Low Omega-3 intake is associated with high rates of depression and preterm birth on the country level
1.
Jarde, A. et al. Neonatal outcomes in women with untreated antenatal depression compared with women without depression: a systematic review and meta-analysis. JAMA Psychiatry 73, 826–837 (2016).
Article PubMed Google Scholar
2.
Venkatesh, K. K., Ferguson, K. K., Smith, N. A., Cantonwine, D. E. & McElrath, T. F. Association of antenatal depression with clinical subtypes of preterm birth. Am. J. Perinatol. 36, 567–573 (2019).
Article PubMed Google Scholar
3.
Grigoriadis, S. et al. The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. J. Clin. Psychiatry 74, e321–e341 (2013).
Article PubMed Google Scholar
4.
Fekadu Dadi, A., Miller, E. R. & Mwanri, L. Antenatal depression and its association with adverse birth outcomes in low and middle-income countries: a systematic review and meta-analysis. PLoS ONE 15, e0227323 (2020).
CAS Article PubMed PubMed Central Google Scholar
5.
Huang, H., Coleman, S., Bridge, J. A., Yonkers, K. & Katon, W. A meta-analysis of the relationship between antidepressant use in pregnancy and the risk of preterm birth and low birth weight. Gen. Hosp. Psychiatry 36, 13–18 (2014).
Article PubMed Google Scholar
6.
Huybrechts, K. F., Sanghani, R. S., Avorn, J. & Urato, A. C. Preterm birth and antidepressant medication use during pregnancy: a systematic review and meta-analysis. PLoS ONE 9, e92778 (2014).
ADS Article CAS PubMed PubMed Central Google Scholar
7.
Ross, L. E. et al. Selected pregnancy and delivery outcomes after exposure to antidepressant medication: a systematic review and meta-analysis. JAMA Psychiatry 70, 436–443 (2013).
Article PubMed Google Scholar
8.
Fitton, C. A. et al. In utero exposure to antidepressant medication and neonatal and child outcomes: a systematic review. Acta Psychiatr. Scand. 141, 21–33 (2019).
Article PubMed Google Scholar
9.
Adhikari, K., Patten, S. B., Lee, S. & Metcalfe, A. Risk of adverse perinatal outcomes among women with pharmacologically treated and untreated depression during pregnancy: a retrospective cohort study. Paediatr. Perinat. Epidemiol. 33, 323–331 (2019).
Article PubMed Google Scholar
10.
Corti, S. et al. Neonatal outcomes in maternal depression in relation to intrauterine drug exposure. Front. Pediatr. 7, 309 (2019).
ADS Article PubMed PubMed Central Google Scholar
11.
Gelaye, B., Rondon, M. B., Araya, R. & Williams, M. A. Epidemiology of maternal depression, risk factors, and child outcomes in low-income and middle-income countries. Lancet Psychiatry 3, 973–982 (2016).
Article PubMed PubMed Central Google Scholar
12.
Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).
Article PubMed Google Scholar
13.
Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).
Article PubMed PubMed Central Google Scholar
14.
Nemoda, Z. & Szyf, M. Epigenetic alterations and prenatal maternal depression. Birth Defects Res. 109, 888–897 (2017).
CAS Article PubMed Google Scholar
15.
Rakers, F. et al. Transfer of maternal psychosocial stress to the fetus. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2017.02.019 (2017).
Article PubMed Google Scholar
16.
Kinsella, M. T. & Monk, C. Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clin. Obstet. Gynecol. 52, 425–440 (2009).
Article PubMed PubMed Central Google Scholar
17.
Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy. 10, Mortality and acute complications in preterm infants. In Preterm Birth: Causes, Consequences, and Prevention (eds Behrman, R. E. & Butler, A. S.) (National Academies Press, Washington, 2007).
Google Scholar
18.
Moster, D., Lie, R. T. & Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 359, 262–273 (2008).
CAS Article PubMed Google Scholar
19.
Firth, J. et al. The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry 18, 308–324 (2019).
Article PubMed PubMed Central Google Scholar
20.
Hallahan, B. et al. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br. J. Psychiatry 209, 192–201 (2016).
Article PubMed Google Scholar
21.
van der Burg, K. P. et al. EPA and DHA as markers of nutraceutical treatment response in major depressive disorder. Eur. J. Nutr. 59, 2439–2447 (2020).
Article CAS PubMed Google Scholar
22.
Ciesielski, T. H., Bartlett, J. & Williams, S. M. Omega-3 polyunsaturated fatty acid intake norms and preterm birth rate: a cross-sectional analysis of 184 countries. BMJ Open 9, e027249 (2019).
Article PubMed PubMed Central Google Scholar
23.
Bozzatello, P., Rocca, P., Mantelli, E. & Bellino, S. Polyunsaturated fatty acids: what is their role in treatment of psychiatric disorders?. Int. J. Mol. Sci. 20, 5257 (2019).
CAS Article PubMed Central Google Scholar
24.
Appleton, K. M., Sallis, H. M., Perry, R., Ness, A. R. & Churchill, R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004692.pub4 (2015).
Article PubMed PubMed Central Google Scholar
25.
Middleton, P. et al. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003402.pub3 (2018).
Article PubMed PubMed Central Google Scholar
26.
Makrides, M. et al. A randomized trial of prenatal n-3 fatty acid supplementation and preterm delivery. N. Engl. J. Med. 381, 1035–1045 (2019).
CAS Article PubMed Google Scholar
27.
Olsen, S. F. et al. Examining the effect of fish oil supplementation in chinese pregnant women on gestation duration and risk of preterm delivery. J. Nutr. 149, 1942–1951 (2019).
Article PubMed Google Scholar
28.
Makrides, M. et al. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA 304, 1675–1683 (2010).
CAS Article PubMed Google Scholar
29.
Olsen, S. F. et al. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet 339, 1003–1007 (1992).
CAS Article PubMed Google Scholar
30.
Olsen, S. F. et al. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG 107, 382–395 (2000).
CAS Article PubMed PubMed Central Google Scholar
31.
Peet, M., Murphy, B., Shay, J. & Horrobin, D. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol. Psychiatry 43, 315–319 (1998).
CAS Article PubMed PubMed Central Google Scholar
32.
McNamara, R. K. et al. Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder. J. Affect. Disord. 126, 303–311 (2010).
CAS Article PubMed PubMed Central Google Scholar
33.
Riemer, S., Maes, M., Christophe, A. & Rief, W. Lowered omega-3 PUFAs are related to major depression, but not to somatization syndrome. J. Affect. Disord. 123, 173–180 (2010).
CAS Article PubMed PubMed Central Google Scholar
34.
Assies, J. et al. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS ONE 5, e10635 (2010).
ADS Article CAS PubMed PubMed Central Google Scholar
35.
Maes, M. et al. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res. 85, 275–291 (1999).
CAS Article PubMed PubMed Central Google Scholar
36.
Lin, P. Y., Chang, C. H., Chong, M. F., Chen, H. & Su, K. P. Polyunsaturated fatty acids in perinatal depression: a systematic review and meta-analysis. Biol. Psychiatry 82, 560–569 (2017).
CAS Article PubMed PubMed Central Google Scholar
37.
Olsen, S. F. et al. Plasma concentrations of long chain N-3 fatty acids in early and mid-pregnancy and risk of early preterm birth. EBioMedicine 35, 325–333 (2018).
CAS Article PubMed PubMed Central Google Scholar
38.
Olsen, S. F. et al. Corrigendum to ‘Plasma concentrations of long chain N-3 fatty acids in early and mid-pregnancy and risk of early preterm birth’. EBioMedicine 51, 102619 (2020).
CAS Article PubMed PubMed Central Google Scholar
39.
Grosso, G. et al. Dietary n-3 PUFA, fish consumption and depression: a systematic review and meta-analysis of observational studies. J. Affect. Disord. 205, 269–281 (2016).
CAS Article PubMed PubMed Central Google Scholar
40.
Golding, J., Steer, C., Emmett, P., Davis, J. M. & Hibbeln, J. R. High levels of depressive symptoms in pregnancy with low omega-3 fatty acid intake from fish. Epidemiology 20, 598–603 (2009).
Article PubMed Google Scholar
41.
Olsen, S. F. et al. Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation. Lancet 2, 367–369 (1986).
ADS CAS Article PubMed Google Scholar
42.
Ciesielski, T. H. n-3 and preterm birth: what can we learn from the heterogeneity?. Public Health Nutr. 23, 2453–2454 (2020).
Article PubMed Google Scholar
43.
Grosso, G. et al. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid. Med. Cell Longev. 2014, 313570 (2014).
Article CAS PubMed PubMed Central Google Scholar
44.
Larrieu, T. & Laye, S. Food for mood: relevance of nutritional omega-3 fatty acids for depression and anxiety. Front. Physiol. 9, 1047 (2018).
Article PubMed PubMed Central Google Scholar
45.
Burhani, M. D. & Rasenick, M. M. Fish oil and depression: the skinny on fats. J. Integr. Neurosci. 16, S115-s124 (2017).
Article PubMed PubMed Central Google Scholar
46.
Facchinetti, F., Fazzio, M. & Venturini, P. Polyunsaturated fatty acids and risk of preterm delivery. Eur. Rev. Med. Pharmacol. Sci. 9, 41–48 (2005).
CAS PubMed PubMed Central Google Scholar
47.
Chen, C. Y., Chen, C. Y., Liu, C. C. & Chen, C. P. Omega-3 polyunsaturated fatty acids reduce preterm labor by inhibiting trophoblast cathepsin S and inflammasome activation. Clin. Sci. 132, 2221–2239 (2018).
CAS Google Scholar
48.
Elliott, E., Hanson, C. K., Anderson-Berry, A. L. & Nordgren, T. M. The role of specialized pro-resolving mediators in maternal-fetal health. Prostaglandins Leukot Essent Fat. Acids 126, 98–104 (2017).
CAS Article Google Scholar
49.
Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).
Article PubMed PubMed Central Google Scholar
50.
Grosse, S. D., Waitzman, N. J., Yang, N., Abe, K. & Barfield, W. D. Employer-sponsored plan expenditures for infants born preterm. Pediatrics 140, e20171078 (2017).
Article PubMed PubMed Central Google Scholar
51.
McLaurin, K. K. et al. Characteristics and health care utilization of otherwise healthy commercially and Medicaid-insured preterm and full-term infants in the US. Pediatr. Health Med. Ther. 10, 21–31 (2019).
Article Google Scholar
52.
Ferrari, A. J. et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med 10, e1001547 (2013).
Article PubMed PubMed Central Google Scholar
53.
Konig, H., Konig, H. H. & Konnopka, A. The excess costs of depression: a systematic review and meta-analysis. Epidemiol. Psychiatr. Sci. 29, 1–16 (2020).
Article Google Scholar
54.
Institute of Medicine (US) Roundtable on Environmental Health Sciences. 1, Preterm birth and its consequences. In The Role of Environmental Hazards in Premature Birth: Workshop Summary (eds Donald, R. & Mattison, S. W.) (National Academies Press, Washington, 2003).
Google Scholar
55.
Frey, H. A. & Klebanoff, M. A. The epidemiology, etiology, and costs of preterm birth. Semin. Fetal Neonatal Med. 21, 68–73 (2016).
Article PubMed Google Scholar
56.
Micha, R. et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348, g2272 (2014).
Article PubMed PubMed Central Google Scholar
57.
Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 350, h1702. https://doi.org/10.1136/bmj.h1702 (2015).
58.
Ferrari, A. J. et al. The epidemiological modelling of major depressive disorder: application for the Global Burden of Disease Study 2010. PLoS ONE 8, e69637 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
59.
Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).
Article PubMed PubMed Central Google Scholar
60.
World-Health-Organization. The ICD-10 Classification of mental and behavioural disorders. Clinical descriptions and diagnostic guidelines (World Health Organization, Geneva, 1992).
Google Scholar
61.
Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).
Article PubMed PubMed Central Google Scholar
62.
Micha, R. et al. Estimating the global and regional burden of suboptimal nutrition on chronic disease: methods and inputs to the analysis. Eur. J. Clin. Nutr. 66, 119–129 (2012).
CAS Article PubMed Google Scholar
63.
Burdge, G. C. & Wootton, S. A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 88, 411–420 (2002).
CAS Article PubMed Google Scholar
64.
Burdge, G. C., Jones, A. E. & Wootton, S. A. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br. J. Nutr. 88, 355–363 (2002).
CAS Article PubMed Google Scholar
65.
Calder, P. C. Docosahexaenoic acid. Ann. Nutr. Metab. 69(Suppl 1), 7–21 (2016).
PubMed Google Scholar
66.
Innis, S. M. Omega-3 fatty acid biochemistry: perspectives from human nutrition. Mil. Med. 179, 82–87 (2014).
Article PubMed Google Scholar
67.
Schmitz, G. & Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 47, 147–155 (2008).
CAS Article PubMed Google Scholar
68.
Ameur, A. et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet. 90, 809–820 (2012).
CAS Article PubMed PubMed Central Google Scholar
69.
Zhang, J. Y., Kothapalli, K. S. & Brenna, J. T. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care 19, 103–110 (2016).
CAS Article PubMed PubMed Central Google Scholar
70.
Wood, S. N. Package ’mgcv’ (Accessed 1 November 2020); https://cran.r-project.org/web/packages/mgcv/mgcv.pdf.
71.
Craven, P. & Wahba, G. Smoothing noisy data with spline functions – estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377–403 (1979).
MathSciNet MATH Article Google Scholar
72.
Ciesielski, T. H., Marsit, C. J. & Williams, S. M. Maternal psychiatric disease and epigenetic evidence suggest a common biology for poor fetal growth. BMC Pregnancy Childbirth 15, 192 (2015).
Article CAS PubMed PubMed Central Google Scholar
73.
Szegda, K., Markenson, G., Bertone-Johnson, E. R. & Chasan-Taber, L. Depression during pregnancy: a risk factor for adverse neonatal outcomes? A critical review of the literature. J. Matern. Fetal Neonatal Med. 27, 960–967 (2013).
Article PubMed PubMed Central Google Scholar
74.
Bai, S. et al. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials. J. Neurol. Neurosurg. Psychiatry 91, 21–32 (2020).
Article PubMed Google Scholar
75.
Liao, Y. et al. Efficacy of omega-3 PUFAs in depression: a meta-analysis. Transl. Psychiatry 9, 190 (2019).
Article CAS PubMed PubMed Central Google Scholar
76.
Ciesielski, T. H. et al. Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min. 7, 10 (2014).
Article PubMed PubMed Central Google Scholar
77.
Gananca, L. et al. Lipid correlates of antidepressant response to omega-3 polyunsaturated fatty acid supplementation: a pilot study. Prostaglandins Leukot Essent Fat. Acids 119, 38–44 (2017).
CAS Article Google Scholar
78.
Meyer, B. J. et al. Improvement of major depression is associated with increased erythrocyte DHA. Lipids 48, 863–868 (2013).
CAS Article PubMed Google Scholar
79.
Hoge, A. et al. Impact of erythrocyte long-chain omega-3 polyunsaturated fatty acid levels in early pregnancy on birth outcomes: findings from a Belgian cohort study. J. Perinatol. 40, 488–496 (2020).
CAS Article PubMed Google Scholar
80.
Jackson, K. H. & Harris, W. S. A prenatal DHA test to help identify women at increased risk for early preterm birth: a proposal. Nutrients 10, 1933 (2018).
Article CAS PubMed Central Google Scholar
81.
Rothman, K. J. Causes. Am. J. Epidemiol. 104, 587–592 (1976).
CAS Article PubMed Google Scholar
82.
Howards, P. P. An overview of confounding. Part 2: how to identify it and special situations. Acta Obstet. Gynecol. Scand. 97, 400–406 (2018).
Article PubMed Google Scholar
83.
Suttorp, M. M., Siegerink, B., Jager, K. J., Zoccali, C. & Dekker, F. W. Graphical presentation of confounding in directed acyclic graphs. Nephrol. Dial. Transpl. 30, 1418–1423 (2015).
Article Google Scholar
84.
Bloomfield, F. H. How is maternal nutrition related to preterm birth?. Annu. Rev. Nutr. 31, 235–261 (2011).
CAS Article PubMed Google Scholar
85.
Zhou, S. S., Tao, Y. H., Huang, K., Zhu, B. B. & Tao, F. B. Vitamin D and risk of preterm birth: up-to-date meta-analysis of randomized controlled trials and observational studies. J. Obstet. Gynaecol. Res. 43, 247–256 (2017).
CAS Article PubMed Google Scholar
86.
Ferguson, K. K., O’Neill, M. S. & Meeker, J. D. Environmental contaminant exposures and preterm birth: a comprehensive review. J. Toxicol. Environ. Health B Crit. Rev. 16, 69–113 (2013).
CAS Article PubMed PubMed Central Google Scholar
87.
van den Bosch, M. & Meyer-Lindenberg, A. Environmental exposures and depression: biological mechanisms and epidemiological evidence. Annu. Rev. Public Health 40, 239–259 (2019).
Article PubMed Google Scholar
88.
Rautio, N., Filatova, S., Lehtiniemi, H. & Miettunen, J. Living environment and its relationship to depressive mood: a systematic review. Int. J. Soc. Psychiatry 64, 92–103 (2018).
Article PubMed Google Scholar
89.
Bender, A., Hagan, K. E. & Kingston, N. The association of folate and depression: a meta-analysis. J. Psychiatr. Res. 95, 9–18 (2017).
Article PubMed Google Scholar
90.
Zhang, Q. et al. Effect of folic acid supplementation on preterm delivery and small for gestational age births: a systematic review and meta-analysis. Reprod. Toxicol. 67, 35–41 (2017).
CAS Article PubMed Google Scholar
91.
Jamilian, H. et al. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: a systematic review and meta-analysis of randomized controlled trials. Prog. Neuropsychopharmacol. Biol. Psychiatry 94, 109651 (2019).
CAS Article PubMed Google Scholar
92.
Schisterman, E. F., Cole, S. R. & Platt, R. W. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiol. Camb. Mass 20, 488–495 (2009).
Article Google Scholar
93.
Howards, P. P., Schisterman, E. F. & Heagerty, P. J. Potential confounding by exposure history and prior outcomes: an example from perinatal epidemiology. Epidemiology 18, 544–551 (2007).
Article PubMed Google Scholar
94.
Wilson, N. A., Mantzioris, E., Middleton, P. T. & Muhlhausler, B. S. Gestational age and maternal status of DHA and other polyunsaturated fatty acids in pregnancy: A systematic review. Prostaglandins Leukot. Essent. Fatty Acids 144, 16–31 (2019).
CAS Article PubMed Google Scholar
95.
Wilson, N. A., Mantzioris, E., Middleton, P. F. & Muhlhausler, B. S. Influence of sociodemographic, lifestyle and genetic characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: a systematic review. Prostaglandins Leukot. Essent. Fatty Acids 152, 102037 (2020).
CAS Article PubMed Google Scholar
96.
Wilson, N. A., Mantzioris, E., Middleton, P. F. & Muhlhausler, B. S. Influence of clinical characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: a systematic review. Prostaglandins Leukot. Essent. Fatty Acids 154, 102063 (2020).
CAS Article PubMed Google Scholar
97.
Sparkes, C., Sinclair, A. J., Gibson, R. A., Else, P. L. & Meyer, B. J. High variability in erythrocyte, plasma and whole blood EPA and DHA levels in response to supplementation. Nutrients 12, 1017 (2020).
CAS Article PubMed Central Google Scholar
98.
Zemdegs, J. et al. Anxiolytic- and antidepressant-like effects of fish oil-enriched diet in brain-derived neurotrophic factor deficient mice. Front. Neurosci. 12, 974 (2018).
Article PubMed PubMed Central Google Scholar
99.
Yamashita, A. et al. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth. Sci. Rep. 3, 3113 (2013).
Article PubMed PubMed Central Google Scholar
100.
Pearce, N. The ecological fallacy strikes back. J. Epidemiol. Commun. Health 54, 326–327 (2000).
MathSciNet CAS Article Google Scholar
101.
Morgenstern, H. Ecologic studies in epidemiology: concepts, principles, and methods. Annu. Rev. Public Health 16, 61–81 (1995).
CAS Article PubMed Google Scholar
102.
Ciesielski, T. H., Aldrich, M. C., Marsit, C. J., Hiatt, R. A. & Williams, S. M. Transdisciplinary approaches enhance the production of translational knowledge. Transl. Res. 182, 123–134 (2017).
Article PubMed Google Scholar More