1.
Ghiselli, F. et al. Comparative transcriptomics in two bivalve species offers different perspectives on the evolution of sex-biased genes. Genome Biol. Evol. 10, 1389â1402. https://doi.org/10.1093/gbe/evy082 (2018).
Article Google ScholarÂ
2.
Connon, R. E., Jeffries, K. M., Komoroske, L. M., Todgham, A. E. & Fangue, N. A. The utility of transcriptomics in fish conservation. J. Exp. Biol. 221, jeb148833 (2018).
Article Google ScholarÂ
3.
Gaspar, M. B. & Monteiro, C. C. Reproductive cycles of the razor clam Ensis siliqua and the clam Venus striatula off Vilamoura Southern Portugal. J. Mar. Biol. Assoc. U.K. 78, 1247â1258 (1998).
Article Google ScholarÂ
4.
Poppe, G. T. & Goto, Y. European Seashells. Vol II (Scaphopoda, Bivalvia, Cephalopoda) 1â221 (Verlag Christa Hemmen, Germany, 1993).
Google ScholarÂ
5.
Orban, E. et al. Nutritional and commercial quality of the striped venus clam, Chamelea gallina, from the Adriatic sea. Food Chem. 101, 1063â1070 (2007).
CAS Article Google ScholarÂ
6.
Casali, C. RĂ©sumĂ© des paramĂštres biologiques sur Venus gallina L. en Adriatique (Synopsis of biological data on Venus gallina L. in the Adriatic Sea). FAO Fish. Rep. 290, 171â173 (1984).
Google ScholarÂ
7.
Froglia, C. Aspetti biologici, tecnologici e statistici della pesca delle vongole (Venus gallina) (Biological, technological and statistical observations on the fishery targeting common clams, Venus gallina). Incontri Tecnici, Laboratorio di Tecnologia della Pesca, Consiglio Nazionale delle Ricerche. 9, 7â22 (1975).
Google ScholarÂ
8.
Keller, N., Del Piero, D. & Longinelli, A. Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione in the Gulf of Trieste. Mar. Biol. 140, 9â15 (2002).
Article Google ScholarÂ
9.
Valli, G., Zardini, D. & Nodari, P. Cycle reproductif et biomĂ©trie chez Chamelea gallina (L.) (Mollusca, Bivalvia) dans le Golfe de Trieste (Reproductive cycle and biometry of the Chamelea gallina stock in the Gulf of Trieste). Rapp. Comm. Int. Mer MĂ©diterr. 29, 339â340 (1985).
Google ScholarÂ
10.
Dalgiç, G., OkumuĆ, I. & KarayĂŒcel, S. The effect of fishing on growth of the clam Chamelea gallina (Bivalvia: Veneridae) for the Turkish Black Sea coast. J. Mar. Biol. Assoc. UK 90, 261â265 (2009).
Article Google ScholarÂ
11.
Delgado, M., Silva, L. & JuĂĄrez, A. Aspects of reproduction of striped venus Chamelea gallina in the Gulf of CĂĄdiz (SW Spain): implications for fishery management. Fish. Res. 146, 86â95 (2013).
Article Google ScholarÂ
12.
Romanelli, M., Cordisco, C. A. & Giovanardi, O. The long-term decline of the Chamelea gallina L. (Bivalvia: Veneridae) clam fishery in the Adriatic Sea: is a synthesis possible?. Acta Adriat. 50, 171â205 (2009).
Google ScholarÂ
13.
Ministerial decree n.27 del 17/6/(2019), Ministry of Agricultural Food, forestry, and Tourism policies. Adozione del Piano di gestione nazionale per le attivita’ di pesca con il sistema draghe idrauliche e rastrelli da natante cosĂŹ come identificati nella denominazione degli attrezzi di pesca in draghe meccaniche comprese le turbosoffianti (HMD) e draga meccanizzata (DRB). (2019), Gazzetta ufficiale Italiana.
14.
Vaughn, C. C. & Hoellein, T. J. Bivalve impacts in freshwater and marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 49, 183â208 (2018).
Article Google ScholarÂ
15.
Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralisation. Sci. Rep. 4, 6218 (2014).
ADS CAS Article Google ScholarÂ
16.
Li, Q., Zhao, X., Khong, L. & Yu, H. Transcriptomic response to stress in marine bivalves. Invert. Surviv. J. 10, 84â93 (2013).
CASÂ Google ScholarÂ
17.
Luchmann, K. H. et al. Biochemical biomarkers and hydrocarbons concentrations in the mangrove oyster Crassostrea brasiliana following exposure to diesel fuel water-accommodated fraction. Aquat. Toxicol. 105, 652â660 (2011).
Article CAS Google ScholarÂ
18.
Philipp, E. E. et al. Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS ONE 7, e33091 (2012).
ADS CAS Article Google ScholarÂ
19.
Ezgeta-Balic, D. et al. An energy budget for the subtidal bivalve Modiolus barbatus (Mollusca) at different temperatures. Mar. Environ. Res. 71, 79â85 (2011).
CAS Article Google ScholarÂ
20.
Ivanina, A. V., Kurochkin, I. O., Leamy, L. & Sokolova, I. M. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. J. Exp. Biol. 215, 3142â3154 (2012).
CAS Article Google ScholarÂ
21.
Matozzo, V. et al. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS ONE 7(3), e33820. https://doi.org/10.1371/journal.pone.0033820 (2012).
ADS CAS Article Google ScholarÂ
22.
Monari, M., Foschi, J., Rosmini, R., Marin, M. G. & Serrazanetti, G. P. Heat shock protein 70 response to physical and chemical stress in Chamelea gallina. J. Exp. Mar. Biol. Ecol. 397, 71â78 (2011).
CAS Article Google ScholarÂ
23.
Sobral, P. & Widdows, J. Influence of hypoxia and anoxia on the physiological response of the clam Ruditapes decussatus from southern Portugal. Mar. Biol. 127, 455â461 (1997).
Article Google ScholarÂ
24.
Visciano, P. et al. Concentrations of contaminants with regulatory limits in samples of clam (Chamelea gallina) collected along the Abruzzi Region Coast in Central Italy. J. Food Prot. 78, 1719â1728 (2015).
CAS Article Google ScholarÂ
25.
Moschino, V., Deppieri, M. & Marin, M. G. Evaluation of shell damage to the clam Chamelea gallina captured by hydraulic dredging in the Northern Adriatic Sea. ICES J. Mar. Sci. 60(2), 393â401 (2003).
Article Google ScholarÂ
26.
Milan, M. et al. Transcriptomic profiling of Chamelea gallina from sites along the Abruzzo coast (Italy), subject to periodic localized mortality events. Mar. Biol. 163, 163â169 (2016).
Article Google ScholarÂ
27.
Milan, M. et al. Host-microbiota interactions shed light on mortality events in the striped venus clam Chamelea gallina. Mol. Ecol. 28, 4486â4499 (2019).
CAS Article Google ScholarÂ
28.
Coppe, A. et al. Sequencing and characterization of striped venus transcriptome expand resources for clam fishery genetics. PLoS ONE 7(9), e44185 (2012).
ADS CAS Article Google ScholarÂ
29.
Papetti, C. et al. Genetic variability of the striped venus Chamelea gallina in the northern Adriatic Sea. Fish. Res. 201, 68â78 (2018).
Article Google ScholarÂ
30.
Eizaguirre, C. & Baltazar-Soares, M. Evolutionary conservation-evaluating the adaptive potential of species. Evol. Appl. 7, 963â967 (2014).
Article Google ScholarÂ
31.
Mable, B. K. Conservation of adaptive potential and functional diversity: integrating old and new approaches. Conserv. Genet. 20, 89â100 (2019).
CAS Article Google ScholarÂ
32.
He, X., Johansson, M. L. & Heath, D. D. Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv. Biol. 30, 1010â1018 (2016).
Article Google ScholarÂ
33.
Bertucci, A. et al. Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River France. Environ. Sci. Pollut. R. 24, 27145â27159 (2017).
CAS Article Google ScholarÂ
34.
Gonzalez, P. & Pierron, F. Omics in aquatic ecotoxicology: the ultimate response to biological questions? In aquatic ecotoxicology (eds Amiard, J. C. et al.) 183â203 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-12-800949-9.00008-5.
Google ScholarÂ
35.
Milan, M. et al. Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: transcriptional responses in the mussel Mytilus galloprovincialis. Environ. Pollut. 237, 442â451 (2018).
CAS Article Google ScholarÂ
36.
Vendrami, D. L. J. et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. R. Soc. Open Sci. 4, 160548 (2017).
ADS Article Google ScholarÂ
37.
Vendrami, D. L. J. et al. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 9, 7455 (2019).
ADS Article CAS Google ScholarÂ
38.
Joaquim, S. et al. Biochemical and energy dynamics throughout the reproductive cycle of the striped venus Chamelea gallina (Mollusca, Bivalvia). Invertebr. Reprod. Dev. 58, 284â293 (2014).
CAS Article Google ScholarÂ
39.
Hamdani, A. & Soltani-Mazouni, N. Changes in biochemical composition of the gonads of Donax trunculus L. (Mollusca, Bivalvia) from the Gulf of Annaba (Algeria) in relation to reproductive events and pollution. Jordan J. Biol. Sci. 4, 149â156 (2011).
Google ScholarÂ
40.
Mancuso, A. et al. Environmental influence on calcification of the bivalve Chamelea gallina along a latitudinal gradient in the Adriatic Sea. Sci. Rep. 9, 11198 (2019).
ADS Article CAS Google ScholarÂ
41.
Artegiani, A. et al. The Adriatic Sea general circulation. Part II: baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515â1532 (1997).
ADS Article Google ScholarÂ
42.
Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometr. Intell. Lab. 2, 37â52 (1987).
CAS Article Google ScholarÂ
43.
Bianchi, C. N. & Morri, C. Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar. Pollut. Bull. 40, 367â376 (2000).
CAS Article Google ScholarÂ
44.
Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369â381 (2006).
CAS Article Google ScholarÂ
45.
Mackintosh, C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J. 15, 329â342 (2004).
Article Google ScholarÂ
46.
Gardino, A. K. & Yaffe, M. B. 14-3-3 Proteins as signaling integration points for cell cycle control and apoptosis. Semin. Cell. Dev. Biol. 22, 688â695 (2012).
Article CAS Google ScholarÂ
47.
Telles, E., Hosing, A. S., Kundu, S. T., Venkatraman, P. & Dalal, S. N. A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Exp. Cell. Res. 315, 1448â1457 (2009).
CAS Article Google ScholarÂ
48.
Llera-Herrera, R., Garcıa-Gasca, A., Abreu-Goodger, C., Huvet, A. & Ibarra, A. M. Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing. PLoS ONE 8(9), e73176 (2013).
ADS CAS Article Google ScholarÂ
49.
Lucas, A. & Beninger, P. G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44, 187â200 (1985).
Article Google ScholarÂ
50.
Artigaud, S. et al. Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genom. 16, 988 (2015).
Article CAS Google ScholarÂ
51.
Clark, M. S. et al. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster Crassostrea gigas. Ecol. Evol. 3, 3283â3297 (2013).
Google ScholarÂ
52.
Lockwood, B. L., Sanders, J. G. & Somero, G. N. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J. Exp. Biol. 213, 3548â3558 (2010).
CAS Article Google ScholarÂ
53.
Darriba, S., San Juan, F. & Guerra, A. Energy storage and utilization in relation to the reproductive cycle in the razor clam. ICES J. Mar. Sci. 62, 886â896 (2005).
Article Google ScholarÂ
54.
Mathieu, M. & Lubet, P. Storage tissue metabolism and reproduction in marine bivalves: a brief review. Invertebr. Reprod. Dev. 23, 123â129 (1993).
CAS Article Google ScholarÂ
55.
Usero, J., Morillo, J. & El Bakouri, H. A general integrated ecotoxicological method for marine sediment quality assessment: application to sediments from littoral ecosystems on Southern Spainâs Atlantic coast. Mar. Pollut. Bull. 56, 2027â2036 (2008).
CAS Article Google ScholarÂ
56.
Bocchetti, R. & Regoli, F. Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere 65, 913â921 (2006).
ADS CAS Article Google ScholarÂ
57.
Nahrgang, J. et al. Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua)-Implications for environmental monitoring in the Barents Sea. Aquat. Toxicol. 127, 21â35 (2013).
CAS Article Google ScholarÂ
58.
Sardi, A. E., Renaud, P. E., da Cunha Lanna, P. & Camus, L. Baseline levels of oxidative stress biomarkers in species from a subtropical estuarine system (ParanaguĂĄ Bay, southern Brazil). Mar. Pollut. Bull. 113, 496â508 (2016).
CAS Article Google ScholarÂ
59.
Gorbi, S., Baldini, C. & Regoli, F. Seasonal variability of metallothioneins, cytochrome P450, bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae). Arch. Environ. Con. Tox. 49, 62â70 (2005).
CAS Article Google ScholarÂ
60.
Gorbi, S. et al. An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic Sea. Mar. Environ. Res. 65, 34â49 (2008).
CAS Article Google ScholarÂ
61.
FernĂĄndez, R., Lemer, S., McIntyre, E. & Giribet, G. Comparative phylogeography and population genetic structure of three widespread mollusc species in the Mediterranean and near Atlantic. Mar. Ecol. 36, 701â715 (2015).
ADS Article Google ScholarÂ
62.
Lourenço, C. R. et al. Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel. Sci. Rep. 7, 10279 (2017).
ADS Article CAS Google ScholarÂ
63.
Villamor, A., Costantini, F. & Abbiati, M. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9, e101135 (2014).
ADS Article CAS Google ScholarÂ
64.
Garoia, F. et al. Microsatellite DNA variation reveals high gene flow and panmictic populations in the Adriatic shared stocks of the European squid and cuttlefish (Cephalopoda). Heredity 93, 166â174 (2004).
CAS Article Google ScholarÂ
65.
Marie, A. D. et al. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries. Sci. Rep. 6, 39152 (2016).
ADS CAS Article Google ScholarÂ
66.
De Luca, D., Catanese, G., Procaccini, G. & Fiorito, G. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: genetic diversity and population structure. PLoS ONE 11(2), e0149496 (2016).
Article CAS Google ScholarÂ
67.
Melis, R. et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807, 277â296 (2018).
CAS Article Google ScholarÂ
68.
Bahri-Sfar, L., Lemaire, C., Hassine, O. K. B. & Bonhomme, F. Fragmentation of sea bass populations in the Western and Eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. Lond. 267, 929â935 (2000).
CAS Article Google ScholarÂ
69.
Maggio, T., Lo Brutto, S., Garoia, F., Tinti, F. & Arculeo, M. Microsatellite analysis of red mullet Mullus barbatus (Perciformes, Mullidae) reveals the isolation of the Adriatic Basin in the Mediterranean Sea. ICES J. Mar. Sci. 66, 1883â1891 (2009).
Article Google ScholarÂ
70.
Schunter, C. et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167â5181 (2011).
CAS Article Google ScholarÂ
71.
Aguirre, J. D. & Marshall, D. J. Genetic diversity increases population productivity in a sessile marine invertebrate. Ecology 93, 1134â1142 (2012).
Article Google ScholarÂ
72.
Gamfeldt, L. & KĂ€llström, B. Increasing intraspecific diversity increases predictability in population survival in the face of perturbations. Oikos 116, 700â705 (2007).
Article Google ScholarÂ
73.
Lloyd, M. M., Makukhov, A. D. & Pespeni, M. H. Loss of genetic diversity as a consequence of selection in response to high pCO2. Evol. Appl. 9, 1124â1132 (2016).
CAS Article Google ScholarÂ
74.
Griffiths, S. M., Taylor-Cox, E. D., Behringer, D. C., Butler, M. J. IV. & Preziosi, R. F. Using genetics to inform restoration and predict resilience in declining populations of a keystone marine sponge. Biodivers. Conserv. 29, 1383â1410 (2020).
Article Google ScholarÂ
75.
Plough, L. V. Genetic load in marine animals: a review. Curr. Zool. 62, 567â579 (2016).
Article Google ScholarÂ
76.
Biondi, S. & Del Piero, D. Survey on Chamelea gallina beds in the Lignano area (Gulf of Trieste, Adriatic Sea). Ann. Istrian Mediterr. Stud. 22, 1â8 (2012).
Google ScholarÂ
77.
Nojima, S. & Russo, G. F. Struttura della popolazione del bivalve Chamelea gallina(L.) in un fondo sabbioso dellâisola di Ischia (Golfo di Napoli) (Population structure of Chamelea gallinain infralittoral sand off Ischia Island, Gulf of Naples). Oebalia 15, 189â201 (1989).
Google ScholarÂ
78.
Artegiani, A. et al. The Adriatic Sea general circulation. Part I: air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492â1514 (1997).
ADS Article Google ScholarÂ
79.
El Ayari, T., El Menif, N. T., Hamer, B., Cahill, A. E. & Bierne, N. The hidden side of a major marine biogeographic boundary: a wide mosaic hybrid zone at the Atlantic-Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity 122, 70â784 (2019).
Article Google ScholarÂ
80.
Keen, A. M. Veneridae. In Treatise of Invertebrate Paleontology (ed. Moore, R. C.) N671âN688 (Geological Society of America University of Kansas Press Lawrence, Boulder, 1969).
Google ScholarÂ
81.
Bellan-Santini, D., Fredj, G. & Bellan, G. Mise au point sur les connaissance concernant le benthos profond Mediterraneen. Oebalia 17, 21â36 (1992).
Google ScholarÂ
82.
Bouchet, P. & Taviani, M. The Mediterranean deep-sea fauna: pseudopopulations of Atlantic species?. Deep-Sea Res. 39, 169â184 (1992).
ADS Article Google ScholarÂ
83.
Myers, A. A. Species and generic gamma-scale diversity in shallow-water marine Amphipoda with particular reference to the Mediterranean. J. Mar. Biol. Assoc. UK 76, 195â202 (1996).
Article Google ScholarÂ
84.
Stanley, D. J. & Wezel, F.-C. Geological Evolution of the Mediterranean Basin (Springer, New York, 1985).
Google ScholarÂ
85.
Walne, P. R. Factors affecting the relation between feeding and growth in bivalves. In Harvesting Polluted Waters Vol. 8 (ed. Devil, O.) 169â176 (Plenum Press, New York, 1976).
Google ScholarÂ
86.
Del Fabbro, C., Scalabrin, S., Morgante, M. & Giorgi, F. M. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS ONE 8(12), e85024 (2013).
ADS Article CAS Google ScholarÂ
87.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10â12 (2011).
Article Google ScholarÂ
88.
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15â21 (2013).
CAS Article Google ScholarÂ
89.
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nat. Biotechnol. 33, 290â295 (2015).
CAS Article Google ScholarÂ
90.
Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166â169 (2015).
CAS Article Google ScholarÂ
91.
Love, M., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Article CAS Google ScholarÂ
92.
Punta, M. et al. The Pfam protein families database. Nucleic Acid Res. 40, 290â301 (2012).
Article CAS Google ScholarÂ
93.
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27â30 (2000).
CAS Article Google ScholarÂ
94.
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590-595 (2019).
CAS Article Google ScholarÂ
95.
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947â1951 (2019).
CAS Article Google ScholarÂ
96.
Bocchetti, R. et al. Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquat. Toxicol. 89, 257â266 (2008).
CAS Article Google ScholarÂ
97.
Bocchetti, R. et al. Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic Sea. Mar. Environ. R. 66, 24â26 (2008).
CAS Article Google ScholarÂ
98.
Viarengo, A., Ponzano, E., Dondero, F. & Fabbri, R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res. 44, 69â84 (1997).
CAS Article Google ScholarÂ
99.
Fattorini, D. et al. Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic Sea: a regional gradient for arsenic and implications for monitoring the impact of off-shore activities. Chemosphere 72, 1524â1533 (2008).
ADS CAS Article Google ScholarÂ
100.
Clementi, E. et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 system). Copernicus Monitoring Environment Marine Service (CMEMS) (2019). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_PHY_006_013_EAS5.
101.
Bolzon, G. et al. Mediterranean Sea Biogeochemical Analysis and Forecast (CMEMS MED-Biogeochemistry (2018)-Present). Copernicus Monitoring Environment Marine Service (CMEMS) (2020). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_BIO_006_014_MEDBFM3.
102.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).
ADS CAS Article Google ScholarÂ
103.
Rochette, N. C., Rivera-ColĂłn, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737â4754 (2019).
CAS Article Google ScholarÂ
104.
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
Article CAS Google ScholarÂ
105.
Huson, D. H. et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12(6), e1004957 (2016).
Article CAS Google ScholarÂ
106.
Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 35, 1284â1290 (2018).
CAS Article Google ScholarÂ
107.
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156â2158 (2011).
CAS Article Google ScholarÂ
108.
Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555â559. https://doi.org/10.1038/ng.3254 (2015).
CAS Article Google Scholar More