Understanding deep learning in land use classification based on Sentinel-2 time series
1.
Commission, E. et al. A resource-efficient Europe-flagship initiative under the Europe 2020 strategy. Communication 2011, 21 (2011).
Google Scholar
2.
Union, E. Commission implementing regulation (eu) 2018/746 of 18 May 2018 amending implementing regulation (eu) no 809/2014 as regards modification of single applications and payment claims and checks. Off. J. Eur. Union 61, 1–7 (2018).
Google Scholar
3.
Reichstein, M. et al. Deep learning and process understanding for data-driven earth system science. Nature 566, 195–204 (2019).
ADS CAS PubMed Article Google Scholar
4.
Liu, Y. et al. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv:1605.01156(arXiv preprint) (2016).
5.
Vandal, T. et al. Deepsd: Generating high resolution climate change projections through single image super-resolution. In Proceedings of the 23rd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, 1663–1672 (2017).
6.
Shi, X. et al. Deep learning for precipitation nowcasting: A benchmark and a new model. Adv. Neural Inf. Process. Syst. 20, 5617–5627 (2017).
Google Scholar
7.
Reichstein, M. et al. Potential of new machine learning methods for understanding long-term interannual variability of carbon and energy fluxes and states from site to global scale. AGUFM 2016, B44A-07 (2016).
Google Scholar
8.
Liu, Y. et al. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion 42, 158–173 (2018).
Article Google Scholar
9.
Wang, S. et al. A deep learning framework for remote sensing image registration. ISPRS J. Photogramm. Remote Sens. 145, 148–164 (2018).
ADS Article Google Scholar
10.
Lyu, H., Lu, H. & Mou, L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 8, 506 (2016).
ADS Article Google Scholar
11.
Liu, Y., Minh Nguyen, D., Deligiannis, N., Ding, W. & Munteanu, A. Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery. Remote Sens. 9, 522 (2017).
ADS Article Google Scholar
12.
Lees, T. et al. A machine learning pipeline to predict vegetation health. Eighth International Conference on Learning Representations 1–5, (2020).
13.
Zhao, W. & Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113, 155–165 (2016).
ADS Article Google Scholar
14.
Rußwurm, M. & Körner, M. Multi-temporal land cover classification with long short-term memory neural networks. Int. Arch. Photogramm. Remote Sens. Spat.Inf. Sci. 42, 551 (2017).
Article Google Scholar
15.
Chen, Y., Lin, Z., Zhao, X., Wang, G. & Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2094–2107 (2014).
ADS Article Google Scholar
16.
Li, W., Fu, H., Yu, L. & Cracknell, A. Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens. 9, 22 (2017).
ADS Article Google Scholar
17.
Hu, F., Xia, G.-S., Hu, J. & Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7, 14680–14707 (2015).
ADS Article Google Scholar
18.
Liang, H. & Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 8, 99 (2016).
ADS Article Google Scholar
19.
Zhang, L., Zhang, L. & Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens.Mag. 4, 22–40 (2016).
Article Google Scholar
20.
Zhu, X. X. et al. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens.Mag. 5, 8–36 (2017).
Article Google Scholar
21.
Ma, L. et al. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152, 166–177 (2019).
ADS Article Google Scholar
22.
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (The MIT Press, New York, 2016).
Google Scholar
23.
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
CAS PubMed Article Google Scholar
24.
Campos-Taberner, M. et al. Processing of extremely high-resolution lidar and RGB data: Outcome of the 2015 IEEE GRSS data fusion contest-part a: 2-d contest. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 5547–5559 (2016).
ADS Article Google Scholar
25.
Zhong, L., Hu, L. & Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 221, 430–443 (2019).
ADS Article Google Scholar
26.
Liu, T., Abd-Elrahman, A., Morton, J. & Wilhelm, V. L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 55, 243–264 (2018).
Article Google Scholar
27.
Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Proc. 73, 1–15 (2018).
MathSciNet Article Google Scholar
28.
Gunning, D. et al. Xai–explainable artificial intelligence. Sci. Robot. 4, 20 (2019).
Article Google Scholar
29.
Samek, W. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning Vol. 11700 (Springer, Berlin, 2019).
Google Scholar
30.
Haury, A.-C., Gestraud, P. & Vert, J.-P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One 6, e28210 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
31.
Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 2522–5839 (2020).
Article Google Scholar
32.
Skilton, M. & Hovsepian, F. The 4th Industrial Revolution: Responding to the Impact of Artificial Intelligence on Business (Springer, Berlin, 2017).
Google Scholar
33.
Tjoa, E. & Guan, C. A survey on explainable artificial intelligence (XAI): Towards medical XAI. arXiv:1907.07374(arXiv preprint) (2019).
34.
Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J. & Müller, K.-R. Toward interpretable machine learning: Transparent deep neural networks and beyond. arXiv:2003.07631(arXiv preprint) (2020).
35.
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
ADS MATH Article Google Scholar
36.
Montavon, G., Binder, A., Lapuschkin, S., Samek, W. & Müller, K.-R. Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 193–209 (Springer, Berlin, 2019).
Google Scholar
37.
Arras, L. et al. Explaining and interpreting lstms. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 211–238 (Springer, Berlin, 2019).
Google Scholar
38.
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2921–2929, (2016).
39.
Wolanin, A. et al. Estimating and understanding crop yields with explainable deep learning in the Indian wheat belt. Environ. Res. Lett. 15, 024019 (2020).
ADS Article Google Scholar
40.
Marcos, D., Lobry, S. & Tuia, D. Semantically interpretable activation maps: What-where-how explanations within CNNS. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 4207–4215 (IEEE, 2019).
41.
Pelletier, C., Webb, G. I. & Petitjean, F. Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 11, 523 (2019).
ADS Article Google Scholar
42.
Rußwurm, M. & Körner, M. Multi-temporal land cover classification with sequential recurrent encoders. ISPRS Int. J. Geo-Inf. 7, 129 (2018).
Article Google Scholar
43.
Mnih, V. et al. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 20, 2204–2212 (2014).
Google Scholar
44.
Yin, W., Schütze, H., Xiang, B. & Zhou, B. Abcnn: Attention-based convolutional neural network for modeling sentence pairs. Trans. Assoc. Comput. Linguist. 4, 259–272 (2016).
Article Google Scholar
45.
Ran, X., Shan, Z., Fang, Y. & Lin, C. An LSTM-based method with attention mechanism for travel time prediction. Sensors 19, 861 (2019).
Article Google Scholar
46.
Liu, G. & Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337, 325–338 (2019).
Article Google Scholar
47.
Xu, R., Tao, Y., Lu, Z. & Zhong, Y. Attention-mechanism-containing neural networks for high-resolution remote sensing image classification. Remote Sens. 10, 1602 (2018).
ADS Article Google Scholar
48.
Liu, R., Cheng, Z., Zhang, L. & Li, J. Remote sensing image change detection based on information transmission and attention mechanism. IEEE Access 7, 156349–156359 (2019).
Article Google Scholar
49.
Fu, J. et al. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3146–3154, (2019).
50.
Campos-Taberner, M., García-Haro, F. J., Martínez, B., Sánchez-Ruíz, S. & Gilabert, M. A. A copernicus Sentinel-1 and Sentinel-2 classification framework for the 2020+ European Common Agricultural Policy: A case study in València (Spain). Agronomy 9, 556 (2019).
Article Google Scholar
51.
Campos-Taberner, M. et al. A critical comparison of remote sensing leaf area index estimates over rice-cultivated areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System. Remote Sens. 10, 763 (2018).
ADS Article Google Scholar
52.
Campos-Taberner, M. et al. Exploitation of SAR and optical Sentinel data to detect rice crop and estimate seasonal dynamics of leaf area index. Remote Sens. 9, 248 (2017).
ADS Article Google Scholar
53.
Immitzer, M., Vuolo, F. & Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 8, 166 (2016).
ADS Article Google Scholar
54.
Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C. & Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification?. Int. J. Appl. Earth Obs. Geoinf. 72, 122–130 (2018).
ADS Article Google Scholar
55.
García-Haro, F. J. et al. A global canopy water content product from AVHRR/Metop. ISPRS J. Photogramm. Remote Sens. 162, 77–93 (2020).
ADS Article Google Scholar
56.
Kobayashi, N., Tani, H., Wang, X. & Sonobe, R. Crop classification using spectral indices derived from Sentinel-2a imagery. J. Inf. Telecommun. 4, 67–90 (2020).
Google Scholar
57.
Rouse Jr, J., Haas, R., Schell, J. & Deering, D. Monitoring vegetation systems in the great plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, DC on December 10-14, 1973: Prepared at Goddard Space Flight Center, vol. 351, 309–317 (Scientific and Technical Information Office, National Aeronautics and Space…, 1974).
58.
Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).
ADS Article Google Scholar
59.
Chatziantoniou, A., Psomiadis, E. & Petropoulos, G. P. Co-orbital Sentinel 1 and 2 for lulc mapping with emphasis on wetlands in a mediterranean setting based on machine learning. Remote Sens. 9, 1259 (2017).
ADS Article Google Scholar
60.
Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the western ghats using multispectral Sentinel-2 and sar Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).
ADS Article Google Scholar
61.
Schuster, M. & Paliwal, K. K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997).
ADS Article Google Scholar More