Winter temperatures predominate in spring phenological responses to warming
1.
IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).
2.
Miller-Rushing, A. J. & Primack, R. B. Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89, 332—341 (2008).
Article Google Scholar
3.
Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
Article Google Scholar
4.
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).
Article Google Scholar
5.
Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).
CAS Article Google Scholar
6.
Rutishauser, T., Luterbacher, J., Defila, C., Frank, D. & Wanner, H. Swiss spring plant phenology 2007: extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys. Res. Lett. 35, L05703 (2008).
Article Google Scholar
7.
Yu, H. Y., Luedeling, E. & Xu, J. C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).
CAS Article Google Scholar
8.
Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).
Article CAS Google Scholar
9.
Fu, Y. S. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).
CAS Article Google Scholar
10.
Chuine, I. et al. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Glob. Change Biol. 22, 3444–3460 (2016).
Article Google Scholar
11.
Harrington, C. A. & Gould, P. J. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Front. Plant Sci. 6, 120 (2015).
Article Google Scholar
12.
Zohner, C. M., Benito, B. M., Svenning, J. C. & Renner, S. S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Change 6, 1120–1123 (2016).
Article Google Scholar
13.
Basler, D. & Körner, C. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiol. 34, 377–388 (2014).
Article Google Scholar
14.
Caffarra, A., Donnelly, A., Chuine, I. & Jones, M. B. Modelling the timing of Betula pubescens bud-burst. I. Temperature and photoperiod: a conceptual model. Clim. Res. 46, 147–157 (2011).
Article Google Scholar
15.
Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).
CAS Article Google Scholar
16.
Caffarra, A., Donnelly, A. & Chuine, I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim. Res. 46, 159–170 (2011).
Article Google Scholar
17.
Fraga, H., Pinto, J. G. & Santos, J. A. Climate Change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Climatic Change 152, 179–193 (2019).
Article Google Scholar
18.
Heide, O. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol. Plant. 88, 531–540 (1993).
CAS Article Google Scholar
19.
Singh, R. K., Svystun, T., AlDahmash, B., Jönsson, A. M. & Bhalerao, R. P. Photoperiod- and temperature-mediated control of phenology in trees—a molecular perspective. New Phytol. 213, 511–524 (2017).
CAS Article Google Scholar
20.
Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8 (2013).
Article Google Scholar
21.
Vitasse, Y. & Basler, D. Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments? Tree Physiol. 34, 174–183 (2014).
Article Google Scholar
22.
Laube, J. et al. Chilling outweighs photoperiod in preventing precocious spring development. Glob. Change Biol. 20, 170–182 (2014).
Article Google Scholar
23.
Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric. For. Meteorol. 165, 73–81 (2012).
Article Google Scholar
24.
Caffarra, A. & Donnelly, A. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int. J. Biometeorol. 55, 711–721 (2011).
Article Google Scholar
25.
Ohlemüller, R., Gritti, E. S., Sykes, M. T. & Thomas, C. D. Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931–2100. Glob. Ecol. Biogeogr. 15, 395–405 (2006).
Article Google Scholar
26.
Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
Article Google Scholar
27.
Williams, J. W., Jackson, S. T. & Kutzbacht, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).
CAS Article Google Scholar
28.
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
29.
Xu, Y., Ramanathan, V. & Victor, D. G. Global warming will happen faster than we think. Nature 564, 30–32 (2018).
30.
Wolkovich, E. M. et al. Observed Spring Phenology Responses in Experimental Environments (OSPREE) (Knowledge Network for Biocomplexity, 2019); https://doi.org/10.5063/F1CZ35KB
31.
Richardson, E. A model for estimating the completion of rest for ‘Redhaven’ and ’Elberta’ peach trees. HortScience 9, 331–332 (1974).
Google Scholar
32.
Dennis, F. Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38, 347–350 (2003).
Article Google Scholar
33.
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).
34.
Fu, Y. H. et al. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Glob. Change Biol. 25, 1696–1703 (2019).
Article Google Scholar
35.
Bradley, N. L., Leopold, A. C., Ross, J. & Huffaker, W. Phenological changes reflect climate change in Wisconsin. Proc. Natl Acad. Sci. USA 96, 9701–9704 (1999).
CAS Article Google Scholar
36.
Gauzere, J., Lucas, C., Ronce, O., Davi, H. & Chuine, I. Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecol. Model. 441, 108805 (2019).
Article Google Scholar
37.
Heide, O. & Prestrud, A. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25, 109–114 (2005).
CAS Article Google Scholar
38.
van der Schoot, C., Paul, L. K. & Rinne, P. L. H. The embryonic shoot: a lifeline through winter. J. Exp. Bot. 65, 1699–1712 (2014).
Article CAS Google Scholar
39.
Fishman, S., Erez, A. & Couvillon, G. The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 124, 473–483 (1987).
Article Google Scholar
40.
Weinberger, J. H. et al. Chilling requirements of peach varieties. Proc. J. Am. Soc. Hort. Sci. 56, 122–128 (1950).
41.
Polgar, C. A., Primack, R. B., Williams, E. H., Stichter, S. & Hitchcock, C. Climate effects on the flight period of Lycaenid butterflies in Massachusetts. Biol. Conserv. 160, 25–31 (2013).
Article Google Scholar
42.
Vitasse, Y. Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol. 198, 149–155 (2013).
Article Google Scholar
43.
Laube, J., Sparks, T. H., Estrella, N. & Menzel, A. Does humidity trigger tree phenology? Proposal for an air humidity based framework for bud development in spring. New Phytol. 202, 350–355 (2014).
Article Google Scholar
44.
Li, C., Stevens, B. & Marotzke, J. Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett. 42, 8131–8139 (2015).
Article Google Scholar
45.
Balling, R. C. J., Michaels, P. J. & Knappenberger, P. C. Analysis of winter and summer warming rates in gridded temperature time series. Clim. Res. 9, 175–181 (1998).
Article Google Scholar
46.
Hänninen, H. Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Can. J. Bot. 73, 183–199 (1995).
Article Google Scholar
47.
Güsewell, S., Furrer, R., Gehrig, R. & Pietragalla, B. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob. Change Biol.23, 5189–5202 (2017).
Article Google Scholar
48.
Roberts, A. M., Tansey, C., Smithers, R. J. & Phillimore, A. B. Predicting a change in the order of spring phenology in temperate forests. Glob. Change Biol.21, 2603–2611 (2015).
Article Google Scholar
49.
Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269 (2009).
Article Google Scholar
50.
Kicinski, M. Publication bias in recent meta-analyses. PLoS ONE 8, e81823 (2013).
51.
Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. A meta-analysis of competition in field experiments. Am. Nat. 140, 539–572 (1992).
Article Google Scholar
52.
Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).
Article Google Scholar
53.
Lin, L. F. & Chu, H. T. Quantifying publication bias in meta-analysis. Biometrics 74, 785–794 (2018).
Article Google Scholar
54.
Luedeling, E. & Brown, P. H. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. J. Biometeorol. 55, 411–421 (2011).
Article Google Scholar
55.
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
56.
Luedeling, E. chillR: statistical methods for phenology analysis in temperate fruit trees. R package version 0.70.17 (2019).
57.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).
Article Google Scholar
58.
Livneh, B.et al. A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950–2013. Sci. Data 2, 150042 (2015).
59.
Harrington, C. A., Gould, P. J. & St Clair, J. B. Modeling the effects of winter environment on dormancy release of Douglas-fir. For. Ecol. Manag. 259, 798–808 (2010).
Article Google Scholar
60.
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://doi.org/10.18637/jss.v076.i01(2017).
61.
Stan Development Team. RStan: the R interface to Stan. R package version 2.17.3 (2018).
62.
Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2014).
63.
Gauzere, J. et al. Integrating interactive effects of chilling and photoperiod in phenological process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agric. For. Meteorol. 244, 9–20 (2017).
Article Google Scholar
64.
Saikkonen, K. et al. Climate change-driven species’ range shifts filtered by photoperiodism. Nat. Clim. Change 2, 239 (2012).
Article Google Scholar
65.
Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).
Article Google Scholar
66.
Chuine, I., Garcia de Cortazar Atauri, I., Hanninen, H. & Kramer, K. in Phenology: An Integrative Environmental Science (ed. Schwartz M.) 275–293 (Springer, 2013).
67.
Stan Development Team Stan User’s Guide v.2.19 (Stan, 2019). More