1.
Carpenter, S. R. & Scheffer, M. Critical transitions and regime shifts in ecosystems: consolidating recent advances. New Models for Ecosystem Dynamics and Restoration 22–32 (2009).
2.
Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).
ADS CAS Google Scholar
3.
Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 116, 23209–23215 (2019).
ADS CAS Google Scholar
4.
Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1010–1035 (2011).
ADS Google Scholar
5.
Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).
ADS CAS Google Scholar
6.
Marchant, R. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).
ADS Google Scholar
7.
Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quatern. Sci. Rev. 28, 3016–3034 (2009).
ADS Google Scholar
8.
Czerniak, L. & Pyzel, J. Neolithic farmers and the introduction of pottery in the south Baltic. Bericht Römisch-Germanischen Kommission 89, 347–360 (2011).
Google Scholar
9.
Willis, K. J., Gillson, L. & Brncic, T. M. How, “virgin” is virgin rainforest?. Science 304, 402–403 (2004).
CAS Google Scholar
10.
Seddon, A. W. R. What do we mean by regime shift? Distinguishing between extrinsic and intrinsic forcing in paleoecological data. Past Glob. Changes Mag. 25, 94–95 (2017).
Google Scholar
11.
Loughlin, N. J. D., Gosling, W. D., Mothes, P. & Montoya, E. Ecological consequences of post-Columbian indigenous depopulation in the Andean-Amazonian corridor. Nat. Ecol. Evol. 2, 1233–1236 (2018).
Google Scholar
12.
Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).
ADS CAS PubMed PubMed Central Google Scholar
13.
Lamentowicz, M. et al. Always on the tipping point—a search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quatern. Sci. Rev. 225, 105954 (2019).
Google Scholar
14.
Ralska-Jasiewiczowa, M. et al. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps (W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 2004).
Google Scholar
15.
Clifford, M. J. & Booth, R. K. Late-holocene drought and fire drove a widespread change in forest community composition in eastern North America. Holocene 25, 1102–1110 (2015).
ADS Google Scholar
16.
Davies, L. J. et al. High-resolution age modelling of peat bogs from northern Alberta, Canada, using pre- and post-bomb 14 C, 210 Pb and historical cryptotephra. Quat. Geochronol. 47, 138–162 (2018).
Google Scholar
17.
Kołaczek, P., Karpińska-Kołaczek, M., Marcisz, K., Gałka, M. & Lamentowicz, M. Palaeohydrology and the human impact on one of the largest raised bogs complex in the Western Carpathians (Central Europe) during the last two millennia. Holocene 28, 595–608 (2018).
ADS Google Scholar
18.
Marcisz, K. et al. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quatern. Sci. Rev. 112, 138–152 (2015).
ADS Google Scholar
19.
Hildebrandt-Radke, I. & Makohonienko, M. Krajobraz kulturowy Wielkopolski w pradziejach i czasach historycznych: wprowadzenie. Landform Anal. 16, 17–19 (2011).
Google Scholar
20.
Makohonienko, M. Przyrodnicza historia Gniezna (Homini, Bydgoszcz-Poznań, 2000).
Google Scholar
21.
Brown, A. & Pluskowski, A. Detecting the environmental impact of the Baltic Crusades on a late-medieval (13th–15th century) frontier landscape: palynological analysis from Malbork Castle and hinterland, Northern Poland. J. Archaeol. Sci. 38, 1957–1966 (2011).
Google Scholar
22.
Stivrins, N. et al. Palaeoenvironmental evidence for the impact of the crusades on the local and regional environment of medieval (13th-16th century) northern Latvia, eastern Baltic. The Holocene 1–10 (2015).
23.
Wacnik, A. et al. Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: combined pollen, geochemical and historical data. Veg. Hist. Archaeobot. 25, 479–498 (2016).
Google Scholar
24.
Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. Landscape hydrology The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).
25.
Colombaroli, D. & Gavin, D. G. Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon. Proc. Natl. Acad. Sci. 107, 18909–18914 (2010).
ADS CAS Google Scholar
26.
Bonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R. Peatland Restoration and Ecosystem Services: Science, Policy and Practice (Cambridge University Press, Cambridge, 2016).
Google Scholar
27.
Ireland, A. W. & Booth, R. K. Upland deforestation triggered an ecosystem state-shift in a kettle peatland. J. Ecol. 100, 586–596 (2012).
Google Scholar
28.
Joosten, H., Tanneberger, F. & Moen, A. Mires and peatlands in Europe “Stuttgart, Germany”, 2017).
29.
Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).
ADS CAS Google Scholar
30.
Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C. & Lamentowicz, M. Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene. Quatern. Sci. Rev. 231, 106180 (2020).
Google Scholar
31.
Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).
Google Scholar
32.
Poppick, L. Resilient Peatlands Keep Carbon Bogged Down. Eos 100, (2019).
33.
Gorham, E. & Rochefort, L. Peatland restoration: A brief assessment with special reference to Sphagnum bogs. Wetl. Ecol. Manag. 11, 109–119 (2003).
CAS Google Scholar
34.
Calder, W. J. & Shuman, B. Detecting past changes in vegetation resilience in the context of a changing climate. Biol. Lett. 15, 20180768 (2019).
PubMed PubMed Central Google Scholar
35.
de Jong, R. et al. in Changing Climates, Earth Systems and Society. Series: International Year of Planet Earth (ed Dodson, J.) 85–121 (Springer, Heidelberg, 2010).
36.
Marcinkian, A. Ziemia lubuska w dobie cywilizacji łużyckiej, cz. 2 Zielona Góra, 2010).
37.
Urbańska, A. & Kurnatowski, S. in Studia nad początkami i rozplanowaniem miast na środkową Odrą i dolna Warta (województwo zielonogórskie) t. 1: Ziemia Lubuska, Nowa Marchia, Wielkopolska (ed Zdzisław Kaczmarczyk, A. W.) 35–111 Zielona Góra, 1967).
38.
Weiss, A. Organizacja diecezji lubuskiej w średniowieczu Lublin, 1970).
39.
Labuda, G. Zajęcie Ziemi Lubuskiej przez margrabiów brandenburskicj w połowie XIII wieku. Śląski Kwartalnik Historyczny „Sobótka” 28, 311–322 (1973).
40.
Przybył, M. in Cognitioni Gestorum. Studia z dziejów średniowiecza dedykowane Profesorowi Jerzemu Strzelczykowi (eds Sikorski, D. A. & Wyrwa, A. M.) 395–404 Poznań-Warszawa, 2006).
41.
Zajchowska, S. in tudia nad początkami i rozplanowaniem miast na środkową Odrą i dolna Warta (województwo zielonogórskie) t. 1: Ziemia Lubuska, Nowa Marchia, Wielkopolska (eds Kaczmarczyk, Z. & Wędzki, A.) 113–126 Zielona Góra, 1967).
42.
Wasilkiewicz, K. Templariusze i Joannici w biskupstwie lubuskim (XIII-XVI w.) Gniezno, 2016).
43.
Carsten, F. L. Essays in German History (A&C Black, 1985).
44.
Piskorski, J. M. Kolonizacja wiejska Pomorza Zachodniego w XIII i w początkach XIV wieku na tle procesów osadniczych w średniowiecznej Europie (Poznańskie Tow, Przyjaciół Nauk, 1990).
Google Scholar
45.
Chmarzyński, G. Zamek w Łagowie. Pamiętnik Związku Historyków Sztuki i Kultury 1, 55–87 (1948).
Google Scholar
46.
Lamentowicz, M. & Mitchell, E. A. D. The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microb. Ecol. 50, 48–63 (2005).
Google Scholar
47.
van Geel, B. in Tracking environmental change using lake sediments. Volume 3: Terrestrial, Algal and Siliceous Indicators (eds Smol, J. P., Birks, H. J. B. & Last, W. M.) 99–119 (Kluwer Academic Publishers, Dortrecht, 2001).
48.
Davies, A. L. Dung fungi as an indicator of large herbivore dynamics in peatlands. Rev. Palaeobot. Palynol. 271, 104108 (2019).
Google Scholar
49.
Cywa, K. Trees and shrubs used in medieval Poland for making everyday objects. Veg. Hist. Archaeobot. 27, 111–136 (2018).
Google Scholar
50.
Kurnatowska, Z. & Łosińska, A. in Człowiek a środowisko w środkowym i dolnym Nadodrzu 161–173 Wrocław, 1996).
51.
Warner, B. G., Kubiw, H. J. & Hanf, K. I. An anthropogenic cause for quaking mire formation in southwestern Ontario. Nature 340, 380–384 (1989).
ADS Google Scholar
52.
Ellis, E. C. et al. Used planet: A global history. Proc. Natl. Acad. Sci. USA 110, 7978–7985 (2013).
ADS CAS Google Scholar
53.
Haldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc Natl Acad Sci USA 115, 3210 (2018).
ADS CAS Google Scholar
54.
Czerwiński, S. et al. Znaczenie wspólnych badań historycznych i paleoekologicznych nad wpływem człowieka na środowisko. Przykład ze stanowiska Kazanie we wschodniej Wielkopolsce. Studia Geohistorica 56 (2020).
55.
Brown, A. et al. The ecological impact of conquest and colonization on a medieval frontier landscape: combined palynological and geochemical analysis of lake sediments from Radzyń Chełminski, northern Poland. Geoarchaeology 30, 511–527 (2015).
Google Scholar
56.
Jaroszewicz, B. et al. Białowieża forest—a relic of the high naturalness of European Forests. Forests 10, 849 (2019).
57.
Sabatini, F. M. et al. Where are Europe’s last primary forests. Divers. Distrib. 24, 1426–1439 (2018).
Google Scholar
58.
Ludat, H. Das Lebuser Stiftsregister von 1405. Studien zu den Sozial- und Wirtschaftsverhältnissen im mittleren Oderraum zu Beginn des 15 Wiesbaden, 1965).
59.
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
ADS CAS Google Scholar
60.
Hájek, T. in Photosynthesis in Bryophytes and Early Land Plants, Advances in Photosynthesis and Respiration (eds Hanson, D. T. & Rice, S. K.) 233–252 (Springer Science+Business Media, Dordrecht, 2014).
61.
Lamentowicz, M., Tobolski, K. & Mitchell, E. A. D. Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. The Holocene 17, 1185–1196 (2007).
ADS Google Scholar
62.
Słowiński, M. et al. Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manag. 236, 755–768 (2019).
Google Scholar
63.
Gorham, E., Janssens, J. A., Wheeler, G. A. & Glaser, P. H. The natural and anthropogenic acidification of peatlands. Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems. Proc. Toronto, 1985 493–512 (1987).
64.
Pawlyta, J. & Lamentowicz, M. in Methods of absolute chronology 10th International conference, Gliwice, Poland, 22–25th April 2010 (2010).
65.
Lamentowicz, M. & Obremska, M. A rapid response of testate amoebae and vegetation to inundation of a kettle hole mire. J. Paleolimnol. 43, 499–511 (2010).
ADS Google Scholar
66.
Zaccone, C. et al. Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy. Sci. Rep. 7, 43040 (2017).
ADS CAS PubMed PubMed Central Google Scholar
67.
Korcz, W. Historyczne losy ziem pogranicza lubusko-wielkopolskiego na tle dziejów ziemi lubuskiej. Rocznik Lubuski 40–85 (1966).
68.
Ellis, E. C. Ecology in an anthropogenic biosphere. Ecol. Monogr. 85, 287–331 (2015).
Google Scholar
69.
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).
CAS Google Scholar
70.
Bronk Ramsey, C. Deposition models for chronological records. Quatern. Sci. Rev. 27, 42–60 (2008).
ADS Google Scholar
71.
Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).
CAS Google Scholar
72.
Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years Cal BP. Radiocarbon 55, 1869–1887 (2013).
CAS Google Scholar
73.
Berglund, B. E. & Ralska-Jasiewiczowa, M. in Handbook of Holocene Paleoecology and Paleohydrology (ed Berglund, B. E.) 455–484 (Wiley & Sons Ltd., Chichester-Toronto, 1986).
74.
Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen Analysis (Blackwell Scientific Publication, 1991).
75.
Beug, H.-J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (Verlag Dr. Friedrich Pfeil, München, 2004).
Google Scholar
76.
van Geel, B. & Aptroot, A. Fossil ascomycetes in quaternary deposits. Nova Hedwigia 82, 313–329 (2006).
Google Scholar
77.
Behre, K.-E. The interpretation of anthopogenic indicators in pollen diagrams. Pollen Spores 23, 225–245 (1981).
Google Scholar
78.
Poska, A., Saarse, L. & Veski, S. Reflections of pre- and early-agrarian human impact in the pollen diagrams of Estonia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 209, 37–50 (2004).
Google Scholar
79.
Gaillard, M.-J. Pollen methods and studies/archaeological applications. Encyclop. Quatern. Sci. 3, 880–904 (2013).
Google Scholar
80.
Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. The Holocene 13, 499–505 (2003).
ADS Google Scholar
81.
Finsinger, W. & Tinner, W. Minimum count sums for charcoalconcentration estimates in pollen slides: accuracy and potential errors. The Holocene 15, 293–297 (2005).
ADS Google Scholar
82.
Davis, M. B. & Deevey, E. S. J. Pollen accumulation rates: estimates from late-glacial sediment of Roger Lake. Science 145, 1293–1295 (1964).
ADS CAS Google Scholar
83.
Feurdean, A. et al. Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. For. Ecol. Manage. 389, 15–26 (2017).
Google Scholar
84.
Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quatern. Sci. Rev. 28, 555–576 (2009).
ADS Google Scholar
85.
Mauquoy, D. & van Geel, B. in Encyclopedia of Quaternary Science (Elsevier, Amsterdam, 2007).
86.
Booth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires Peat 7, 1–7 (2010).
Google Scholar
87.
Payne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42, 483–495 (2008).
Google Scholar
88.
Clarke, K. J. Guide to Identification of Soil Protozoa – Testate Amoebae (Freshwater Biological Association, Ambleside, 2003).
Google Scholar
89.
Grospietsch, T. Wechseltierchen (Rhizopoden) (Kosmos Verlag, Stuttgart, 1958).
Google Scholar
90.
Mazei, Y. & Tsyganov, A. N. Freshwater Testate Amoebae (KMK, Moscow, 2006).
Google Scholar
91.
Ogden, C. G. & Hedley, R. H. An Atlas of Freshwater Testate Amoebae (Oxford University Press, London, 1980).
Google Scholar
92.
Meisterfeld, R. in The Illustrated Guide to the Protozoa (eds Lee, J. J., Leedale, G. F. & Bradbury, P.) 827–860 (Allen Press, Lawrence, 2001).
93.
Meisterfeld, R. in The Illustrated Guide to the Protozoa (eds Lee, J. J., Leedale, G. F. & Bradbury, P.) 1054–1084 (Allen Press, Lawrence, 2001).
94.
Siemensma, F. J. Microworld, world of amoeboid organisms. World-wide electronic publication (www.arcella.nl) (Kortenhoef, The Netherlands, 2019).
95.
Juggins, S. C2 User guide. Software for ecological and palaeoecological data analysis and visualisation (University of Newcastle, Newcastle upon Tyne, UK, 2003).
96.
Grimm, E. C. TILIA/TILIA graph. Version 1.2. (1992).
97.
MacAskill, M. R. DataGraph 3.0. J. Stat. Softw. 47, 1–9 (2012).
Google Scholar
98.
Lara, E., Roussel-Delif, L., Fournier, B., Wilkinson, D. M. & Mitchell, E. A. D. Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr. 43, 520–532 (2016).
Google Scholar
99.
Singer, D., Kosakyan, A., Pillonel, A., Mitchell, E. A. D. & Lara, E. Eight species in the Nebela collaris complex: Nebela gimlii (Arcellinida, Hyalospheniidae), a new species described from a Swiss raised bog. Eur. J. Protistol. 51, 79–85 (2015).
Google Scholar
100.
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Google Scholar
101.
Team R Development Core. R: A language and environment for statistical computing. (2015). More