Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests
1.
Watt, A. S. Pattern and process in plant community. J. Ecol. 35, 1–22 (1947).
Article Google Scholar
2.
Ozinga, W. et al. Local above-ground persistence of vascular plants: Life-history trade-offs and environmental constraints. J. Veg. Sci. 18, 489–497 (2007).
Article Google Scholar
3.
Økland, R. H. & Eilertsen, O. Dynamics of understory vegetation in an old-growth boreal coniferous forest, 1988–1993. J. Veg. Sci. 7, 747–762 (1996).
Article Google Scholar
4.
Nygaard, P. H. & Ødegaard, T. Sixty years of vegetation dynamics in a south boreal coniferous forest in southern Norway. J. Veg. Sci. 10, 5–16 (1999).
Article Google Scholar
5.
Palmer, M. W. & Rusch, G. M. How fast is the carousel? Direct indices of species mobility with examples from an Oklahoma grassland. J. Veg. Sci. 12, 305–318 (2001).
Article Google Scholar
6.
Zobel, M., Moora, M. & Herben, T. Clonal mobility and its implications for spatio-temporal patterns of plant communities: What do we need to know next?. Oikos 119, 802–806 (2010).
Article Google Scholar
7.
Chaideftou, E., Kallimanis, A. S., Bergmeier, E. & Dimopoulos, P. How does plant species composition change from year to year? A case study from the herbaceous layer of a submediterranean oak woodland. Comm. Ecol. 13, 88–96 (2012).
Article Google Scholar
8.
Chapman, J. I. & McEwan, R. W. Spatiotemporal dynamics of α-and β-diversity across topographic gradients in the herbaceous layer of an old-growth deciduous forest. Oikos 122, 1679–1686 (2013).
Article Google Scholar
9.
Graae, B. J. & Sunde, P. B. The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography 23, 720–730 (2000).
Article Google Scholar
10.
Bakker, J. P., Olff, H., Willems, J. H. & Zobel, M. Why do we need permanent plots in the study of long-term vegetation dynamics?. J. Veg. Sci. 7, 147–156 (1996).
Article Google Scholar
11.
Van der Maarel, E. Pattern and process in the plant community: fifty years after A.S. Watt. J. Veg. Sci. 7, 19–28 (1996).
Article Google Scholar
12.
Herben, T., Krahulec, F., Hadincová, V. & Skálová, H. Small-scale variability as a mechanism for large-scale stability in mountain grasslands. J. Veg. Sci. 4, 163–170 (1993).
Article Google Scholar
13.
Økland, R. H. Persistence of vascular plants in a Norwegian boreal coniferous forest. Ecography 18, 3–14 (1995).
Article Google Scholar
14.
Campetella, G. et al. Patterns of plant trait-environment relationship along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011).
Article Google Scholar
15.
Canullo, R. et al. Patterns of clonal growth modes along a chronosequence of post-coppice forest regeneration in beech forest of Central Italy. Fol. Geobot. 46, 271–288 (2011).
Article Google Scholar
16.
Rūsiņa, S., Gavrilova, I., Roze, I. & Šulcs, V. Temporal species turnover and plant community changes across different habitats in the lake Engure nature park Latvia. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 68, 68–79 (2014).
Google Scholar
17.
Norden, B. & Appelqvist, T. Conceptual problems of ecological continuity and its bioindicators. Biodivers. Conserv. 10, 779–791 (2001).
Article Google Scholar
18.
Bartha, S., Canullo, R., Chelli, S. & Campetella, G. Unimodal relationships of understory alpha and beta diversity along chronosequence in coppiced and unmanaged beech forests. Diversity 12, 101 (2020).
Article Google Scholar
19.
Gilliam, F. S. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57, 845–857 (2007).
Article Google Scholar
20.
Campetella, G. et al. Scale dependent effects of coppicing on the species pool of late successional beech forest in the Central Apennines (Italy). Appl. Veg. Sci. 19, 474–485 (2016).
Article Google Scholar
21.
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
Article Google Scholar
22.
Weiher, E. et al. Challenging theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 10, 609–620 (1999).
Article Google Scholar
23.
Westoby, M. A Leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).
CAS Article Google Scholar
24.
Wright, I. J. et al. The worldwide leaf economic spectrum. Nature 428, 821–827 (2004).
ADS CAS Article Google Scholar
25.
Klimešová, J., Martínková, J. & Ottaviani, G. Belowground plant functional ecology: Towards an integrated perspective. Funct. Ecol. 32, 2115–2126 (2018).
Article Google Scholar
26.
de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Fol. Geobot. 50, 349–357 (2015).
Article Google Scholar
27.
Aubin, I., Messier, C. & Bouchard, A. Can plantations develop understory biological and physical attributes of naturally regenerated forests?. Biol. Conserv. 141, 2462–2476 (2008).
Article Google Scholar
28.
Dahlgren, J. P., Eriksson, O., Bolmgren, K., Strindell, M. & Ehrlén, J. Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. J. Veg. Sci. 17, 577–582 (2006).
Article Google Scholar
29.
Wellstein, C. et al. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob. Change Biol. 23, 2473–2481 (2017).
ADS Article Google Scholar
30.
Lindacher, R., Böcker, R., Bemmerlein-Lux, F. A., Kleemann, A. & Haas, S. PHANART Datenbank der Gefäßpflanzen Mitteleuropas, Erklärung der Kennzahlen, Aufbau und Inhalt. Veröff. Geobot. Inst. ETH, Stift. Rübel 125, 1–436 (1995).
Google Scholar
31.
Turner, I. M. Sclerophylly: Primarily protective?. Funct. Ecol. 8, 669–675 (1994).
Article Google Scholar
32.
Van Groenendael, J. M., Klimeš, L., Klimešová, J. & Hendriks, R. J. J. Comparative ecology of clonal plants. Philos. Trans. Roy. Soc. B 351, 1331–1339 (1996).
ADS Article Google Scholar
33.
Sammul, M., Kull, K., Niitla, T. & Mols, T. A comparison of plant communities on the basis of their clonal growth patterns. Evol. Ecol. 18, 443–467 (2004).
Article Google Scholar
34.
Canullo, R. et al. Unravelling mechanisms of short-term vegetation dynamics in complex coppice forest systems. Fol. Geobot. 52, 71–81 (2017).
Article Google Scholar
35.
Kidson, R. & Westoby, M. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 125, 11–17 (2000).
ADS CAS Article Google Scholar
36.
Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).
Article Google Scholar
37.
Campetella, G., Canullo, R. & Allegrini, M. C. Status and changes of ground vegetation at the CONECOFOR plots, 1999–2005. Ann. Silvicult. Res. 34, 29–48 (2008).
Google Scholar
38.
Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).
Article Google Scholar
39.
Ackerly, D. D. Functional traits of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 74, 25–44 (2004).
Article Google Scholar
40.
Kopecký, M., Hédl, R. & Szabó, P. Non-random extinctions dominate plant community changes in abandoned coppices. J. Appl. Ecol. 50, 79–87 (2013).
Article Google Scholar
41.
Naaf, T. & Wulf, M. Traits of winner and loser species indicate drivers of herb layer changes over two decades in forests of NW Germany. J. Veg. Sci. 22, 516–527 (2011).
Article Google Scholar
42.
Ottaviani, G., Martínková, J., Herben, T., Pausas, J. G. & Klimešová, J. On plant modularity traits: Functions and challenges. Trends Plant Sci. 22, 648–651 (2017).
CAS Article Google Scholar
43.
Klimešová, J. & Klimeš, L. Bud banks and their role in vegetative regeneration—A literature review and proposal for simple classification and assessment. Perspect. Plant Ecol. Evol. Syst. 8, 115–129 (2007).
Article Google Scholar
44.
Chelli, S. et al. Climate is the main driver of clonal and bud bank traits in Italian forest understories. Persp. Plant Ecol. Evol. Syst. 40, 125478 (2019).
Article Google Scholar
45.
Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
Article Google Scholar
46.
Alpert, P. & Simms, E. L. The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust?. Evol. Ecol. 16, 285–297 (2002).
Article Google Scholar
47.
Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: Contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, 5 (2020).
Article Google Scholar
48.
Swenson, N. G. et al. Temporal turnover in the composition of tropical tree communities: Functional determinism and phylogenetic stochasticity. Ecology 93, 490–499 (2012).
Article Google Scholar
49.
Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter-and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).
Article Google Scholar
50.
Petriccione, B. & Pompei, E. The CONECOFOR programme: general presentation, aims and co-ordination. J. Limnol. 61, 3–11 (2002).
Article Google Scholar
51.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
52.
Bagnouls, F. & Gaussen, H. Les climats biologiques et leur classification. Ann. Geogr. 335, 193–220 (1957).
Article Google Scholar
53.
FAO/UNESCO/WMO. World map of desertification. Food and Agricultural, Organization, Rome (1997).
54.
EUFORGEN. Distribution map of Beech (Fagus sylvatica), www.euforgen.org (2009).
55.
Dupouey, J. L. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests Part VIII. Assessment of Ground Vegetation (ICP-Forests, Hamburg, 1998).
Google Scholar
56.
Canullo, R., Campetella, G., Allegrini, M. C. & Smargiassi, V. Management of forest vegetation data series: The role of database in the frame of quality assurance procedure. J. Limnol. 61, 100–105 (2002).
Article Google Scholar
57.
Klimeš, L., Klimešová, J., Hendriks, R. & van Groenendael, J. Clonal plant architectures: a comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants (eds de Kroon, H. & van Groenendael, J.) 1–29 (Backhuys Publishers, Leiden, 1997).
Google Scholar
58.
Cerabolini, B., Ceriani, R. M., Caccianiga, M., De Andreis, R. & Raimondi, B. Seed size, shape and persistence in soil: A test on Italian flora from Alps to Mediterranean coasts. Seed Sci. Res. 13, 75–85 (2003).
Article Google Scholar
59.
Royal Botanical Gardens Kew. Seed Information Database (SID), Version 7.1. Available from https://data.kew.org/sid/ (2008).
60.
Kleyer, M. et al. The LEDA Traitbase: A database of plant life-history traits of North West European Flora. J. Ecol. 96, 1266–1274 (2008).
Article Google Scholar
61.
Wellstein, C. & Kuss, P. Diversity and frequency of clonal traits along natural and land-use gradients in grasslands of the Swiss Alps. Fol. Geobot. 46, 255–270 (2011).
Article Google Scholar
62.
Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Austr. J. Bot. 61, 167–234 (2013).
Article Google Scholar
63.
Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).
Article Google Scholar
64.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).
Google Scholar
65.
Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
CAS PubMed Google Scholar
66.
Tamura, K., Nei, M. & Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Nat. Acad. Sci. USA 101, 11030–11035 (2004).
ADS CAS Article Google Scholar
67.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
CAS Article Google Scholar
68.
Weiher, E., Clarke, G. D. P. & Keddy, P. A. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81, 309 (1998).
Article Google Scholar
69.
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and regression trees (Wadsworth International Group, Belmont, 1984).
Google Scholar
70.
Ryo, M. & Rillig, M. C. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere 8(11), e01976 (2017).
Article Google Scholar
71.
De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).
Article Google Scholar
72.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M. H. H. & Wagner, H. Vegan: Community Ecology Package. R package version 2.0–7. (2013) Available at https://CRAN.R-project.org/package=vegan
73.
Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat. 15, 651–674 (2006).
MathSciNet Article Google Scholar
74.
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
CAS Article Google Scholar
75.
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
Article Google Scholar
76.
Fabbio, G., Manetti, M. C. & Bertini, G. Aspects of biological diversity in the CONECOFOR plots. I. Structural and species diversity in the tree community. Ann. Silvicul. Res. 30, 17–28 (2006).
Google Scholar
77.
Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009). More
