More stories

  • in

    Persistence and size of seasonal populations on a consumer–resource relationship depends on the allocation strategy toward life-history functions

    The long-term population dynamics (i.e., extinction or persistence in an equilibrium value) of the system (2) is mainly dependent on the constant allocation of energy between life-history functions. In the case of population persistence, there is a unique long-term allocation strategy towards reproductive functions that maximizes the population abundance and minimizes individual consumption. In addition, this strategy is dependent on the parameters associated with both fertility ((kappa ) and ({mathscr {B}}_0)) and survival ((xi _{c}) and (e_{1/2})) costs.
    Preliminary results
    To investigate long-term dynamic patterns, we will relate the energy states of reproduction and maintenance, resource density and population abundance at the end of reproductive seasons, namely in the time sequence ({ntau ^+}_{nge 0}). In the system (4) the relationships between the state variables are the same for each (tau ) unit of time. Then, there is a transformation that relates to the vector ( (R,E_ {r}, E_ {m},P) ((n + 1)tau ^+) ) with ( (R,E_ {r}, E_ {m}, P) (n tau ^+) ) such that ( (n + 1) tau ^+ – ntau ^+ = tau ). This relationship is determined by the following discretization (or stroboscopic map) of the impulsive differential system (4):

    $$begin{aligned} left{ begin{array}{lll} E_{r}((n+1)tau ^+)&=(1-kappa gamma )[E_{r}(ntau ^+)+alpha Phi (n,P(ntau ^+))],\ &{}&{}\ E_{m}((n+1)tau ^+)&=dfrac{{mathscr {B}}_0[E_{m}(ntau ^+)+(1-alpha )xi _{c}Phi (n,P(ntau ^+))]}{{mathscr {B}}_0+gamma [E_{r}(ntau ^+)+alpha Phi (n,P(ntau ^+))]},\ P((n+1)tau ^+)&=left{ 1-mu +dfrac{gamma [E_{r}(ntau ^+)+alpha Phi (n,P(ntau ^+))]E_{m}((n+1)tau ^+)}{e_{1/2}+E_{m}((n+1)tau ^+)}right} P(ntau ^+)e^{-lambda tau } end{array} right. end{aligned}$$
    (6)

    and (R(ntau ^+)=K), where the function (Phi ) defined by (5) is evaluated at (t=(n+1)tau ) and extended to (p=0):

    $$begin{aligned} Phi (n,p)=left{ begin{array}{ll} dfrac{R_{max}(e^{lambda tau }-1)}{lambda }, &quad text {if}, p=0, \ &{}\ dfrac{K-R((n+1)tau )e^{lambda tau }}{p}+dfrac{lambda }{p}displaystyle int _{ntau }^{(n+1)tau }{R(s)e^{lambda (s-ntau )}ds}, & quad text {if}, pne 0, end{array} right. end{aligned}$$
    (7)

    for any (nge 0). Indeed, in non-reproductive seasons the consumer–resource dynamics are described by the continuous component of the system (4), which can be solved. Directly we have (P(t)=P(ntau ^+)e^{-lambda (t-ntau )}) for any (tin (ntau ,(n+1)tau ]). In addition, the per capita consumption rate (1) can be expressed in terms of ( R'(t)). Therefore, reproductive and maintenance energy rates are determined by

    $$begin{aligned} E_r'(t)=-alpha frac{R'(t)e^{lambda (t-ntau )}}{P(ntau ^+)}quad text {and}quad E_m'(t)=-(1-alpha )xi _{c}frac{R'(t)e^{lambda (t-ntau )}}{P(ntau ^+)},quad tin (ntau ,(n+1)tau ]. end{aligned}$$

    Integrating these functions in the interval ( (n tau , t] ), we obtain

    $$begin{aligned} E_r(t)&= {} E_{r}(ntau ^+)+alpha Phi (t,R(t),P(ntau ^+)) end{aligned}$$
    (8)

    $$begin{aligned} E_m(t)&= {} E_m(ntau ^+)+(1-alpha )xi _{c}Phi (t,R(t),P(ntau ^+)). end{aligned}$$
    (9)

    Evaluating Eqs. (8)–(9) at ( t = (n + 1)tau ) (end of the non-reproductive season), we have

    $$begin{aligned} E_r((n+1)tau )&= {} E_{r}(ntau ^+)+alpha Phi (n,P(ntau ^+)), end{aligned}$$
    (10)

    $$begin{aligned} E_m(n+1)tau )&= {} E_m(ntau ^+)+(1-alpha )xi _{c}Phi (n,P(ntau ^+)), end{aligned}$$
    (11)

    with (Phi (n,P(ntau ^+))= Phi ((n+1)tau ,R((n+1)tau ),P(ntau ^+))) and (P((n+1)tau )=P(ntau ^+)e^{-lambda tau }) for any (nge 0). In addition, evaluating the discrete component of system (4) at (t=(n+1)tau ), we obtain

    $$begin{aligned} E_{r}((n+1)tau ^+)&= {} (1-kappa gamma )E_{r}((n+1)tau ), end{aligned}$$
    (12)

    $$begin{aligned} E_m((n+1)tau ^+)&= {} frac{{mathscr {B}}_0E_m((n+1)tau )}{{mathscr {B}}_0+gamma E_r((n+1)tau )}, end{aligned}$$
    (13)

    $$begin{aligned} P((n+1)tau ^+)= & {} left[ 1-mu +gamma E_{r}((n+1)tau )frac{E_{m}((n+1)tau ^+)}{e_{1/2}+E_{m}((n+1)tau ^+)}right] P((n+1)tau ). end{aligned}$$
    (14)

    Finally, substituting the Eqs. (10)–(11) into the Esq. (12)–(14) we obtain the discretization given by Eq. (6).
    In order to obtain the equilibrium points of system (6), we can solve the following equations:

    $$begin{aligned} e_{r}&= {} (1-kappa gamma )[e_{r}+alpha Phi (rho )],\ e_{m}&= {} dfrac{{mathscr {B}}_{0}[e_{m}+(1-alpha )xi _{c}Phi (rho )]}{{mathscr {B}}_0+gamma [e_{r}+alpha Phi (rho )]},\ rho&= {} left{ 1-mu +gamma [e_{r}+alpha Phi (rho )]dfrac{e_{m}}{e_{1/2}+e_{m}}right} rho e^{-lambda tau }, end{aligned}$$

    where (e_{r}:=lim _{nrightarrow +infty }{E_{r}(ntau ^+)}), (e_{m}:=lim _{nrightarrow +infty }{E_{m}(ntau ^+)}), (rho :=lim _{nrightarrow +infty }{P(ntau ^+)}) and then, (Phi (rho ):=lim _{nrightarrow +infty }{Phi (n,P(ntau ^+))}). From the first equation, we have (e_{r}=(1-kappa gamma )alpha Phi (P)/kappa gamma ) and then (e_{m}=kappa {mathscr {B}}_0 (1-alpha )xi _{c}/alpha ) for (Pin {0,rho }) such that (Phi (0)=R_{max}(e^{lambda tau }-1)/lambda ) and

    $$begin{aligned} Phi (rho )={mathscr {A}},quad text {where}quad {mathscr {A}}=dfrac{e^{lambda tau }-1+mu }{{mathscr {B}}_0}cdot left{ dfrac{e_{1/2}xi _{c}^{-1}}{1-alpha } +dfrac{kappa {mathscr {B}}_0}{alpha }right} . end{aligned}$$
    (15)

    Therefore, assuming (lambda =0), we have (Gamma (rho )=K-{mathscr {A}}rho ) (from equations (7) and (15)) where (Gamma :=lim _{nrightarrow +infty }{R((n+1)tau )}), (rho ) is the solution of

    $$begin{aligned} r_0ln left( dfrac{K-{mathscr {A}}rho }{K}right) -{mathscr {A}}=-R_{max}tau , end{aligned}$$

    if, and only if,

    $$begin{aligned} rho =dfrac{K}{{mathscr {A}}}left[ 1-exp left( dfrac{{mathscr {A}}-R_{max}tau }{r_0}right) right] . end{aligned}$$
    (16)

    Long-term population dynamics
    From the discretization (6), there are two dynamic behaviors for the long-term population abundance: extinction (see Fig. 2a) and persistence (see Fig. 2b).
    Figure 2

    Long-term behavior of solutions of the model (4). Peak values correspond to the solution of the discrete model (6) in its population component. (a) Extinction behavior, considering (alpha in {0.1,,0.8}) as energy allocation strategy toward reproductive and (b) persistence behavior considering (alpha in {0.35,, 0.55}). We consider the following parameter set (eta =(2,0.5,2,0.25,500,2,1,0.5,0.5,0.86,alpha ,0.1)) where the constant of fertility costs is described by (kappa =(1+gamma )^{-1}).

    Full size image

    The differentiation of these behaviors strongly depends on the individual consumption of resources defined throughout each non-reproductive season by

    $$begin{aligned} C_{I}(t) = frac{[K-R(t)]e^{lambda (t-ntau )}}{P(ntau ^+)},, tin (ntau ,(n+1)tau ]. end{aligned}$$

    At the end of each non-reproductive season, namely at the time ( t = (n + 1) tau ), the individual consumption is given by

    $$begin{aligned} C_I((n+1)tau ) = frac{[K-R((n+1)tau )]e^{lambda tau }}{P(ntau ^+)}, end{aligned}$$
    (17)

    where (R((n+1)tau )) is the non-consumed resource density by the population, the amount that is obtained from the implicit solution of the resource density equation in the continuous component of the system (4). Thus, projecting the individual consumption of the resource into the long term, and taking (Gamma (rho )=(K-{mathscr {A}}rho +lambda {mathscr {I}})e^{-lambda tau }), the expression (17) assumes the form

    $$begin{aligned} C_{I}^{infty }(rho )=left{ begin{array}{ll} {mathscr {A}}+dfrac{K(e^{lambda tau }-1)-lambda {mathscr {I}}}{rho },&{}quad text {if}, rho ne 0,\ &{}\ dfrac{R_{max}(e^{lambda tau }-1)}{lambda },&{}quad text {if}, rho =0, end{array}right. end{aligned}$$
    (18)

    where ({mathscr {I}}:=lim _{nrightarrow +infty }{int _{ntau }^{(n+1)tau }{R(s)e^{lambda (s-ntau )}ds}}). On the one hand, the individual consumption ( C_{I}^{infty } ) is composed of a basis amount corresponding to the term ({mathscr {A}} ) and an amount resulting from the equal division of a resource not consumed by individuals dying during the non-reproductive season, ( K(e^{lambda tau } -1) – lambda {mathscr {I}}). Furthermore, when the population experiences a reduced mortality during the non-reproductive season (i.e., ( lambda approx 0) ), the individual consumption is ( C_{I}^{infty } (rho ) approx {mathscr {A}} ). On the other hand, whether the population abundance is low, the per capita resource is high, implying an individual consumption close to (R_ {max} (e^{lambda tau } -1) / lambda ) (equivalent to taking the limit of ( C_{I}((n+1)tau )) as ( P(ntau ^+)rightarrow 0 )). Certainly, this quantity does not represent the effective individual consumption, but rather establishes an upper limit for this and therefore represents a value of non-persistence. Thus, behaviors related to the equilibrium solutions of the discrete system (6) can be differentiated by the threshold value

    $$begin{aligned} {mathscr {U}}=dfrac{C_{I}^{infty }(0)}{C_{I}^{infty }(rho )}. end{aligned}$$

    In particular, when the mortality of the population is low, the long-term abundance is described by Eq. (16) and the threshold value assumes the following form ({mathscr {U}}=R_{max}tau /{mathscr {A}}). Thus, we conclude that the persistence of the population is established when ({mathscr {U}} >1) and extinction when ({mathscr {U}}le 1).
    Finally, we can see that the stabilization of population size in the long term is in response to a dense-dependent behaviour where the per capita growth rate in the long term is (r_{infty }:={alpha {mathscr {A}}/kappa }{mathscr {S}}(e_m)) equivalent to mortality fraction (mu ), where (e_{m}=kappa {mathscr {B}}_{0}(1-alpha )xi _{c}/alpha ) is the equilibrium value of energy maintenance after the reproductive season. In addition, the derivative of r with respect to P is

    $$begin{aligned} dfrac{dr}{dP} = gamma dfrac{dPhi }{d P}left{ alpha {mathscr {S}}(E_{m})+(E_{r}+alpha Phi )dfrac{d{mathscr {S}}}{dE_{m}}cdot dfrac{dE_{m}}{dPhi }right} , end{aligned}$$

    where (dPhi /d P1) then the long-term population behavior is persistence.

    Proof
    We divide the proof into two cases: (kappa gamma =1) and (0 More

  • in

    3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic

    1.
    Dullo, W. C., Flögel, S. & Rüggeberg, A. Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar. Ecol. Prog. Ser. 371, 165–176 (2008).
    ADS  Article  Google Scholar 
    2.
    Puerta, P. et al. Influence of water masses on the biodiversity and biogeography of deep-sea benthic ecosystems in the North Atlantic. Front. Mar. Sci. 7, 239. https://doi.org/10.3389/fmars.2020.00239 (2020).
    Article  Google Scholar 

    3.
    Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6(4), e18483. https://doi.org/10.1371/journal.pone.0018483 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).
    ADS  Article  Google Scholar 

    5.
    Xu, G., McGillicuddy, D. J. Jr., Mills, S. W. & Mullineaux, L. S. Dispersal of hydrothermal vent larvae at East Pacific rise 9–10° N segment. J. Geophys. Res. Oceans 123, 7877–7895 (2018).
    ADS  Article  Google Scholar 

    6.
    Bracco, A., Liu, G., Galaska, M., Quattrini, A. M. & Herrera, S. Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J. Mar. Syst. 198, 103189. https://doi.org/10.1016/j.jmarsys.2019.103189 (2019).
    Article  Google Scholar 

    7.
    Kenchington, E. et al. Connectivity modelling of areas closed to protect vulnerable marine ecosystems in the northwest Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 143, 85–103 (2019).
    ADS  Article  Google Scholar 

    8.
    Zeng, X., Adams, A., Roffer, M. & He, R. Potential connectivity among spatially distinct management zones for bonefish (Albula vulpes) via larval dispersal. Environ. Biol. Fishes 102, 233–252 (2019).
    Article  Google Scholar 

    9.
    Lange, M. & van Sebille, E. Parcels v0.9: Prototyping a lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev. 10, 4175–4186 (2017).
    ADS  Article  Google Scholar 

    10.
    Knudby, A., Kenchington, E. & Murillo, F. J. Modeling the distribution of Geodia sponges and sponge grounds in the northwest Atlantic. PLoS ONE 8(12), e82306. https://doi.org/10.1371/journal.pone.0082306 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Knudby, A., Lirette, C., Kenchington, E. & Murillo, F. J. Species distribution models of black corals, large gorgonian corals and sea pens in the NAFO Regulatory Area. Ser. No. N6276. NAFO SCR Doc. 13/78 (2013). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/sc/2013/scr13-078.pdf.

    12.
    Beazley, L., Kenchington, E., Yashayaev, I. & Murillo, F. J. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 98, 102–114 (2015).
    ADS  Article  Google Scholar 

    13.
    Murillo, F. J., Kenchington, E., Lawson, J. M., Li, G. & Piper, D. Ancient deep-sea sponge grounds on the Flemish Cap and Grand Bank, northwest Atlantic. Mar. Biol. 163, 63. https://doi.org/10.1007/s00227-016-2839-5 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Kenchington, E., Yashayaev, I., Tendal, O. S. & Jørgensbye, H. Water mass characteristics and associated fauna of a recently discovered Lophelia pertusa (Scleractinia: Anthozoa) reef in Greenlandic waters. Polar Biol. 40, 321–337 (2017).
    Article  Google Scholar 

    15.
    FAO. International Guidelines for the Management of Deep-Sea Fisheries in the High Seas p73 (FAO, Quebec, 2009).
    Google Scholar 

    16.
    NAFO. Conservation and Enforcement Measures. Ser. No. N6638. NAFO/FC Doc. 17/01 (2017). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/fc/2017/CEM-2017-web.pdf.

    17.
    Williams, J. C., Revelle, C. S. & Levin, S. A. Spatial attributes and reserve design models: A review. Environ. Model. Assess. 10, 163–181 (2005).
    Article  Google Scholar 

    18.
    Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73, 242–276 (2007).
    ADS  Article  Google Scholar 

    19.
    Yashayaev, I. & Loder, J. W. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans 121, 8095–8114 (2016).
    ADS  Article  Google Scholar 

    20.
    Wang, S., Wang, Z., Lirette, C., Davies, A. & Kenchington, E. Comparison of physical connectivity particle tracking models in the Flemish Cap region. Can. Tech. Rep. Fish. Aquat. Sci. 3353, 39 (2019).
    Article  Google Scholar 

    21.
    Morato, T. et al. Climate-induced changes in the habitat suitability of cold-water corals and commercially important deep-sea fish in the North Atlantic. Glob. Change Biol. 26, 2181–2202 (2020).
    ADS  Article  Google Scholar 

    22.
    Han, G. & Wang, Z. Monthly-mean circulation in the Flemish Cap region: A modeling study. In Estuarine and Coastal Modeling: Proceedings of the Ninth International Conference on Estuarine and Coastal Modeling (ed. Spaulding, M. L.) 138–154 (American Society of Civil Engineers, Reston, 2006).
    Google Scholar 

    23.
    Han, G. et al. Seasonal variability of the Labrador current and shelf circulation off Newfoundland. J. Geophys. Res. Oceans 113, C10013. https://doi.org/10.1029/2007JC004376 (2008).
    ADS  Article  Google Scholar 

    24.
    Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).
    Article  Google Scholar 

    25.
    Wang, Z., Hamilton, J. & Su, J. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean. Progr. Oceanogr. 155, 54–73 (2017).
    ADS  Article  Google Scholar 

    26.
    Ross, R. E., Nimmo-Smith, W. A. M. & Howell, K. L. Increasing the depth of current understanding: Sensitivity testing of deep-sea larval dispersal models for ecologists. PLoS ONE 11(8), e0161220. https://doi.org/10.1371/journal.pone.0161220 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Wang, Z., Brickman, D. & Greenan, B. J. W. Characteristic evolution of the Atlantic Meridional Overturning Circulation from 1990 to 2015: An eddy-resolving ocean model study. Deep Sea Res. I Oceanogr. Res. Pap. 149, 103056. https://doi.org/10.1016/j.dsr.2019.06.002 (2019).
    Article  Google Scholar 

    28.
    Lazier, J. R. N. & Wright, D. G. Annual velocity variations in the Labrador current. J. Phys. Oceanogr. 23, 659–678 (1993).
    ADS  Article  Google Scholar 

    29.
    Hall, M. M., Torres, D. J. & Yashayaev, I. Absolute velocity along the AR7W section in the Labrador sea. Deep Sea Res. I Oceanogr. Res. Pap. 72, 72–87 (2013).
    ADS  Article  Google Scholar 

    30.
    Schneider, L. et al. Variability of Labrador Sea water transported through Flemish Pass during 1993–2013. J. Geophys. Res. Oceans 120, 5514–5533 (2015).
    ADS  Article  Google Scholar 

    31.
    Varotsou, E., Jochumsen, K., Serra, N., Kieke, D. & Schneider, L. Interannual transport variability of Upper Labrador Sea Water at Flemish Cap. J. Geophys. Res. Oceans 120, 5074–5089 (2015).
    ADS  Article  Google Scholar 

    32.
    Layton, C., Greenan, B. J. W., Hebert, D. E. & Kelley, D. Low-frequency oceanographic variability near Flemish Cap and Sackville Spur. J. Geophys. Res. Oceans 123, 1814–1826 (2018).
    ADS  Article  Google Scholar 

    33.
    Wang, Z., Brickman, D., Greenan, B. J. W. & Yashayaev, I. An abrupt shift in the Labrador current system in relation to winter NAO events. J. Geophys. Res. Oceans 121, 5338–5349 (2016).
    ADS  Article  Google Scholar 

    34.
    Yashayaev, I. & Loder, J. Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett. 44, 1429–1438 (2016).
    ADS  Article  Google Scholar 

    35.
    Delandmeter, P. & van Sebille, E. The parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev. 12, 3571–3584 (2019).
    ADS  Article  Google Scholar 

    36.
    Brickman, D., Wang, Z. & DeTracey, B. Variability of current streams in Atlantic Canadian Waters: A model study. Atmos. Ocean 54, 1–12 (2015).
    Google Scholar 

    37.
    Brickman, D., Hebert, D. & Wang, Z. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf Res. 156, 11–22 (2018).
    ADS  Article  Google Scholar 

    38.
    Pepin, P., Han, G. & Head, E. J. Modelling the dispersal of Calanus finmarchicus on the Newfoundland Shelf: Implications for the analysis of population dynamics from a high frequency monitoring site. Fish. Oceanogr. 22, 371–387 (2013).
    Article  Google Scholar 

    39.
    Le Corre, N., Pepin, P., Han, G., Ma, Z. & Snelgrove, P. V. R. Assessing connectivity patterns among management units of the Newfoundland and Labrador shrimp population. Fish. Oceanogr. 28, 183–202 (2019).
    Article  Google Scholar 

    40.
    Han, G. & Kulka, D. Dispersion of eggs, larvae and pelagic juveniles of White Hake (Urophycis tenuis) in relation to ocean currents of the Grand Bank: A modelling approach. J. Northw. Atl. Fish. Sci. 41, 183–196 (2009).
    Article  Google Scholar 

    41.
    Lynch, D. G. D. et al. Particles in the Coastal Ocean. Theory and Applications 389–452 (Cambridge University Press, Cambridge, 2014).
    Google Scholar 

    42.
    Murillo, F. J., Serrano, A., Kenchington, E. & Mora, J. Epibenthic assemblages of the tail of the Grand Bank and Flemish Cap (northwest Atlantic) in relation to environmental parameters and trawling intensity. Deep Sea Res. I Oceanogr. Res. Pap. 109, 99–122 (2016).
    ADS  Article  Google Scholar 

    43.
    Mariani, S., Uriz, M.-J. & Turon, X. The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. J. Plankton Res. 27, 249–262 (2005).
    Article  Google Scholar 

    44.
    Mariani, S., Uriz, M.-J. & Alcoverro, T. Dispersal strategies in sponge larvae: Integrating the life history of larvae and the hydrologic component. Oecologia 149, 174–184 (2006).
    ADS  Article  PubMed  Google Scholar 

    45.
    NAFO. Northwest Atlantic Fisheries Organization. Conservation and Enforcement Measures 2020. Ser. No. N7028. NAFO/COM Doc. 20-01 (2020). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/com/2020/CEM-2020-web.pdf.

    46.
    Goldsmit, J. et al. Where else? Assessing zones of alternate ballast water exchange in the Canadian eastern Arctic. Mar. Pollut. Bull. 139, 74–90 (2019).
    CAS  Article  PubMed  Google Scholar 

    47.
    Kim, M. et al. Transit time distributions and storage selection functions in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal and external transport variability. Water Resour. Res. 52, 7105–7129 (2016).
    ADS  Article  Google Scholar 

    48.
    Gary, S.F. The Interior Pathway of the Atlantic Meridional Overturning Circulation. Doctor of Philosophy Thesis (Duke University, 2011). (Accessed 5 November 2020); https://dukespace.lib.duke.edu/dspace/handle/10161/4980.

    49.
    Good, S. A., Martin, M. J. & Rayner, N. A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).
    ADS  Article  Google Scholar 

    50.
    Boyer, T. P. et al. World Ocean Database 09. In NOAA Atlas NESDIS 66 (ed. Levitus, S.) (U.S. Government Printing Office, New York, 2009).
    Google Scholar 

    51.
    Wang, S., Wang, Z., Kenchington, E., Yashayaev, I. & Davies, A. 3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic. Mendeley Data https://doi.org/10.17632/chfcjmnvcv.1 (2020).
    Article  Google Scholar  More

  • in

    Heatwaves during low tide are critical for the physiological performance of intertidal macroalgae under global warming scenarios

    1.
    Umanzor, S., Ladah, L. & Calderon-aguilera, L. E. Testing the relative importance of intertidal seaweeds as ecosystem engineers across tidal heights. J. Exp. Mar. Bio. Ecol. 511, 100–107 (2018).
    Article  Google Scholar 
    2.
    Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. & Hawkins, S. J. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3, 4016–4038 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).
    ADS  CAS  Article  Google Scholar 

    4.
    King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography (Cop.) 41, 1469–1484 (2018).
    Article  Google Scholar 

    5.
    Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evol. Syst. 37, 373–404 (2006).
    Article  Google Scholar 

    6.
    Fernández, Á. et al. Additive effects of emersion stressors on the ecophysiological performance of two intertidal seaweeds. Mar. Ecol. Prog. Ser. 536, 135–147 (2015).
    ADS  Article  Google Scholar 

    7.
    IPCC. Summary for Policymakers. In: Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Edenhofer, O. et al.). (Cambridge University Press, Cambridge, 2014).

    8.
    Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Koffi, B. & Koffi, E. Heat waves across Europe by the end of the 21st century: multiregional climate simulations. Clim. Res. 36, 153–168 (2008).
    Article  Google Scholar 

    10.
    Lüning, K. Temperature, salinity and other abiotic factors in Seaweeds. Their Environment, Biogeography and Ecophysiology (Wiley, New York, 1990).
    Google Scholar 

    11.
    Pang, S. J., Jin, Z. H., Sun, J. Z. & Gao, S. Q. Temperature tolerance of young sporophytes from two populations of Laminaria japonica revealed by chlorophyll fluorescence measurements and short-term growth and survival performances in tank culture. Aquaculture 262, 493–503 (2007).
    Article  Google Scholar 

    12.
    Nielsen, S. L., Nielsen, H. D. & Pedersen, M. F. Juvenile life stages of the brown alga Fucus serratus L. Are more sensitive to combined stress from high copper concentration and temperature than adults. Mar. Biol. 161, 1895–1904 (2014).
    CAS  Article  Google Scholar 

    13.
    Schonbeck, M. W. & Norton, T. A. The effects on intertidal fucoid algae of exposure to air under various conditions. Bot. Mar. 23, 141–148 (1980).
    Article  Google Scholar 

    14.
    Pearson, G. A., Lago-Leston, A. & Mota, C. Frayed at the edges: Selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. J. Ecol. 97, 450–462 (2009).
    Article  Google Scholar 

    15.
    Ferreira, J. G., Arenas, F., Martínez, B., Hawkins, S. J. & Jenkins, S. R. Physiological response of fucoid algae to environmental stress: comparing range centre and southern populations. New Phytol. 202, 1157–1172 (2014).
    Article  PubMed  Google Scholar 

    16.
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B. 280, 20122829 (2013).
    Article  PubMed  Google Scholar 

    17.
    Jueterbock, A. et al. Thermal stress resistance of the brown alga Fucus serratus along the North-Atlantic coast: Acclimatization potential to climate change. Mar. Genomics 13, 27–36 (2014).
    Article  PubMed  Google Scholar 

    18.
    Hurd, K., Harrison, P.J., Bischof, K. & Lobban, C.S. Light and photosynthesis in Seaweed Ecology and Physiology (eds. Hurd, K., Harrison, P.J., Bischof, K. & Lobban, C.S.) 176–237. (Cambridge University Press, Cambridge, 2014).

    19.
    Mota, C. F. et al. Differentiation in fitness-related traits in response to elevated temperatures between leading and trailing edge populations of marine macrophytes. PLoS ONE 13, 1–17 (2018).
    Article  CAS  Google Scholar 

    20.
    Martínez, B. et al. Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit. Oecologia 170, 341–353 (2012).
    ADS  Article  PubMed  Google Scholar 

    21.
    Pereira, T. R., Engelen, A. H., Pearson, G. A., Valero, M. & Serrão, E. A. Response of kelps from different latitudes to consecutive heat shock. J. Exp. Mar. Bio. Ecol. 463, 57–62 (2015).
    Article  Google Scholar 

    22.
    Madsen, T. V. & Maberly, S. C. A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). J. phycol. 26(1), 24–30 (1990).
    Article  Google Scholar 

    23.
    Contreras-Porcia, L., López-Cristoffanini, Meynard, A., & Kumar, M. Tolerance pathways to desiccation stress in seaweeds. In Systems Biology of Marine Ecosystems (eds. Kumar, M. & Ralhp, P.) 13–29. (Springer, Berlin, 2017).

    24.
    Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    King, N. G. et al. Cumulative stress restricts niche filling potential of habitat-forming kelps in a future climate. Funct. Ecol. 32, 288–299 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Hereward, H. F. R., King, N. G. & Smale, D. A. Intra-annual variability in responses of a canopy forming kelp to cumulative low tide heat stress: implications for populations at the trailing range edge. J. Phycol. 56, 146–158 (2019).
    Article  PubMed  Google Scholar 

    27.
    Fernández, C. The retreat of large brown seaweeds on the north coast of Spain: the case of Saccorhiza polyschides. Eur. J. Phycol. 46, 352–360 (2011).
    Article  Google Scholar 

    28.
    Méndez-Sandín, M. & Fernández, C. Changes in the structure and dynamics of marine assemblages dominated by Bifurcaria bifurcata and Cystoseira species over three decades (1977–2007). Estuar. Coast. Shelf Sci. 175, 46–56 (2016).
    ADS  Article  Google Scholar 

    29.
    Wilson, K. L., Skinner, M. A. & Lotze, H. K. Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Divers. Distrib. 25, 582–602 (2019).
    Article  Google Scholar 

    30.
    Martínez, B., Viejo, R. M., Carreño, F. & Aranda, S. C. Habitat distribution models for intertidal seaweeds: Responses to climatic and non-climatic drivers. J. Biogeogr. 39, 1877–1890 (2012).
    Article  Google Scholar 

    31.
    Nyström, M. et al. Confronting feedbacks of degraded marine ecosystems. Ecosystems 15, 695–710 (2012).
    Article  Google Scholar 

    32.
    O’Brien, B. S., Mello, K., Litterer, A. & Dijkstra, J. A. Seaweed structure shapes trophic interactions: a case study using a mid-trophic level fish species. J. Exp. Mar. Biol. Ecol. 506, 1–8 (2018).
    Article  Google Scholar 

    33.
    Voerman, S. E., Llera, E. & Rico, J. M. Climate driven changes in subtidal kelp forest communities in NW Spain. Mar. Environ. Res. 90, 119–127 (2013).
    CAS  Article  PubMed  Google Scholar 

    34.
    Duarte, L. et al. Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecol. 51, 1–10 (2013).
    ADS  Article  Google Scholar 

    35.
    Viejo, R. M., Martínez, B., Arrontes, J., Astudillo, C. & Herna, L. Reproductive patterns in central and marginal populations of a large brown seaweed: drastic changes at the southern range limit. Ecography 34, 75–84 (2011).
    Article  Google Scholar 

    36.
    Duarte, L. & Viejo, R. M. Environmental and phenotypic heterogeneity of populations at the trailing range-edge of the habitat-forming macroalga Fucus serratus. Mar. Environ. Res. 136, 16–26 (2018).
    CAS  Article  PubMed  Google Scholar 

    37.
    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 1–10 (2019).
    Article  Google Scholar 

    38.
    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).
    Article  Google Scholar 

    39.
    Gómez-Gesteira, M. et al. The state of climate in NW Iberia. Clim. Res. 48, 109–144 (2011).
    Article  Google Scholar 

    40.
    Kersting, D.K. Cambio Climático en El Medio Marino Español: Impactos, Vulnerabilidad y Adaptación. Oficina Española de Cambio Climático, Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid. http://cort.as/-HXq9 (2016).

    41.
    Philippart, C. J. M. et al. Impacts of climate change on European marine ecosystems: observations, expectations and indicators. J. Exp. Mar. Biol. Ecol. 400, 52–69 (2011).
    Article  Google Scholar 

    42.
    Lima, F. P., Ribeiro, P. A., Queiroz, N., Hawkins, S. J. & Santos, A. M. Do distributional shifts of northern and southern species of algae match the warming pattern?. Glob. Chang. Biol. 13, 2592–2604 (2007).
    ADS  Article  Google Scholar 

    43.
    Díez, I., Muguerza, N., Santolaria, A., Ganzedo, U. & Gorostiaga, J. M. Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar. Coast. Shelf Sci. 99, 108–120 (2012).
    ADS  Article  Google Scholar 

    44.
    Piñeiro-Corbeira, C., Barreiro, R. & Cremades, J. Decadal changes in the distribution of common intertidal seaweeds in Galicia (NW Iberia). Mar. Environ. Res. 113, 106–115 (2016).
    Article  CAS  PubMed  Google Scholar 

    45.
    García-Fernández, A. & Bárbara, I. Studies of Cystoseira assemblages in Northern Atlantic Iberia. Ann. del Jard. Bot. Madrid 73, 1–21 (2016).
    Google Scholar 

    46.
    García, A. G., Olabarria, C., Arrontes, J., Álvarez, Ó. & Viejo, R. M. Spatio-temporal dynamics of Codium populations along the rocky shores of N and NW Spain. Mar. Environ. Res. 140, 394–402 (2018).
    Article  CAS  PubMed  Google Scholar 

    47.
    Fernández, C. Current status and multidecadal biogeographical changes in rocky intertidal algal assemblages: the northern Spanish coast. Estuar. Coast. Shelf Sci. 171, 35–40 (2016).
    ADS  Article  Google Scholar 

    48.
    Eggert, A. Seaweed responses to temperature. In Seaweed Biology. Novel Insights into Ecophysiology, Ecology and Utilization (eds. Wiencke, C. & Bischof, K) 47–66 (Springer, Berlin, 2012).

    49.
    Karsten, U. Seaweed acclimation to salinity and desiccation stress. In Seaweed biology. Novel Insights into Ecophysiology, Ecology and Utilization (eds. Wiencke, C. & Bischof, K) 87–108 (Springer, Berlin, 2012).

    50.
    Phelps, C. M., Boyce, M. C. & Huggett, M. J. Future climate change scenarios differentially affect three abundant algal species in southwestern Australia. Mar. Environ. Res. 126, 69–80 (2017).
    CAS  Article  PubMed  Google Scholar 

    51.
    Olabarria, C., Arenas, F., Fernández, Á., Troncoso, J. S. & Martínez, B. Physiological responses to variations in grazing and light conditions in native and invasive fucoids. Mar. Environ. Res. 139, 151–161 (2018).
    CAS  Article  PubMed  Google Scholar 

    52.
    Schagerl, M. & Möstl, M. Drought stress, rain and recovery of the intertidal seaweed. Fucus spiralis. Mar. Biol. 158, 2471–2479 (2011).
    Article  Google Scholar 

    53.
    Lamela-Silvarrey, C., Fernández, C., Anadón, R. & Arrontes, J. Fucoid assemblages on the north coast of Spain: Past and present (1977–2007). Bot. Mar. 55, 199–207 (2012).
    Article  Google Scholar 

    54.
    Martínez, B., Arenas, F., Trilla, A., Viejo, R. M. & Carreño, F. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Glob. Change Biol. 21, 1422–1433 (2014).
    ADS  Article  Google Scholar 

    55.
    Piñeiro-Corbeira, C., Barreiro, R., Cremades, J. & Arenas, F. Seaweed assemblages under a climate change scenario: Functional responses to temperature of eight intertidal seaweeds match recent abundance shifts. Sci. Rep. 8, 1–9 (2018).
    Article  CAS  Google Scholar 

    56.
    Figueroa, F. L. et al. Yield losses and electron transport rate as indicators of thermal stress in Fucus serratus (Ochrophyta). Algal Res. 41, 101560 (2019).
    Article  Google Scholar 

    57.
    Davison, I. R. & Pearson, G. A. Stress tolerance in intertidal seaweeds. J. Phycol. 32, 197–211 (1996).
    Article  Google Scholar 

    58.
    Schreiber, U., Bilger, W. & Neubauer, C. Chlorophyll Fluorescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis. In Ecophysiology of photosynthesis (eds. Schulze, E.D. & Caldwell, M.M.) 49–70 (Springer, Berlin, 2003).

    59.
    Hurd, K., Harrison, P.J., Bischof, K. & Lobban, C.S. Physico-chemical factors as environmental stressors in seaweed biology. In Seaweed Ecology and Physiology (eds. Hurd, K., Harrison, P.J., Bischof, K. & Lobban, C.S.) 294–348 (Cambridge University Press, Cambridge, 2014).

    60.
    Kumar, M. et al. Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ. Exp. Bot. 72, 194–201 (2011).
    CAS  Article  Google Scholar 

    61.
    Bischof, K. & Rautenberger, R. Seaweed responses to environmental stress: Reactive oxygen and antioxidative strategies. In Seaweed biology. Novel insights into Ecophysiology, Ecology and Utilization (eds. Wiencke, C., Bischof, K.) 109–134 (Springer, Berlin, 2012).

    62.
    Allakhverdiev, S. I. et al. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541–550 (2008).
    CAS  Article  PubMed  Google Scholar 

    63.
    Mota, C. F., Engelen, A. H., Serrão, E. A. & Pearson, G. A. Some don’t like it hot: Microhabitat-dependent thermal and water stresses in a trailing edge population. Funct. Ecol. 29, 640–649 (2015).
    Article  Google Scholar 

    64.
    Hunt, L. J. H. & Denny, M. W. Desiccation protection and disruption: A trade-off for an intertidal marine alga. J. Phycol. 44, 1164–1170 (2008).
    Article  PubMed  Google Scholar 

    65.
    Staehr, P. A. & Wernberg, T. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J. Phycol. 45, 91–99 (2009).
    CAS  Article  PubMed  Google Scholar 

    66.
    Davison, I. R. & Davison, J. O. The effect of growth temperature on enzyme activities in the brown alga Laminaria saccharina. Br. Phycol. J. 22, 77–87 (1987).
    Article  Google Scholar 

    67.
    Young, E. B., Dring, M. J., Savidge, G., Birkett, D. A. & Berges, J. A. Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Plant, Cell Environ. 30, 764–774 (2007).
    CAS  Article  Google Scholar 

    68.
    Monteiro, C. et al. Canopy microclimate modification in central and marginal populations of a marine macroalga. Mar. Biodivers. 49, 415–424 (2019).
    Article  Google Scholar 

    69.
    Dawes, C. J. Physiological ecology. In Marine Botany (ed. Dawes, C.J.) (Wiley, New York, 1998).

    70.
    Rohde, S., Hiebenthal, C., Wahl, M., Karez, R. & Bischof, K. Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: Effects of light deficiency and epibionts on growth and photosynthesis. Eur. J. Phycol. 43, 143–150 (2008).
    Article  Google Scholar 

    71.
    Lüning, K. Seaweed vegetation of the cold and warm temperate regions of the northern hemisphere. In Seaweeds. Their Environment, Biogeography and Ecophysiology. (ed. Lüning, K.) (Wiley, New York, 1990).

    72.
    Schiel, D. R., Lilley, S. A., South, P. M. & Coggins, J. H. J. Decadal changes in sea surface temperature, wave forces and intertidal structure in New Zealand. Mar. Ecol. Prog. Ser. 548, 77–95 (2016).
    ADS  Article  Google Scholar 

    73.
    Fernández de la Hoz, C. F. et al. OCLE: a European open access database on climate change effects on littoral and oceanic ecosystems. Prog. Oceanogr. 168, 222–231 (2018).
    ADS  Article  Google Scholar 

    74.
    Fernández de la Hoz, C., Ramos, E., Puente, A. & Juanes, J. A. Climate change induced range shifts in seaweeds distributions in Europe. Mar. Environ. Res. 148, 1–11 (2019).
    Article  CAS  Google Scholar 

    75.
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    76.
    Halekoh, U., Højsgaard, S. & Yan, J. The R package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).
    Article  Google Scholar 

    77.
    Fox, J. Applied Regression Analysis and Generalized Linear Models 3rd edn. (Sage, Thousand Oaks, 2016).
    Google Scholar  More

  • in

    Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity

    To produce our global Forest Landscape Integrity Index (FLII), we combined four sets of spatially explicit datasets representing: (i) forest extent23; (ii) observed pressure from high impact, localized human activities for which spatial datasets exist, specifically: infrastructure, agriculture, and recent deforestation27; (iii) inferred pressure associated with edge effects27, and other diffuse processes, (e.g., activities such as hunting and selective logging)27 modeled using proximity to observed pressures; and iv) anthropogenic changes in forest connectivity due to forest loss27 (see Supplementary Table 1 for data sources). These datasets were combined to produce an index score for each forest pixel (300 m), with the highest scores reflecting the highest forest integrity (Fig. 1), and applied to forest extent for the start of 2019. We use globally consistent parameters for all elements (i.e., parameters do not vary geographically). All calculations were conducted in Google Earth Engine (GEE)60.
    Forest extent
    We derived a global forest extent map for 2019 by subtracting from the Global Tree Cover product for 200023 annual Tree Cover Loss 2001–2018, except for losses categorized by Curtis and colleagues24 as those likely to be temporary in nature (i.e., those due to fire, shifting cultivation and rotational forestry). We applied a canopy threshold of 20% based on related studies e.g.31,61, and resampled to 300 m resolution and used this resolution as the basis for the rest of the analysis (see Supplementary Note 1 for further methods).
    Observed human pressures
    We quantify observed human pressures (P) within a pixel as the weighted sum of impact of infrastructure (I; representing the combined effect of 41 types of infrastructure weighted by their estimated general relative impact on forests (Supplementary Table 3), agriculture (A) weighted by crop intensity (indicated by irrigation levels), and recent deforestation over the past 18 years (H; excluding deforestation from fire, see Discussion). Specifically, for pixel i:

    $${mathrm{P}}_{mathrm{i}} = {mathrm{exp}}left( { – {upbeta}_1{mathrm{I}}_{mathrm{i}}} right) + {mathrm{exp}}left( { – {upbeta}_2{mathrm{A}}_{mathrm{i}}} right) + {mathrm{exp}}left( { – {upbeta}_3{mathrm{H}}_{mathrm{i}}} right)$$
    (1)

    whereby the values of β were selected so that the median of the non-zero values for each component was 0.75. This use of exponents is a way of scaling variables with non-commensurate units so that they can be combined numerically, while also ensuring that the measure of observed pressure is sensitive to change (increase or decrease) in the magnitude of any of the three components, even at large values of I, A, or H. This is an adaptation of the Human Footprint methodology62. See Supplementary Note 3 for further details.
    Inferred human pressures
    Inferred pressures are the diffuse effects of a set of processes for which directly observed datasets do not exist, that include microclimate and species interactions relating to the creation of forest edges63 and a variety of intermittent or transient anthropogenic pressures such as selective logging, fuelwood collection, hunting; spread of fires and invasive species, pollution, and livestock grazing64,65,66. We modeled the collective, cumulative impacts of these inferred effects through their spatial association with observed human pressure in nearby pixels, including a decline in effect intensity according to distance, and partitioning into stronger short-range and weaker long-range effects. The inferred pressure (P′) on pixel i from source pixel j is:

    $$Pprime _{i,j} = P_jleft( {w_{i,j} + v_{i,j}} right)$$
    (2)

    where wi,j is the weighting given to the modification arising from short-range pressure, as a function of distance from the source pixel, and vi,j is the weighting given to the modification arising from long-range pressures.
    Short-range effects include most of the processes listed above, which together potentially affect most biophysical features of a forest, and predominate over shorter distances. In our model, they decline exponentially, approach zero at 3 km, and are truncated to zero at 5 km (see Supplementary Note 4).

    $$begin{array}{l}{mathrm{w}}_{i,j} = alpha ,{mathrm{exp}}( – lambda {mathrm{d}}_{i,j}),,,,,,[{mathrm{for}},{mathrm{d}}_{{mathrm{i,j}}} le {mathrm{5km}}]\ {mathrm{w}}_{i,j} = {mathrm{0}},,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,[{mathrm{for}},{mathrm{d}}_{i,j} > {mathrm{5km}}]end{array}$$
    (3)

    where α is a constant set to ensure that the sum of the weights across all pixels in the range is 1.85 (see below), λ is a decay constant set to a value of 1 (see67 and other references in Supplementary Note 4) and di,j is the Euclidean distance between the centers of pixels i and j expressed in units of km.
    Long-range effects include over-exploitation of high socio-economic value animals and plants, changes to migration and ranging patterns, and scattered fire and pollution events. We modeled long-range effects at a uniform level at all distances below 6 km and they then decline linearly with distance, conservatively reaching zero at a radius of 12 km65,68 (and other references in Supplementary Note 4):

    $$begin{array}{l}{mathrm{v}}_{i,j} = gamma ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,[for,d_{i,j} le 6km]\ {mathrm{v}}_{i,j} = gamma left( {12 – d_{i,j}} right)/6,,,,[{mathrm{for}},6{mathrm{km}}, < ,{mathrm{d}}_{i,j} le 12{mathrm{km}}]\ {mathrm{v}}_{i,j} = 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,[for,{mathrm{d}}_{i,j} > 12{mathrm{km}}]end{array}$$
    (4)

    where γ is a constant set to ensure that the sum of the weights across all pixels in the range is 0.15 and di,j is the Euclidean distance between the centers of pixels i and j, expressed in kilometers.
    The form of the weighting functions for short- and long-range effects and the sum of the weights (α + γ) were specified based on a hypothetical reference scenario where a straight forest edge is adjacent to a large area with uniform human pressure, and ensuring that in this case total inferred pressure immediately inside the forest edge is equal to the pressure immediately outside, before declining with distance. γ is set to 0.15 to ensure that the long-range effects conservatively contribute no more than 5% to the final index in the same scenario, based on expert opinion and supported e.g., Berzaghi et al.69 regarding the approximate level of impact on values that would be affected by severe defaunation and other long-range effects.
    The aggregate effect from inferred pressures (Q) on pixel i from all n pixels within range (j = 1 to j = n) is then the sum of these individual, normalized, distance-weighted pressures, i.e.,

    $$Q_i = mathop {sum}_{j=1}^{n} {P{prime}_{i,j}}$$
    (5)

    Loss of forest connectivity
    Average connectivity of forest around a pixel was quantified using a method adapted from Beyer et al.70. The connectivity Ci around pixel i surrounded by n other pixels within the maximum radius (numbered j = 1, 2…n) is given by:

    $${mathrm{C}}_i = mathop {sum}_{j=1}^{n} {left( {{mathrm{F}}_j{mathrm{G}}_{i,j}} right)}$$
    (6)

    where Fj is the forest extent is a binary variable indicating if forested (1) or not (0) and Gi,j is the weight assigned to the distance between pixels i and j. Gi,j uses a normalized Gaussian curve, with σ = 20 km and distribution truncated to zero at 4σ for computational convenience (see Supplementary Note 2). The large value of σ captures landscape connectivity patterns operating at a broader scale than processes captured by other data layers. Ci ranges from 0 to 1 (Ci∈[0,1]).
    Current Configuration (CCi) of forest extent in pixel i was calculated using the final forest extent map and compared to the Potential Configuration (PC) of forest extent without extensive human modification, so that areas with naturally low connectivity, e.g., coasts and natural vegetation mosaics, are not penalized. PC was calculated from a modified version of the map of Laestadius et al38. and resampled to 300 m resolution (see Supplementary Note 2 for details). Using these two measures, we calculated Lost Forest Configuration (LFC) for every pixel as:

    $${mathrm{LFC}}_i = 1 – left( {{mathrm{CC}}_i/{mathrm{PC}}_i} right)$$
    (7)

    Values of CCi/PCi  > 1 are assigned a value of 1 to ensure that LFC is not sensitive to apparent increases in forest connectivity due to inaccuracy in estimated potential forest extent – low values represent least loss, high values greatest loss (LFCi∈[0,1]).
    Calculating the Forest Landscape Integrity Index
    The three constituent metrics, LFC, P, and Q, all represent increasingly modified conditions the larger their values become. To calculate a forest integrity index in which larger values represent less degraded conditions we, therefore, subtract the sum of those components from a fixed large value (here, 3). Three was selected as our assessment indicates that values of LFC + P + Q of 3 or more correspond to the most severely degraded areas. The metric is also rescaled to a convenient scale (0-10) by multiplying by an arbitrary constant (10/3). The FLII for forest pixel i is thus calculated as:

    $${mathrm{FLII}}_i = left[ {10/3} right] (3 – {mathrm{min}}(3,,[P_i + Q_i + {mathrm{LFC}}_i]))$$
    (8)

    where FLIIi ranges from 0 to 10, forest areas with no modification detectable using our methods scoring 10 and those with the most scoring 0.
    Illustrative forest integrity classes
    Whilst a key strength of the index is its continuous nature, the results can also be categorized for a range of purposes. In this paper three illustrative classes were defined, mapped, and summarized to give an overview of broad patterns of integrity in the world’s forests. The three categories were defined as follows.
    High Forest Integrity (scores ≥ 9.6) Interiors and natural edges of more or less unmodified naturally regenerated (i.e., non-planted) forest ecosystems, comprised entirely or almost entirely of native species, occurring over large areas either as continuous blocks or natural mosaics with non-forest vegetation; typically little human use other than low-intensity recreation or spiritual uses and/or low-intensity extraction of plant and animal products and/or very sparse presence of infrastructure; key ecosystem functions such as carbon storage, biodiversity, and watershed protection and resilience expected to be very close to natural levels (excluding any effects from climate change) although some declines possible in the most sensitive elements (e.g., some high value hunted species).
    Medium Forest Integrity (scores  > 6.0 but More

  • in

    Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves

    1.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  Article  Google Scholar 
    2.
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Sci. Rep. 6, 38402 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
    ADS  Article  Google Scholar 

    6.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Douglas, A. E. Coral bleaching—how and why? Mar. Pollut. Bull. 46, 385–392 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).
    ADS  Article  Google Scholar 

    9.
    Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871-2017. Sci. Rep. 8, 6079 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

    11.
    van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 

    12.
    Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don’t marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307–334 (2019).
    ADS  Article  Google Scholar 

    13.
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Conserv. 236, 305–314 (2019).
    Article  Google Scholar 

    14.
    Stat, M., Gates, R. D. & Clade, D. Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous Sign, or all of the above? J. Mar. Biol. 2011, e730715 (2011).
    Article  Google Scholar 

    15.
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).
    ADS  Article  Google Scholar 

    16.
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    17.
    Chakravarti, L. J., Beltran, V. H. & Oppen, M. J. Hvan Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Change Biol. 23, 4675–4688 (2017).
    ADS  Article  Google Scholar 

    18.
    Oppen, M. J. Hvan et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).
    ADS  Article  Google Scholar 

    19.
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Coral reefs: corals’ adaptive response to climate change. Nature 430, 741 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Berkelmans, R. & Van Oppen, M. J. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).
    Article  Google Scholar 

    21.
    Magel, J. M. T., Dimoff, S. A. & Baum, J. K. Direct and indirect effects of climate change-amplified pulse heat stress events on coral reef fish communities. Ecol. Appl. 30, e-2124 (2020).
    Article  Google Scholar 

    22.
    Magel, J. M. T., Burns, J. H. R., Gates, R. D. & Baum, J. K. Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance. Sci. Rep. 9, 2512 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Claar, D. C., Cobb, K. M. & Baum, J. K. In situ and remotely sensed temperature comparisons on a Central Pacific atoll. Coral Reefs 38, 1343–1349 (2019).
    ADS  Article  Google Scholar 

    24.
    Hume, B. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next‐generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Hume, B. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl Acad. Sci. USA 113, 4416–4421 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Cunning, R., Silverstein, R. N. & Baker, A. C. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc. R. Soc. B Biol. Sci. 282, 20141725 (2015).
    CAS  Article  Google Scholar 

    27.
    Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in Panama and Ecuador during the 1997-1998 El Niño-Southern Oscillation Event: spatial/temporal patterns and comparisons with the 1982-1983 event. Bull. Mar. Sci. 69, 79–109 (2001).
    Google Scholar 

    28.
    Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. & Sinclair, W. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc. R. Soc. B Biol. Sci. 275, 1359–1365 (2008).
    CAS  Article  Google Scholar 

    29.
    Hoegh-Guldberg, O. Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Change 11, 215–227 (2011).
    Article  Google Scholar 

    30.
    Putnam, H. M., Barott, K. L., Ainsworth, T. D. & Gates, R. D. The vulnerability and resilience of reef-building corals. Curr. Biol. 27, R528–R540 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Hoegh-Guldberg, O. Climate change and world’s coral reefs: implications for the Great Barrier Reef. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 

    32.
    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).
    ADS  Article  Google Scholar 

    33.
    Cunning, R., Ritson-Williams, R. & Gates, R. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).
    ADS  CAS  Article  Google Scholar 

    34.
    Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5, e13258 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Lee, M. J., Jeong, H. J., Jang, S. H., Lee, S. Y. & Kang, N. S. S. Most low-abundance ‘background’ Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microb. Ecol. 71, 771–783 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Bay, L. K., Doyle, J., Logan, M. & Berkelmans, R. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. R. Soc. Open Sci. 3, 160322 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Rowan, R. Thermal adaptation in reef coral symbionts. Nature 430, 742–742 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    van Oppen, M. J. H., Baker, A. C., Coffroth, M. A. & Willis, B. L. Bleaching resistance and the role of algal endosymbionts. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds. van Oppen, M. J. H. & Lough, J. M.) 83–102 (Springer, 2009). https://doi.org/10.1007/978-3-540-69775-6_6.

    40.
    Buddemeier, R. W. & Fautin, D. G. Coral bleaching as an adaptive mechanism. Bioscience 43, 320–326 (1993).
    Article  Google Scholar 

    41.
    Hoegh-Guldberg, O., Jones, R. J., Ward, S. & Loh, W. K. Communication arising. Is coral bleaching really adaptive? Nature 415, 601–602 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Cantin, N. E., van Oppen, M. J. H., Willis, B. L. & Mieog, J. C. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405 (2009).
    ADS  Article  Google Scholar 

    43.
    Shore-Maggio, A., Callahan, S. M. & Aeby, G. S. Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral, Montipora capitata. Coral Reefs 37, 507–517 (2018).
    ADS  Article  Google Scholar 

    44.
    Littman, R. A., Bourne, D. G. & Willis, B. L. Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol. Ecol. 19, 1978–1990 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient Availability and Metabolism Affect the Stability of Coral–Symbiodiniaceae Symbioses. Trends Microbiol. 27, 678–689 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Bamston, A. G., Chelliah, M. & Goldenberg, S. B. Documentation of a highly ENSO‐related SST region in the equatorial pacific: research note. Atmos-Ocean 35, 367–383 (1997).
    Article  Google Scholar 

    48.
    Walsh, S. M. Ecosystem-scale effects of nutrients and fishing on coral reefs. J. Mar. Biol. 2011, 1–13 (2011).
    Article  Google Scholar 

    49.
    Watson, M. S., Claar, D. C. & Baum, J. K. Subsistence in isolation: Fishing dependence and perceptions of change on Kiritimati, the world’s largest atoll. Ocean Coast. Manag. 123, 1–8 (2016).
    Article  Google Scholar 

    50.
    Morate, O. 2015 Population and Housing Census. Volume 1: Management Report and Basic Tables. (National Statistics Office, Ministry of Finance, Bairiki, Tarawa, Kiribati, 2016).

    51.
    Bosserelle, C., Reddy, S. & Lai, D. WACOP wave climate reports. (WACOP Kiribati, Kirtimati, 2015).

    52.
    Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K. & McPherson, J. M. Marine socio-environmental covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98, 1976 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191 (1990).
    ADS  Article  Google Scholar 

    54.
    Liu, G. et al. NOAA Coral Reef Watch’s 5km satellite coral bleaching heat stress monitoring product suite version 3 and four-month outlook version 4. Reef. Encount. 32, 39–45 (2017).
    Google Scholar 

    55.
    Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Stat, M., Loh, W. K. W., LaJeunesse, T. C., Hoegh-Guldberg, O. & Carter, D. A. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28, 709–713 (2009).
    ADS  Article  Google Scholar 

    57.
    Baker, A. C. & Cunning, R. Bulk gDNA extraction from coral samples. https://doi.org/10.17504/protocols.io.dyq7vv (2016)

    58.
    LaJeunesse, T. C. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a ‘species’ level marker. J. Phycol. 37, 866–880 (2001).
    CAS  Article  Google Scholar 

    59.
    Cunning, R., Gates, R. D. & Edmunds, P. J. Using high-throughput sequencing of ITS2 to describe Symbiodinium metacommunities in St. John, US Virgin Islands. PeerJ 5, e3472 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Pochon, X., Pawlowski, J., Zaninetti, L. & Rowan, R. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol. 139, 1069–1078 (2001).
    Article  Google Scholar 

    61.
    Stat, M., Pochon, X., Cowie, R. O. M. & Gates, R. D. Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar. Ecol. Prog. Ser. 386, 83–96 (2009).
    ADS  CAS  Article  Google Scholar 

    62.
    Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Sampayo, E. M., Dove, S. G. & LaJeunesse, T. C. Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus. Symbiodinium. Mol. Ecol. 18, 500–519 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. https://doi.org/10.1186/1471-2105-10-421 (2009)

    67.
    Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968–979 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Mieog, J. C., van Oppen, M. J. H., Berkelmans, R., Stam, W. T. & Olsen, J. L. Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol. Ecol. Resour. 9, 74–82 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
    ADS  Article  Google Scholar 

    70.
    van Oppen, M. J., Willis, B. L., Vugt, H. W. & Miller, D. J. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, cnidaria) using nuclear DNA sequence analyses. Mol. Ecol. 9, 1363–1373 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Smith, E. G., Hume, B. C. C., Delaney, P., Wiedenmann, J. & Burt, J. A. Genetic structure of coral-Symbiodinium symbioses on the world’s warmest reefs. PLoS ONE 12, e0180169 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Santos, S. R. & Coffroth, M. A. Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol. Bull. 204, 10–20 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352–359 (2016).
    Article  Google Scholar 

    74.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analysis in R. Bioinformatics 35, 525–528 (2019).
    Article  CAS  Google Scholar 

    75.
    Pochon, X. & Gates, R. D. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Mol. Phylogenet. Evol. 56, 6 (2010).
    Article  CAS  Google Scholar 

    76.
    Putnam, H. M., Stat, M., Pochon, X. & Gates, R. D. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc. R. Soc. B Biol. Sci. 279, 4352–4361 (2012).
    Article  Google Scholar 

    77.
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
    CAS  Article  Google Scholar 

    78.
    Oksanen, J. Vegan: an introduction to ordination. http://cran.r-project.org/web/packages/vegan/vignettes/introvegan. (2017)

    79.
    Bates, D. et al. Package ‘lme4’. Convergence 12, 2 (2015).
    Google Scholar 

    80.
    Lenth, R., Singmann, H. & Love, J. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, (2018). More

  • in

    Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes

    1.
    García-Roger, E. M., Carmona, M. J. & Serra, M. Facing adversity: Dormant embryos in rotifers. Biol. Bull. 237, 119–144 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 
    2.
    Denlinger, D. L. Regulation of diapause. Annu. Rev. Entomol. 47, 93–122 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Reynolds, J. A. & Hand, S. C. Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. J. Exp. Biol. 212, 2075–2084 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Ricci, C. Dormancy patterns in rotifers. Hydrobiologia 446(447), 1–11 (2001).
    Article  Google Scholar 

    5.
    Poelchau, M. F., Reynolds, J. A., Elsik, C. G., Denlinger, D. L. & Armbruster, P. A. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B. 280, 20130143 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Alekseev, V. R., De Stasio, B. T., Gilbert, J. J. & Ravera, O. Preface. In Diapause in Aquatic Invertebrates, Theory and Human Use (eds Alekseev, V. R. et al.) xiii–xvi (Springer, New York, 2007).
    Google Scholar 

    7.
    Hand, S. C. & Podrabsky, J. E. Bioenergetics of diapause and quiescence in aquatic animals. Thermochim. Acta 349, 31–42 (2000).
    CAS  Article  Google Scholar 

    8.
    Ślusarczyk, M., Chlebicki, W., Pijanowska, J. & Radzikowski, J. The role of the refractory period in diapause length determination in a freshwater crustacean. Sci. Rep. 9, 11905 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations of Insects (Oxford University Press, Oxford, 1986).
    Google Scholar 

    10.
    Alekseev, V. R., De Stasio, B. T. & Gilbert, J. J. Diapause in Aquatic Invertebrates, Theory and Human Use (Springer, New York, 2012).
    Google Scholar 

    11.
    García-Roger, E. M., Carmona, M. J. & Serra, M. Modes, mechanisms and evidence of bet hedging in rotifer diapause traits. Hydrobiologia 796, 223–233 (2017).
    Article  Google Scholar 

    12.
    Cohen, D. Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12, 119–129 (1966).
    CAS  PubMed  Article  Google Scholar 

    13.
    Seger, J. & Brockmann, H. J. What is bet-hedging? In Oxford Surveys in Evolutionary Biology Vol. 4 (eds Harvey, P. H. & Partridge, L.) 182–211 (Oxford University Press, Oxford, 1987).
    Google Scholar 

    14.
    Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44 (1989).
    CAS  PubMed  Article  Google Scholar 

    15.
    Simons, A. M. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc. R. Soc. B Biol. Sci. 278, 1601–1609 (2011).
    Article  Google Scholar 

    16.
    Menu, F. & Desouhant, E. Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause. Oecologia 132, 167–174 (2002).
    ADS  PubMed  Article  Google Scholar 

    17.
    Franch-Gras, L., García-Roger, E. M., Serra, M. & Carmona, M. J. Adaptation in response to environmental unpredictability. Proc. R. Soc. B Biol. Sci. 284, 20170427 (2017).
    Article  CAS  Google Scholar 

    18.
    Tarazona, E., García-Roger, E. M. & Carmona, M. J. Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126, 1162–1172 (2017).
    Article  Google Scholar 

    19.
    Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).
    PubMed  Article  CAS  Google Scholar 

    20.
    Tammariello, S. P. & Denlinger, D. L. G0/G1 cell cycle arrest in the brain of Sarcophaga crassipalpis during pupal diapause and the expression pattern of the cell cycle regulator, proliferating cell nuclear antigen. Insect. Biochem. Mol. Biol. 28, 83–89 (1998).
    CAS  PubMed  Article  Google Scholar 

    21.
    Denekamp, N. Y., Reinhardt, R., Kube, M. & Lubzens, E. Late embryogenesis abundant (LEA) proteins in nondesiccated, encysted, and diapausing embryos of rotifers. Biol. Repr. 82, 714–724 (2010).
    CAS  Article  Google Scholar 

    22.
    Qiu, Z. & MacRae, T. H. A molecular overview of diapause in embryos of the crustacean, Artemia franciscana. In Dormancy and Resistance in Harsh Environments (eds Lubzens, E. et al.) 165–188 (Springer, New York, 2010).
    Google Scholar 

    23.
    Ziv, T. et al. Dormancy in embryos: Insight from hydrated encysted embryos of an aquatic invertebrate. Mol. Cell. Proteomics 16, 1746–1769 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Roncalli, V. et al. Physiological characterization of the emergence from diapause: A transcriptomics approach. Sci. Rep. 8, 12577 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Rozema, E. et al. Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos. Sci. Rep. 9, 8878 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Vanvlasselaer, E. & De Meester, L. An exploratory review on the molecular mechanisms of diapause termination in the waterflea. In Daphnia in Dormancy and Resistance in Harsh Environments (eds Lubzens, E. et al.) 189–202 (Springer, New York, 2010).
    Google Scholar 

    27.
    Declerck, S. A. J. & Papakostas, S. Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications. Hydrobiologia 796, 131–144 (2017).
    Article  Google Scholar 

    28.
    Serra, M., García-Roger, E. M., Ortells, R. & Carmona, M. J. Cyclically parthenogenetic rotifers and the theories of population and evolutionary ecology. Limnetica 38, 67–93 (2019).
    Google Scholar 

    29.
    García-Roger, E. M., Serra, M. & Carmona, M. J. Bet-hedging in diapausing egg hatching of temporary rotifer populations—A review of models and new insights. Int. Rev. Hydrobiol. 99, 96–106 (2014).
    Article  Google Scholar 

    30.
    Ricci, C. & Pagani, M. Desiccation of Panagrolaimus rigidus (Nematoda): Survival, reproduction and the influence on the internal clock. Hydrobiologia 347, 1–13 (1997).
    Article  Google Scholar 

    31.
    Gordon, G. & Headrick, D. H. A Dictionary of Entomology (Oxford CABI Publ Series, Oxford, 2001).
    Google Scholar 

    32.
    Fan, L., Lin, J., Zhong, Y. & Liu, J. Shotgun proteomic analysis on the diapause and nondiapause eggs of domesticated silkworm Bombyx mori. PLoS ONE 8, e60386 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Schröder, T. Diapause in monogonont rotifers. Hydrobiologia 546, 291–306 (2005).
    Article  Google Scholar 

    34.
    Denekamp, N. Y. et al. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10, 108 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Denekamp, N. Y. et al. The expression pattern of dormancy-associated genes in multiple life-history stages in the rotifer Brachionus plicatilis. Hydrobiologia 662, 51–63 (2011).
    CAS  Article  Google Scholar 

    36.
    Clark, M. S. et al. Long-term survival of hydrated resting eggs from Brachionus plicatilis. PLoS ONE 7, e29365 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Waterworth, W. M., Bray, C. M. & West, C. E. The importance of safeguarding genome integrity in germination and seed longevity. J. Exp. Bot. 66, 3549–3558 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Sim, C. & Denlinger, D. L. Catalase and superoxide dismutase-2 enhance survival and protect ovaries during overwintering diapause in the mosquito Culex pipiens. J. Insect Physiol. 57, 628–634 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Ragland, G. J., Denlinger, D. L. & Hahn, D. A. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc. Natl. Acad. Sci. USA 107, 14909–14914 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Duceppe, M. O. et al. Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida. Sci. Rep. 7, 3882 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Wise, M. J. & Tunnacliffe, A. POPP the question: What do LEA proteins do?. Trends Plant. Sci. 9, 13–17 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    García-Roger, E. M. & Ortells, R. Trade-offs in rotifer diapausing egg traits: Survival, hatching, and lipid content. Hydrobiologia 805, 339–350 (2018).
    Article  CAS  Google Scholar 

    43.
    Hand, S. C., Menze, M. A., Toner, M., Boswell, L. & Moore, D. LEA proteins during water stress: Not just for plants anymore. Annu. Rev. Physiol. 73, 115–134 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Crowe, J. H. et al. The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43, 89–105 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Moore, D. S. & Hand, S. C. Cryopreservation of lipid bilayers by LEA proteins from Artemia franciscana and trehalose. Cryobiology 73, 240–247 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Clegg, J. S. Origin of trehalose and its significance during formation of encysted dormant embryos of Artemia Salina. Comp. Biochem. Physiol. 14, 135–143 (1965).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Caprioli, M. et al. Trehalose in desiccated rotifers: A comparison between a bdelloid and a monogonont species. Comp. Biochem. Physiol. 139, 527–532 (2004).
    Article  CAS  Google Scholar 

    48.
    Li, T., Liu, L., Zhang, L. & Liu, N. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus. Sci. Rep. 4, 6474 (2015).
    Article  CAS  Google Scholar 

    49.
    Hommaa, T. et al. G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem. Biophys. Res. Comm. 344, 386–393 (2006).
    Article  CAS  Google Scholar 

    50.
    Jones, S. J. et al. Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res. 11, 1346–1352 (2001).
    CAS  PubMed  Article  Google Scholar 

    51.
    Fielenbach, N. & Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 15, 2149–2165 (2008).
    Article  CAS  Google Scholar 

    52.
    Hand, S. C., Denlinger, D. L., Podrabsky, J. E. & Roy, R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R1193–R1211 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Woll, S. C. & Podrabsky, J. E. Insulin-like growth factor signaling regulates developmental trajectory associated with diapause in embryos of the annual killifish Austrofundulus limnaeus. J. Exp. Biol. 220, 2777–2786 (2017).
    PubMed  Article  Google Scholar 

    54.
    Yu, C. T. & Hirsh, D. The stimulatory effect of ammonium or potassium ions on the activity of leucyl-tRNA synthetase from Escherichia coli. Biochim. Biophys. Acta 142, 149–154 (1967).
    CAS  PubMed  Article  Google Scholar 

    55.
    Beck, S. D., Shane, J. L. & Garland, J. A. Ammonium-induced termination of diapause in the European corn borer, Ostrinia nubilalis. J. Insect. Physiol. 15, 945–951 (1969).
    CAS  Article  Google Scholar 

    56.
    Birnbaumer, L. Expansion of signal transduction by G proteins. The second 15 years or so: From 3 to 16 alpha subunits plus betagamma dimers. Biochim. Biophys. Acta 1768, 772–793 (2007).
    CAS  PubMed  Article  Google Scholar 

    57.
    Dumont, H., Casier, P., Munuswamy, N. & De Wasche, C. Cyst hatching in Anostraca accelerated by retinoic acid, amplified by calcium ionosphore A23187, and inhibited by calcium-channel blockers. Hydrobiologia 230, 1–7 (1992).
    CAS  Article  Google Scholar 

    58.
    Kim, H. J. et al. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar. Genomics 20, 25–31 (2015).
    PubMed  Article  Google Scholar 

    59.
    Boschetti, C., Ricci, C., Sotgia, C. & Fascio, U. The development of a bdelloid egg: A contribution after 100 years. Hydrobiologia 546, 323–331 (2005).
    Article  Google Scholar 

    60.
    Bonneau, B., Popgeorgiev, N., Prudent, J. & Gillet, G. Cytoskeleton dynamics in early zebrafish development. A matter of phosphorylation?. Bioarchitecture 1, 216–220 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Eno, C., Solanki, B. & Pelegri, F. Aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 143, 1585–1599 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Cáceres, C. E. & Schwalbach, M. S. How well do laboratory experiments explain field patterns of zooplankton emergence?. Freshw. Biol. 46, 1179–1189 (2001).
    Article  Google Scholar 

    63.
    De Stasio, B. T. Diapause in calanoid copepods: Within-clutch hatching patterns. J. Limnol. 63, 26–31 (2004).
    Article  Google Scholar 

    64.
    García-Roger, E. M., Carmona, M. J. & Serra, M. Patterns in rotifer diapausing egg banks: Density and viability. J. Exp. Mar. Biol. Ecol. 336, 198–210 (2006).
    Article  Google Scholar 

    65.
    Helland, S., Nejstgaard, C., Fyhn, J. J., Egge, J. K. & Båmstedt, U. Effects of starvation, season, and diet on the free amino acid and protein content of Calanus finmarchicus females. Mar. Biol. 143, 297–306 (2003).
    CAS  Article  Google Scholar 

    66.
    Skottene, E. et al. The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Sci. Rep. 9, 16686 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Tan, Q., Liu, W., Zhu, F., Lei, C. & Wang, X. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Sci. Rep. 7, 40509 (2016).
    ADS  Article  CAS  Google Scholar 

    68.
    Gilbert, J. J. & Schröder, T. Rotifers from diapausing, fertilized eggs: Unique features and emergence. Limnol. Oceanogr. 49, 1341–1354 (2004).
    ADS  Article  Google Scholar 

    69.
    Alekseev, V. R., Hwang, J.-S. & Tseng, M.-H. Diapause in aquatic invertebrates: What’s known and what’s next in research and medical application?. J. Mar. Sci. Tech. 14, 269–286 (2006).
    Google Scholar 

    70.
    Gilbert, J. J. Timing of diapause in monogonont rotifers. In Mechanisms and Strategies in Diapause in Aquatic Invertebrates. Theory and Human Use (eds Alekseev, V. R. et al.) 11–27 (Springer, New York, 2012).
    Google Scholar 

    71.
    Koštál, V., Štětina, T., Poupardin, R., Korbelová, J. & Bruce, A. W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl. Acad. Sci. USA 114, 8532–8537 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    72.
    Podrabsky, J. E. & Hand, S. C. Physiological strategies during animal diapause: Lessons from brine shrimp and annual killifish. J. Exp. Biol. 218, 1897–1906 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    73.
    Zahradka, K. et al. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443, 569–573 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Gladyshev, E. & Meselson, M. Extreme resistance of bdelloid rotifers to ionizing radiation. Proc. Natl. Acad. Sci. USA 105, 5139–5144 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Kim, R. O. et al. Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp. Aquat. Toxicol. 101, 529–539 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Han, J. et al. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus. Aquat Toxicol. 155, 101–109 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Hagiwara, A., Hoshi, N., Kawahara, F., Tominaga, K. & Hirayama, K. Resting eggs of the marine rotifer Brachionus plicatilis Müller: Development and effect of irradiation on hatching. Hydrobiologia 313(314), 223–229 (1995).
    Article  Google Scholar 

    78.
    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    79.
    Pourriot, R. & Snell, T. W. Resting eggs of rotifers. Hydrobiologia 104, 213–224 (1983).
    Article  Google Scholar 

    80.
    Altman, N. & Krzywinski, M. Split plot design. Nat. Meth. 12, 165–166 (2015).
    CAS  Article  Google Scholar 

    81.
    Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. Roy. Stat. Soc. Ser. A 135, 370–384 (1972).
    Article  Google Scholar 

    82.
    Cox, D. R. Regression models and life-tables (with discussion). J. R. Statist. Soc. B 34, 187–220 (1972).
    MATH  Google Scholar 

    83.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017).

    84.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    85.
    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, New York, 2020).
    Google Scholar 

    86.
    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Franch-Gras, L. et al. Genomic signatures of local adaptation to the degree of environmental unpredictability in rotifers. Sci. Rep. 8, 16051 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    88.
    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotech. 28, 511–515 (2010).
    CAS  Article  Google Scholar 

    89.
    Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Hoffman, G. E. & Schadt, E. E. VariancePartition: Interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    92.
    Benjamini, Y. & Hochberg, Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J. Educ. Behav. Stat. 25, 60–83 (2000).
    Article  Google Scholar 

    93.
    Gianetto, G. Q. et al. Calibration plot for proteomics: A graphical tool to visually check the assumptions underlying FDR control in quantitative experiments. Proteomics 16, 29–32 (2016).
    Article  CAS  Google Scholar 

    94.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    95.
    McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nuc. Acids Res. 10, 4288–4297 (2012).
    Article  CAS  Google Scholar 

    96.
    Witten, D. Classification and clustering of sequencing data using a Poisson model. Ann. Appl. Stat. 5, 2493–2518 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    97.
    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    98.
    Sims, D. et al. CGAT: Computational genomics analysis toolkit. Bioinformatics 30, 1290–1291 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    100.
    Alexa, A. & Rahnenführer, J. TopGO: Enrichment analysis for gene ontology. R package version 2.40.0. Bioconductor https://doi.org/10.18129/B9.bioc.topGO (2020).
    Article  Google Scholar 

    101.
    Hanson, S. J., Stelzer, C.-P., Welch, D. B. & Logsdon, J. Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production. BMC Genomics 14, 412 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Sustained organic loading disturbance favors nitrite accumulation in bioreactors with variable resistance, recovery and resilience of nitrification and nitrifiers

    1.
    Osborn, D., Cutter, A. & Ullah, F. in Stakeholder Forum, Commissioned by the UN Development Program. Geneva, Switzerland.
    2.
    Cain, M., Bowman, W. & Hacker, S. Ecology 3rd edn. (Sinauer Associates Inc., Sunderland, 2014).
    Google Scholar 

    3.
    Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Briones, A. & Raskin, L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol. 14, 270–276 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Wang, Q., Ding, C., Tao, G. & He, J. Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria. Appl. Microbiol. Biotechnol. 103, 1255–1265 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology?. Microbiol. Mol. Biol. Rev. 81, 1–32 (2017).
    Article  Google Scholar 

    8.
    Santillan, E., Seshan, H., Constancias, F., Drautz-Moses, D. I. & Wuertz, S. Frequency of disturbance alters diversity, function, and underlying assembly mechanisms of complex bacterial communities. NPJ Biofilms Microbiomes 5, 1–8 (2019).
    Article  Google Scholar 

    9.
    Prosser, J. I. Replicate or lie. Environ. Microbiol. 12, 1806–1810 (2010).
    CAS  PubMed  Article  Google Scholar 

    10.
    Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).
    Article  Google Scholar 

    11.
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 1–19 (2012).
    ADS  Article  Google Scholar 

    12.
    Botton, S., van Heusden, M., Parsons, J. R., Smidt, H. & van Straalen, N. Resilience of microbial systems towards disturbances. Crit. Rev. Microbiol. 32, 101–112 (2006).
    CAS  PubMed  Article  Google Scholar 

    13.
    Rykiel, E. J. Towards a definition of ecological disturbance. Aust. J. Ecol. 10, 361–365 (1985).
    Article  Google Scholar 

    14.
    Hu, B., Wheatley, A., Ishtchenko, V. & Huddersman, K. The effect of shock loads on SAF bioreactors for sewage treatment works. Chem. Eng. J. 166, 73–80 (2011).
    CAS  Article  Google Scholar 

    15.
    Bassin, J. P. et al. Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: assessing the activity of suspended and attached biomass fractions. Process Saf. Environ. Prot. 100, 131–141 (2016).
    CAS  Article  Google Scholar 

    16.
    Seetha, N., Bhargava, R. & Kumar, P. Effect of organic shock loads on a two-stage activated sludge-biofilm reactor. Bioresour. Technol. 101, 3060–3066 (2010).
    CAS  PubMed  Article  Google Scholar 

    17.
    Ketheesan, B. & Stuckey, D. C. Effects of hydraulic/organic shock/transient loads in anaerobic wastewater treatment: a review. Crit. Rev. Environ. Sci. Technol. 45, 2693–2727 (2015).
    CAS  Article  Google Scholar 

    18.
    Senturk, E., Ince, M. & Onkal Engin, G. The effect of shock loading on the performance of a thermophilic anaerobic contact reactor at constant organic loading rate. J. Environ. Health Sci. Eng. 12, 1–6 (2014).
    Article  CAS  Google Scholar 

    19.
    Gray, N. F. Biology of Wastewater Treatment 2nd edn, Vol. 4 (Imperial College Press, London, 2004).
    Google Scholar 

    20.
    Laureni, M. et al. Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Res. 101, 628–639 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Wang, Q. & He, J. Newly designed high-coverage degenerate primers for nitrogen removal mechanism analysis in a partial nitrification-anammox (PN/A) process. FEMS Microbiol. Ecol. 96, fiz202 (2019).
    Article  Google Scholar 

    22.
    Ma, B. et al. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci. Rep. 5, 1–9 (2015).
    Google Scholar 

    23.
    Sinha, B. & Annachhatre, A. P. Partial nitrification—operational parameters and microorganisms involved. Rev. Environ. Sci. Bio. Technol. 6, 285–313 (2007).
    CAS  Article  Google Scholar 

    24.
    Okabe, S., Oozawa, Y., Hirata, K. & Watanabe, Y. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Res. 30, 1563–1572 (1996).
    CAS  Article  Google Scholar 

    25.
    Ge, S. et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere 140, 85–98 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Ma, J. et al. Analysis of nitrification efficiency and microbial community in a membrane bioreactor fed with low COD/N-ratio wastewater. PLoS ONE 8, 1–10 (2013).
    Article  Google Scholar 

    27.
    Tan, C., Ma, F. & Qiu, S. Impact of carbon to nitrogen ratio on nitrogen removal at a low oxygen concentration in a sequencing batch biofilm reactor. Water Sci. Technol. 67, 612–618 (2012).
    Article  CAS  Google Scholar 

    28.
    Zhang, T. et al. Achieving partial nitrification in a continuous post-denitrification reactor treating low C/N sewage. Chem. Eng. J. 335, 330–337 (2018).
    CAS  Article  Google Scholar 

    29.
    She, Z. et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater. Chem. Eng. J. 288, 207–215 (2016).
    CAS  Article  Google Scholar 

    30.
    Regmi, P. et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 57, 162–171 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Ge, S., Peng, Y., Qiu, S., Zhu, A. & Ren, N. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process. Water Res. 55, 95–105 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Jiang, H. et al. A pilot-scale study on start-up and stable operation of mainstream partial nitrification-anammox biofilter process based on online pH-DO linkage control. Chem. Eng. J. 350, 1035–1042 (2018).
    CAS  Article  Google Scholar 

    33.
    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321 (1984).
    ADS  Article  Google Scholar 

    34.
    Santillan, E., Constancias, F. & Wuertz, S. Press disturbance alters community structure and assembly mechanisms of bacterial taxa and functional genes in mesocosm-scale bioreactors. mSystems 5, e00471–e00420 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Nowka, B., Daims, H. & Spieck, E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745–753 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Okabe, S., Aoi, Y., Satoh, H. & Suwa, Y. Nitrification. In Nitrification in Wastewater Treatment (eds Ward, B. B. et al.) 405–418 (ASM Press, Washington, DC, 2011).
    Google Scholar 

    38.
    Blackburne, R., Yuan, Z. & Keller, J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19, 303–312 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Garrido, J. M., van Benthum, W. A. J., van Loosdrecht, M. C. M. & Heijnen, J. J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 53, 168–178 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Almstrand, R., Daims, H., Persson, F., Sörensson, F. & Hermansson, M. New methods for analysis of spatial distribution and coaggregation of microbial populations in complex biofilms. Appl. Environ. Microbiol. 79, 5978–5987 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Law, Y. et al. High dissolved oxygen selection against nitrospira sublineage I in full-scale activated sludge. Environ. Sci. Technol. 53, 8157–8166 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Gonzalez, C., Garcia, P. A. & Munoz, R. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry. Water Sci. Technol. 60, 2145–2152 (2009).
    CAS  PubMed  Article  Google Scholar 

    43.
    Lydmark, P., Lind, M., Sörensson, F. & Hermansson, M. Vertical distribution of nitrifying populations in bacterial biofilms from a full-scale nitrifying trickling filter. Environ. Microbiol. 8, 2036–2049 (2006).
    CAS  PubMed  Article  Google Scholar 

    44.
    Okabe, S., Satoh, H. & Watanabe, Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65, 3182–3191 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Anthonisen, A., Loehr, R., Prakasam, T. & Srinath, E. Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollut. Control Fed.), 835–852 (1976).

    46.
    Lackner, S. et al. Full-scale partial nitritation/anammox experiences: an application survey. Water Res. 55, 292–303 (2014).
    CAS  PubMed  Article  Google Scholar 

    47.
    Wu, J., He, C., van Loosdrecht, M. C. M. & Pérez, J. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates. Chem. Eng. J. 304, 953–961 (2016).
    CAS  Article  Google Scholar 

    48.
    Tchobanoglous, G. B., Franklin, L. & Stensel, H. D. Wastewater engineering: treatment and reuse 4th edn. (McGraw Hill, New York, 2003).
    Google Scholar 

    49.
    Smith, R. C., Elger, S. O. & Mleziva, S. Implementation of solids retention time (SRT) control in wastewater treatment. Xylem Anal. 20, 1–6 (2015).
    Google Scholar 

    50.
    Simsek, H., Kasi, M., Ohm, J.-B., Murthy, S. & Khan, E. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater. Water Res. 92, 44–51 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Wu, Y.-J. et al. Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater. Bioresour. Technol. 141, 35–40 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Meerburg, F. A. et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Res. 100, 137–145 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Vuono, D. C. et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 9, 425–435 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Ballinger, S. J., Head, I. M., Curtis, T. P. & Godley, A. R. The effect of C/N ratio on ammonia oxidising bacteria community structure in a laboratory nitrification-denitrification reactor. Water Sci. Technol. 46, 543–550 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Cabrol, L. et al. Management of microbial communities through transient disturbances enhances the functional resilience of nitrifying gas-biofilters to future disturbances. Environ. Sci. Technol. 50, 338–348 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Wells, G. F. et al. Comparing the resistance, resilience, and stability of replicate moving bed biofilm and suspended growth combined nitritation–anammox reactors. Environ. Sci. Technol. 51, 5108–5117 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    57.
    Pianka, E. R. R-selection and K-selection. Am. Nat. 104, 592–579 (1970).
    Article  Google Scholar 

    58.
    Santillan, E., Seshan, H., Constancias, F. & Wuertz, S. Trait-based life-history strategies explain succession scenario for complex bacterial communities under varying disturbance. Environ. Microbiol. 21, 3751–3764 (2019).
    CAS  PubMed  Article  Google Scholar 

    59.
    Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography 224 (Princeton, Princeton University Press, 1967).
    Google Scholar 

    60.
    Blackburne, R., Vadivelu, V. M., Yuan, Z. & Keller, J. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res. 41, 3033–3042 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Dytczak, M. A., Londry, K. L. & Oleszkiewicz, J. A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 42, 2320–2328 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Huang, Z., Gedalanga, P. B., Asvapathanagul, P. & Olson, B. H. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Res. 44, 4351–4358 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Vuono, D. C., Munakata-Marr, J., Spear, J. R. & Drewes, J. E. Disturbance opens recruitment sites for bacterial colonization in activated sludge. Environ. Microbiol. 18, 87–99 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Jauffur, S., Isazadeh, S. & Frigon, D. Should activated sludge models consider influent seeding of nitrifiers? Field characterization of nitrifying bacteria. Water Sci. Technol. 70, 1526–1532 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Yu, L. et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems. J. Environ. Sci. 74, 159–167 (2018).
    Article  Google Scholar 

    66.
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Shade, A. et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 6, 2153–2167 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Santillan, E. Disturbance-Performance-Diversity Relationships and Microbial Ecology in Bioreactors for Wastewater Treatment. Ph.D. thesis, University of California, Davis (2018).

    69.
    Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R. & Zehnder, A. J. B. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22, 454–465 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater 22nd edn. (AWWA, Mumbai, 2005).
    Google Scholar 

    71.
    Thijs, S. et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 8, 1–15 (2017).
    Article  Google Scholar 

    72.
    Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    74.
    Chen, C., Khaleel, S. S., Huang, H. & Wu, C. H. Software for pre-processing Illumina next-generation sequencing short read sequences. Sour. Code Biol. Med. 9, 8–8 (2014).
    Article  Google Scholar 

    75.
    Ilott, N. E. et al. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling. ISME J. 10, 2389–2404 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Huson, D. H. et al. MEGAN community edition: interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comp. Biol. 12, 1–12 (2016).
    Article  CAS  Google Scholar 

    78.
    Tamames, J. & Puente-Sánchez, F. SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9 (2019).

    79.
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
    Article  CAS  Google Scholar 

    81.
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).
    CAS  PubMed  Article  Google Scholar 

    82.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Puente-Sánchez, F., García-García, N. & Tamames, J. SQMtools: automated processing and visual analysis of ’omics data with R and anvi’o. BMC Bioinform. 21, 358 (2020).
    Article  Google Scholar 

    84.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B. (Method.) 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar  More

  • in

    Linear infrastructure habitats increase landscape-scale diversity of plants but not of flower-visiting insects

    1.
    Bergman, K.-O., Dániel-Ferreira, J., Milberg, P., Öckinger, E. & Westerberg, L. Butterflies in Swedish grasslands benefit from forest and respond to landscape composition at different spatial scales. Landsc. Ecol. 33, 2189–2204. https://doi.org/10.1007/s10980-018-0732-y (2018).
    Article  Google Scholar 
    2.
    Cousins, S. A. O., Auffret, A. G., Lindgren, J. & Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 44, 17–27. https://doi.org/10.1007/s13280-014-0585-9 (2015).
    Article  PubMed Central  Google Scholar 

    3.
    Eriksson, O., Cousins, S. A. O. & Bruun, H. H. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J. Veg. Sci. 13, 743–748. https://doi.org/10.1111/j.1654-1103.2002.tb02102.x (2002).
    Article  Google Scholar 

    4.
    Tyler, T. et al. Recent changes in the frequency of plant species and vegetation types in Scania, S Sweden, compared to changes during the twentieth century. Biodivers. Conserv. 29, 709–728. https://doi.org/10.1007/s10531-019-01906-5 (2020).
    Article  Google Scholar 

    5.
    Thomas, J. A. Butterfly communities under threat. Science 353, 216–218. https://doi.org/10.1126/science.aaf8838 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Bommarco, R., Lundin, O., Smith, H. G. & Rundlöf, M. Drastic historic shifts in bumble-bee community composition in Sweden. Proc. R. Soc. B 279, 309–315. https://doi.org/10.1098/rspb.2011.0647 (2012).
    Article  Google Scholar 

    7.
    Marini, L. et al. Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography 37, 544–551. https://doi.org/10.1111/j.1600-0587.2013.00369.x (2014).
    Article  Google Scholar 

    8.
    Ferreira, P. A., Boscolo, D. & Viana, B. F. What do we know about the effects of landscape changes on plant–pollinator interaction networks?. Ecol. Indic. 31, 35–40. https://doi.org/10.1016/j.ecolind.2012.07.025 (2013).
    Article  Google Scholar 

    9.
    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning: altered community structure disrupts functioning. Ecol. Lett. 8, 538–547. https://doi.org/10.1111/j.1461-0248.2005.00749.x (2005).
    Article  PubMed  Google Scholar 

    10.
    Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57, 1244–1257. https://doi.org/10.1111/1365-2664.13620 (2020).
    Article  Google Scholar 

    11.
    Phillips, B. B. et al. Enhancing road verges to aid pollinator conservation: a review. Biol. Conserv. 250, 108687. https://doi.org/10.1016/j.biocon.2020.108687 (2020).

    12.
    Berg, Å., Bergman, K.-O., Wissman, J., Żmihorski, M. & Öckinger, E. Power-line corridors as source habitat for butterflies in forest landscapes. Biol. Conserv. 201, 320–326. https://doi.org/10.1016/j.biocon.2016.07.034 (2016).
    Article  Google Scholar 

    13.
    Lundholm, J. T. & Richardson, P. J. MINI-REVIEW: Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 47, 966–975. https://doi.org/10.1111/j.1365-2664.2010.01857.x (2010).
    Article  Google Scholar 

    14.
    Cranmer, L., McCollin, D. & Ollerton, J. Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 121, 562–568. https://doi.org/10.1111/j.1600-0706.2011.19704.x (2012).
    Article  Google Scholar 

    15.
    Van Geert, A., Van Rossum, F. & Triest, L. Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J. Ecol. 98, 178–187. https://doi.org/10.1111/j.1365-2745.2009.01600.x (2010).
    Article  Google Scholar 

    16.
    Lázaro-Lobo, A. & Ervin, G. N. A global examination on the differential impacts of roadsides on native vs. exotic and weedy plant species. Glob. Ecol. Conserv. 17, e00555. https://doi.org/10.1016/j.gecco.2019.e00555 (2019).
    Article  Google Scholar 

    17.
    Dubé, C., Pellerin, S. & Poulin, M. Do power line rights-of-way facilitate the spread of non-peatland and invasive plants in bogs and fens?. Botany 89, 91–103. https://doi.org/10.1139/B10-089 (2011).
    Article  Google Scholar 

    18.
    Fahrig, L. & Rytwinski, T. Effects of Roads on Animal Abundance: an Empirical Review and Synthesis. Ecol. Soc. 14(1): 21. http://www.ecologyandsociety.org/vol14/iss1/art21/ (2009).

    19.
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009 (2010).
    Article  Google Scholar 

    20.
    Keilsohn, W., Narango, D. L. & Tallamy, D. W. Roadside habitat impacts insect traffic mortality. J. Insect Conserv. 22, 183–188. https://doi.org/10.1007/s10841-018-0051-2 (2018).
    Article  Google Scholar 

    21.
    Gardiner, M. M., Riley, C. B., Bommarco, R. & Öckinger, E. Rights-of-way: a potential conservation resource. Front. Ecol. Environ. 16, 149–158. https://doi.org/10.1002/fee.1778 (2018).
    Article  Google Scholar 

    22.
    Phillips, B. B., Gaston, K. J., Bullock, J. M. & Osborne, J. L. Road verges support pollinators in agricultural landscapes, but are diminished by heavy traffic and summer cutting. J. Appl. Ecol. 56, 2316–2327. https://doi.org/10.1111/1365-2664.13470 (2019).
    Article  Google Scholar 

    23.
    Wagner, D. L., Metzler, K. J. & Frye, H. Importance of transmission line corridors for conservation of native bees and other wildlife. Biol. Conserv. 235, 147–156. https://doi.org/10.1016/j.biocon.2019.03.042 (2019).
    Article  Google Scholar 

    24.
    Wojcik, V. A. & Buchmann, S. Pollinator conservation and management on electrical transmission and roadside rights-of-way: a review. J. Pollinat. Ecol. 7, 16–26 (2012).
    Article  Google Scholar 

    25.
    Stenmark, M. Infrastrukturens gräs-och buskmarker. Hur stora arealer gräs och buskmarker finns i anslutning till transportinfrastruktur och bidrar dessa till miljömålsarbetet? Infrastrukturens gräs-och buskmarker. Jordbruksverket Rapport 2012:36 (2012).

    26.
    Jeusset, A. et al. Can linear transportation infrastructure verges constitute a habitat and/or a corridor for biodiversity in temperate landscapes? A systematic review protocol. Environ. Evid. 7, 5. https://doi.org/10.1186/s13750-016-0056-9 (2016).
    Article  Google Scholar 

    27.
    Crist, T. O., Veech, J. A., Gering, J. C. & Summerville, K. S. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. Am. Nat. 162, 734–743. https://doi.org/10.1086/378901 (2003).
    Article  PubMed  Google Scholar 

    28.
    With, K. A. Are landscapes more than the sum of their patches?. Landsc. Ecol. 31, 969–980. https://doi.org/10.1007/s10980-015-0328-8 (2016).
    Article  Google Scholar 

    29.
    Cornell, H. V. & Harrison, S. P. What are species pools and when are they important?. Annu. Rev. Ecol. Evol. Syst. 45, 45–67. https://doi.org/10.1146/annurev-ecolsys-120213-091759 (2014).
    Article  Google Scholar 

    30.
    Cornell, H. V. & Lawton, J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61, 1. https://doi.org/10.2307/5503 (1992).
    Article  Google Scholar 

    31.
    Steinert, M., Moe, S. R., Sydenham, M. A. K. & Eldegard, K. Different cutting regimes improve species and functional diversity of insect-pollinated plants in power-line clearings. Ecosphere 9, e02509. https://doi.org/10.1002/ecs2.2509 (2018).
    Article  Google Scholar 

    32.
    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 20142620. https://doi.org/10.1098/rspb.2014.2620 (2015).
    Article  Google Scholar 

    33.
    Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324. https://doi.org/10.1146/annurev-ecolsys-120213-091540 (2014).
    Article  Google Scholar 

    34.
    Vellend, M., Cornwell, W. K., Magnuson-Ford, K. & Mooers, A. O. Measuring phylogenetic biodiversity. In Biological Diversity: Frontiers in Measurement and Assessment 194–207 (Oxford University Press, 2011).

    35.
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, 1995).
    Google Scholar 

    36.
    Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663. https://doi.org/10.1111/jbi.12130 (2013).
    Article  Google Scholar 

    37.
    Hill, B. & Bartomeus, I. The potential of electricity transmission corridors in forested areas as bumblebee habitat. R. Soc. Open Sci. 3, 160525. https://doi.org/10.1098/rsos.160525 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).
    Article  PubMed  Google Scholar 

    39.
    Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605. https://doi.org/10.1111/j.1461-0248.2010.01457.x (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Grusell, E. & Miliander, S. Fältmanual för skötsel av kraftledningsgatans biotoper. https://www.svk.se/contentassets/2f77f2d04b7b451495013f4de5fa7409/bilaga-5-faltmanual-for-skotsel-av-kraftledningsgatans-biotoper.pdf (2011).

    41.
    Zeiter, M., Stampfli, A. & Newbery, D. M. Recruitment limitation constrains local species richness and productivity in dry grassland. Ecology 87, 942–951. https://doi.org/10.1890/0012-9658(2006)87[942:RLCLSR]2.0.CO;2 (2006).
    CAS  Article  PubMed  Google Scholar 

    42.
    Chaudron, C., Chauvel, B. & Isselin-Nondedeu, F. Effects of late mowing on plant species richness and seed rain in road verges and adjacent arable fields. Agric. Ecosyst. Environ. 232, 218–226. https://doi.org/10.1016/j.agee.2016.03.047 (2016).
    Article  Google Scholar 

    43.
    Angold, P. G. The impact of a road upon adjacent heathland vegetation: effects on plant species composition. J. Appl. Ecol. 34, 409–417 (1997).
    Article  Google Scholar 

    44.
    Watmough, S. A., Rabinowitz, T. & Baker, S. The impact of pollutants from a major northern highway on an adjacent hardwood forest. Sci. Total Environ. 579, 409–419. https://doi.org/10.1016/j.scitotenv.2016.11.081 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Andersson, P., Koffman, A., Sjödin, N. E. & Johansson, V. Roads may act as barriers to flying insects: species composition of bees and wasps differs on two sides of a large highway. Nat. Conserv. 18, 47–59. https://doi.org/10.3897/natureconservation.18.12314 (2017).
    Article  Google Scholar 

    46.
    Öckinger, E. & Smith, H. G. Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J. Appl. Ecol. 44, 50–59. https://doi.org/10.1111/j.1365-2664.2006.01250.x (2006).
    Article  Google Scholar 

    47.
    Krauss, J., Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers. Conserv. 13, 1427–1439. https://doi.org/10.1023/B:BIOC.0000021323.18165.58 (2004).
    Article  Google Scholar 

    48.
    Thiele, J., Kellner, S., Buchholz, S. & Schirmel, J. Connectivity or area: what drives plant species richness in habitat corridors?. Landsc. Ecol. 33, 173–181. https://doi.org/10.1007/s10980-017-0606-8 (2018).
    Article  Google Scholar 

    49.
    Lampinen, J., Heikkinen, R. K., Manninen, P., Ryttäri, T. & Kuussaari, M. Importance of local habitat conditions and past and present habitat connectivity for the species richness of grassland plants and butterflies in power line clearings. Biodivers. Conserv. 27, 217–233. https://doi.org/10.1007/s10531-017-1430-9 (2018).
    Article  Google Scholar 

    50.
    Pettersson, L. B., Arnberg, H. & Mellbrand, K. Svensk Dagfjärilsövervakning Årsrapport 2018. (2018).

    51.
    Orrock, J. L., Curler, G. R., Danielson, B. J. & Coyle, D. R. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities. Landsc. Ecol. 26, 1361–1372. https://doi.org/10.1007/s10980-011-9656-5 (2011).
    Article  Google Scholar 

    52.
    Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177. https://doi.org/10.1111/ele.12325 (2014).
    Article  Google Scholar 

    53.
    Grab, H. et al. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363, 282–284. https://doi.org/10.1126/science.aat6016 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    54.
    Williams, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291. https://doi.org/10.1016/j.biocon.2010.03.024 (2010).
    Article  Google Scholar 

    55.
    Helmus, M. R. & Ives, A. R. Phylogenetic diversity—area curves. Ecology 93, S31–S43. https://doi.org/10.1890/11-0435.1 (2012).
    Article  Google Scholar 

    56.
    Cameron, S. A., Hines, H. M. & Williams, P. H. A comprehensive phylogeny of the bumble bees (Bombus). Biol. J. Linn. Soc. 91, 161–188. https://doi.org/10.1111/j.1095-8312.2007.00784.x (2007).
    Article  Google Scholar 

    57.
    Eneland, A. Ängs- och betesmarksinventeringen. Metodik för inventering från och med 2016. Jordbruksverket Rapport 2017:9 (2017).

    58.
    Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134. https://doi.org/10.1016/0006-3207(77)90065-9 (1977).
    Article  Google Scholar 

    59.
    ESRI. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute (2018). https://desktop.arcgis.com/en/arcmap/.

    60.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019). More