The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems
1.
Arrigo, K. R. in Sea Ice (Ed. Thomas, D. N.) 352–369 (John Wiley & Sons, Ltd, 2017).
2.
Steiner, N. S. et al. Impacts of the changing ocean-sea ice system on the key forage fish Arctic cod (Boreogadus saida) and subsistence fisheries in the western Canadian Arctic—evaluating linked climate, ecosystem and economic (CEE) models. Front. Mar. Sci. 6, 179 (2019).
Article Google Scholar
3.
Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).
CAS Article Google Scholar
4.
Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).
CAS Article Google Scholar
5.
Riebesell, U., Schloss, I. & Smetacek, V. Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol. 11, 239–248 (1991).
Article Google Scholar
6.
MacGilchrist, G. A. et al. The Arctic Ocean carbon sink. Deep. Res. Part I Oceanogr. Res. Pap. 86, 39–55 (2014).
CAS Article Google Scholar
7.
Bates, N. R. & Mathis, J. T. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6, 2433–2459 (2009).
CAS Article Google Scholar
8.
Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).
CAS Article Google Scholar
9.
Meier, W. N. et al. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217 (2014).
Article Google Scholar
10.
Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).
Article Google Scholar
11.
Maslanik, J., Stroeve, J., Fowler, C. & Emery, W. Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett. 38, L13502 (2011).
Article Google Scholar
12.
Stroeve, J. C., Crawford, A. D. & Stammerjohn, S. Using timing of ice retreat to predict timing of fall freeze-up in the Arctic. Geophys. Res. Lett. 43, 6332–6340 (2016).
Article Google Scholar
13.
Webster, M. A. et al. Interdecadal changes in snow depth on Arctic sea ice. J. Geophys. Res. Ocean. 119, 5395–5406 (2014).
Article Google Scholar
14.
Strong, C. & Rigor, I. G. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophys. Res. Lett. 40, 4864–4868 (2013).
Article Google Scholar
15.
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).
16.
Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett. 40, 2097–2101 (2013).
Article Google Scholar
17.
Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
Article Google Scholar
18.
Vancoppenolle, M. et al. Role of sea ice in global biogeochemical cycles: emerging views and challenges. Quat. Sci. Rev. 79, 207–230 (2013).
Article Google Scholar
19.
Berge, J. et al. In the dark: a review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. 139, 258–271 (2015).
Article Google Scholar
20.
Leu, E. et al. Arctic spring awakening — steering principles behind the phenology of vernal ice algal blooms. Prog. Oceanogr. 139, 151–170 (2015).
Article Google Scholar
21.
Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).
CAS Article Google Scholar
22.
Perovich, D. K. Sea Ice (Ed. Thomas, D. N.) 110–137 (John Wiley & Sons, Ltd, 2017).
23.
Nicolaus, M., Katlein, C., Maslanik, J. A. & Hendricks, S. Solar Radiation Over and Under Sea Ice During the POLARSTERN Cruise ARK-XXVI/3 (TransArc) in Summer 2011 (PANGAEA, 2011); https://doi.pangaea.de/10.1594/PANGAEA.786717
24.
Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408 (2012).
CAS Article Google Scholar
25.
Pistone, K., Eisenman, I. & Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl Acad. Sci. USA 111, 3322–3326 (2014).
CAS Article Google Scholar
26.
Horvat, C. et al. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Sci. Adv. 3, e1601191 (2017).
Article Google Scholar
27.
El-Sayed, S. Z., Van Dijken, G. L. & Gonzalez-Rodas, G. Effects of ultraviolet radiation on marine ecosystems. Int. J. Environ. Stud. 51, 199–216 (1996).
CAS Article Google Scholar
28.
Elliott, A. et al. Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic. Mar. Ecol. Prog. Ser. 541, 91–104 (2015).
CAS Article Google Scholar
29.
Ryan, K. G., Mcminn, A., Hegseth, E. N. & Davy, S. K. The effects of ultraviolet-b radiation on antarctic sea-ice algae. J. Phycol. 48, 74–84 (2012).
CAS Article Google Scholar
30.
Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).
Article Google Scholar
31.
Gradinger, R. Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep. Res. Part II Top. Stud. Oceanogr. 56, 1201–1212 (2009).
CAS Article Google Scholar
32.
Tremblay, J.-E. & Gagnon, J. in Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions (eds Nihoul, J. C. J. & Kostianoy, A. G.) 73–93 (Springer, 2009).
33.
Nomura, D. et al. Nutrient distributions associated with snow and sediment-laden layers in sea ice of the southern Sea of Okhotsk. Mar. Chem. 119, 1–8 (2010).
CAS Article Google Scholar
34.
Meiners, K. M. & Michel, C. in Sea Ice (Ed. Thomas, D. N.) 415–432 (John Wiley & Sons, Ltd, 2017).
35.
Fripiat, F. et al. Macro-nutrient concentrations in Antarctic pack ice: overall patterns and overlooked processes. Elem. Sci. Anth. 5, p13 (2017).
Article Google Scholar
36.
Tremblay, J. É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).
Article Google Scholar
37.
Miller, J. R. & Russell, G. L. Projected impact of climate change on the freshwater and salt budgets of the Arctic Ocean by a global climate model. Geophys. Res. Lett. 27, 1183–1186 (2000).
Article Google Scholar
38.
Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173 (2002).
CAS Article Google Scholar
39.
Rainville, L., M. Lee, C. & Woodgate, A. R. Impact of wind-driven mixing in the Arctic Ocean. Oceanography 24, 136–145 (2011).
Article Google Scholar
40.
Lamarque, J. F. et al. Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).
Article CAS Google Scholar
41.
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J. & Barrett, A. Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett. 41, 1216–1225 (2014).
Article Google Scholar
42.
Tedesco, L., Vichi, M. & Scoccimarro, E. Sea-ice algal phenology in a warmer Arctic. Sci. Adv. 5, eaav4830 (2019).
CAS Article Google Scholar
43.
van Leeuwe, M. A. et al. Microalgal community structure and primary production in Arctic and Antarctic sea ice: a synthesis. Elem. Sci. Anth. https://doi.org/10.1525/elementa.267 (2018).
44.
Hardge, K. et al. Sea ice origin and sea ice retreat as possible drivers of variability in Arctic marine protist composition. Mar. Ecol. Prog. Ser. 571, 43–57 (2017).
CAS Article Google Scholar
45.
Campbell, K., Mundy, C. J., Belzile, C., Delaforge, A. & Rysgaard, S. Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol. 41, 41–58 (2018).
Article Google Scholar
46.
Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).
Article Google Scholar
47.
Fernández-Méndez, M. et al. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean. PLoS ONE 9, e107452 (2014).
Article CAS Google Scholar
48.
Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).
Article Google Scholar
49.
Wassmann, P. & Reigstad, M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24, 220–231 (2011).
Article Google Scholar
50.
Dalman, L. et al. Enhanced bottom-ice algal biomass across a tidal strait in the Kitikmeot Sea of the Canadian Arctic. Elem. Sci. Anth. 7, p22 (2019).
Article Google Scholar
51.
Williams, W. et al. Joint effects of wind and ice motion in forcing upwelling in Mackenzie Trough, Beaufort Sea. Cont. Shelf Res. 26, 2352–2366 (2006).
Article Google Scholar
52.
Ardyna, M. et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem. Sci. Anth. 8, 30 (2020).
Article Google Scholar
53.
Eronen-Rasimus, E. et al. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice. FEMS Microbiol. Ecol. 91, 1–13 (2015).
Article CAS Google Scholar
54.
Bowman, J. S. The relationship between sea ice bacterial community structure and biogeochemistry: a synthesis of current knowledge and known unknowns. Elem. Sci. Anthr. 3, 000072 (2015).
Article Google Scholar
55.
Eronen-Rasimus, E. et al. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community. ISME J. 11, 2345–2355 (2017).
CAS Article Google Scholar
56.
Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).
CAS Article Google Scholar
57.
Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
Article Google Scholar
58.
Søreide, J. E., Leu, E. V. A., Berge, J., Graeve, M. & Falk-Petersen, S. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob. Chang. Biol. 16, 3154–3163 (2010).
Google Scholar
59.
Eriksen, E., Skjoldal, H. R., Gjøsæter, H. & Primicerio, R. Spatial and temporal changes in the Barents Sea pelagic compartment during the recent warming. Prog. Oceanogr. 151, 206–226 (2017).
Article Google Scholar
60.
David, C., Lange, B., Rabe, B. & Flores, H. Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar. Ecol. Prog. Ser. 522, 15–32 (2015).
Article Google Scholar
61.
Melnikov, I. Recent Arctic sea-ice ecosystem: dynamics and forecast. Dokl. Earth Sci. 423, 1516–1519 (2008).
Article CAS Google Scholar
62.
Haug, T. et al. Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: a review of possibilities and constraints. Fish. Res. 188, 38–57 (2017).
Article Google Scholar
63.
Kędra, M. et al. Status and trends in the structure of Arctic benthic food webs. Polar Res. 34, 23775 (2015).
Article Google Scholar
64.
Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M. & Pedersen, M. F. Arctic kelp forests: diversity, resilience and future. Glob. Planet. Change 172, 1–14 (2019).
Article Google Scholar
65.
Murillo, F. J. et al. Sponge assemblages and predicted archetypes in the eastern Canadian Arctic. Mar. Ecol. Prog. Ser. 597, 115–135 (2018).
Article Google Scholar
66.
Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Predictions replaced by facts: a keystone species’ behavioural responses to declining arctic sea-ice. Biol. Lett. 11, 20150803 (2015).
Article CAS Google Scholar
67.
O’Corry-Crowe, G. et al. Genetic profiling links changing sea-ice to shifting beluga whale migration patterns. Biol. Lett. 12, 20160404 (2016).
Article Google Scholar
68.
Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago — Svalbard, Norway. Glob. Chang. Biol. 23, 490–502 (2017).
Article Google Scholar
69.
Wollenburg, J. E. et al. Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom. Sci. Rep. 8, 7703 (2018).
CAS Article Google Scholar
70.
Darnis, G. & Fortier, L. Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean). J. Geophys. Res. 117, C04013 (2012).
Google Scholar
71.
Darnis, G. et al. From polar night to midnight sun: diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol. Oceanogr. 62, 1586–1605 (2017).
CAS Article Google Scholar
72.
Wiedmann, I., Reigstad, M., Sundfjord, A. & Basedow, S. Potential drivers of sinking particle’s size spectra and vertical flux of particulate organic carbon (POC): turbulence, phytoplankton, and zooplankton. J. Geophys. Res. Ocean. 119, 6900–6917 (2014).
CAS Article Google Scholar
73.
Flores, H. et al. Sea-ice properties and nutrient concentration as drivers of the taxonomic and trophic structure of high-Arctic protist and metazoan communities. Polar Biol. 42, 1377–1395 (2019).
Article Google Scholar
74.
Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).
CAS Article Google Scholar
75.
Lalande, C. et al. Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Global Biogeochem. Cycles 28, 571–583 (2014).
CAS Article Google Scholar
76.
Miller, L. A., Carnat, G., Else, B. G. T., Sutherland, N. & Papakyriakou, T. N. Carbonate system evolution at the Arctic Ocean surface during autumn freeze-up. J. Geophys. Res. Ocean. 116, C00G04 (2011).
Article CAS Google Scholar
77.
Dieckmann, G. S. et al. Brief Communication: ikaite (CaCO3·6H2O) discovered in Arctic sea ice. Cryosphere 4, 227–230 (2010).
Article Google Scholar
78.
Rysgaard, S. et al. Ikaite crystals in melting sea ice — implications for pCO2 and pH levels in Arctic surface waters. Cryosphere 6, 901–908 (2012).
Article Google Scholar
79.
Nomura, D. et al. CO2 flux over young and snow-covered Arctic pack ice in winter and spring. Biogeosciences 15, 3331–3343 (2018).
CAS Article Google Scholar
80.
König, D., Miller, L. A., Simpson, K. G. & Vagle, S. Carbon dynamics during the formation of sea ice at different growth rates. Front. Earth Sci. 6, 234 (2018).
Article Google Scholar
81.
Grimm, R., Notz, D., Glud, R. N., Rysgaard, S. & Six, K. D. Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice-biogeochemical model (MPIOM/HAMOCC). Elem. Sci. Anthr. 4, 000136 (2016).
Article Google Scholar
82.
Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. & Christensen, P. B. Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. J. Geophys. Res. 112, C03016 (2007).
Google Scholar
83.
Manizza, M. et al. Changes in the Arctic Ocean CO2 sink (1996–2007): a regional model analysis. Global Biogeochem. Cycles 27, 1108–1118 (2013).
CAS Article Google Scholar
84.
Mortenson, E. Modelling carbon exchange in the air, sea, and ice of the Arctic Ocean. PhD thesis, Univ. of Victoria (2019).
85.
Fransson, A. et al. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: implications for sea-air CO2 fluxes. J. Geophys. Res. Ocean. 122, 5566–5587 (2017).
CAS Article Google Scholar
86.
Mathis, J. T. et al. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states. Geophys. Res. Lett. 39, L07606 (2012).
Article CAS Google Scholar
87.
Pipko, I. I., Semiletov, I. P., Pugach, S. P., Wählstrãm, I. & Anderson, L. G. Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea. Biogeosciences 8, 1987–2007 (2011).
CAS Article Google Scholar
88.
Steiner, N. et al. What sea-ice biogeochemical modellers need from observers. Elementa 4, 000084 (2016).
Google Scholar
89.
Cai, W.-J. et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin. Science 329, 556–559 (2010).
CAS Article Google Scholar
90.
Else, B. et al. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss. Geophys. Res. Lett. 40, 1132–1137 (2013).
CAS Article Google Scholar
91.
Fransson, A. et al. CO2-system development in young sea ice and CO2 gas exchange at the ice/air interface mediated by brine and frost flowers in Kongsfjorden, Spitsbergen. Ann. Glaciol. 56, 245–257 (2015).
Article Google Scholar
92.
Geilfus, N. X. et al. First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth. J. Geophys. Res. Ocean. 118, 244–255 (2013).
CAS Article Google Scholar
93.
Brown, K. A. et al. Inorganic carbon system dynamics in landfast Arctic sea ice during the early-melt period. J. Geophys. Res. Ocean. 120, 3542–3566 (2015).
CAS Article Google Scholar
94.
Damm, E., Rudels, B., Schauer, U., Mau, S. & Dieckmann, G. Methane excess in Arctic surface water- triggered by sea ice formation and melting. Sci. Rep. 5, 16179 (2015).
CAS Article Google Scholar
95.
Kort, E. A. et al. Atmospheric observations of Arctic Ocean methane emissions up to 82° north. Nat. Geosci. 5, 318–321 (2012).
CAS Article Google Scholar
96.
Tison, J.-L. Biogeochemical impact of snow cover and cyclonic intrusions on the winter weddell sea ice pack. J. Geophys. Res. Ocean. 122, 7291–7311 (2017).
Article Google Scholar
97.
AMAP Assessment 2015: Methane as an Arctic Climate Forcer (AMAP, 2015).
98.
Zhou, J. et al. Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): insights on brine and gas dynamics across seasons. J. Geophys. Res. Ocean. 118, 3172–3189 (2013).
CAS Article Google Scholar
99.
Levasseur, M. Impact of Arctic meltdown on the microbial cycling of sulphur. Nat. Geosci. 6, 691–700 (2013).
CAS Article Google Scholar
100.
Hayashida, H. et al. Implications of sea-ice biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic. Biogeosciences 14, 3129–3155 (2017).
CAS Article Google Scholar
101.
Abbatt, J. P. D. et al. Overview paper: new insights into aerosol and climate in the Arctic. Atmos. Chem. Phys. 19, 2527–2560 (2019).
Article CAS Google Scholar
102.
Galindo, V. et al. Biological and physical processes influencing sea ice, under-ice algae, and dimethylsulfoniopropionate during spring in the Canadian Arctic Archipelago. J. Geophys. Res. Ocean. 119, 3746–3766 (2014).
CAS Article Google Scholar
103.
Simpson, W. R. et al. Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 7, 4375–4418 (2007).
CAS Article Google Scholar
104.
Jacobi, H.-W., Morin, S. & Bottenheim, J. W. Observation of widespread depletion of ozone in the springtime boundary layer of the central Arctic linked to mesoscale synoptic conditions. J. Geophys. Res. Atmos. 115, 17302 (2010).
Article CAS Google Scholar
105.
Abbatt, J. P. D. et al. Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmos. Chem. Phys. 12, 6237–6271 (2012).
CAS Article Google Scholar
106.
Frey, M. M. et al. First direct observation of sea salt aerosol production from blowing snow above sea ice. Atmos. Chem. Phys. 20, 2549–2578 (2020).
CAS Article Google Scholar
107.
Tarasick, D. W. & Bottenheim, J. W. Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records. Atmos. Chem. Phys. 2, 197–205 (2002).
CAS Article Google Scholar
108.
Kiko, R., Kern, S., Kramer, M. & Mütze, H. Colonization of newly forming Arctic sea ice by meiofauna: a case study for the future Arctic? Polar Biol. 40, 1277–1288 (2017).
Article Google Scholar
109.
Steiner, N. & Stefels, J. Commentary on the outputs and future of Biogeochemical Exchange Processes at Sea-Ice Interfaces (BEPSII). Elem. Sci. Anth. 5, 81 (2017).
Article Google Scholar
110.
Echeveste, P., Agustí, S. & Dachs, J. Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. Environ. Pollut. 158, 299–307 (2010).
CAS Article Google Scholar
111.
Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505 (2018).
Article CAS Google Scholar
112.
Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Futur. 2, 315–320 (2014).
Article Google Scholar
113.
Steiner, N. S., Christian, J. R., Six, K. D., Yamamoto, A. & Yamamoto-Kawai, M. Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models. J. Geophys. Res. Ocean. 119, 332–347 (2014).
CAS Article Google Scholar
114.
Fransson, A. et al. Impact of sea-ice processes on the carbonate system and ocean acidification at the ice-water interface of the Amundsen Gulf, Arctic Ocean. J. Geophys. Res. Ocean. 118, 7001–7023 (2013).
CAS Article Google Scholar
115.
Geilfus, N.-X. et al. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice–seawater mesocosm. Cryosphere 10, 2173–2189 (2016).
Article Google Scholar
116.
Moreau, S. et al. Assessment of the sea-ice carbon pump: Insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES). Elementa 4, 000122 (2016).
Google Scholar More