration of the mosquito Culex tritaeniorhynchus in China. Med. Vet. Entomol. 7, 323–327 (1993).
    CAS  PubMed  Article  Google Scholar 

    13.
    Ritchie, S. A. & Rochester, W. Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerg. Infect. Dis. 7, 900–903 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Eagles, D., Walker, P. J., Zalucki, M. P. & Durr, P. A. Modelling spatio-temporal patterns of long-distance Culicoides dispersal into northern Australia. Prev. Vet. Med. 110, 312–322 (2013).
    CAS  PubMed  Article  Google Scholar 

    15.
    Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574, 404–408 (2019).
    CAS  PubMed  Article  Google Scholar 

    16.
    Green, K. The transport of nutrients and energy into the Australian Snowy Mountains by migrating bogong moth Agrotis infusa. Austral. Ecol. 36, 25–34 (2011).
    Article  Google Scholar 

    17.
    Landry, J.-S. & Parrott, L. Could the lateral transfer of nutrients by outbreaking insects lead to consequential landscape-scale effects?. Ecosphere 7, e01265 (2016).
    Article  Google Scholar 

    18.
    Stefanescu, C. et al. Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography (Cop.) 36, 474–486 (2013).
    Article  Google Scholar 

    19.
    Chapman, J. W. et al. Seasonal migration to high latitudes results in major reproductive benefits in an insect. Proc. Natl. Acad. Sci. 109, 14924–14929 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Chapman, J. W. et al. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol. 18, 514–518 (2008).
    CAS  PubMed  Article  Google Scholar 

    21.
    Hallworth, M. T., Marra, P. P., McFarland, K. P., Zahendra, S. & Studds, C. E. Tracking dragons: stable isotopes reveal the annual cycle of a long-distance migratory insect. Biol. Lett. 14, 20180741 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Hu, G. et al. Mass seasonal bioflows of high-flying insect migrants. Science (80-.) 354, 1584–1587 (2016).
    ADS  CAS  Article  Google Scholar 

    23.
    Wotton, K. R. et al. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 29, 2167-2173.e5 (2019).
    CAS  PubMed  Article  Google Scholar 

    24.
    Drake, V. A. & Reynolds, D. R. Radar Entomology: Observing Insect Flight and Migration (CAB International, Wallingford, 2012).
    Google Scholar 

    25.
    Holland, R. A. How and why do insects migrate?. Science (80-.) 313, 794–796 (2006).
    ADS  CAS  Article  Google Scholar 

    26.
    Faiman, R. et al. Marking mosquitoes in their natural larval sites using 2 H-enriched water: a promising approach for tracking over extended temporal and spatial scales. Methods Ecol. Evol. 10, 1274–1285 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Cheke, R. A. & Tratalos, J. A. Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57, 145–154 (2007).
    Article  Google Scholar 

    28.
    Lecoq, M. Recent progress in Desert and Migratory Locust management in Africa. Are preventative actions possible ? 10, 277–291 (2001). https://doi.org/https://doi.org/10.1665/1082-6467(2001)010[0277:RPIDAM]2.0.CO;2.

    29.
    Rose, D. J. W., Dewhurst, C. F. & Page, W. W. African Armyworm Handbook: The Status, Biology, Ecology, Epidemiology and Management of Spodoptera exempta (Lepidoptera: Noctuidae) (University of Greenwich, Natural Resources Institute, 2000).
    Google Scholar 

    30.
    Gebreyes, W. A. et al. The global one health paradigm: challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings. PLoS Negl. Trop. Dis. 8, e3257 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Nicholson, S. E. The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013, 32 (2013).
    Article  Google Scholar 

    32.
    Chapman, J. W., Reynolds, D. R., Smith, A. D., Smith, E. T. & Woiwod, I. P. An aerial netting study of insects migrating at high altitude over England. Bull. Entomol. Res. 94, 123–136 (2004).
    CAS  PubMed  Article  Google Scholar 

    33.
    Drake, V. A. & Gatehouse, A. G. Insect Migration: Tracking Resources Through Space and Time (Cambridge University Press, Cambridge, 1995).
    Google Scholar 

    34.
    Southwood, T. R. E. Migration of terrestrial arthropods in relation to habitat. Biol. Rev. 37, 171–211 (1962).
    Article  Google Scholar 

    35.
    Frank, J. & Kanamitsu, K. Paederus, sensu lato (Coleoptera: Staphilinidae): natural history and medical importance. J. Med. Entomol. 24, 155–191 (1987).
    CAS  PubMed  Article  Google Scholar 

    36.
    Vanhecke, C., Le Gall, P. & Gaüzère, B. A. Vesicular contact dermatitis due to Paederus in Cameroon and review of the literature. Bull. la Soc. Pathol. Exot. 108, 328–336 (2015).
    CAS  Article  Google Scholar 

    37.
    Duviard, D. Migrations of Dysdercus spp (Hemiptera: Pyrrhocoridae) related to movements of the Inter-Tropical Convergence Zone in West Africa. Bull. Entomol. Res. 67, 185 (1977).
    Article  Google Scholar 

    38.
    Dao, A. et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature 516, 387–390 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Garrett-Jones, C. The possibility of active long-distance migrations by Anopheles pharoensis Theobald. Bull. World Health Organ. 27, 299–302 (1962).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Faiman, R. et al. Quantifying flight aptitude variation in wild A. gambiae s.l. in order to identify long-distance migrants. Malar. J. DOI: https://doi.org/10.1186/s12936-020-03333-2 (2020).

    41.
    Morkel, C. & Jacobs, D. H. New records of stilt bugs (Insecta, Heteroptera, Berytidae) from the Afrotropical region, with distributional and ecological notes. Andrias 20, 153–173 (2014).
    Google Scholar 

    42.
    Hocking, B. The intrinsic range and speed of flight of insects. Trans. R. Entomol. Soc. Lond. 104, 223–345 (1953).
    Google Scholar 

    43.
    Snow, W. F. Field estimates of the flight speed of some West African mosquitoes. Ann. Trop. Med. Parasitol. 74, 239–242 (1980).
    CAS  PubMed  Article  Google Scholar 

    44.
    Lee, D.-H. & Leskey, T. C. Flight behavior of foraging and overwintering brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Bull. Entomol. Res. 105, 566–573 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Taylor, R. A. J., Bauer, L. S., Poland, T. M. & Windell, K. N. Flight performance of Agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J. Insect Behav. 23, 128–148 (2010).
    Article  Google Scholar 

    46.
    Cooter, R. J., Winder, D. & Chancellor, T. C. Tethered flight activity of Nephotettix virescens (Hemiptera: Cicadellidae) in the Philippines. Bull. Entomol. Res. 90, 49–55 (2000).
    CAS  PubMed  Article  Google Scholar 

    47.
    Briegel, H., Knüsel, I. & Timmermann, S. E. Aedes aegypti: size, reserves, survival, and flight potential. J. Vector Ecol. Ecol. 26, 21–31 (2001).
    CAS  Google Scholar 

    48.
    Kaufmann, C. & Briegel, H. Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. J. Vector Ecol. 29, 140–153 (2004).
    PubMed  Google Scholar 

    49.
    Reynolds, D. R. et al. Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations. Bull. Entomol. Res. 95, 259–274 (2005).
    CAS  PubMed  Article  Google Scholar 

    50.
    Wood, C. R. et al. Flight periodicity and the vertical distribution of high-altitude moth migration over southern Britain. Bull. Entomol. Res. 99, 525–535 (2009).
    CAS  PubMed  Article  Google Scholar 

    51.
    Reynolds, D. R. & Riley, J. R. A migration of grasshoppers, particularly Diabolocatantops axillaris (Thunberg) (Orthoptera: Acrididae), in the West African Sahel. Bull. Entomol. Res. 78, 251–271 (1988).
    Article  Google Scholar 

    52.
    Madougou, S., Saïd, F., Campistron, B., Lothon, M. & Kebe, C. Results of UHF radar observation of the nocturnal low-level jet for wind energy applications. Acta Geophysica 60, (2012).

    53.
    Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P. & Tegen, I. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos. 118, 6100–6121 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Åkesson, S., Bianco, G. & Hedenström, A. Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts. Philos. Trans. R. Soc. B-Biological Sci. Ser. B, Biol. Sci. 371, 20150393 (2016).

    55.
    Åkesson, S., Klaassen, R., Holmgren, J., Fox, J. W. & Hedenström, A. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. PLoS ONE 7, e41195 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Jackson, H. A review of foraging and feeding behaviour, and associated anatomical adaptations, Afrotropical nightjars. Ostrich 74, 187–204 (2003).
    Article  Google Scholar 

    57.
    Fenton, M. B. & Griffin, D. R. High-altitude pursuit of insects by echolocating bats. J. Mammal. 78, 247–250 (1997).
    Article  Google Scholar 

    58.
    Pedgley, D. E., Reynolds, D. R. & Tatchell, G. M. Long-range insect migration in relation to climate and weather: Africa and Europe. in Insect Migration: Tracking Resources Through Space and Time (eds. Drake, V. A. & Gatehouse, A. G.) 3–30 (Cambridge University Press, Cambridge, 1995).

    59.
    Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    60.
    Persistence in the Sahel. Huestis, D. L. & Lehmann, T. Ecophysiology of Anopheles gambiae s.l. Infect. Genet. Evol. 28, 648–661 (2014).
    Article  Google Scholar 

    61.
    Yaro, A. S. et al. Dry season reproductive depression of Anopheles gambiae in the Sahel. J. Insect Physiol. 58, 1050–1059 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Krajacich, B. J. et al. Induction of long-lived potential aestivation states in laboratory An. gambiae mosquitoes. bioRxiv (2020). https://doi.org/10.1101/2020.04.14.031799

    63.
    della Torre, A. et al. Speciation within Anopheles gambiae–the glass is half full. Science (80-. ). 298, 115–117 (2002).

    64.
    della Torre, A., Tu, Z. & Petrarca, V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem. Mol. Biol. 35, 755–769 (2005).

    65.
    Neafsey, D. E. et al. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science (80-. ). 347, 1258522 (2015).

    66.
    Chapman, J. W. et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science (80-. ). 327, 682–685 (2010).

    67.
    Lehmann, T. et al. Aestivation of the African Malaria Mosquito, Anopheles gambiae in the Sahel. Am. J. Trop. Med. Hyg. 83, 601–606 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Huestis, D. L. et al. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel. J Exp Biol 215, 2013–2021 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Lehmann, T. et al. Tracing the origin of the early wet-season Anopheles coluzzii in the Sahel. Evol. Appl. 10, 704–717 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
    ADS  PubMed  Article  Google Scholar 

    71.
    Taylor, L. R. Insect migration, flight periodicity and the Boundary Layer. J. Anim. Ecol. 43, 225–238 (1974).
    Article  Google Scholar 

    72.
    Chapman, J. W., Drake, V. A. & Reynolds, D. R. Recent insights from radar studies of insect flight. Annu. Rev. Entomol. 56, 337–356 (2011).
    CAS  PubMed  Article  Google Scholar 

    73.
    SAS Inc., I. SAS for Windows Version 9.4. (2012).

    74.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
    Google Scholar  More

  • in

    Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia

    Systematic paleontology
    Frondicuniculum ichnogen. nov.
    Etymology. Classical Latin: frons -dis, a leaf, leafy twig or foliage; and cuniculum-i, meaning a mine, underground passage, hole or pit.
    Type ichnospecies. Frondicuniculum lineacurvum ichnosp. nov.
    Diagnosis. Elongate-ellipsoidal blotch mines occurring on broadleaved, parallel veined conifer leaves. Long axes of the mines are parallel to leaf venation. Frass, when present, is densely packed, composed of spheroidal pellets surrounded by amorphous matter, often positioned along one margin of the mine. Leaf veins within mines are distorted.
    Frondicuniculum lineacurvum ichnosp. nov.
    Etymology. Classical Latin: linea-e, a string, linen thread, or drawn line; and curvus–a –um, bent, bowed, arched, or curved.
    Holotype. MPEF-Pb 6336 (Fig. 1d–f and Supplementary Fig. 3a–e), Laguna del Hunco quarry LH610, early Eocene, Chubut Province, Argentina.
    Paratypes. MPEF-Pb 3160 (Laguna del Hunco quarry LH6, Supplementary Fig. 3f), USNM 545226 (Río Pichileufú historical collection48, Fig. 1g, h and Supplementary Fig. 4a, b).
    Diagnosis. As for the genus, with smooth, linear to gently curving mine margins.
    Description. An elongate-ellipsoidal blotch mine positioned along leaf margin, long axis parallel to leaf veins, mine margins well defined, linear to gently curving. Mine dimensions 7.2–50.0 mm long by 2.0–10.0 mm wide. Frass, when present, composed of spherical or hemispherical pellets measuring 0.04–0.12 mm in diameter and surrounded by dark, amorphous matter. Frass pellets mostly positioned near mine margin and may be replaced by surrounding amber with original frass material not preserved. Reaction rim 0.1–0.3 mm wide present at contact between mine margins and surrounding leaf tissue. Individual specimen descriptions of holotype and paratypes provided in Supplementary Note 1.
    Occurrence. Huitrera Formation, Laguna del Hunco (early Eocene, Chubut Province, Argentina) and Río Pichileufú (middle Eocene, Río Negro Province, Argentina), on host plant Agathis zamunerae Wilf.
    Repositories. Museo Paleontológico Egidio Feruglio, Trelew, Chubut, Argentina (MPEF-Pb), and Smithsonian Institution, National Museum of Natural History (USNM).
    Frondicuniculum flexuosum ichnosp. nov.
    Etymology. Classical Latin: flexuosus –a –um, full of winding turns, bent, or crooked.
    Holotype. MPEF-Pb 5970 (Fig. 1a–c and Supplementary Fig. 2a–c), Palacio de los Loros 2 (PL2)42, Salamanca Formation, early Paleocene, Chubut Province, Argentina.
    Paratypes. MPEF-Pb 5960 (Supplementary Fig. 2d, e), MPEF-Pb 6007 (Supplementary Fig. 2f, g), MPEF-Pb 6001 (Supplementary Fig. 2h–j), all from the PL2 locality.
    Diagnosis. As for the genus, with wavy mine margins.
    Description. An elongate-ellipsoidal blotch mine with gentle to strongly undulatory margins having a raised, wrinkly appearance. Mine positioned along leaf margin, long axis of the mine parallel to leaf veins. Mine dimensions 11.4–35.2 mm long by 1.2–9.4 mm wide. Frass, when present, composed of spheroidal pellets measuring ca. 0.1 mm in diameter and surrounded by smaller fragments of amorphous frass. Frass distributed throughout mine or positioned laterally near one margin of the mine. Mine margins 0.2–8.0 mm wide. Individual specimen descriptions of holotype and paratypes provided in Supplementary Note 1.
    Occurrence. Palacio de los Loros 2 locality; Salamanca Formation, early Paleocene; Chubut Province, Argentina, on host plant Agathis immortalis Escapa, Iglesias, Wilf, Catalano, Caraballo et Cúneo.
    Repository. Museo Paleontológico Egidio Feruglio, Trelew, Chubut, Argentina (MPEF-Pb).
    Remarks
    For clarity, we note that the new zoological typifications and identifications assigned here refer only to the insect-damaged areas (i.e., trace fossils) of the cited fossil material, which often has separate botanical typification and identification under the same repository numbers as defined by Wilf et al.22 for Agathis zamunerae and Escapa et al.7 for Agathis immortalis. Morphologically similar, elongate-ellipsoidal blotch mines are associated with Agathis at PL2 (early Paleocene, 4 specimens), LH (early Eocene, 2 specimens), and RP (early/middle Eocene, 1 specimen), as well as Cretaceous cf. Agathis (see next paragraph), with minor differences in their margin structure. Frondicuniculum flexuosum mines have undulatory, wrinkled margins (Fig. 1a, c, and Supplementary Fig. 2a–j), whereas F. lineacurvum mines (Fig. 1d–h and Supplementary Figs. 3a–f, 4a, b) have smooth, gently curving margins. However, the overall shape, position on leaves, frass characters, and persistence through ca. 18 myr on the same host genus from the same region suggest that the mines were made by similar, probably closely related leaf-mining insects.
    A blotch mine positioned along the central axis of a cf. Agathis leaf from the Maastrichtian Lefipán Formation is characterized by an elongate-ellipsoidal shape with its long axis parallel to the leaf veins and smooth, gently curved margins (Fig. 1i and Supplementary Fig. 1a–c). The mine lacks frass, which may be a preservational effect, and otherwise could be the same as Frondicuniculum lineacurvum. Because of the preservation and because there is only one specimen, or possibly two (Supplementary Fig. 1d), we did not assign a formal name to this specimen. However, the overall similarity of Cretaceous and Paleocene blotch mines on Agathis (elongate-elliposidal shape, smooth margins, distorted leaf veins) is noteworthy as the first likely evidence of a Cretaceous-Paleogene (K-Pg) boundary crossing leaf-mine association on closely related plants. Until now, no evidence has been found of surviving K-Pg leaf-mine associations within regional Maastrichtian and Danian floras anywhere in the world46,49,50.
    Another probable blotch-mine type from LH and RP (Eocene) has a linear trajectory and is oriented parallel to the leaf veins, exhibiting breached epidermal tissue (DT251; Fig. 2a, b and see Supplementary Note 1 for detailed descriptions). The putative mines have a similar appearance to slot feeding characterized by elongate holes, although their smooth, gently curving margins suggest a leaf-mining origin. Some of these mine-like structures are flanked by flaps of epidermal tissue, attributable to breaching of the tissue due to environmental factors such as in vivo abrasion (Fig. 2a). The margins along the field of damage are smooth and sometimes influenced by leaf veins. We found similar damage as possible mines on modern Australian Agathis robusta (Fig. 2c and Supplementary Fig. 5m, Supplementary Note 1), featuring an elongate-ellipsoidal shape oriented parallel to the leaf veins. Like the fossils, the epidermal tissue of the extant mines is often breached (Fig. 2c and Supplementary Fig. 5m), leaving flaps of unconsumed tissue surrounded by a thin, darkened rim of reaction tissue.
    Fig. 2: External foliage feeding, blotch and serpentine mining, galling, and possible armored scale insect remains (Diaspididae) on fossil and extant Agathis.

    a Putative blotch mine, or slot feeding, characterized by parallel sides and flaps of necrotic tissue on A. zamunerae (early Eocene, LH13, MPEF-Pb 6361). b Elongate blotch mine with breached epidermal tissue and thickened reaction rim on A. zamunerae (early middle Eocene, RP, USNM 545227). c Blotch mine, or possible slot feeding, flanked by flap of epidermal tissue on A. robusta (Queensland, Australia, (A.K. Irvine 00417 (A)). d Linear serpentine mines following leaf venation on cf. Agathis (latest Cretaceous, DT139; MPEF-Pb 9836). e Detail of frass trail in d. f Semicircular excision into the leaf margin on A. immortalis (Danian, PL2, MPEF-Pb 6091). g Shallow excision into the leaf margin with vein stringers on A. zamunerae (early Eocene, LH13, MPEF-Pb 6361). h Two adjacent excisions into the leaf margin on A. zamunerae (early/middle Eocene, RP, BAR 5002). i Two adjacent excisions into the leaf margin of A. moorei (New Caledonia, E 00106192). j Ellipsoidal gall with thickened walls surrounding unthickened epidermal tissue on A. immortalis (Danian, PL2, MPEF-Pb 9767). k Ellipsoidal gall with circular exit hole on A. ovata (New Caledonia, E 00399687). l Possible armored scale cover (Diaspididae) with concentric growth rings on A. immortalis (Danian, PL2, MPEF-Pb 5996). m Possible diaspidid scale cover on A. zamunerae, under epifluorescence (early Eocene, LH27, MPEF-Pb 6383). n Possible diaspidid scale covers on A. zamunerae, under epifluorescence (early/middle Eocene, RP, USNM 545228). o Possible diaspidid scale cover with concentric growth rings indicating two larval and an adult growth stage on A. zamunerae, under epifluorescence (middle Eocene, RP, USNM 545228). p Diaspidid scale insects that induced pit galls on A. macrophylla (Fiji, GH 01153259). q Rust fungus (Pucciniales) with aecia on a circular spot on A. zamunerae (early Eocene, LH06, MPEF-Pb 6303). r Kauri rust (Aecidium fragiforme) on A. macrophylla (Vanuatu, S.F. Kajewski 282 (K)).

    Full size image

    Only two extant leaf-mining insects have been documented in association with Agathis (Supplementary Data 1), both on A. australis of New Zealand, although their mines are not similar to the fossils. Larvae of the leaf blotch-miner moth Parectopa leucocyma (Lepidoptera: Gracillariidae) initially form small blotch mines that transition to linear epidermal mines and then galls39. Microlamia pygmaea, a longhorn beetle (Coleoptera: Cerambycidae), mines dead leaves on fallen branches51. In our survey of extant Agathis, we found numerous examples of blotch mines similar to our fossils on six host species that span much of the modern range of the genus (Fig. 1j–m, Supplementary Fig. 5a–f, Supplementary Note 1). The extant blotch mines, previously undocumented to our knowledge, are typically elongate-ellipsoidal and exhibit many similarities to the fossils, suggesting geologically long-term behaviors with origins in the late Mesozoic and early Cenozoic. Most mine trajectories occur along the leaf margins (Fig. 1j–m), although some course along the central axes of leaves (Supplementary Fig. 5c). The long axes of the extant blotch mines are parallel to leaf venation (Fig. 1j–m) as in the fossils. Margins of the mines are smooth to wavy.
    In order to assess potential convergence of leaf mine morphologies associated with related conifers that have similar leaf architecture to Agathis, we also compared extant mines on Araucaria (Araucariaceae) and members of the Podocarpaceae family, including Nageia, Afrocarpus, Sundacarpus, and Podocarpus. Araucarivora gentilii Hodges (Elachistidae) caterpillars mine leaves of Araucaria araucana in Argentina and Chile52. Mines begin with a short serpentine phase and then expand into a raised, circular to polylobate blotch mine. A circular exit hole is typically positioned near the margin of the blotch mine. The fossil Agathis blotch mines (Fig. 1a–i and Supplementary Figs. 1–4) differ in that they are elongate and lack a serpentine phase. We did not find any other blotch mine morphologies on Araucaria herbarium specimens throughout the range of the genus (parts of South America and Australasia). Three leaf-mining taxa have been described on Podocarpus. Phyllocnistis podocarpa (Lepidoptera: Gracillariidae) larvae mine Podocarpus macrophyllus leaves in Japan, creating serpentine mines with overlapping paths that often form into a blotch, although their zigzag frass trail is distinct from the fossil Agathis blotch mines53. In New Zealand, Podocarpus totara hosts two leaf miners, including Chrysorthenches polita (Lepidoptera: Glyphipterigidae), whose mines have not been described54, and Peristoreus flavitarsis (Coleoptera: Curculionidae)55. The mines of Peristoreus flavitarsis are a possible extant analog to the fossil Agathis mines, in addition to similar mines we found on extant Agathis (Fig. 1j–m and Supplementary Fig. 5). The mines are full depth and typically span the width of the leaf. Frass pellets are often deposited along portions of the mine margin at the edge of the leaf. Individual larvae make mines on multiple leaves. Before pupating in the soil or litter, the larva chews a circular hole through the epidermis on the abaxial side of the leaf55. We found other putative blotch mines on herbarium sheets of Podocarpus with similar morphologies to those on extant and fossil Agathis, including on Podocarpus ingensis from Bolivia, Podocarpus oleifolius from Colombia, and Podocarpus urbanii from Jamaica. We did not find any comparable mines on herbarium specimens of Afrocarpus, Nageia, or Sundacarpus.
    Leaf mines have been recognized on other broadleaved, parallel-veined gymnosperms from the Mesozoic, although Frondicuniculum is distinguished from all the Mesozoic examples by its blotch morphology and lack of a serpentine phase. Similar to our Cretaceous specimens (Fig. 2d, e, and Supplementary Fig. 1e, f), unnamed mines on the voltzialean conifer Heidiphyllum elongatum, from the Late Triassic (Carnian) of the Karoo Basin in South Africa56,57, exhibit an elongate, parallel-sided, rectilinear path with spheroidal pellets often deposited in an approximate meniscate pattern. Triassohyponomus dinmorensis mines, also on H. elongatum but from the Blackstone Formation (Middle Triassic) in Australia58, are serpentine and have an extensive, tightly sinusoidal to meniscate pattern. Fossafolia offae on Liaoningocladus boii from the Early Cretaceous Yixian Formation of northeast China begins as a serpentine mine with an intestiniform frass trail and transitions to a blotch phase59. The blotch mines on Patagonian fossil and living Old World Agathis therefore appear to represent part of a suite of leaf mining insects of uncertain interrelationships that has colonized parallel-veined, broadleaved seed plants since the Mesozoic, but which nevertheless are distinct from the Mesozoic examples in producing the blotch-mine morphology with no serpentine phase.
    Additional damage diversity
    In addition to leaf mines, fossil and extant Agathis are associated with a variety of other insect feeding types (Table 1), which we sketch here while details are being prepared separately. External foliage feeding includes small circular holes (DT1, DT2; Table 1), semicircular excisions into leaf margins (DT12; Fig. 2f–h), and swaths of surface feeding (DT29). A similar spectrum of damage is found on extant Agathis throughout its range (Fig. 2i). However, many types of external foliage-feeding damage can be made by a variety of insects with mandibulate mouthparts across several taxonomic orders60, and their presence at multiple fossil and modern sites does not necessarily indicate that the same suite of closely-related insect groups produced the damage.
    Table 1 Insect damage types on fossil and extant Agathis.
    Full size table

    Four gall DTs are associated with fossil Agathis in Patagonia, including nondiagnostic, dark circular galls (DT32; Lef and LH), circular galls with a nonhardened center surrounded by a thickened outer rim (DT11; PL2), and columnar galls (DT116; PL2). Moreover, at PL2, A. immortalis is associated with ellipsoidal galls bearing a thickened outer wall surrounding epidermal tissue with files of cells. The center of each gall is marked by a circular dot representing the central chamber or exit hole (Fig. 2j). The fossils resemble undescribed ellipsoidal galls on A. ovata from New Caledonia, which are characterized by a raised rim of thickened tissue surrounding a flat, epidermal surface with a circular exit hole (Fig. 2k). The only previously documented galling insect on extant Agathis is Conifericoccus agathidis (Hemiptera: Margarodidae), the kauri coccid, whose second-instar nymphs induce blister galls that have caused extensive defoliation of Agathis robusta in Australia61. Nevertheless, we found abundant and diverse gall morphologies on extant Agathis (Fig. 2k and Table 1).
    Possible covers of female armored scale insects (Diaspididae) occur on Agathis at PL2 (Fig. 2l), LH (Fig. 2m), and RP (Fig. 2n, o). At PL2, the covers are found on leaves and a cone scale7. The dorsal covers are characterized by concentric growth rings made during the construction of the cover through two instars and an adult phase (Fig. 2l–o). Ventral covers surround the dorsal covers (Fig. 2m) and, in some cases, appear to be deeply set in the leaf tissue and leave a columnar or circular pit when detached. We caution that other interpretations of these structures remain possible because some of their features are not present on extant diaspidid covers (off-center indent or hole on dorsal covers) or are atypical (ventral cover structure surrounding dorsal cover; only adult female covers are present). The possible scale covers, including the-off center indent, are very similar to structures assigned to Diaspididae from the Late Cretaceous of New Zealand and Australia62, and comparable scale covers are associated with angiosperm leaves from the Eocene of Germany63 and Miocene of New Zealand64. On extant Agathis, diaspidid scales previously have been documented on three species in New Zealand and Australia (Supplementary Data 1). We found diaspidids on Agathis herbarium specimens from New Caledonia and Fiji, including an unidentified diaspidid species that induced pit galls on A. macrophylla from Fiji (Fig. 2p).
    A probable rust fungus (Pucciniales), characterized by rings of circular to oval aecia on a circular gall, is associated with Agathis zamunerae at LH (Fig. 2q). Two species of rust fungi in the genus Aecidium parasitize extant Agathis: Aecidium fragiforme from Oceania and Malesia and Aecidium balansae in New Caledonia (Fig. 2r)40,65. Aecidium on extant Agathis produces galls covered in yellow aecia (Fig. 2p). The very similar morphologies of the fossil and extant rust on Agathis suggest long-term, persistent associations reaching back to at least the early Eocene. More