Estimating possible bumblebee range shifts in response to climate and land cover changes
1.
IPBES Summary for policy makers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production (eds Potts, S. G. et al.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany (2016).
2.
Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, e37235. https://doi.org/10.1371/journal.pone.0037235 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
3.
Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
ADS CAS Article Google Scholar
4.
Konuma, A. & Okubo, S. Valuating pollination services for agriculture in Japan. Jpn. J. Ecol. 65, 217–226 (2015) ((in Japanese)).
CAS Google Scholar
5.
Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
ADS CAS Article Google Scholar
6.
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bee’s responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
Article Google Scholar
7.
Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
Article Google Scholar
8.
Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362 (2014).
ADS CAS Article Google Scholar
9.
Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
Article Google Scholar
10.
Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).
ADS Article CAS Google Scholar
11.
Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).
CAS Article Google Scholar
12.
Williams, P. H. & Osborne, J. L. Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387 (2009).
Article Google Scholar
13.
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 108, 662–667. https://doi.org/10.1073/pnas.1014743108 (2011).
ADS Article PubMed Google Scholar
14.
IUCN Bumblebee Specialist Group Report 2014. https://www.xerces.org/wp-content/uploads/2015/03/2014-bbsg-annual-report.pdf (2015).
15.
Nieto, A. et al. European Red List of bees (Publication Office of the European Union, Luxembourg, 2014).
Google Scholar
16.
Jacobson, M. M., Tucker, E. M., Mathiasson, M. E. & Rehan, S. M. Decline of bumble bees in northeastern North America, with special focus on Bombus terricola. Biol. Cons. 217, 437–445 (2018).
Article Google Scholar
17.
Goulson, D., Hanley, M. E., Darvill, B. & Ellis, J. S. Biotope associations and the decline of bumblebees (Bombus spp.). J. Insect Conserv. 10, 95–103 (2006).
Article Google Scholar
18.
Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).
ADS CAS Article Google Scholar
19.
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
ADS CAS Article Google Scholar
20.
Biella, P. et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Insect Conserv. 21, 357–366 (2017).
Article Google Scholar
21.
Mommaerts, V. et al. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19, 207–215 (2010).
CAS Article Google Scholar
22.
Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53, 1440–1449 (2016).
CAS Article Google Scholar
23.
Inoue, M. N., Yokoyama, J. & Washitani, I. Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J. Insect Conserv. 12, 135–146 (2008).
Article Google Scholar
24.
Cameron, S. A., Lim, H. C., Lozier, J. D., Duennes, M. A. & Thorp, R. Test of the invasive pathogen hypothesis of bumble bee decline in North America. PNAS 113, 4386–4391 (2016).
ADS CAS Article Google Scholar
25.
Suzuki-Ohno, Y., Yokoyama, J., Nakashizuka, T. & Kawata, M. Utilization of photographs taken by citizens for estimating bumblebee distributions. Sci. Rep. 7, 11215. https://doi.org/10.1038/s41598-017-10581-x (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
26.
Silvertown, J. et al. Crowdsourcing the identification of organisms: A case-study of iSpot. Zookeys 480, 125–146 (2015).
Article Google Scholar
27.
Falk, S. et al. Evaluating the ability of citizen scientists to identify bumblebee (Bombus) species. PLoS ONE 14, e0218614. https://doi.org/10.1371/journal.pone.0218614 (2019).
CAS Article PubMed PubMed Central Google Scholar
28.
Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Article Google Scholar
29.
Knowles, L. L., Carstens, B. C. & Keat, M. L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr. Biol. 17, 940–946 (2007).
CAS Article Google Scholar
30.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Article Google Scholar
31.
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
Article Google Scholar
32.
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
Article Google Scholar
33.
Kinota, K., Takamizawa, K. & Ito, M. The Bumblebees of Japan (Hokkaido University Press, Sapporo, 2013) ((in Japanese)).
Google Scholar
34.
Woodard, S. H. Bumble bee ecophysiology: integrating the changing environment and the organism. Curr. Opin. Insect Sci. 22, 101–108 (2017).
Article Google Scholar
35.
Ogilvie, J. E. et al. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol. Lett. 20, 1507–1515 (2017).
Article Google Scholar
36.
Taki, H., Kevan, P. G. & Ascher, J. S. Landscape effects of forest loss in a pollination system. Landscape Ecol. 22, 1575–1587 (2007).
Article Google Scholar
37.
Ricketts, T. H. et al. Landscape effects on crop pollination services: are there general patterns? Ecol. Lett. 11, 499–515 (2008).
Article Google Scholar
38.
Klein, A.-M. et al. Wild pollination services to California almond rely on semi-natural habitat. J. Appl. Ecol. 49, 723–732 (2012).
Google Scholar
39.
Annual Report on Forest and Forestry in Japan (FY2018). Ministry of Agriculture, Forestry, and Fisheries. https://www.maff.go.jp/e/data/publish/attach/pdf/index-176.pdf (2018).
40.
Maleque, M. A., Ishii, H. T., Maeto, K. & Taniguchi, S. Line thinning forests the abundance and diversity of understory Hymenoptera (Insecta) in Japanese cedar (Cryptomeria japonica D. Don) plantations. J. For. Res. 12, 14–23 (2007).
Article Google Scholar
41.
Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549. https://doi.org/10.1038/nature21709 (2017).
ADS CAS Article PubMed Google Scholar
42.
Katayama, E. Bumblebees (Hokkaido University Press, Sapporo, 2007) ((in Japanese)).
Google Scholar
43.
Richardson, L. L., McFarland, K. P., Zahendra, S. & Hardy, S. Bumble bee (Bombus) distribution and diversity in Vermont, USA: a century of change. J. Insect Conserv. 23, 45–62 (2019).
Article Google Scholar
44.
Vos, C. C. et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J. Appl. Ecol. 45, 1722–1731 (2008).
Article Google Scholar
45.
Japan Biodiversity Outlook 2 Nature Conservation Bureau, Ministry of the Environment. https://www.env.go.jp/nature/biodic/jbo2/pamph04.pdf (2016).
46.
Ushimaru, A. et al. The effects of human management on spatial distribution of two bumble bee species in a traditional agro-forestry Satoyama landscape. J. Apic. Res. 47, 296–303 (2008).
Article Google Scholar
47.
Iwata, M. A wild bee survey in Setaura (Kumamoto Pref.), Kyushu, Japan (Hymenoptera, Apoidea). Jpn. J. Entomol. 65, 635–662 (1997) ((in Japanese)).
Google Scholar
48.
Ministry of the Environment. https://www.biodic.go.jp/biodiversity/activity/policy/map/map22/ (2016). (in Japanese).
49.
Uchida, K., Takahashi, S., Shinohara, T. & Ushimaru, A. Threatened herbivorous insects maintained by long-term traditional management practices in semi-natural grasslands. Agric. Ecosyst. Environ. 221, 156–162 (2016).
Article Google Scholar
50.
Uchida, K., Hiraiwa, M. K. & Ushimaru, A. Plant and herbivorous insect diversity loss are greater than null model expectations due to land-use changes in agro-ecosystems. Biol. Cons. 201, 270–276 (2016).
Article Google Scholar
51.
Radeloff, V. C. et al. Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecol. Appl. 22, 1036–1049 (2012).
CAS Article Google Scholar
52.
Rasmont, P. et al. Climatic risk and distribution atlas of European bumblebees. Biorisk 10, 246 pp. (Pensoft, Sofia, 2015).
Google Scholar
53.
Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).
Article Google Scholar
54.
Sirois-Delisle, C. & Kerr, J. T. Climate change-driven range losses among bumblebee species are poised to accelerate. Sci. Rep. 8, 14464 (2018).
ADS Article CAS Google Scholar
55.
Pyke, G. H., Thomson, J. D., Inouye, D. W. & Miller, T. J. Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7, e01267 (2016).
Article Google Scholar
56.
Seino, H. An estimation of distribution of meteorological elements using GIS and AMeDAS data. J. Agric. Meteorol. 48, 379–383 (1993) ((in Japanese)).
Article Google Scholar
57.
Young, N., Carter, L. & Evangelista, P. A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10). https://ibis.colostate.edu/WebContent/WS/ColoradoView/TutorialsDownloads/A_Maxent_Model_v7.pdf (2011).
58.
Syfert, M. M., Smith, M. J. & Coomes, D. A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8, e55158. https://doi.org/10.1371/journal.pone.0055158 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
59.
Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
Article Google Scholar
60.
Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
Article Google Scholar More
