More stories

  • in

    Reply to: Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation

    Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
    Roberto Danovaro, Emanuela Fanelli, Laura Carugati & Antonio Dell’Anno

    Stazione Zoologica Anton Dohrn, Naples, Italy
    Roberto Danovaro, Emanuela Fanelli & Jacopo Aguzzi

    Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
    Jacopo Aguzzi

    National Oceanography Centre, Southampton, UK
    David Billett & Henry A. Ruhl

    Department of Sciences and Engineering of Materials, Environment and Urban Planning (SIMAU), Polytechnic University of Marche, Ancona, Italy
    Cinzia Corinaldesi

    IUCN Global Marine and Polar Programme, Cambridge, MA, USA
    Kristina Gjerde

    School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
    Alan J. Jamieson

    The Biodiversity Research Group, The School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
    Salit Kark

    Louisiana Universities Marine Consortium, Chauvin, LA, USA
    Craig McClain

    Center for Marine Biodiversity and Conservation and Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
    Lisa A. Levin

    Department of Geography, The Hebrew University of Jerusalem, Jerusalem, Israel
    Noam Levin

    Remote Sensing Research Centre, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
    Noam Levin

    Norwegian Institute for Water Research, Oslo, Norway
    Eva Ramirez-Llodra

    Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
    Henry A. Ruhl

    Department of Oceanography, University of Hawaii at Mano’a, Honolulu, HI, USA
    Craig R. Smith

    Departments of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
    Paul V. R. Snelgrove

    Jacobs University, Bremen, Germany
    Laurenz Thomsen

    Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Durham, NC, USA
    Cindy L. Van Dover

    School of Biological Sciences and Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China
    Moriaki Yasuhara

    State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
    Moriaki Yasuhara

    R.D., E.F., J.A., D.B., L.C., C.C., A.D., K.G., A.J.J., S.K., C.M., L.A.L., N.L., E.R.-L., H.A.R., C.R.S., P.V.R.S., L.T., C.L.V.D. and M.Y. equally contributed to the work, critically revised the final version and gave approval for publication. More

  • in

    Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation

    1.
    Danovaro, R. et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 4, 181–192 (2020).
    Article  Google Scholar 
    2.
    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
    CAS  Article  Google Scholar 

    3.
    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).
    CAS  Article  Google Scholar 

    4.
    Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).
    Article  Google Scholar 

    5.
    Corinaldesi, C. New perspectives in benthic deep-sea microbial ecology. Front. Mar. Sci. 2, https://doi.org/10.3389/fmars.2015.00017 (2015).

    6.
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).
    CAS  Google Scholar 

    7.
    López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).
    Article  Google Scholar 

    8.
    Schoenle, A., Nitsche, F., Werner, J. & Arndt, H. Deep-sea ciliates: recorded diversity and experimental studies on pressure tolerance. Deep Sea Res. Pt I 128, 55–66 (2017).
    CAS  Article  Google Scholar 

    9.
    Turley, C. Bacteria in the cold deep-sea benthic boundary layer and sediment—water interface of the NE Atlantic. FEMS Microbiol. Ecol. 33, 89–99 (2000).
    CAS  Google Scholar 

    10.
    Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).
    CAS  Article  Google Scholar 

    11.
    Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments 2nd edn (Springer, 2009).

    12.
    Fenchel, T. Ecology of Protozoa: The Biology of Free-Living Phagotropic Protists (Springer, 2013).

    13.
    Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).
    Article  Google Scholar 

    14.
    Nascimento, F. J. A., Naslund, J. & Elmgren, R. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol. Oceanogr. 57, 338–346 (2012).
    CAS  Article  Google Scholar 

    15.
    Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I. & Brüchert, V. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5, 5133 (2014).
    CAS  Article  Google Scholar 

    16.
    Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).
    Article  Google Scholar 

    17.
    Balsamo, M., Semprucci, F., Frontalini, F. & Coccioni, R. in Marine Ecosystems (ed. Cruzado, A.) 77–104 (InTech, 2012).

    18.
    Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).
    Article  Google Scholar 

    19.
    Zeppilli, D. et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45, 505–535 (2015).
    Article  Google Scholar 

    20.
    Carugati, L., Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Metagenetic tools for the census of marine meiofaunal biodiversity: an overview. Mar. Genom. 24, 11–20 (2015).
    Article  Google Scholar 

    21.
    Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, https://doi.org/10.3389/fmars.2016.00213 (2016).

    22.
    Dell’Anno, A., Carugati, L., Corinaldesi, C., Riccioni, G. & Danovaro, R. Unveiling the biodiversity of deep-sea nematodes through metabarcoding: are we ready to bypass the classical taxonomy? PLoS ONE 10, e0144928 (2015).
    Article  Google Scholar 

    23.
    Kitahashi, T., Watanabe, H. K., Tsuchiya, M., Yamamoto, H. & Yamamoto, H. A new method for acquiring images of meiobenthic images using the FlowCAM. MethodsX 5, 1330–1335 (2018).
    Article  Google Scholar 

    24.
    Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T. & Wilding, T. A. Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. Mol. Ecol. Resour. 14, 1129–1140 (2014).
    CAS  Article  Google Scholar 

    25.
    Bik, H. M. et al. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 27, 233–243 (2012).
    Article  Google Scholar 

    26.
    Fenchel, T. The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna commuities with special reference to the ciliated protozoa. Ophelia 6, 1–182 (1969).
    Article  Google Scholar 

    27.
    Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
    Article  Google Scholar 

    28.
    Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean—challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).
    Article  Google Scholar 

    29.
    Schoenle, A. et al. Methodological studies on estimates of abundance and diversity of heterotrophic flagellates from the deep-sea floor. J. Mar. Sci. Eng. 4, 22 (2016).
    Article  Google Scholar 

    30.
    Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).
    CAS  Article  Google Scholar  More

  • in

    The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure

    1.
    Loehle, C. Tree life history strategies: the role of defenses. Can. J. For. Res. 18, 209–222 (1988).
    Article  Google Scholar 
    2.
    Kitajima, K. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98, 419–428 (1994).
    PubMed  Article  Google Scholar 

    3.
    Kobe, R. K., Pacala, S. W., Silander, J. A. & Canham, C. D. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5, 517–532 (1995).
    Article  Google Scholar 

    4.
    Rees, M., Condit, R., Crawley, M., Pacala, S. & Tilman, D. Long-term studies of vegetation dynamics. Science 293, 650–655 (2001).
    CAS  PubMed  Article  Google Scholar 

    5.
    Russo, S. E., Brown, P., Tan, S. & Davies, S. J. Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. J. Ecol. 96, 192–203 (2008).
    Article  Google Scholar 

    6.
    Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
    PubMed  Article  Google Scholar 

    7.
    Hubbell, S. P. & Foster, R. B. Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management. Oikos 63, 48–61 (1992).
    Article  Google Scholar 

    8.
    Stephenson, N. L. et al. Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol. Monogr. 81, 527–555 (2011).
    Article  Google Scholar 

    9.
    Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
    PubMed  Article  Google Scholar 

    10.
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

    11.
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Article  Google Scholar 

    12.
    Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008).
    CAS  PubMed  Article  Google Scholar 

    13.
    Paine, C. E. T. et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. J. Ecol. 103, 978–989 (2015).
    Article  Google Scholar 

    14.
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
    Article  Google Scholar 

    15.
    Wyckoff, P. H. & Clark, J. S. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90, 604–615 (2002).
    Article  Google Scholar 

    16.
    Kobe, R. K. Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol. Monogr. 66, 181–201 (1996).
    Article  Google Scholar 

    17.
    Kobe, R. K. Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecology 80, 187–207 (1999).
    Article  Google Scholar 

    18.
    Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).
    Article  Google Scholar 

    19.
    Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary biology. Am. Nat. 111, 1169–1194 (1977).
    Article  Google Scholar 

    20.
    Westoby, M., Warton, D. & Reich, P. B. The time value of leaf area. Am. Nat. 155, 649–656 (2000).
    PubMed  Article  Google Scholar 

    21.
    Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126 (2003).
    Article  Google Scholar 

    22.
    Russo, S. E., Davies, S. J., King, D. A. & Tan, S. Soil-related performance variation and distributions of tree species in a Bornean rain forest. J. Ecol. 93, 879–889 (2005).
    CAS  Article  Google Scholar 

    23.
    Obeso, J. R. The costs of reproduction in plants. N. Phytol. 155, 321–348 (2002).
    Article  Google Scholar 

    24.
    Roxburgh, S. H., Shea, K. & Wilson, J. B. The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology 85, 359–371 (2004).
    Article  Google Scholar 

    25.
    Lambers, H. & Poorter, H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 34, 187–261 (1992).
    Article  Google Scholar 

    26.
    Metcalf, C. J. E. Invisible trade-offs: Van Noordwijk and de Jong and life-history evolution. Am. Nat. 187, iii–v (2016).
    PubMed  Article  Google Scholar 

    27.
    Van Noordwijk, A. J. & Jong, G. D. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).
    Article  Google Scholar 

    28.
    Condit, R. et al. Importance of demographic niches to tree diversity. Science 313, 98–101 (2006).
    CAS  PubMed  Article  Google Scholar 

    29.
    Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).
    CAS  PubMed  Article  Google Scholar 

    30.
    Bormann, F. H. & Likens, G. E. Pattern and Process in a Forested Ecosystem (Springer, 1979).

    31.
    Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).
    PubMed  Article  CAS  Google Scholar 

    32.
    Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084 (2018).
    PubMed  Article  Google Scholar 

    33.
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    PubMed  Article  Google Scholar 

    34.
    McMahon, S. M., Metcalf, C. J. E. & Woodall, C. W. High-dimensional coexistence of temperate tree species: functional traits, demographic rates, life-history stages, and their physical context. PLoS ONE 6, e16253 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
    Article  Google Scholar 

    36.
    Marks, C. O. & Lechowicz, M. J. Alternative designs and the evolution of functional diversity. Am. Nat. 167, 55–66 (2006).
    PubMed  Article  Google Scholar 

    37.
    Visser, M. D. et al. Functional traits as predictors of vital rates across the life cycle of tropical trees. Funct. Ecol. 30, 168–180 (2016).
    Article  Google Scholar 

    38.
    Detto, M. & Xu, X. Optimal leaf life strategies determine Vc,max dynamic during ontogeny. New Phytol. https://doi.org/10.1111/nph.16712 (2020).

    39.
    Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).
    PubMed  Article  Google Scholar 

    40.
    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
    Article  Google Scholar 

    41.
    R Core Team R: A Language and Environment for Statistical Computing version 3.6.1 (R Foundation for Statistical Computing, 2017).

    42.
    Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).
    PubMed  Article  Google Scholar 

    43.
    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3— an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
    Article  Google Scholar 

    44.
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis 2nd edn (Chapman and Hall/CRC, 2004).

    45.
    Kenfack, D., Chuyong, G., Condit, R., Russo, S. & Thomas, D. Demographic variation and habitat specialization of tree species in a diverse tropical forest of Cameroon. For. Ecosyst. 1, 22 (2014).
    Article  Google Scholar 

    46.
    Condit, R. et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J. Trop. Ecol. 20, 51–72 (2004).
    Article  Google Scholar 

    47.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.3.3.0 (2020).

    48.
    Robinson, D. broom: An R Package for Converting Statistical Analysis Objects Into Tidy Data Frames. R package version 2 (2014); https://arxiv.org/abs/1412.3565

    49.
    Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).
    Article  Google Scholar 

    50.
    Long, J. S. Regression Models for Categorical and Limited Dependent Variables (Sage, 1997).

    51.
    Paul-Victor, C., Züst, T., Rees, M., Kliebenstein, D. J. & Turnbull, L. A. A new method for measuring relative growth rate can uncover the costs of defensive compounds in Arabidopsis thaliana. New Phytol. 187, 1102–1111 (2010).
    PubMed  Article  CAS  Google Scholar 

    52.
    Coomes, D. A. & Allen, R. B. Effects of size, competition and altitude on tree growth. Ecol. Lett. 95, 1084–1097 (2007).
    Google Scholar 

    53.
    Björklund, M. Are ‘comparative methods’ always necessary? Oikos 80, 607–612 (1997).
    Article  Google Scholar 

    54.
    Losos, J. B. Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Anim. Behav. 58, 1319–1324 (1999).
    CAS  PubMed  Article  Google Scholar 

    55.
    Losos, J. B. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am. Nat. 177, 709–727 (2011).
    PubMed  Article  Google Scholar 

    56.
    Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).

    57.
    Rose, K. E., Atkinson, R. L., Turnbull, L. A. & Rees, M. The costs and benefits of fast living. Ecol. Lett. 12, 1379–1384 (2009).
    PubMed  Article  Google Scholar 

    58.
    Makana, J.-R. et al. Demography and biomass change in monodominant and mixed old-growth forest of the Congo. J. Trop. Ecol. 27, 447–461 (2011).
    Article  Google Scholar  More

  • in

    Body size shapes thermal stress

    1.
    Sinclair, B. J. et al. Ecol. Lett. 19, 1372–1385 (2016).
    Article  Google Scholar 
    2.
    Deutsch, C. A. et al. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).
    CAS  Article  Google Scholar 

    3.
    Peralta-Maraver, I. & Rezende, E. L. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00938-y (2020).

    4.
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).
    Article  Google Scholar 

    5.
    Sheridan, J. A. & Bickford, D. Nat. Clim. Change 1, 401–406 (2011).
    Article  Google Scholar 

    6.
    Kingsolver, J. G. Am. Nat. 174, 755–768 (2009).
    Article  Google Scholar 

    7.
    Leiva, F. P., Calosi, P. & Verberk, W. C. Philos. T. R. Soc. B 374, 20190035 (2019).
    Article  Google Scholar 

    8.
    Rezende, E. L., Castañeda, L. E. & Santos, M. Funct. Ecol. 28, 799–809 (2014).
    Article  Google Scholar 

    9.
    Klockmann, M., Günter, F. & Fischer, K. Glob. Change Biol. 23, 686–696 (2017).
    Article  Google Scholar 

    10.
    Tseng, M. et al. J. Anim. Ecol. 87, 647–659 (2018).
    Article  Google Scholar 

    11.
    Dillon, M. E., Wang, G. & Huey, R. B. Nature 467, 704–706 (2010).
    CAS  Article  Google Scholar 

    12.
    Buckley, L. B., Cannistra, A. F. & John, A. Integr. Comp. Biol. 58, 38–51 (2018).
    Article  Google Scholar 

    13.
    Index of /pub/data/uscrn/products/subhourly01/2019/ (National Centers for Environmental Information, 2020); ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/2019/ More

  • in

    Heat tolerance in ectotherms scales predictably with body size

    1.
    Smith, J. J., Hasiotis, S. T., Kraus, M. J. & Woody, D. T. Transient dwarfism of soil fauna during the Paleocene–Eocene thermal maximum. Proc. Natl Acad. Sci. USA 106, 17655–17660 (2009).
    CAS  Article  Google Scholar 
    2.
    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
    Article  Google Scholar 

    3.
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).
    CAS  Article  Google Scholar 

    4.
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).
    Article  Google Scholar 

    5.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    CAS  Article  Google Scholar 

    6.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    7.
    Martinez del Rio, C. & Karasov, W. H. Body size and temperature: why they matter. Nat. Educ. Knowl. 3, 10 (2010).
    Google Scholar 

    8.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    Article  Google Scholar 

    9.
    Klockmann, M., Günter, F. & Fischer, K. Heat resistance throughout ontogeny: body size constrains thermal tolerance. Glob. Change Biol. 23, 686–696 (2017).
    Article  Google Scholar 

    10.
    Leiva, F. P., Calosi, P. & Verberk, W. C. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water-and air-breathers. Philos. T. R. Soc. B. 374, 20190035 (2019).
    Article  Google Scholar 

    11.
    Sinclair, B. J., Vernon, P., Klok, C. J. & Chown, S. L. Insects at low temperatures: an ecological perspective. Trends Ecol. Evol. 18, 257–262 (2003).
    Article  Google Scholar 

    12.
    Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).
    Article  Google Scholar 

    13.
    Santos, M., Castañeda, L. E. & Rezende, E. L. Making sense of heat tolerance estimates in ectotherms: lessons from Drosophila. Funct. Ecol. 25, 1169–1180 (2011).
    Article  Google Scholar 

    14.
    Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).
    Article  Google Scholar 

    15.
    Strang, T. J. K. A review of published temperatures for the control of pest insects in museums. Coll. Forum 8, 41–67 (1992).
    Google Scholar 

    16.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. Natl Acad. Sci. USA 278, 1823–1830 (2010).
    Google Scholar 

    17.
    Hoffmann, A. A., Chown, S. L. & Clusella–Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).
    Article  Google Scholar 

    18.
    May, R. M. How many species are there on earth? Science 241, 1441–1449 (1988).
    CAS  Article  Google Scholar 

    19.
    Sunday, J. M. et al. Thermal–safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).
    CAS  Article  Google Scholar 

    20.
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
    CAS  Article  Google Scholar 

    21.
    Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods Ecol. Evol. 11, 38–43 (2020).
    Article  Google Scholar 

    22.
    Rezende, E. L., Bozinovic, F., Szilágyi, A. & Santos, M. Predicting temperature mortality and selection in natural Drosophila populations. Science 369, 1242–1245 (2020).
    CAS  Article  Google Scholar 

    23.
    Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).
    Article  Google Scholar 

    24.
    Schmid, P. E., Tokeshi, M. & Schmid-Araya, J. M. Relation between population density and body size in stream communities. Science 289, 1557–1560 (2000).
    CAS  Article  Google Scholar 

    25.
    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).
    Article  Google Scholar 

    26.
    Fan, Y. & van den Dool, H. A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. Atmos. 113, 1–18 (2008).
    Article  Google Scholar 

    27.
    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
    Article  Google Scholar 

    28.
    Crisp, D. J. Methods for the Study of Marine Benthos 2nd edn (eds Holme, N. A. & McIntyre, A. D) 284–366 (Blackwell, 1984).

    29.
    Reiss, J. & Schmid‐Araya, J. M. Existing in plenty: abundance, biomass and diversity of ciliates and meiofauna in small streams. Freshw. Bol. 53, 652–668 (2008).
    Article  Google Scholar 

    30.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer, 2002).

    31.
    Turkheimer, F. E., Hinz, R. & Cunningham, V. J. On the undecidability among kinetic models: from model selection to model averaging. J. Cereb. Blood Flow. Metab. 23, 490–498 (2003).
    Article  Google Scholar  More

  • in

    How to identify win–win interventions that benefit human health and conservation

    1.
    A Guide to SDG Interactions: from Science to Implementation (International Council for Science, 2017); https://go.nature.com/3o5nOD3
    2.
    IPBES Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

    3.
    Schneider, F. et al. How can science support the 2030 Agenda for Sustainable Development? Four tasks to tackle the normative dimension of sustainability. Sustain. Sci. 14, 1593–1604 (2019).
    Article  Google Scholar 

    4.
    Barbier, E. B. & Burgess, J. C. Sustainable development goal indicators: analyzing trade-offs and complementarities. World Dev. 122, 295–305 (2019).
    Article  Google Scholar 

    5.
    Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of Sustainable Development Goal (SDG) interactions. Earth’s Future 5, 1169–1179 (2017).
    Article  Google Scholar 

    6.
    Howe, C., Suich, H., Vira, B. & Mace, G. M. Creating win-wins from trade-offs? Ecosystem services for human well-being: a meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Change 28, 263–275 (2014).
    Article  Google Scholar 

    7.
    Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).
    Article  Google Scholar 

    8.
    Naidoo, R. & Fisher, B. Reset Sustainable Development Goals for a pandemic world. Nature 583, 198–201 (2020).
    CAS  Article  Google Scholar 

    9.
    Nilsson, M. et al. Mapping interactions between the sustainable development goals: lessons learned and ways forward. Sustain. Sci. 13, 1489–1503 (2018).
    Article  Google Scholar 

    10.
    Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. (eds) Nature-based Solutions to Address Global Societal Challenges (IUCN, 2016).

    11.
    Allen, C., Metternicht, G. & Wiedmann, T. Prioritising SDG targets: assessing baselines, gaps and interlinkages. Sustain. Sci. 14, 421–438 (2019).
    Article  Google Scholar 

    12.
    Mayrhofer, J. P. & Gupta, J. The science and politics of co-benefits in climate policy. Environ. Sci. Policy 57, 22–30 (2016).
    Article  Google Scholar 

    13.
    Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets (United Nations, Department of Economic and Social Affairs, 2015).

    14.
    Sokolow, S. H. et al. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Phil. Trans. R. Soc. B 372, 20160127 (2017).
    Article  Google Scholar 

    15.
    Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 6, 411–425 (2006).
    Article  Google Scholar 

    16.
    Sokolow, S. H. et al. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl. Trop. Dis. 10, e0004794 (2016).
    Article  Google Scholar 

    17.
    Martin, D. A. et al. Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conserv. Lett. 13, e12740 (2020).
    Article  Google Scholar 

    18.
    Medlock, J. M. et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 12, 435–447 (2012).
    Article  Google Scholar 

    19.
    van Riper, C., van Riper, S. G., Goff, M. L. & Laird, M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 56, 327–344 (1986).
    Article  Google Scholar 

    20.
    Franklin, B. Protection of Towns from Fire. The Pennsylvania Gazette (4 February 1735).

    21.
    Bauch, S. C., Birkenbach, A. M., Pattanayak, S. K. & Sills, E. O. Public health impacts of ecosystem change in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 112, 7414–7419 (2015).
    CAS  Article  Google Scholar 

    22.
    Herrera, D. et al. Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat. Commun. 8, 811 (2017).
    Article  Google Scholar 

    23.
    McShane, T. O. et al. Hard choices: making trade-offs between biodiversity conservation and human well-being. Biol. Conserv. 144, 966–972 (2011).
    Article  Google Scholar 

    24.
    Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000363.pub2 (2004).

    25.
    Price, J., Richardson, M. & Lengeler, C. Insecticide-treated nets for preventing malaria. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000363.pub3 (2018).

    26.
    Short, R., Gurung, R., Rowcliffe, M., Hill, N. & Milner-Gulland, E. J. The use of mosquito nets in fisheries: a global perspective. PLoS ONE 13, e0191519 (2018).
    Article  Google Scholar 

    27.
    Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).
    Article  Google Scholar 

    28.
    Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).
    Article  Google Scholar 

    29.
    Gangoso, L. et al. Reinventing mutualism between humans and wild fauna: insights from vultures as ecosystem services providers. Conserv. Lett. 6, 172–179 (2013).
    Article  Google Scholar 

    30.
    Hampson, K. et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 9, e0003709 (2015).
    Article  Google Scholar 

    31.
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).
    CAS  Article  Google Scholar 

    32.
    Breuer, E., Lee, L., De Silva, M. & Lund, C. Using theory of change to design and evaluate public health interventions: a systematic review. Implement. Sci. 11, 63 (2016).
    Article  Google Scholar 

    33.
    Constructing Theories of Change for Ecosystem-Based Adaptation Projects: A Guidance Document (Conservation International, 2013).

    34.
    de Wit, L. A. et al. Estimating burdens of neglected tropical zoonotic diseases on islands with introduced mammals. Am. J. Trop. Med. Hyg. 96, 749–757 (2017).
    Google Scholar 

    35.
    Morand, S. et al. Global parasite and Rattus rodent invasions: the consequences for rodent-borne diseases. Integr. Zool. 10, 409–423 (2015).
    Article  Google Scholar 

    36.
    Duron, Q., Shiels, A. B. & Vidal, E. Control of invasive rats on islands and priorities for future action. Conserv. Biol. 31, 761–771 (2017).
    Article  Google Scholar 

    37.
    Vanderwerf, E. A. Importance of nest predation by alien rodents and avian poxvirus in conservation of Oahu elepaio. J. Wildl. Manag. 73, 737–746 (2009).
    Article  Google Scholar 

    38.
    Pender, R. J., Shiels, A. B., Bialic-Murphy, L. & Mosher, S. M. Large-scale rodent control reduces pre- and post-dispersal seed predation of the endangered Hawaiian lobeliad, Cyanea superba subsp. superba (Campanulaceae). Biol. Invasions 15, 213–223 (2013).
    Article  Google Scholar 

    39.
    Hoare, J. M. & Hare, K. M. The impact of brodifacoum on non-target wildlife: gaps in knowledge. N. Z. J. Ecol. 30, 157–167 (2006).
    Google Scholar 

    40.
    DataBank (The World Bank, 2020); https://databank.worldbank.org/home.aspx

    41.
    Progress on Drinking Water and Sanitation: 2012 Update (World Health Organization and UNICEF, 2012); https://go.nature.com/2HOJFOR More