1.
García-Roger, E. M., Carmona, M. J. & Serra, M. Facing adversity: Dormant embryos in rotifers. Biol. Bull. 237, 119–144 (2019).
PubMed Article CAS PubMed Central Google Scholar
2.
Denlinger, D. L. Regulation of diapause. Annu. Rev. Entomol. 47, 93–122 (2002).
CAS PubMed Article PubMed Central Google Scholar
3.
Reynolds, J. A. & Hand, S. C. Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. J. Exp. Biol. 212, 2075–2084 (2009).
CAS PubMed PubMed Central Article Google Scholar
4.
Ricci, C. Dormancy patterns in rotifers. Hydrobiologia 446(447), 1–11 (2001).
Article Google Scholar
5.
Poelchau, M. F., Reynolds, J. A., Elsik, C. G., Denlinger, D. L. & Armbruster, P. A. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B. 280, 20130143 (2013).
PubMed Article PubMed Central Google Scholar
6.
Alekseev, V. R., De Stasio, B. T., Gilbert, J. J. & Ravera, O. Preface. In Diapause in Aquatic Invertebrates, Theory and Human Use (eds Alekseev, V. R. et al.) xiii–xvi (Springer, New York, 2007).
Google Scholar
7.
Hand, S. C. & Podrabsky, J. E. Bioenergetics of diapause and quiescence in aquatic animals. Thermochim. Acta 349, 31–42 (2000).
CAS Article Google Scholar
8.
Ślusarczyk, M., Chlebicki, W., Pijanowska, J. & Radzikowski, J. The role of the refractory period in diapause length determination in a freshwater crustacean. Sci. Rep. 9, 11905 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
9.
Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations of Insects (Oxford University Press, Oxford, 1986).
Google Scholar
10.
Alekseev, V. R., De Stasio, B. T. & Gilbert, J. J. Diapause in Aquatic Invertebrates, Theory and Human Use (Springer, New York, 2012).
Google Scholar
11.
García-Roger, E. M., Carmona, M. J. & Serra, M. Modes, mechanisms and evidence of bet hedging in rotifer diapause traits. Hydrobiologia 796, 223–233 (2017).
Article Google Scholar
12.
Cohen, D. Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12, 119–129 (1966).
CAS PubMed Article Google Scholar
13.
Seger, J. & Brockmann, H. J. What is bet-hedging? In Oxford Surveys in Evolutionary Biology Vol. 4 (eds Harvey, P. H. & Partridge, L.) 182–211 (Oxford University Press, Oxford, 1987).
Google Scholar
14.
Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44 (1989).
CAS PubMed Article Google Scholar
15.
Simons, A. M. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc. R. Soc. B Biol. Sci. 278, 1601–1609 (2011).
Article Google Scholar
16.
Menu, F. & Desouhant, E. Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause. Oecologia 132, 167–174 (2002).
ADS PubMed Article Google Scholar
17.
Franch-Gras, L., García-Roger, E. M., Serra, M. & Carmona, M. J. Adaptation in response to environmental unpredictability. Proc. R. Soc. B Biol. Sci. 284, 20170427 (2017).
Article CAS Google Scholar
18.
Tarazona, E., García-Roger, E. M. & Carmona, M. J. Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126, 1162–1172 (2017).
Article Google Scholar
19.
Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).
PubMed Article CAS Google Scholar
20.
Tammariello, S. P. & Denlinger, D. L. G0/G1 cell cycle arrest in the brain of Sarcophaga crassipalpis during pupal diapause and the expression pattern of the cell cycle regulator, proliferating cell nuclear antigen. Insect. Biochem. Mol. Biol. 28, 83–89 (1998).
CAS PubMed Article Google Scholar
21.
Denekamp, N. Y., Reinhardt, R., Kube, M. & Lubzens, E. Late embryogenesis abundant (LEA) proteins in nondesiccated, encysted, and diapausing embryos of rotifers. Biol. Repr. 82, 714–724 (2010).
CAS Article Google Scholar
22.
Qiu, Z. & MacRae, T. H. A molecular overview of diapause in embryos of the crustacean, Artemia franciscana. In Dormancy and Resistance in Harsh Environments (eds Lubzens, E. et al.) 165–188 (Springer, New York, 2010).
Google Scholar
23.
Ziv, T. et al. Dormancy in embryos: Insight from hydrated encysted embryos of an aquatic invertebrate. Mol. Cell. Proteomics 16, 1746–1769 (2017).
CAS PubMed PubMed Central Article Google Scholar
24.
Roncalli, V. et al. Physiological characterization of the emergence from diapause: A transcriptomics approach. Sci. Rep. 8, 12577 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
25.
Rozema, E. et al. Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos. Sci. Rep. 9, 8878 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
26.
Vanvlasselaer, E. & De Meester, L. An exploratory review on the molecular mechanisms of diapause termination in the waterflea. In Daphnia in Dormancy and Resistance in Harsh Environments (eds Lubzens, E. et al.) 189–202 (Springer, New York, 2010).
Google Scholar
27.
Declerck, S. A. J. & Papakostas, S. Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications. Hydrobiologia 796, 131–144 (2017).
Article Google Scholar
28.
Serra, M., García-Roger, E. M., Ortells, R. & Carmona, M. J. Cyclically parthenogenetic rotifers and the theories of population and evolutionary ecology. Limnetica 38, 67–93 (2019).
Google Scholar
29.
García-Roger, E. M., Serra, M. & Carmona, M. J. Bet-hedging in diapausing egg hatching of temporary rotifer populations—A review of models and new insights. Int. Rev. Hydrobiol. 99, 96–106 (2014).
Article Google Scholar
30.
Ricci, C. & Pagani, M. Desiccation of Panagrolaimus rigidus (Nematoda): Survival, reproduction and the influence on the internal clock. Hydrobiologia 347, 1–13 (1997).
Article Google Scholar
31.
Gordon, G. & Headrick, D. H. A Dictionary of Entomology (Oxford CABI Publ Series, Oxford, 2001).
Google Scholar
32.
Fan, L., Lin, J., Zhong, Y. & Liu, J. Shotgun proteomic analysis on the diapause and nondiapause eggs of domesticated silkworm Bombyx mori. PLoS ONE 8, e60386 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
33.
Schröder, T. Diapause in monogonont rotifers. Hydrobiologia 546, 291–306 (2005).
Article Google Scholar
34.
Denekamp, N. Y. et al. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10, 108 (2009).
PubMed PubMed Central Article CAS Google Scholar
35.
Denekamp, N. Y. et al. The expression pattern of dormancy-associated genes in multiple life-history stages in the rotifer Brachionus plicatilis. Hydrobiologia 662, 51–63 (2011).
CAS Article Google Scholar
36.
Clark, M. S. et al. Long-term survival of hydrated resting eggs from Brachionus plicatilis. PLoS ONE 7, e29365 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
37.
Waterworth, W. M., Bray, C. M. & West, C. E. The importance of safeguarding genome integrity in germination and seed longevity. J. Exp. Bot. 66, 3549–3558 (2015).
CAS PubMed Article PubMed Central Google Scholar
38.
Sim, C. & Denlinger, D. L. Catalase and superoxide dismutase-2 enhance survival and protect ovaries during overwintering diapause in the mosquito Culex pipiens. J. Insect Physiol. 57, 628–634 (2011).
CAS PubMed PubMed Central Article Google Scholar
39.
Ragland, G. J., Denlinger, D. L. & Hahn, D. A. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc. Natl. Acad. Sci. USA 107, 14909–14914 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
40.
Duceppe, M. O. et al. Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida. Sci. Rep. 7, 3882 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
41.
Wise, M. J. & Tunnacliffe, A. POPP the question: What do LEA proteins do?. Trends Plant. Sci. 9, 13–17 (2004).
CAS PubMed Article PubMed Central Google Scholar
42.
García-Roger, E. M. & Ortells, R. Trade-offs in rotifer diapausing egg traits: Survival, hatching, and lipid content. Hydrobiologia 805, 339–350 (2018).
Article CAS Google Scholar
43.
Hand, S. C., Menze, M. A., Toner, M., Boswell, L. & Moore, D. LEA proteins during water stress: Not just for plants anymore. Annu. Rev. Physiol. 73, 115–134 (2011).
CAS PubMed Article PubMed Central Google Scholar
44.
Crowe, J. H. et al. The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43, 89–105 (2001).
CAS PubMed Article PubMed Central Google Scholar
45.
Moore, D. S. & Hand, S. C. Cryopreservation of lipid bilayers by LEA proteins from Artemia franciscana and trehalose. Cryobiology 73, 240–247 (2016).
CAS PubMed Article PubMed Central Google Scholar
46.
Clegg, J. S. Origin of trehalose and its significance during formation of encysted dormant embryos of Artemia Salina. Comp. Biochem. Physiol. 14, 135–143 (1965).
CAS PubMed Article PubMed Central Google Scholar
47.
Caprioli, M. et al. Trehalose in desiccated rotifers: A comparison between a bdelloid and a monogonont species. Comp. Biochem. Physiol. 139, 527–532 (2004).
Article CAS Google Scholar
48.
Li, T., Liu, L., Zhang, L. & Liu, N. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus. Sci. Rep. 4, 6474 (2015).
Article CAS Google Scholar
49.
Hommaa, T. et al. G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem. Biophys. Res. Comm. 344, 386–393 (2006).
Article CAS Google Scholar
50.
Jones, S. J. et al. Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res. 11, 1346–1352 (2001).
CAS PubMed Article Google Scholar
51.
Fielenbach, N. & Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 15, 2149–2165 (2008).
Article CAS Google Scholar
52.
Hand, S. C., Denlinger, D. L., Podrabsky, J. E. & Roy, R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R1193–R1211 (2016).
PubMed PubMed Central Article Google Scholar
53.
Woll, S. C. & Podrabsky, J. E. Insulin-like growth factor signaling regulates developmental trajectory associated with diapause in embryos of the annual killifish Austrofundulus limnaeus. J. Exp. Biol. 220, 2777–2786 (2017).
PubMed Article Google Scholar
54.
Yu, C. T. & Hirsh, D. The stimulatory effect of ammonium or potassium ions on the activity of leucyl-tRNA synthetase from Escherichia coli. Biochim. Biophys. Acta 142, 149–154 (1967).
CAS PubMed Article Google Scholar
55.
Beck, S. D., Shane, J. L. & Garland, J. A. Ammonium-induced termination of diapause in the European corn borer, Ostrinia nubilalis. J. Insect. Physiol. 15, 945–951 (1969).
CAS Article Google Scholar
56.
Birnbaumer, L. Expansion of signal transduction by G proteins. The second 15 years or so: From 3 to 16 alpha subunits plus betagamma dimers. Biochim. Biophys. Acta 1768, 772–793 (2007).
CAS PubMed Article Google Scholar
57.
Dumont, H., Casier, P., Munuswamy, N. & De Wasche, C. Cyst hatching in Anostraca accelerated by retinoic acid, amplified by calcium ionosphore A23187, and inhibited by calcium-channel blockers. Hydrobiologia 230, 1–7 (1992).
CAS Article Google Scholar
58.
Kim, H. J. et al. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar. Genomics 20, 25–31 (2015).
PubMed Article Google Scholar
59.
Boschetti, C., Ricci, C., Sotgia, C. & Fascio, U. The development of a bdelloid egg: A contribution after 100 years. Hydrobiologia 546, 323–331 (2005).
Article Google Scholar
60.
Bonneau, B., Popgeorgiev, N., Prudent, J. & Gillet, G. Cytoskeleton dynamics in early zebrafish development. A matter of phosphorylation?. Bioarchitecture 1, 216–220 (2011).
PubMed PubMed Central Article Google Scholar
61.
Eno, C., Solanki, B. & Pelegri, F. Aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 143, 1585–1599 (2016).
CAS PubMed PubMed Central Article Google Scholar
62.
Cáceres, C. E. & Schwalbach, M. S. How well do laboratory experiments explain field patterns of zooplankton emergence?. Freshw. Biol. 46, 1179–1189 (2001).
Article Google Scholar
63.
De Stasio, B. T. Diapause in calanoid copepods: Within-clutch hatching patterns. J. Limnol. 63, 26–31 (2004).
Article Google Scholar
64.
García-Roger, E. M., Carmona, M. J. & Serra, M. Patterns in rotifer diapausing egg banks: Density and viability. J. Exp. Mar. Biol. Ecol. 336, 198–210 (2006).
Article Google Scholar
65.
Helland, S., Nejstgaard, C., Fyhn, J. J., Egge, J. K. & Båmstedt, U. Effects of starvation, season, and diet on the free amino acid and protein content of Calanus finmarchicus females. Mar. Biol. 143, 297–306 (2003).
CAS Article Google Scholar
66.
Skottene, E. et al. The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Sci. Rep. 9, 16686 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
67.
Tan, Q., Liu, W., Zhu, F., Lei, C. & Wang, X. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Sci. Rep. 7, 40509 (2016).
ADS Article CAS Google Scholar
68.
Gilbert, J. J. & Schröder, T. Rotifers from diapausing, fertilized eggs: Unique features and emergence. Limnol. Oceanogr. 49, 1341–1354 (2004).
ADS Article Google Scholar
69.
Alekseev, V. R., Hwang, J.-S. & Tseng, M.-H. Diapause in aquatic invertebrates: What’s known and what’s next in research and medical application?. J. Mar. Sci. Tech. 14, 269–286 (2006).
Google Scholar
70.
Gilbert, J. J. Timing of diapause in monogonont rotifers. In Mechanisms and Strategies in Diapause in Aquatic Invertebrates. Theory and Human Use (eds Alekseev, V. R. et al.) 11–27 (Springer, New York, 2012).
Google Scholar
71.
Koštál, V., Štětina, T., Poupardin, R., Korbelová, J. & Bruce, A. W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl. Acad. Sci. USA 114, 8532–8537 (2017).
PubMed Article CAS PubMed Central Google Scholar
72.
Podrabsky, J. E. & Hand, S. C. Physiological strategies during animal diapause: Lessons from brine shrimp and annual killifish. J. Exp. Biol. 218, 1897–1906 (2015).
PubMed PubMed Central Article Google Scholar
73.
Zahradka, K. et al. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443, 569–573 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
74.
Gladyshev, E. & Meselson, M. Extreme resistance of bdelloid rotifers to ionizing radiation. Proc. Natl. Acad. Sci. USA 105, 5139–5144 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
75.
Kim, R. O. et al. Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp. Aquat. Toxicol. 101, 529–539 (2011).
CAS PubMed Article PubMed Central Google Scholar
76.
Han, J. et al. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus. Aquat Toxicol. 155, 101–109 (2014).
CAS PubMed Article PubMed Central Google Scholar
77.
Hagiwara, A., Hoshi, N., Kawahara, F., Tominaga, K. & Hirayama, K. Resting eggs of the marine rotifer Brachionus plicatilis Müller: Development and effect of irradiation on hatching. Hydrobiologia 313(314), 223–229 (1995).
Article Google Scholar
78.
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013).
Google Scholar
79.
Pourriot, R. & Snell, T. W. Resting eggs of rotifers. Hydrobiologia 104, 213–224 (1983).
Article Google Scholar
80.
Altman, N. & Krzywinski, M. Split plot design. Nat. Meth. 12, 165–166 (2015).
CAS Article Google Scholar
81.
Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. Roy. Stat. Soc. Ser. A 135, 370–384 (1972).
Article Google Scholar
82.
Cox, D. R. Regression models and life-tables (with discussion). J. R. Statist. Soc. B 34, 187–220 (1972).
MATH Google Scholar
83.
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017).
84.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
85.
Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, New York, 2020).
Google Scholar
86.
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
CAS PubMed PubMed Central Article Google Scholar
87.
Franch-Gras, L. et al. Genomic signatures of local adaptation to the degree of environmental unpredictability in rotifers. Sci. Rep. 8, 16051 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
88.
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotech. 28, 511–515 (2010).
CAS Article Google Scholar
89.
Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
CAS PubMed PubMed Central Article Google Scholar
90.
Hoffman, G. E. & Schadt, E. E. VariancePartition: Interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483 (2016).
PubMed PubMed Central Article Google Scholar
91.
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
PubMed PubMed Central Article CAS Google Scholar
92.
Benjamini, Y. & Hochberg, Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J. Educ. Behav. Stat. 25, 60–83 (2000).
Article Google Scholar
93.
Gianetto, G. Q. et al. Calibration plot for proteomics: A graphical tool to visually check the assumptions underlying FDR control in quantitative experiments. Proteomics 16, 29–32 (2016).
Article CAS Google Scholar
94.
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
PubMed PubMed Central Article CAS Google Scholar
95.
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nuc. Acids Res. 10, 4288–4297 (2012).
Article CAS Google Scholar
96.
Witten, D. Classification and clustering of sequencing data using a Poisson model. Ann. Appl. Stat. 5, 2493–2518 (2011).
MathSciNet MATH Article Google Scholar
97.
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
MathSciNet PubMed MATH Article Google Scholar
98.
Sims, D. et al. CGAT: Computational genomics analysis toolkit. Bioinformatics 30, 1290–1291 (2014).
CAS PubMed PubMed Central Article Google Scholar
99.
Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
CAS PubMed PubMed Central Article Google Scholar
100.
Alexa, A. & Rahnenführer, J. TopGO: Enrichment analysis for gene ontology. R package version 2.40.0. Bioconductor https://doi.org/10.18129/B9.bioc.topGO (2020).
Article Google Scholar
101.
Hanson, S. J., Stelzer, C.-P., Welch, D. B. & Logsdon, J. Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production. BMC Genomics 14, 412 (2013).
CAS PubMed PubMed Central Article Google Scholar More