Genome skimming and exploration of DNA barcodes for Taiwan endemic cypresses
1.
Wang, W., Hwang, C., Lin, T. & Hwang, S. Y. Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Syst. Evol. 241, 13–28. https://doi.org/10.1007/s00606-003-0031-0 (2003).
CAS Article Google Scholar
2.
Liao, P. C., Lin, T. P. & Hwang, S. Y. Reexamination of the pattern of geographical disjunction of Chamaecyparis (Cupressaceae) in North America and East Asia. Bot. Stud. 51, 511–520 (2010).
CAS Google Scholar
3.
Li, C. F. et al. Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecol. Res. 30, 771–791. https://doi.org/10.1007/s11284-015-1284-0 (2015).
Article Google Scholar
4.
IUCN Red List of Threatened Species. https://www.iucnredlist.org/ (2013).
5.
Horng, F. W., Ma, F. C., Yu, H. M., Hsui, Y. R. & Chang, H. M. An estimation of original Chamaecyparis forest area in Taiwan and its implication for conservation. Q. J. Chin. For. 17, 143–153 (2000).
Google Scholar
6.
Koch, G., Richter, H. G. & Schmitt, U. Design and application of CITESwoodID computer-aided identification and description of CITES-protected timbers. IAWA J. 32, 213–220. https://doi.org/10.1163/22941932-90000052 (2011).
Article Google Scholar
7.
Sarmiento, C. et al. Pl@ntwood: a computer-assisted identification tool for 110 species of Amazon trees based on wood anatomical features. IAWA J. 32, 221–232. https://doi.org/10.1163/22941932-90000053 (2011).
MathSciNet Article Google Scholar
8.
Gasson, P. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially cites. IAWA J. 32, 137–154. https://doi.org/10.1163/22941932-90000049 (2011).
Article Google Scholar
9.
Jiao, L., Yin, Y., Cheng, Y. & Jiang, X. DNA barcoding for identification of the endangered species Aquilaria sinensis: comparison of data from heated or aged wood samples. Holzforschung 68, 487–494. https://doi.org/10.1515/hf-2013-0129 (2014).
CAS Article Google Scholar
10.
Jiao, L. et al. DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Sci. Rep. 8, 1945. https://doi.org/10.1038/s41598-018-20381-6 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
11.
Nithaniyal, S. et al. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India. PLoS ONE 9, e107669. https://doi.org/10.1371/journal.pone.0107669 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
12.
Liu, J. et al. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Mol. Ecol. Resour. 18, 1115–1131. https://doi.org/10.1111/1755-0998.12903 (2018).
CAS Article Google Scholar
13.
Kress, W. J. Plant DNA barcodes: applications today and in the future. J. Syst. Evol. 55, 291–307. https://doi.org/10.1111/jse.12254 (2017).
Article Google Scholar
14.
CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U S A 106, 12794–12797. https://doi.org/10.1111/1755-0998.12194 (2009).
CAS Article PubMed Central Google Scholar
15.
Hollingsworth, P. M., Graham, S. W. & Little, D. P. Choosing and using a plant DNA barcode. PLoS ONE 6, e19254. https://doi.org/10.1371/journal.pone.0019254 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
16.
Li, D. Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108(19641–19646), 2011. https://doi.org/10.1073/pnas.1104551108 (2011).
Article Google Scholar
17.
Purty, R. S. & Chatterjee, S. DNA Barcoding: an effective technique in molecular taxonomy. Austin J. Biotechnol. Bioeng. 3, 1059 (2016).
Google Scholar
18.
Kane, N. et al. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 99, 320–329. https://doi.org/10.3732/ajb.1100570 (2012).
CAS Article PubMed Google Scholar
19.
Bock, D. G., Kane, N. C., Ebert, D. P. & Rieseberg, L. H. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201, 1021–1030. https://doi.org/10.1111/nph.12560 (2014).
CAS Article PubMed Google Scholar
20.
Ji, Y. et al. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 19, 1333–1345. https://doi.org/10.1111/1755-0998.13050 (2019).
CAS Article PubMed Google Scholar
21.
Li, X. et al. Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157–166. https://doi.org/10.1111/brv.12104 (2015).
Article PubMed Google Scholar
22.
Niu, Z. et al. Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots. Sci. Rep. 7, 2073. https://doi.org/10.1038/s41598-017-02252-8 (2017).
CAS Article Google Scholar
23.
Zhu, S. et al. Accurate authentication of Dendrobium officinale and its closely related species by comparative analysis of complete plastomes. Acta. Pharm. Sin. B. 8, 969–980. https://doi.org/10.1016/j.apsb.2018.05.009 (2018).
Article PubMed PubMed Central Google Scholar
24.
Fu, C. N. et al. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci. Rep. 9, 2773. https://doi.org/10.1038/s41598-019-39161-x (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
25.
Dodsworth, S. Genome skimming for next-generation biodiversity analysis. Trends Plant Sci. 20, 525–527. https://doi.org/10.1016/j.tplants.2015.06.012 (2015).
CAS Article PubMed Google Scholar
26.
Guo, W. et al. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biol. Evol. 6, 580–590. https://doi.org/10.1093/gbe/evu046 (2014).
CAS Article PubMed PubMed Central Google Scholar
27.
Wu, C. S. & Chaw, S. M. Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (cupressophytes). Genome Biol. Evol. 8, 3740–3750. https://doi.org/10.1093/gbe/evw278 (2016).
CAS Article PubMed PubMed Central Google Scholar
28.
Qu, X. J., Wu, C. S., Chaw, S. M. & Yi, T. S. Insights into the existence of isomeric plastomes in Cupressoideae (Cupressaceae). Genome Biol. Evol. 9, 1110–1119. https://doi.org/10.1093/gbe/evx071 (2017).
CAS Article PubMed PubMed Central Google Scholar
29.
Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 102, 8369–8374. https://doi.org/10.1073/pnas.0503123102 (2005).
ADS CAS Article PubMed Google Scholar
30.
Pang, X. et al. Utility of the trnH-psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. PLoS ONE 7, e48833. https://doi.org/10.1371/journal.pone.0048833 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
31.
Loera-Sánchez, M., Studer, B. & Kölliker, R. DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Res. Notes 13, 35. https://doi.org/10.1186/s13104-020-4897-5 (2020).
CAS Article PubMed PubMed Central Google Scholar
32.
Zonneveld, B. J. M. Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nord. J. Bot. 30, 490–502. https://doi.org/10.1111/j.1756-1051.2012.01516.x (2012).
Article Google Scholar
33.
Preuten, T. et al. Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J. 64, 948–959. https://doi.org/10.1111/j.1365-313X.2010.04389.x (2010).
CAS Article PubMed Google Scholar
34.
Shen, J., Zhang, Y., Havey, M. J. & Shou, W. Copy numbers of mitochondrial genes change during melon leaf development and are lower than the numbers of mitochondria. Hortic. Res. 6, 95. https://doi.org/10.1038/s41438-019-0177-8 (2019).
CAS Article PubMed PubMed Central Google Scholar
35.
Sloan, D. B. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol. 200, 978–985. https://doi.org/10.1111/nph.12395 (2013).
CAS Article PubMed Google Scholar
36.
Gualberto, J. M. & Newton, K. J. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu. Rev. Plant Biol. 68, 225–252. https://doi.org/10.1146/annurev-arplant-043015-112232 (2017).
CAS Article PubMed Google Scholar
37.
Kozik, A. et al. The alternative reality of plant mitochondrial DNA: one ring does not rule them all. PLoS Genet. 15, e1008373. https://doi.org/10.1371/journal.pgen.1008373 (2019).
CAS Article PubMed PubMed Central Google Scholar
38.
Ruhsam, M. et al. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria?. Mol. Ecol. Resour. 15, 1067–1078. https://doi.org/10.1111/1755-0998.12375 (2015).
CAS Article PubMed Google Scholar
39.
Chen, Q., Wu, X. & Zhang, D. Comparison of the abilities of universal, super, and specific DNA barcodes to discriminate among the original species of Fritillariae cirrhosae bulbus and its adulterants. PLoS ONE 15, e0229181. https://doi.org/10.1371/journal.pone.0229181 (2020).
CAS Article PubMed PubMed Central Google Scholar
40.
Weng, M. L., Blazier, J. C., Govindu, M. & Jansen, R. K. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol. 31, 645–659. https://doi.org/10.1093/molbev/mst257 (2014).
CAS Article PubMed Google Scholar
41.
Vieira Ldo, N. et al. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection. PLoS ONE 9, e90618. https://doi.org/10.1371/journal.pone.0090618 (2014).
ADS Article PubMed Google Scholar
42.
Hamsher, S. E. et al. Extensive chloroplast genome rearrangement amongst three closely relatedHalamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants. PLoS ONE 14, e0217824. https://doi.org/10.1371/journal.pone.0217824 (2019).
CAS Article PubMed PubMed Central Google Scholar
43.
Garcia, S., Kovařík, A., Leitch, A. R. & Garnatje, T. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89, 1020–1030. https://doi.org/10.1111/tpj.13442 (2017).
CAS Article PubMed Google Scholar
44.
Liere, K. & Börner, T. Development-dependent changes in the amount and structural organization of plastid DNA. In Plastid Development in Leaves during Growth and Senescence (ed. Biswal, B., K. Krupinska, K. & Biswal, U. C.) 215–237 (Amsterdam Springer, 2013).
45.
Li, J., Su, Y. & Wang, T. The repeat sequences and elevated substitution rates of the chloroplast accD gene in cupressophytes. Front. Plant Sci. 9, 533. https://doi.org/10.3389/fpls.2018.00533 (2018).
Article PubMed PubMed Central Google Scholar
46.
Sudianto, E. & Chaw, S. M. Two independent plastid accD transfers to the nuclear genome of Gnetum and other insights on acetyl-coA carboxylase evolution in gymnosperms. Genome Biol. Evol. 11, 1691–1705. https://doi.org/10.1093/gbe/evz059 (2019).
CAS Article PubMed PubMed Central Google Scholar
47.
Deguilloux, M. F., Pemonge, M. H. & Petit, R. J. Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc. Biol. Sci. 269, 1039–1046. https://doi.org/10.1098/rspb.2002.1982 (2002).
CAS Article PubMed PubMed Central Google Scholar
48.
Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bul. 19, 11–15 (1987).
Google Scholar
49.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
CAS Article PubMed PubMed Central Google Scholar
50.
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).
MathSciNet CAS Article PubMed PubMed Central Google Scholar
51.
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).
CAS Article Google Scholar
52.
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18. https://doi.org/10.1186/2047-217X-1-18 (2012).
Article PubMed PubMed Central Google Scholar
53.
Ronen, R., Boucher, C., Chitsaz, H. & Pevzner, P. SEQuel: improving the accuracy of genome assemblies. Bioinformatics 28, i188-196. https://doi.org/10.1093/bioinformatics/bts219 (2012).
CAS Article PubMed PubMed Central Google Scholar
54.
Tillich, M. et al. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11. https://doi.org/10.1093/nar/gkx391 (2017).
CAS Article PubMed PubMed Central Google Scholar
55.
Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108. https://doi.org/10.1093/nar/gkm160 (2007).
ADS CAS Article PubMed PubMed Central Google Scholar
56.
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645. https://doi.org/10.1101/gr.092759.109 (2009).
CAS Article PubMed PubMed Central Google Scholar
57.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
CAS Article PubMed PubMed Central Google Scholar
58.
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).
CAS Article PubMed PubMed Central Google Scholar
59.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
CAS Article PubMed PubMed Central Google Scholar
60.
Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147. https://doi.org/10.1371/journal.pone.0011147 (2010).
ADS CAS Article PubMed PubMed Central Google Scholar
61.
Rozas, J. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).
CAS Article Google Scholar
62.
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(1792–1797), 2004. https://doi.org/10.1093/nar/gkh340 (2004).
CAS Article Google Scholar More
