More stories

  • in

    Increasing our ability to predict contemporary evolution

    1.
    Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s Finches. Science 296, 707–711 (2002).
    ADS  CAS  Article  Google Scholar 
    2.
    LĂ€ssig, M., Mustonen, V. & Walczak, A. M. Predicting evolution. Nat. Ecol. Evol. 1, 77 (2017).

    3.
    Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    4.
    Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Exposito-Alonso, M. et al. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573, 126–129 (2019).
    ADS  CAS  Article  Google Scholar 

    6.
    Stern, D. L. Evolution, Development, & the Predictable Genome (Roberts & Co. Publishers, USA, 2011).

    7.
    Reznick, D. N. & Travis, J. Is evolution predictable? Science 359, 738–739 (2018).
    ADS  CAS  Article  Google Scholar 

    8.
    Gould, S. J. The Structure of Evolutionary Theory (Harvard University Press, USA, 2002).

    9.
    Reimchen, T. E. Predator-induced cyclical changes in lateral plate frequencies of Gasterosteus. Behaviour 132, 1079–1094 (1995).
    Article  Google Scholar 

    10.
    Marques, D. A. et al. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Rego-Costa, A., DĂ©barre, F. & Chevin, L.-M. Chaos and the (un)predictability of evolution in a changing environment. Evolution (N. Y) 72, 375–385 (2018).
    Google Scholar 

    12.
    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

    13.
    Pfennig, D. W. et al. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).
    Article  Google Scholar 

    14.
    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).
    ADS  CAS  Article  Google Scholar 

    16.
    Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).
    ADS  CAS  Article  Google Scholar 

    17.
    de Vladar, H. P. & Barton, N. H. The contribution of statistical physics to evolutionary biology. Trends Ecol. Evol. 26, 424–432 (2011).
    Article  Google Scholar 

    18.
    Milocco, L. & Salazar-Ciudad, I. Is evolution predictable? Quantitative genetics under complex genotype-phenotype maps. Evolution 74, 230–244 (2020).
    Article  Google Scholar 

    19.
    Hendry, A. P. Eco-evolutionary Dynamics (Princeton University Press, USA, 2017).

    20.
    Blount, Z.D., Borland, C.Z., & Lenski, R.E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli Proc. Natl Acad. Sci. 105, 7899–7906 (2008).

    21.
    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 2053–2075 (2007).
    ADS  MathSciNet  Article  Google Scholar 

    22.
    Rabe-Hesketh, S., Skrondal, A. & Pickles, A. Generalized multilevel structural equation modeling. Psychometrika 69, 167–190 (2004).
    MathSciNet  Article  Google Scholar 

    23.
    Haller, B. C. & Messer, P. W. SLiM 3: forward genetic simulations beyond the Wright-Fisher model. Mol. Biol. Evol 36, 632–637 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Epperson, B. K. Geographical Genetics (MPB-38) (Princeton University Press, USA, 2003).

    25.
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, USA, 2020).

    26.
    Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett 12, 1261–1276 (2009).
    Article  Google Scholar 

    27.
    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
    ADS  CAS  Article  Google Scholar 

    28.
    Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Olendorf, R. et al. Frequency-dependent survival in natural guppy populations. Nature 441, 633–636 (2006).
    ADS  CAS  Article  Google Scholar 

    30.
    Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546, 285–288 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Hori, M. Frequency-dependent natural selection in the handedness of scale-eating Cichlid fish. Science 260, 216–219 (1993).
    ADS  CAS  Article  PubMed  Google Scholar 

    32.
    Nosil, P. et al. Ecology shapes epistasis in a genotype-phenotype-fitness map for stick insect colour. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01305-y (2020). More

  • in

    Intraspecific host variation plays a key role in virus community assembly

    1.
    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008).
    ADS  CAS  Google Scholar 
    2.
    Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388, 1–7 (2009).
    CAS  Google Scholar 

    3.
    Prendeville, H. R., Ye, X., Jack Morris, T. & Pilson, D. Virus infections in wild plant populations are both frequent and often unapparent. Am. J. Bot. 99, 1033–1042 (2012).
    Google Scholar 

    4.
    Treena, I. B. et al. Distribution and diversity of phytophthora across Australia distribution and diversity of phytophthora across Australia. Pac. Conserv. Biol. 23, 1–13 (2017).
    Google Scholar 

    5.
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans; Dynamics and Control (1991).

    6.
    Hudson, P. J., Dobson, A. P. & Newborn, D. Prevention of population cycles by parasite removal. Science 282, 2256–2258 (1998).
    ADS  CAS  Google Scholar 

    7.
    Thrall, P. H. et al. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol. Lett. 15, 425–435 (2012).
    Google Scholar 

    8.
    Stevens, R. B. in Plant Pathology, an advanced treatise (eds Horsfall, J. G. & Dimond, A. E.) 357–429 (1960).

    9.
    Susi, H., BarrĂšs, B., Vale, P. F. & Laine, A.-L. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6, 5975 (2015).
    ADS  CAS  Google Scholar 

    10.
    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
    ADS  CAS  Google Scholar 

    11.
    Tilman, D. Resource competition and community structure. Monogr. Popul. Biol. 17, 1–296 (1982).

    12.
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 

    13.
    Grime, P. J. Plant Strategies, Vegetation Processes, and Ecosystem Properties (2001).

    14.
    Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).
    Google Scholar 

    15.
    Seabloom, E. W., Hosseini, P. R., Power, A. G. & Borer, E. T. Diversity and composition of viral communities: coinfection of barley and cereal yellow dwarf viruses in California grasslands. Am. Nat. 173, E79–E98 (2009).
    Google Scholar 

    16.
    Mihaljevic, J. R. Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).
    Google Scholar 

    17.
    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).
    Google Scholar 

    18.
    Borer, E. T., Laine, A.-L. & Seabloom, E. W. A Multiscale approach to plant disease using the metacommunity concept. Annu. Rev. Phytopathol. 54, 397–418 (2016).
    CAS  Google Scholar 

    19.
    Tollenaere, C., Susi, H. & Laine, A.-L. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 21, 80–90 (2016).
    CAS  Google Scholar 

    20.
    Seabloom, E. W., Borer, E. T., Lacroix, C., Mitchell, C. E. & Power, A. G. Richness and composition of niche-assembled viral pathogen communities. PLoS ONE 8, 1–9 (2013).
    Google Scholar 

    21.
    Borer, T., Seabloom, E. W., Mitchell, C. E. & Power, A. G. Local context drives infection of grasses by vector-borne generalist viruses. Ecol. Lett. 13, 810–818 (2010).
    Google Scholar 

    22.
    Richgels, K. L. D., Hoverman, J. T. & Johnson, P. T. J. Evaluating the role of regional and local processes in structuring a larval trematode metacommunity of Helisoma trivolvis. Ecography 36, 854–863 (2013).
    Google Scholar 

    23.
    Rodelo-Urrego, M. et al. Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence. Mol. Ecol. 22, 2325–2340 (2013).
    CAS  Google Scholar 

    24.
    Bernardo, P. et al. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J. 12, 173–184 (2018).
    Google Scholar 

    25.
    Makiola, A. et al. Land use is a determinant of plant pathogen alpha‐ but not beta‐diversity. Mol. Ecol. 28, 3786–3798 (2019).
    Google Scholar 

    26.
    Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).
    Google Scholar 

    27.
    Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 164, 64–78 (2004).
    Google Scholar 

    28.
    Malpica, M. & Sacrista, S. Association and host selectivity in multi-host pathogens. PLoS ONE 1, e41 (2006).
    ADS  Google Scholar 

    29.
    Poulin, R., Blanar, C. A., Thieltges, D. W. & Marcogliese, D. J. Scaling up from epidemiology to biogeography: Local infection patterns predict geographical distribution in fish parasites. J. Biogeogr. 39, 1157–1166 (2012).
    Google Scholar 

    30.
    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 687–614 (2003).
    Article  Google Scholar 

    31.
    Ezenwa, V. O., Price, S. A., Altizer, S., Vitone, N. D. & Cook, K. C. Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. Oikos 115, 526–536 (2006).

    32.
    Gilbert, G. S. & Webb, C. O. Phylogenetic signal in plant pathogen – host range. Proc. Natl Acad. Sci. USA 104, 4979–4983 (2007).
    ADS  CAS  Article  Google Scholar 

    33.
    Lindenfors, P. et al. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob. Ecol. Biogeogr. 16, 496–509 (2007).
    Article  Google Scholar 

    34.
    Mitchell, C. E., Blumenthal, D., Jaroơík, V., Puckett, E. E. & Pyơek, P. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol. Lett. 13, 1525–1535 (2010).
    Article  Google Scholar 

    35.
    Endara, M.-J. & Coley, P. D. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389–398 (2011).
    Article  Google Scholar 

    36.
    Miller, Z. J. Notes and comments fungal pathogen species richness: why do some plant species have more pathogens than others? Am. Nat. 179, 282–292 (2012).
    ADS  Article  Google Scholar 

    37.
    Dallas, T. A. & Presley, S. J. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 123, 866–874 (2014).
    Article  Google Scholar 

    38.
    Strong, D. R. & Levin, D. A. Species richness of plant parasites and growth form of their hosts. Am. Nat. Nat. 114, 1–22 (2019).

    39.
    Louhi, K. R., Karvonen, A., Rellstab, C., Louhi, R. & Jokela, J. Prevalence of infection as a predictor of multiple genotype infection frequency in parasites with multiple-host life cycle. J. Anim. Ecol. 82, 191–200 (2013).
    Article  Google Scholar 

    40.
    Raybould, A. F., Maskell, L. C., Edwards, M. L., Cooper, J. I. & Gray, A. J. The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. N. Phytol. 141, 265–275 (1999).
    Article  Google Scholar 

    41.
    Shoemaker, L. G. et al. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system. Ecol. Lett. 22, 1115–1125 (2019).
    Article  Google Scholar 

    42.
    Shaw, D. J. & Dobson, A. P. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111–S127 (1995).
    Article  Google Scholar 

    43.
    Klein, J., Satta, Y. & Uigin, O. The molecular descent of the major histocompatibility complex. Annu. Rev. Immunol. 11, 269–295 (1993).
    CAS  Article  Google Scholar 

    44.
    Kamitani, M., Nagano, A. J., Honjo, M. N. & Kudoh, H. RNA-Seq reveals virus-virus and virus-plant interactions in nature. FEMS Microbiol. Ecol. 92, 1–11 (2016).
    Article  CAS  Google Scholar 

    45.
    Mysore, K. S. & Ryu, C. M. Nonhost resistance: How much do we know? Trends Plant Sci. 9, 97–104 (2004).
    CAS  Article  Google Scholar 

    46.
    Remold, S. K. Unapparent virus infection and host fitness in three weedy grass species. J. Ecol. 90, 967–977 (2002).

    47.
    Bergelson, J., Kreitman, M., Stahl, E. A. & Tian, D. Evolutionary dynamics of plant R-Genes. Plant Pathol. 292, 2281–2286 (2001).
    CAS  Google Scholar 

    48.
    Laine, A.-L. Detecting local adaptation in a natural plant-pathogen metapopulation: a laboratory vs. field transplant approach. J. Evol. Biol. 20, 1665–1673 (2007).
    Article  Google Scholar 

    49.
    Mandadi, K. K. & Scholthof, K. B. G. Plant immune responses against viruses: How does a virus cause disease? Plant Cell 25, 1489–1505 (2013).
    CAS  Article  Google Scholar 

    50.
    Bruns, E., Carson, M. & May, G. Pathogen and host genotype differently affect pathogen fitness through their effects on different life-history stages. BMC Evol. Biol. 12, 135 (2012).
    Google Scholar 

    51.
    Strauss, A. T., Bowling, A. M., Duffy, M. A., Cáceres, C. E. & Hall, S. R. Linking host traits, interactions with competitors and disease: mechanistic foundations for disease dilution. Funct. Ecol. 32, 1271–1279 (2018).
    Google Scholar 

    52.
    Mundt, C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).
    CAS  Google Scholar 

    53.
    Jousimo, J. et al. Disease ecology. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289–1293 (2014).
    ADS  CAS  Google Scholar 

    54.
    Ekroth, A. K. E., Rafaluk-Mohr, C. & King, K. C. Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis. Proc. R. Soc. B Biol. Sci. 286, 20191811 (2019).
    Google Scholar 

    55.
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).
    Google Scholar 

    56.
    Rausher, M. D. Tradeoffs in performance on different hosts: evidence from within- and between-site variation in the beetle Deloyala guttata. Evolution 38, 582–595 (1984).
    Article  Google Scholar 

    57.
    Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).
    Article  Google Scholar 

    58.
    Zhou, X. et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 115, 3174–3179 (2018).
    CAS  Article  Google Scholar 

    59.
    Karvonen, A., Jokela, J. & Laine, A. L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).
    Article  Google Scholar 

    60.
    Van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J. & Ton, J. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 5602–5607 (2006).
    ADS  Google Scholar 

    61.
    Graham, A. L. Ecological rules governing helminth-microparasite coinfection. Proc. Natl Acad. Sci. USA 105, 566–570 (2008).
    ADS  CAS  Google Scholar 

    62.
    Laine, A.-L. Context-dependent effects of induced resistance under co-infection in a plant-pathogen interaction. Evol. Appl. 4, 696–707 (2011).
    Google Scholar 

    63.
    Syller, J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 13, 204–216 (2012).
    Google Scholar 

    64.
    Porrozzi, R., Teva, A., Amaral, V. F., Santos Da Costa, M. V. & Grimaldi, G. Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca mulatta). Am. J. Trop. Med. Hyg. 71, 297–305 (2004).
    Google Scholar 

    65.
    Burdon, A. J. J., Thrall, P. H. & Brown, A. H. D. Resistance and virulence structure in two linum marginale-melampsora lini host-pathogen metapopulations with different mating systems. Evolution 53, 704–716 (1999).
    CAS  Google Scholar 

    66.
    Lively, C. M., de Roode, J. C., Duffy, M. A., Graham, A. L. & Koskella, B. Interesting open questions in disease ecology and evolution. Am. Nat. 184, S1–S8 (2014).

    67.
    Roossinck, M. J. & Bazán, E. R. Symbiosis: viruses as intimate partners. Annu. Rev. Virol. 4, 123–139 (2017).
    CAS  Google Scholar 

    68.
    Hily, J. M., Poulicard, N., Mora, M. Á., Pagán, I. & García-Arenal, F. Environment and host genotype determine the outcome of a plant-virus interaction: From antagonism to mutualism. N. Phytol. 209, 812–822 (2016).
    Google Scholar 

    69.
    Susi, H., Filloux, D., Frilander, M. J., Roumagnac, P. & Laine, A.-L. Diverse and variable virus communities in wild plant populations revealed by metagenomic tools. PeerJ 2019, e6140 (2019).
    Google Scholar 

    70.
    Warton, D. I. et al. So many variables: joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).
    Google Scholar 

    71.
    Ovaskainen, O. & Soininen, J. Making more out of sparse data: hierarchical modeling of species communities. Ecology 92, 289–295 (2011).
    Google Scholar 

    72.
    Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).
    Google Scholar 

    73.
    Aivelo, T. & Norberg, A. Parasite–microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol. 87, 438–447 (2018).

    74.
    Dallas, T. A., Laine, A., Ovaskainen, O. & Dallas, T. A. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B Biol. Sci. 286, 20191109 (2019).
    Google Scholar 

    75.
    Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).
    Google Scholar 

    76.
    Thrall, P. H. & Burdon, J. J. Effect of resistance variation in a natural plant host-pathogen metapopulation on disease dynamics. Plant Pathol. 49, 767–773 (2000).
    Google Scholar 

    77.
    Thrall, P. H., Burdon, J. J. & Young, A. Variation in resistance and virulence among demes of a plant host-pathogen metapopulation. J. Ecol. 89, 736–748 (2001).
    Google Scholar 

    78.
    Lively, C. M. The effect of host genetic diversity on disease spread. Am. Nat. 175, E149–E152 (2010).

    79.
    Benavides, J. A. et al. From parasite encounter to infection: multiple-scale drivers of parasite richness in a wild social primate population. Am. J. Phys. Anthropol. 147, 52–63 (2012).
    Google Scholar 

    80.
    Susi, H. & Laine, A. L. The effectiveness and costs of pathogen resistance strategies in a perennial plant. J. Ecol. 103, 303–315 (2015).
    Google Scholar 

    81.
    Ojanen, S. P., Nieminen, M., Meyke, E., Pöyry, J. & Hanski, I. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends. Ecol. Evol. 3, 3713–3737 (2013).
    Google Scholar 

    82.
    Jackson, J. A., Pleass, R. J., Cable, J., Bradley, J. E. & Tinsley, R. C. Heterogenous interspecific interactions in a host–parasite system. Int. J. Parasitol. 36, 1341–1349 (2006).
    CAS  Google Scholar 

    83.
    Susi, H., Vale, P. F. & Laine, A.-L. Host genotype and coinfection modify the relationship of within and between host transmission. Am. Nat. 186, 000–000 (2015).
    Google Scholar 

    84.
    Laine, A. Resistance variation within and among host populations in a plant–pathogen metapopulation: implications for. J. Ecol. 92, 990–1000 (2004).
    Google Scholar 

    85.
    Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).
    Google Scholar 

    86.
    Hoeksema, J. D. & Forde, S. E. A meta-analysis of factors affecting local adaptation between interacting species. Am. Nat. 171, 275–290 (2008).
    Google Scholar 

    87.
    Laine, A.-L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).
    Google Scholar 

    88.
    Smith, C. M. & Boyko, E. V. The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol. Exp. Appl. 122, 1–16 (2007).
    CAS  Google Scholar 

    89.
    Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 647, 966–968 (2006).
    ADS  Google Scholar 

    90.
    Mauck, K., Bosque-PĂ©rez, N. A., Eigenbrode, S. D., De Moraes, C. M. & Mescher, M. C. Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Funct. Ecol. 26, 1162–1175 (2012).
    Google Scholar 

    91.
    Susi, H. & Laine, A. L. Host resistance and pathogen aggressiveness are key determinants of coinfection in the wild. Evolution (N. Y). 71, 2110–2119 (2017).
    Google Scholar 

    92.
    Bergner, L. M. et al. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol. Ecol. 29, 26–39 (2019).
    Google Scholar 

    93.
    Telfer, S. et al. Species interactions ina parasite community drive infection risk in a wildlife population. Science 330, 243–247 (2010).
    ADS  CAS  Google Scholar 

    94.
    Halliday, F. W. et al. Facilitative priority effects drive parasite assembly under coinfection. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01289-9 (2020).

    95.
    Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).
    CAS  Google Scholar 

    96.
    Cassells, A. C. & Herrick, C. C. Cross protection between mild and severe strains of tobacco mosaic virus in doubly inoculated tomato plants. Virology 78, 253–260 (1977).
    CAS  Google Scholar 

    97.
    Sagar, A. G. R. & Harper, J. L. Plantago Major L., P. Media L. and P. Lancoeolata L. J. Ecol. 52, 189–221 (1964).
    Google Scholar 

    98.
    Laine, A.-L. & Hanski, I. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94, 217–226 (2006).
    Google Scholar 

    99.
    Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).
    ADS  CAS  Google Scholar 

    100.
    Chang, S., Puryear, J. & Cairny, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11, 113–116 (1993).
    CAS  Google Scholar 

    101.
    Susi, H. et al. Genome sequences of a capulavirus infecting Plantago lanceolata in the Åland archipelago of Finland. Arch. Virol. 162, 2041–2045 (2017).
    CAS  Google Scholar 

    102.
    Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).
    Google Scholar 

    103.
    Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).
    Google Scholar 

    104.
    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 2, 561–576 (2017).
    Google Scholar 

    105.
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 

    106.
    Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling: With Applications in R. Ecology, Biodiversity and Conservation (Cambridge University Press, 2020).

    107.
    Tikhonov, G., Abrego, N., Dunson, D. & Ovaskainen, O. Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods Ecol. Evol. 8, 443–452 (2017).
    Google Scholar 

    108.
    Tikhonov, G. et al. Hmsc: hierarchical model of species communities. R. package version 3, 0–7 (2020).
    Google Scholar 

    109.
    Bhattacharya, A. & Dunson, D. B. Sparse Bayesian infinite factor models. Biometrika 98, 291–306 (2011).
    MathSciNet  CAS  MATH  Google Scholar 

    110.
    Tjur, T. Coefficients of determination in logistic regression models—a new proposal: the coefficient of discrimination. Am. Stat. 63, 366–372 (2009).
    MathSciNet  MATH  Google Scholar 

    111.
    Watanabe, S. A widely applicable bayesian information criterion. J. Mach. Learn. Res. 14, 867–897 (2013).
    MathSciNet  MATH  Google Scholar 

    112.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020). More

  • in

    Omics approaches for conservation biology research on the bivalve Chamelea gallina

    1.
    Ghiselli, F. et al. Comparative transcriptomics in two bivalve species offers different perspectives on the evolution of sex-biased genes. Genome Biol. Evol. 10, 1389–1402. https://doi.org/10.1093/gbe/evy082 (2018).
    Article  Google Scholar 
    2.
    Connon, R. E., Jeffries, K. M., Komoroske, L. M., Todgham, A. E. & Fangue, N. A. The utility of transcriptomics in fish conservation. J. Exp. Biol. 221, jeb148833 (2018).
    Article  Google Scholar 

    3.
    Gaspar, M. B. & Monteiro, C. C. Reproductive cycles of the razor clam Ensis siliqua and the clam Venus striatula off Vilamoura Southern Portugal. J. Mar. Biol. Assoc. U.K. 78, 1247–1258 (1998).
    Article  Google Scholar 

    4.
    Poppe, G. T. & Goto, Y. European Seashells. Vol II (Scaphopoda, Bivalvia, Cephalopoda) 1–221 (Verlag Christa Hemmen, Germany, 1993).
    Google Scholar 

    5.
    Orban, E. et al. Nutritional and commercial quality of the striped venus clam, Chamelea gallina, from the Adriatic sea. Food Chem. 101, 1063–1070 (2007).
    CAS  Article  Google Scholar 

    6.
    Casali, C. RĂ©sumĂ© des paramĂštres biologiques sur Venus gallina L. en Adriatique (Synopsis of biological data on Venus gallina L. in the Adriatic Sea). FAO Fish. Rep. 290, 171–173 (1984).
    Google Scholar 

    7.
    Froglia, C. Aspetti biologici, tecnologici e statistici della pesca delle vongole (Venus gallina) (Biological, technological and statistical observations on the fishery targeting common clams, Venus gallina). Incontri Tecnici, Laboratorio di Tecnologia della Pesca, Consiglio Nazionale delle Ricerche. 9, 7–22 (1975).
    Google Scholar 

    8.
    Keller, N., Del Piero, D. & Longinelli, A. Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione in the Gulf of Trieste. Mar. Biol. 140, 9–15 (2002).
    Article  Google Scholar 

    9.
    Valli, G., Zardini, D. & Nodari, P. Cycle reproductif et biomĂ©trie chez Chamelea gallina (L.) (Mollusca, Bivalvia) dans le Golfe de Trieste (Reproductive cycle and biometry of the Chamelea gallina stock in the Gulf of Trieste). Rapp. Comm. Int. Mer MĂ©diterr. 29, 339–340 (1985).
    Google Scholar 

    10.
    Dalgiç, G., Okumuß, I. & KarayĂŒcel, S. The effect of fishing on growth of the clam Chamelea gallina (Bivalvia: Veneridae) for the Turkish Black Sea coast. J. Mar. Biol. Assoc. UK 90, 261–265 (2009).
    Article  Google Scholar 

    11.
    Delgado, M., Silva, L. & Juárez, A. Aspects of reproduction of striped venus Chamelea gallina in the Gulf of Cádiz (SW Spain): implications for fishery management. Fish. Res. 146, 86–95 (2013).
    Article  Google Scholar 

    12.
    Romanelli, M., Cordisco, C. A. & Giovanardi, O. The long-term decline of the Chamelea gallina L. (Bivalvia: Veneridae) clam fishery in the Adriatic Sea: is a synthesis possible?. Acta Adriat. 50, 171–205 (2009).
    Google Scholar 

    13.
    Ministerial decree n.27 del 17/6/(2019), Ministry of Agricultural Food, forestry, and Tourism policies. Adozione del Piano di gestione nazionale per le attivita’ di pesca con il sistema draghe idrauliche e rastrelli da natante cosĂŹ come identificati nella denominazione degli attrezzi di pesca in draghe meccaniche comprese le turbosoffianti (HMD) e draga meccanizzata (DRB). (2019), Gazzetta ufficiale Italiana.

    14.
    Vaughn, C. C. & Hoellein, T. J. Bivalve impacts in freshwater and marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 49, 183–208 (2018).
    Article  Google Scholar 

    15.
    Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralisation. Sci. Rep. 4, 6218 (2014).
    ADS  CAS  Article  Google Scholar 

    16.
    Li, Q., Zhao, X., Khong, L. & Yu, H. Transcriptomic response to stress in marine bivalves. Invert. Surviv. J. 10, 84–93 (2013).
    CAS  Google Scholar 

    17.
    Luchmann, K. H. et al. Biochemical biomarkers and hydrocarbons concentrations in the mangrove oyster Crassostrea brasiliana following exposure to diesel fuel water-accommodated fraction. Aquat. Toxicol. 105, 652–660 (2011).
    Article  CAS  Google Scholar 

    18.
    Philipp, E. E. et al. Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS ONE 7, e33091 (2012).
    ADS  CAS  Article  Google Scholar 

    19.
    Ezgeta-Balic, D. et al. An energy budget for the subtidal bivalve Modiolus barbatus (Mollusca) at different temperatures. Mar. Environ. Res. 71, 79–85 (2011).
    CAS  Article  Google Scholar 

    20.
    Ivanina, A. V., Kurochkin, I. O., Leamy, L. & Sokolova, I. M. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. J. Exp. Biol. 215, 3142–3154 (2012).
    CAS  Article  Google Scholar 

    21.
    Matozzo, V. et al. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS ONE 7(3), e33820. https://doi.org/10.1371/journal.pone.0033820 (2012).
    ADS  CAS  Article  Google Scholar 

    22.
    Monari, M., Foschi, J., Rosmini, R., Marin, M. G. & Serrazanetti, G. P. Heat shock protein 70 response to physical and chemical stress in Chamelea gallina. J. Exp. Mar. Biol. Ecol. 397, 71–78 (2011).
    CAS  Article  Google Scholar 

    23.
    Sobral, P. & Widdows, J. Influence of hypoxia and anoxia on the physiological response of the clam Ruditapes decussatus from southern Portugal. Mar. Biol. 127, 455–461 (1997).
    Article  Google Scholar 

    24.
    Visciano, P. et al. Concentrations of contaminants with regulatory limits in samples of clam (Chamelea gallina) collected along the Abruzzi Region Coast in Central Italy. J. Food Prot. 78, 1719–1728 (2015).
    CAS  Article  Google Scholar 

    25.
    Moschino, V., Deppieri, M. & Marin, M. G. Evaluation of shell damage to the clam Chamelea gallina captured by hydraulic dredging in the Northern Adriatic Sea. ICES J. Mar. Sci. 60(2), 393–401 (2003).
    Article  Google Scholar 

    26.
    Milan, M. et al. Transcriptomic profiling of Chamelea gallina from sites along the Abruzzo coast (Italy), subject to periodic localized mortality events. Mar. Biol. 163, 163–169 (2016).
    Article  Google Scholar 

    27.
    Milan, M. et al. Host-microbiota interactions shed light on mortality events in the striped venus clam Chamelea gallina. Mol. Ecol. 28, 4486–4499 (2019).
    CAS  Article  Google Scholar 

    28.
    Coppe, A. et al. Sequencing and characterization of striped venus transcriptome expand resources for clam fishery genetics. PLoS ONE 7(9), e44185 (2012).
    ADS  CAS  Article  Google Scholar 

    29.
    Papetti, C. et al. Genetic variability of the striped venus Chamelea gallina in the northern Adriatic Sea. Fish. Res. 201, 68–78 (2018).
    Article  Google Scholar 

    30.
    Eizaguirre, C. & Baltazar-Soares, M. Evolutionary conservation-evaluating the adaptive potential of species. Evol. Appl. 7, 963–967 (2014).
    Article  Google Scholar 

    31.
    Mable, B. K. Conservation of adaptive potential and functional diversity: integrating old and new approaches. Conserv. Genet. 20, 89–100 (2019).
    CAS  Article  Google Scholar 

    32.
    He, X., Johansson, M. L. & Heath, D. D. Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv. Biol. 30, 1010–1018 (2016).
    Article  Google Scholar 

    33.
    Bertucci, A. et al. Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River France. Environ. Sci. Pollut. R. 24, 27145–27159 (2017).
    CAS  Article  Google Scholar 

    34.
    Gonzalez, P. & Pierron, F. Omics in aquatic ecotoxicology: the ultimate response to biological questions? In aquatic ecotoxicology (eds Amiard, J. C. et al.) 183–203 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-12-800949-9.00008-5.
    Google Scholar 

    35.
    Milan, M. et al. Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: transcriptional responses in the mussel Mytilus galloprovincialis. Environ. Pollut. 237, 442–451 (2018).
    CAS  Article  Google Scholar 

    36.
    Vendrami, D. L. J. et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. R. Soc. Open Sci. 4, 160548 (2017).
    ADS  Article  Google Scholar 

    37.
    Vendrami, D. L. J. et al. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 9, 7455 (2019).
    ADS  Article  CAS  Google Scholar 

    38.
    Joaquim, S. et al. Biochemical and energy dynamics throughout the reproductive cycle of the striped venus Chamelea gallina (Mollusca, Bivalvia). Invertebr. Reprod. Dev. 58, 284–293 (2014).
    CAS  Article  Google Scholar 

    39.
    Hamdani, A. & Soltani-Mazouni, N. Changes in biochemical composition of the gonads of Donax trunculus L. (Mollusca, Bivalvia) from the Gulf of Annaba (Algeria) in relation to reproductive events and pollution. Jordan J. Biol. Sci. 4, 149–156 (2011).
    Google Scholar 

    40.
    Mancuso, A. et al. Environmental influence on calcification of the bivalve Chamelea gallina along a latitudinal gradient in the Adriatic Sea. Sci. Rep. 9, 11198 (2019).
    ADS  Article  CAS  Google Scholar 

    41.
    Artegiani, A. et al. The Adriatic Sea general circulation. Part II: baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532 (1997).
    ADS  Article  Google Scholar 

    42.
    Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometr. Intell. Lab. 2, 37–52 (1987).
    CAS  Article  Google Scholar 

    43.
    Bianchi, C. N. & Morri, C. Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar. Pollut. Bull. 40, 367–376 (2000).
    CAS  Article  Google Scholar 

    44.
    Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369–381 (2006).
    CAS  Article  Google Scholar 

    45.
    Mackintosh, C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J. 15, 329–342 (2004).
    Article  Google Scholar 

    46.
    Gardino, A. K. & Yaffe, M. B. 14-3-3 Proteins as signaling integration points for cell cycle control and apoptosis. Semin. Cell. Dev. Biol. 22, 688–695 (2012).
    Article  CAS  Google Scholar 

    47.
    Telles, E., Hosing, A. S., Kundu, S. T., Venkatraman, P. & Dalal, S. N. A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Exp. Cell. Res. 315, 1448–1457 (2009).
    CAS  Article  Google Scholar 

    48.
    Llera-Herrera, R., Garcıa-Gasca, A., Abreu-Goodger, C., Huvet, A. & Ibarra, A. M. Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing. PLoS ONE 8(9), e73176 (2013).
    ADS  CAS  Article  Google Scholar 

    49.
    Lucas, A. & Beninger, P. G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44, 187–200 (1985).
    Article  Google Scholar 

    50.
    Artigaud, S. et al. Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genom. 16, 988 (2015).
    Article  CAS  Google Scholar 

    51.
    Clark, M. S. et al. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster Crassostrea gigas. Ecol. Evol. 3, 3283–3297 (2013).
    Google Scholar 

    52.
    Lockwood, B. L., Sanders, J. G. & Somero, G. N. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J. Exp. Biol. 213, 3548–3558 (2010).
    CAS  Article  Google Scholar 

    53.
    Darriba, S., San Juan, F. & Guerra, A. Energy storage and utilization in relation to the reproductive cycle in the razor clam. ICES J. Mar. Sci. 62, 886–896 (2005).
    Article  Google Scholar 

    54.
    Mathieu, M. & Lubet, P. Storage tissue metabolism and reproduction in marine bivalves: a brief review. Invertebr. Reprod. Dev. 23, 123–129 (1993).
    CAS  Article  Google Scholar 

    55.
    Usero, J., Morillo, J. & El Bakouri, H. A general integrated ecotoxicological method for marine sediment quality assessment: application to sediments from littoral ecosystems on Southern Spain’s Atlantic coast. Mar. Pollut. Bull. 56, 2027–2036 (2008).
    CAS  Article  Google Scholar 

    56.
    Bocchetti, R. & Regoli, F. Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere 65, 913–921 (2006).
    ADS  CAS  Article  Google Scholar 

    57.
    Nahrgang, J. et al. Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua)-Implications for environmental monitoring in the Barents Sea. Aquat. Toxicol. 127, 21–35 (2013).
    CAS  Article  Google Scholar 

    58.
    Sardi, A. E., Renaud, P. E., da Cunha Lanna, P. & Camus, L. Baseline levels of oxidative stress biomarkers in species from a subtropical estuarine system (Paranaguá Bay, southern Brazil). Mar. Pollut. Bull. 113, 496–508 (2016).
    CAS  Article  Google Scholar 

    59.
    Gorbi, S., Baldini, C. & Regoli, F. Seasonal variability of metallothioneins, cytochrome P450, bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae). Arch. Environ. Con. Tox. 49, 62–70 (2005).
    CAS  Article  Google Scholar 

    60.
    Gorbi, S. et al. An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic Sea. Mar. Environ. Res. 65, 34–49 (2008).
    CAS  Article  Google Scholar 

    61.
    Fernández, R., Lemer, S., McIntyre, E. & Giribet, G. Comparative phylogeography and population genetic structure of three widespread mollusc species in the Mediterranean and near Atlantic. Mar. Ecol. 36, 701–715 (2015).
    ADS  Article  Google Scholar 

    62.
    Lourenço, C. R. et al. Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel. Sci. Rep. 7, 10279 (2017).
    ADS  Article  CAS  Google Scholar 

    63.
    Villamor, A., Costantini, F. & Abbiati, M. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9, e101135 (2014).
    ADS  Article  CAS  Google Scholar 

    64.
    Garoia, F. et al. Microsatellite DNA variation reveals high gene flow and panmictic populations in the Adriatic shared stocks of the European squid and cuttlefish (Cephalopoda). Heredity 93, 166–174 (2004).
    CAS  Article  Google Scholar 

    65.
    Marie, A. D. et al. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries. Sci. Rep. 6, 39152 (2016).
    ADS  CAS  Article  Google Scholar 

    66.
    De Luca, D., Catanese, G., Procaccini, G. & Fiorito, G. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: genetic diversity and population structure. PLoS ONE 11(2), e0149496 (2016).
    Article  CAS  Google Scholar 

    67.
    Melis, R. et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807, 277–296 (2018).
    CAS  Article  Google Scholar 

    68.
    Bahri-Sfar, L., Lemaire, C., Hassine, O. K. B. & Bonhomme, F. Fragmentation of sea bass populations in the Western and Eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. Lond. 267, 929–935 (2000).
    CAS  Article  Google Scholar 

    69.
    Maggio, T., Lo Brutto, S., Garoia, F., Tinti, F. & Arculeo, M. Microsatellite analysis of red mullet Mullus barbatus (Perciformes, Mullidae) reveals the isolation of the Adriatic Basin in the Mediterranean Sea. ICES J. Mar. Sci. 66, 1883–1891 (2009).
    Article  Google Scholar 

    70.
    Schunter, C. et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).
    CAS  Article  Google Scholar 

    71.
    Aguirre, J. D. & Marshall, D. J. Genetic diversity increases population productivity in a sessile marine invertebrate. Ecology 93, 1134–1142 (2012).
    Article  Google Scholar 

    72.
    Gamfeldt, L. & KĂ€llström, B. Increasing intraspecific diversity increases predictability in population survival in the face of perturbations. Oikos 116, 700–705 (2007).
    Article  Google Scholar 

    73.
    Lloyd, M. M., Makukhov, A. D. & Pespeni, M. H. Loss of genetic diversity as a consequence of selection in response to high pCO2. Evol. Appl. 9, 1124–1132 (2016).
    CAS  Article  Google Scholar 

    74.
    Griffiths, S. M., Taylor-Cox, E. D., Behringer, D. C., Butler, M. J. IV. & Preziosi, R. F. Using genetics to inform restoration and predict resilience in declining populations of a keystone marine sponge. Biodivers. Conserv. 29, 1383–1410 (2020).
    Article  Google Scholar 

    75.
    Plough, L. V. Genetic load in marine animals: a review. Curr. Zool. 62, 567–579 (2016).
    Article  Google Scholar 

    76.
    Biondi, S. & Del Piero, D. Survey on Chamelea gallina beds in the Lignano area (Gulf of Trieste, Adriatic Sea). Ann. Istrian Mediterr. Stud. 22, 1–8 (2012).
    Google Scholar 

    77.
    Nojima, S. & Russo, G. F. Struttura della popolazione del bivalve Chamelea gallina(L.) in un fondo sabbioso dell’isola di Ischia (Golfo di Napoli) (Population structure of Chamelea gallinain infralittoral sand off Ischia Island, Gulf of Naples). Oebalia 15, 189–201 (1989).
    Google Scholar 

    78.
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).
    ADS  Article  Google Scholar 

    79.
    El Ayari, T., El Menif, N. T., Hamer, B., Cahill, A. E. & Bierne, N. The hidden side of a major marine biogeographic boundary: a wide mosaic hybrid zone at the Atlantic-Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity 122, 70–784 (2019).
    Article  Google Scholar 

    80.
    Keen, A. M. Veneridae. In Treatise of Invertebrate Paleontology (ed. Moore, R. C.) N671–N688 (Geological Society of America University of Kansas Press Lawrence, Boulder, 1969).
    Google Scholar 

    81.
    Bellan-Santini, D., Fredj, G. & Bellan, G. Mise au point sur les connaissance concernant le benthos profond Mediterraneen. Oebalia 17, 21–36 (1992).
    Google Scholar 

    82.
    Bouchet, P. & Taviani, M. The Mediterranean deep-sea fauna: pseudopopulations of Atlantic species?. Deep-Sea Res. 39, 169–184 (1992).
    ADS  Article  Google Scholar 

    83.
    Myers, A. A. Species and generic gamma-scale diversity in shallow-water marine Amphipoda with particular reference to the Mediterranean. J. Mar. Biol. Assoc. UK 76, 195–202 (1996).
    Article  Google Scholar 

    84.
    Stanley, D. J. & Wezel, F.-C. Geological Evolution of the Mediterranean Basin (Springer, New York, 1985).
    Google Scholar 

    85.
    Walne, P. R. Factors affecting the relation between feeding and growth in bivalves. In Harvesting Polluted Waters Vol. 8 (ed. Devil, O.) 169–176 (Plenum Press, New York, 1976).
    Google Scholar 

    86.
    Del Fabbro, C., Scalabrin, S., Morgante, M. & Giorgi, F. M. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS ONE 8(12), e85024 (2013).
    ADS  Article  CAS  Google Scholar 

    87.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Article  Google Scholar 

    88.
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
    CAS  Article  Google Scholar 

    89.
    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nat. Biotechnol. 33, 290–295 (2015).
    CAS  Article  Google Scholar 

    90.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  Article  Google Scholar 

    91.
    Love, M., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Article  CAS  Google Scholar 

    92.
    Punta, M. et al. The Pfam protein families database. Nucleic Acid Res. 40, 290–301 (2012).
    Article  CAS  Google Scholar 

    93.
    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
    CAS  Article  Google Scholar 

    94.
    Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590-595 (2019).
    CAS  Article  Google Scholar 

    95.
    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
    CAS  Article  Google Scholar 

    96.
    Bocchetti, R. et al. Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquat. Toxicol. 89, 257–266 (2008).
    CAS  Article  Google Scholar 

    97.
    Bocchetti, R. et al. Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic Sea. Mar. Environ. R. 66, 24–26 (2008).
    CAS  Article  Google Scholar 

    98.
    Viarengo, A., Ponzano, E., Dondero, F. & Fabbri, R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res. 44, 69–84 (1997).
    CAS  Article  Google Scholar 

    99.
    Fattorini, D. et al. Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic Sea: a regional gradient for arsenic and implications for monitoring the impact of off-shore activities. Chemosphere 72, 1524–1533 (2008).
    ADS  CAS  Article  Google Scholar 

    100.
    Clementi, E. et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 system). Copernicus Monitoring Environment Marine Service (CMEMS) (2019). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_PHY_006_013_EAS5.

    101.
    Bolzon, G. et al. Mediterranean Sea Biogeochemical Analysis and Forecast (CMEMS MED-Biogeochemistry (2018)-Present). Copernicus Monitoring Environment Marine Service (CMEMS) (2020). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_BIO_006_014_MEDBFM3.

    102.
    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).
    ADS  CAS  Article  Google Scholar 

    103.
    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).
    CAS  Article  Google Scholar 

    104.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
    Article  CAS  Google Scholar 

    105.
    Huson, D. H. et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12(6), e1004957 (2016).
    Article  CAS  Google Scholar 

    106.
    Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 35, 1284–1290 (2018).
    CAS  Article  Google Scholar 

    107.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
    CAS  Article  Google Scholar 

    108.
    Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559. https://doi.org/10.1038/ng.3254 (2015).
    CAS  Article  Google Scholar  More

  • in

    Hydrochar did not reduce rice paddy NH3 volatilization compared to pyrochar in a soil column experiment

    1.
    Zhang, Y. et al. Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmos. Res. 174–175, 62–69 (2016).
    Article  CAS  Google Scholar 
    2.
    Li, Y. et al. Observations of ammonia, nitric acid, and fine particles in a rural gas production region. Atmos. Environ. 83, 80–89 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Singh, J., Kunhikrishnan, A., Bolan, N. S. & Saggar, S. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci. Total Environ. 465, 56–63 (2013).
    ADS  CAS  Article  Google Scholar 

    4.
    Sha, Z., Li, Q., Lv, T., Misselbrook, T. & Liu, X. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Environ. 655, 1387–1396 (2019).
    ADS  CAS  Article  Google Scholar 

    5.
    Wang, H. et al. Ammonia emissions from paddy fields are underestimated in China. Environ. Pollut. 235, 482–488 (2018).
    CAS  Article  Google Scholar 

    6.
    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
    ADS  CAS  Article  Google Scholar 

    7.
    Huang, Y. et al. Methane and nitrous oxide flux after biochar application in subtropical acidic paddy soils under tobacco-rice rotation. Sci. Rep. 9, 17277 (2019).
    ADS  Article  CAS  Google Scholar 

    8.
    Sheng, Y. & Zhu, L. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total Environ. 622–623, 1391–1399 (2018).
    ADS  Article  CAS  Google Scholar 

    9.
    Liu, Q. et al. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 426, 211–225 (2018).
    CAS  Article  Google Scholar 

    10.
    Huang, M., Fan, L., Chen, J., Jiang, L. & Zou, Y. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Sci. Rep. 8, 11461 (2018).
    ADS  Article  CAS  Google Scholar 

    11.
    Feng, Y. et al. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere 168, 1277–1284 (2016).
    ADS  Article  CAS  Google Scholar 

    12.
    Sun, H., Zhang, H., Min, J., Feng, Y. & Shi, W. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. 14, 1–7 (2015).
    Google Scholar 

    13.
    Sun, H., Lu, H., Chu, L., Shao, H. & Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 575, 820–825 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    Sun, H. et al. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. Chemosphere 242, 125247 (2020).
    ADS  CAS  Article  Google Scholar 

    15.
    Nizamuddin, S. et al. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Environ. Sci Pollut. R. 25, 17529–17539 (2018).
    CAS  Article  Google Scholar 

    16.
    Gronwald, M., Vos, C., Helfrich, M. & Don, A. Stability of pyrochar and hydrochar in agricultural soil—A new field incubation method. Geoderma 284, 85–92 (2016).
    ADS  CAS  Article  Google Scholar 

    17.
    Liu, Y. et al. Effect of pyrochar and hydrochar on water evaporation in clayey soil under greenhouse cultivation. Environ. Res. Public Health 16, 2580 (2019).
    CAS  Article  Google Scholar 

    18.
    Malghani, S., Gleixner, G. & Trumbore, S. E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 62, 137–146 (2013).
    CAS  Article  Google Scholar 

    19.
    Han, L. et al. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environ. Sci. Technol. 50, 13274–13282 (2016).
    ADS  CAS  Article  Google Scholar 

    20.
    Hua, Y. et al. Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism. Bioresour. Technol. 300, 122708 (2020).
    CAS  Article  Google Scholar 

    21.
    Schimmelpfennig, S., MĂŒller, C., GrĂŒnhage, L., Koch, C. & Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 191, 39–52 (2014).
    CAS  Article  Google Scholar 

    22.
    Elaigwu, S. E. & Greenway, G. M. Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars. J. Anal. Appl. Pyrol. 118, 1–8 (2016).
    CAS  Article  Google Scholar 

    23.
    Huang, R. & Tang, Y. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environ. Sci. Technol. 49, 14466–14474 (2015).
    ADS  CAS  Article  Google Scholar 

    24.
    Donar, Y. O., Çağlar, E. & Sınağ, A. Preparation and characterization of agricultural waste biomass based hydrochars. Fuel 183, 366–372 (2016).
    CAS  Article  Google Scholar 

    25.
    Mumme, J. et al. Hydrothermal carbonization of digestate in the presence of zeolite: Process efficiency and composite properties. ACS Sustain. Chem. Eng. 3, 2967–2974 (2015).
    CAS  Article  Google Scholar 

    26.
    Bargmann, I., Rillig, M., Kruse, A., Greef, J. & KĂŒcke, M. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant. Nutr. Soil. Sci. 177, 48–58 (2014).
    Article  CAS  Google Scholar 

    27.
    Chu, Q. et al. Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Sci. Total Environ. 717, 137127 (2020).
    ADS  CAS  Article  Google Scholar 

    28.
    Chu, Q. et al. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. Chemosphere 245, 125558 (2020).
    ADS  CAS  Article  Google Scholar 

    29.
    Xue, Y. et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 200–202, 673–680 (2012).
    Article  CAS  Google Scholar 

    30.
    Yu, S. et al. Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids. J. Clean Prod. 240, 118180 (2019).
    CAS  Article  Google Scholar 

    31.
    Ti, C., Xia, L., Chang, S. X. & Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 245, 141–148 (2019).
    CAS  Article  Google Scholar 

    32.
    Chu, Q. et al. Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. Sci. Total Environ. 718, 137301 (2020).
    ADS  CAS  Article  Google Scholar 

    33.
    Luo, S. et al. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl. Soil Ecol. 117–118, 10–15 (2017).
    Article  Google Scholar 

    34.
    Zhu, X., Chen, B., Zhu, L. & Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 227, 98–115 (2017).
    CAS  Article  Google Scholar 

    35.
    Rutherford, D. W., Wershaw, R. L., Rostad, C. E. & Kelly, C. N. Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenerg. 46, 693–701 (2012).
    CAS  Article  Google Scholar 

    36.
    Kastner, J. R., Miller, J. & Das, K. C. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. J. Hazard. Mater. 164, 1420–1427 (2009).
    CAS  Article  Google Scholar 

    37.
    Zhao, L., Cao, X., Maơek, O. & Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256–257, 1–9 (2013).
    PubMed  PubMed Central  Google Scholar 

    38.
    Lehmann, J. A handful of carbon. Nature 447, 143–144 (2007).
    ADS  CAS  Article  Google Scholar 

    39.
    de la Rosa, J. M., Rosado, M., Paneque, M., Miller, A. Z. & Knicker, H. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 613–614, 969–976 (2018).
    Article  CAS  Google Scholar 

    40.
    Huang, Z. et al. Effect of aging on surface chemistry of rice husk-derived biochar. Environ. Prog. Sustain. Energy. 37, 410–417 (2017).
    Article  CAS  Google Scholar 

    41.
    Mia, S., Dijkstra, F. A. & Singh, B. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environ. Sci. Technol. 51, 8359–8367 (2017).
    ADS  CAS  Article  Google Scholar 

    42.
    Zhou, B. et al. Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere 204, 474–482 (2018).
    ADS  CAS  Article  Google Scholar 

    43.
    Sun, X., Zhong, T., Zhang, L., Zhang, K. & Wu, W. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Sci. Total Environ. 660, 512–518 (2019).
    ADS  CAS  Article  Google Scholar  More

  • in

    A new understanding and evaluation of food sustainability in six different food systems in Kenya and Bolivia

    Food sustainability indicators
    The indicators of the five dimensions of food sustainability that were collectively defined and assessed in the six food systems are presented in Table 2 and in the Supplementary Data (sheets 1–9). Relevant across contexts, the indicators represent a consensual output of the research process with scientists from the Global North and South and non-academic actors related to the different food systems (see Methods). The indicators cover different activities, from production to consumption, and some are transversal, i.e. occurring along the value chain.
    How the six food systems scored
    Food systems B3 (Agroecological food system) and K3 (Local food system) had the highest overall sustainability scores. In addition, these scores were more equally distributed across the five dimensions than in the other food systems. The greatest contributor to these high scores was environmental performance: both food systems demonstrated a high capacity to provide agroecosystem services (e.g. through crop diversity or combining livestock with trees29,33); low external inputs and recycling of organic materials; a low carbon footprint; and perceived positive health impacts by producers, workers and consumers. The food system that scored highest (4.0) in environmental performance is the Domestic–indigenous food system (B2). However, it obtained the lowest scores in poverty and inequality (1.6, with particularly low ratings for incomes, livelihood capitals and social protection), pulling down its overall score.
    Figures 1 and 2 display the aggregated qualitative and quantitative research results on a five-point Likert scale from 0 (very low) to 4 (very high). The area covered by one food system reflects its overall sustainability, while the axes reflect the five dimensions. The median is calculated as an average value for one dimension from all its indicators; for each food system it represents strengths (comparatively high scores) and weaknesses (comparatively low scores) of food sustainability of the six assessed food systems.
    Figure 1

    Overall food sustainability scores and median scores of five dimensions for three food systems in Kenya, rated from 0 (very low), 1 (low), 2 (medium), 3 (high) to 4 (very high). For detailed results, see Supplementary Data.

    Full size image

    Figure 2

    Overall food sustainability scores and median scores of five dimensions for three food systems in Bolivia, from 0 (very low), 1 (low), 2 (medium), 3 (high) to 4 (very high). For detailed results, see Supplementary Data.

    Full size image

    The lowest overall sustainability scores were obtained by the Agro-industrial food systems, B1 (scoring 1.6) and K1 (scoring 1.8). This was mainly due to their poor environmental performance on pesticide and resource use. Of the pesticides documented during this study, 65% in Bolivia and 67% in Kenya contained substances considered “highly hazardous” jointly by the FAO and WHO36. Additionally, resource use along the value chain was high, with examples including water, packaging material, electricity and diesel, and, in Kenya, aviation turbine oil30,37. Lowest-scoring B1 demonstrated a low diversity of crops and breeds, high greenhouse gas emissions and perceived negative health impacts. Right to food was particularly low in B1 due to low quality and accessibility of land and water resources for the local population, low food diversity and access to seeds, low access for women to land and finance, and a lack of participation in decision-making. In second-lowest scoring K1, water use was around 100 times higher than in K3, pesticide use seven times higher, and the carbon footprint of exported vegetables 67 times higher than for vegetables consumed in K330.
    Food security of local households in the study areas was highest in the Agroecological food system (B3), with better scores than the other food systems for access to land and water, contribution to local consumption, accessibility of food, and capacity to provide what is considered to constitute a “good diet”. In general, household food security was high in the study area in Bolivia, and low to medium in the study area in Kenya. Food security was lowest in the Agro-industrial system in Kenya (K1). This is because K1 exports almost all the food it produces and does not engage in processing or storage activities, implying low accessibility to, and consumption of, the produced food locally. Households involved in K1 through labour had medium food security and a low perception of the food system’s capacity to provide a “good diet”.
    Contrary to expectations, the Agro-industrial food systems obtained medium (B1) and above-medium (K1) resilience scores. Key factors were a high or very high level of self-organization in interest groups, knowledge on threats and opportunities, and functioning feedback mechanisms between system components, such as supportive policies that translated into subsidies, relief payments and reduced tax rates24. This social dimension of resilience somewhat mitigated the low scores that B1 and K1 obtained for agroecosystem resilience and their high dependence on external inputs and monocultures (which, in turn, rendered them vulnerable to e.g. climate impacts or price fluctuations).
    The weakest dimensions across food systems
    The weakest dimension was right to food. K1 and B1 both scored particularly low in this dimension due to high land concentration (e.g. average land plot size was 90 ha in K1, compared to 2 ha in K324) and a lack of food diversity, supply of nutritional needs, and local food traditions. All food systems obtained low scores for women’s access to land and credit (in Kenya, only 5% and in Bolivia 17% of landowners are women38). K3 obtained slightly higher scores, as more women had access to land (although this did not mean they held the property deeds) and because of the prevalence of women’s groups that operated a system of microcredits.
    The second-weakest dimension was poverty and inequality. This was due to low farming incomes and high income inequality (e.g. salaries for selling agricultural inputs in B1 were 220% higher than for the other activities in this food system24). Salaries for workers (e.g. farm workers in Kenya39) were around the minimum wage, and workers throughout the value chain were excluded from social protection. Nevertheless, the Agro-industrial food systems obtained a high (K1) and a medium score (B1) for the reduction of poverty and inequality, due to high scores for physical capital (infrastructure, fulfilment of basic needs, transport and storage facilities, livestock) and human capital (education, experience, health), and relatively low household expenditure on food.
    Contributions of food system activities to sustainability
    To understand the contribution of different food system activities to the overall sustainability scores, the indicators for each food system are grouped according to activity: production, processing and storage, retail and trade, consumption, and transversal (across activities, e.g. carbon footprint of a food product). Figure 3 shows the sum of the medians according to activity, and Fig. 4 shows the range of scores for each activity in each food system.
    Figure 3

    Median food system activity score of food sustainability. “Transversal” means across all food system activities. The maximum score for each food system activity is 4 (or “very high” on the Likert scale), and the overall maximum score is 20.

    Full size image

    Figure 4

    Distribution of sustainability scores for each food system according to food system activity: production, processing/storage, retail/trade, consumption and transversal indicators.

    Full size image

    In the food systems with a comparably high overall sustainability score (B3, K3), all activities obtained relatively high scores (e.g. consumption in B3: locally produced food, provision of food to food system actors, a perceived “good diet”, contribution to food diversity, information and participation). The “transversal” category recorded similar scores across food systems. It comprised household food security, livelihood assets, material and energy use along the value chain, and resilience indicators (e.g. organization in interest groups, also along the value chain). The food system with the lowest cumulative score, K1, scored 0 in processing/storage and retail/trade, and it obtained low scores for production (due to low incomes), access to productive resources, environmental performance, and consumption (due to low contributions to the local food system and its diversity). Transversal scored higher than the other activities in K1, mainly due to the positive social resilience scores mentioned above. Figure 4 shows the per-activity contribution to the overall food sustainability rating for each food system.
    Most food system activities (especially production, consumption and transversal) had a high variability of scores, ranging from 0–3 or even from 0–4 (minimum to maximum value). In B3, every activity obtained a comparably high score, although all but retail and trade were still very variable. Processing and storage (capacity in the food system to provide both processing and storage) was medium to high in B2, but storage was low in K3 and B3 (weakening overall food security) and K1 (freshly sold perishable produce). Retail and trade (affordable food prices, above-medium retail employee wages) contributed strongly to overall food sustainability in B3 and K3, at a medium level to B1 and K2, and little to B2. Consumption obtained a medium or above-medium score, which means that it played an important role in overall sustainability (e.g. in the form of food diversity in K3). An exception was K1, where consumption took place so far away that most of the related indicators obtained low scores for the food system context under study. Scores obtained for the “transversal” category also varied highly, but augmented overall food sustainability mainly through resilience (K1, B1) and environmental performance indicators (K2, K3, B3, K3).
    Most decisive indicators for food sustainability
    To identify general trends, we further analysed the importance of individual indicators for overall food sustainability across all six food systems (Fig. 5).
    Figure 5

    Frequency of difference from the median (to the left of 0: frequency with which the indicators across all six food systems scored worse than the median; to the right of 0: frequency with which they scored better than the median).

    Full size image

    Resilience indicators often had a strongly positive influence on overall sustainability, especially the knowledge of threats and opportunities indicator, with above-median scores in five of the six food systems, and the indicators on functioning feedback mechanisms, interest groups and shared vision, which achieved above-median scores in four of the food systems. A notable exception was diversity of crops and breeds, a resilience indicator which scored lower than the overall median in five food systems. Several indicators from the food security dimension scored better than the median in four food systems: ability to provide food to food system actors, capacity to process food, access to land, access to water, and household food security.
    In addition, environmental performance indicators were often high (e.g. use of energy, soil quality, use of materials, water footprint, Agroecosystem Service Capacity Index, carbon footprint), but mainly for the more local and diversified food systems. Exceptions were formed by the water footprint and use of materials along the value chain or food system stages, which were low also in B1 (as calculated up to the first consumption stage, e.g. use of soybeans for feed in meat and dairy production).
    Low-scoring dimensions—those that pulled down the overall food sustainability score, i.e. poverty and inequality, and right to food—included indicators that most frequently scored lower than the median. These were related to gender, dwindling agrobiodiversity and food diversity, and precarious work conditions at the production level. Of these, women’s access to credit and diversity of crops and breeds scored five times below the median. The second-worst indicators (four times below the median) with no positive score were social protection and local food traditions, and the third-worst were the proportion of women with land rights, remedies for violations of the right to food, and liveable wage.
    A principal component analysis (PCA) providing information on which combinations of indicators are most decisive for overall food sustainability in our case studies confirmed the trend shown in Fig. 5. Four principal components retained based on their eigenvalues explained 99% of variance (Supplementary Table S1). By retaining indicators with component loadings  > 0.45, the first principal component was most influenced by human capital, social protection, remedies for violations of the right to food, local food traditions, access to information, landscape heterogeneity, water quality for domestic consumption, and women’s access to credit. Most of these indicators belong to the right to food and poverty inequality dimensions and are related to diversity and quality of human and natural resources that households, and especially women, have access to. The second principal component was most influenced by the capacity to process food, accessibility of water for domestic consumption, farmer incomes, ability to provide food to food system actors, use of materials, use of energy, and the capacity to cover nutritional needs, and was thus mainly linked to environmental performance and food security. The third principal component was dominated by resilience indicators: interest groups, knowledge of threats and opportunities, decent and safe working conditions, use of energy, shared vision, and ecological self-regulation. The fourth principal component was mostly influenced by access to water for domestic consumption and for irrigation, wages in retail, household food security, the proportion of women with land rights, and reflective and shared learning, and was thus strongly related to access to resources and incomes, particularly for women.
    From the two analyses (frequency of positive/negative scoring of indicators, and PCA), we can identify the indicators with the greatest influence across the food systems under study. Six of these contributed positively, meaning that they were in a rather good state in several of the food systems. Four of the six indicators were from the food security dimension (capacity of the food system to process food, ability of the food system to provide food to food system actors, household food security, access to water) and two were from the environmental performance dimension (use of materials and use of energy). We identify six indicators, all but diversity of crops and breeds from the right to food dimension, which had a strongly negative influence (women’s access to credit, social protection, local food traditions, women’s land rights, and remedies for violations of the right to food). This means that these indicators were in an undesirable state in most of the food systems. More

  • in

    Low genetic diversity indicating the threatened status of Rhizophora apiculata (Rhizophoraceae) in Malaysia: declined evolution meets habitat destruction

    1.
    Gandhi, S. & Jones, T. G. Identifying mangrove deforestation hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 11, 728 (2019).
    ADS  Article  Google Scholar 
    2.
    Hamdan, O., Khali-Aziz, H., Shamsudin, I. & Raja-Barizan, R.S. Status of Mangroves in Peninsular Malaysia. 153 (Forest Research Institute Malaysia, 2012).

    3.
    Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).
    Article  CAS  Google Scholar 

    4.
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113, 344–349 (2016).
    ADS  CAS  Article  Google Scholar 

    5.
    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).
    CAS  Article  Google Scholar 

    6.
    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).
    ADS  Article  CAS  Google Scholar 

    7.
    Matesanz, S., Rubio-Teso, M. L., GarcĂ­a-FernĂĄndez, A. & Escudero, A. Habitat fragmentation differentially affects genetic variation, phenotypic plasticity and survival in populations of a gypsum endemic. Front. Plant Sci. 8, 843 (2017).
    Article  Google Scholar 

    8.
    Furches, M. S., Small, R. L. & Furches, A. Genetic diversity in three endangered pitcher plant species (Sarracenia; Sarraceniaceae) is lower than widespread congeners. Am. J. Bot. 100, 2092–2101 (2013).
    Article  Google Scholar 

    9.
    Yan, Y. B., Duke, N. C. & Sun, M. Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species. Front. Plant Sci. 7, 1434 (2016).
    PubMed  Google Scholar 

    10.
    Wan-Ismail, W. N., Wan-Ahmad, W. J., Salam, M. R. & Latiff, A. Structural and floristic pattern in a disturbed mangrove tropical swamp forest: a case study from the Langkawi UNESCO Global Geopark Forest, Peninsular Malaysia. Sains Malays. 47, 861–869 (2018).
    Article  Google Scholar 

    11.
    Setyawan, A.D., Ulumuddin, Y.I. & Ragavan, P. Mangrove hybrid of Rhizophora and its parentals species in Indo-Malayan region. Nusantara Biosci. 6 (2014).

    12.
    Lahjie, A.M., Nouval, B., Lahjie, A.A., Ruslim, Y. & Kristiningrum, R. Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Res. 8 (2019).

    13.
    Omar, H., Misman, M.A. & Musa, S. GIS and remote sensing for mangroves mapping and monitoring. Geographic Information Systems and Science. IntechOpen https://www.intechopen.com/books/geographic-information-systems-and-science/gis-and-remote-sensing-for-mangroves-mapping-and-monitoring (2019).

    14.
    Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).
    CAS  Article  Google Scholar 

    15.
    Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015).
    Article  Google Scholar 

    16.
    Yahya, A. F. et al. Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers. J. Plant Res. 127, 287–297 (2014).
    CAS  Article  Google Scholar 

    17.
    Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE. 10 (2015).

    18.
    Guo, Z. et al. Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malesian region. J. Biogeogr. 43, 1856–1868 (2016).
    Article  Google Scholar 

    19.
    Cheng, A. et al. Molecular marker technology for genetic improvement of underutilised crops. In Crop improvement (eds Abdullah, S. et al.) 47–70 (Springer, Cham, 2017).
    Google Scholar 

    20.
    Ali, A. et al. Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite (SSR) markers. Sci. Rep. 9, 1–10 (2019).
    Article  CAS  Google Scholar 

    21.
    Shinmura, Y. et al. Isolation and characterization of 14 microsatellite markers for Rhizophora mucronata (Rhizophoraceae) and their potential use in range-wide population studies. Conserv. Genet. Resour. 4, 951–954 (2012).
    Article  Google Scholar 

    22.
    Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoraceae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).
    CAS  Article  Google Scholar 

    23.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  Article  Google Scholar 

    24.
    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).
    ADS  CAS  Article  Google Scholar 

    25.
    Maguire, T.L., Edwards, K.J., Saenger, P. & Henry, R. Characterisation and analysis of microsatellite loci in a mangrove species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theor. Appl. Genet. 101, 279–285 (2000).

    26.
    Torre, S. et al. RNA-seq analysis of Quercus pubescens leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS ONE 9, e112487 (2014).
    ADS  Article  CAS  Google Scholar 

    27.
    Ye, Y. et al. Characterization, validation, and cross-species transferability of newly developed EST-SSR markers and their application for genetic evaluation in crape myrtle (Lagerstroemia spp). Mol. Breed. 39, 26 (2019).
    Article  CAS  Google Scholar 

    28.
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, London, 1987).
    Google Scholar 

    29.
    Wee, A. K. et al. Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba, J. Sm in the Indo-West Pacific. Forests 8, 483 (2017).
    Article  Google Scholar 

    30.
    Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217–242 (1993).
    Article  Google Scholar 

    31.
    Feder, J. L., Gejji, R., Yeaman, S. & Nosil, P. Establishment of new mutations under divergence and genome hitchhiking. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 461–474 (2012).
    Article  Google Scholar 

    32.
    Annuar, A. S. & Latip, N. A. Mangrove contributions towards environmental conservation and tourism in Balik Pulau. Adv. Conserv. Sci. Technol. 1, 1–7 (2020).
    Google Scholar 

    33.
    Wee, A.K. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41, 954–964 (2014).

    34.
    Ismail, M. H., Zaki, P. H. & Hamed, A. A. Wood density and carbon estimates of mangrove species in Kuala Sepetang, Perak, Malaysia. Malays. For. 78, 115–124 (2015).
    Google Scholar 

    35.
    Vitorino, C. A., Nogueira, F., Souza, I. L., Araripe, J. & Venere, P. C. Low genetic diversity and structuring of the Arapaima (Osteoglossiformes, Arapaimidae) population of the Araguaia-Tocantins basin. Front. Genet. 8, 159 (2017).
    Article  Google Scholar 

    36.
    Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).
    MathSciNet  CAS  MATH  Article  Google Scholar 

    37.
    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).
    CAS  PubMed  Google Scholar 

    38.
    Goodman, S. J. RST calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol. 6, 881–885 (1997).
    CAS  Article  Google Scholar 

    39.
    Moulin, N. L., Wyttenbach, A., BrĂŒunner, H., Goudet, J. & Hausser, J. Study of gene flow through a hybrid zone in the common shrew (Sorex araneus) using microsatellites. Hereditas. 125, 159–168 (1996).
    Article  Google Scholar 

    40.
    Ge, X. J. & Sun, M. Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetl. Ecol. Manag. 9, 213–219 (2001).
    Article  Google Scholar 

    41.
    Dodd, R.S., Afzal-Rafii, Z., Kashani, N. & Budrick, J. Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol. Ecol. 11, 1327–1338 (2002).

    42.
    Rizal, S. et al. General circulation in the Malacca strait and Andaman Sea: a numerical model study. Am. J. Environ. Sci. 8, 479–488 (2012).
    Article  Google Scholar 

    43.
    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).
    Article  Google Scholar 

    44.
    Drexler, J.Z. Maximum longevities of Rhizophora apiculata and R. mucronata propagules. Pac. Sci. 55, 17–22 (2001).

    45.
    Li, J. et al. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses. Sci. Rep. 6, 29486 (2016).
    ADS  CAS  Article  Google Scholar 

    46.
    Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8, 4321–4326 (1980).
    CAS  Article  Google Scholar 

    47.
    Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

    48.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform. 30, 2114–2120 (2014).
    CAS  Article  Google Scholar 

    49.
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644 (2011).
    CAS  Article  Google Scholar 

    50.
    Varshney, R. K., Thiel, T., Stein, N., Langridge, P. & Graner, A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol. Biol. Lett. 7, 537–546 (2002).
    CAS  PubMed  Google Scholar 

    51.
    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers in Bioinformatics methods and protocols. 365–386 (Humana Press, 2000).

    52.
    Van-Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538 (2004).
    CAS  Article  Google Scholar 

    53.
    Lewis, P.O. & Zaykin, D. Genetic Data Analysis (GDA) version 1.1: a computer program for the analysis of allelic data. UConn https://phylogeny.uconn.edu/software/ (2002).

    54.
    Rice, W. R. Analyzing tables of statistical tests. Evol. 43, 223–225 (1989).
    Article  Google Scholar 

    55.
    Park, S.D.E. Trypanotolerance in West African cattle and the population genetic effects of selection. Ph. D (University of Dublin, 2001).

    56.
    Goudet, J. FSTAT version 2.9.3.2: a program to estimate and test gene diversities and fixation indices. Unil https://www2.unil.ch/popgen/softwares/fstat.htm (2002).

    57.
    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).

    58.
    Liu, K. & Muse, S. V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinform. 21, 2128–2129 (2005).
    CAS  Article  Google Scholar 

    59.
    Nei, M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 41, 225–233 (1977).
    CAS  MATH  Article  Google Scholar 

    60.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinform. 28, 2537–2539 (2012).
    CAS  Article  Google Scholar 

    61.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  Google Scholar 

    62.
    Li, Y. L. & Liu, J. X. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    Article  Google Scholar 

    63.
    Goudet, J. PCAGEN version 1.2: a program to perform a principal component analysis (PCA) on genetic data. Unil https://www2.unil.ch/popgen/softwares/pcagen.htm (1999).

    64.
    Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).
    CAS  Article  Google Scholar  More

  • in

    Crystalline iron oxides stimulate methanogenic benzoate degradation in marine sediment-derived enrichment cultures

    1.
    Arndt S, Jþrgensen BB, LaRowe DE, Middelburg J, Pancost R, Regnier P. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci Rev. 2013;123:53–86.
    CAS  Article  Google Scholar 
    2.
    Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta. 1979;43:1075–90.
    CAS  Article  Google Scholar 

    3.
    Calvert S. Oceanographic controls on the accumulation of organic matter in marine sediments. Geol Soc Spec Publ. 1987;26:137–51.
    Article  Google Scholar 

    4.
    De Leeuw J, Largeau C. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. Org Geochem. 1993;11:23–72.

    5.
    Mackenzie FT, Lerman A, Andersson AJ. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences. 2004;1:11–32.
    CAS  Article  Google Scholar 

    6.
    Oni OE, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland Mud Area, North Sea. Front Microbiol. 2015;6:365.
    PubMed Central  PubMed  Google Scholar 

    7.
    Egger M, Hagens M, Sapart CJ, Dijkstra N, van Helmond NA, Mogollón JM, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim Cosmochim Acta. 2017;207:256–76.
    CAS  Article  Google Scholar 

    8.
    Riedinger N, Pfeifer K, Kasten S, Garming JFL, Vogt C, Hensen C. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate. Geochim Cosmoch Acta. 2005;69:4117–26.
    CAS  Article  Google Scholar 

    9.
    Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology. 2014;12:172–81.
    CAS  Article  Google Scholar 

    10.
    MĂ€rz C, Hoffmann J, Bleil U, De Lange G, Kasten S. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean). Mar Geol. 2008;255:118–30.
    Article  CAS  Google Scholar 

    11.
    Hensen C, Zabel M, Pfeifer K, Schwenk T, Kasten S, Riedinger N, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim Cosmochim Acta. 2003;67:2631–47.
    CAS  Article  Google Scholar 

    12.
    Flood RD, Piper DJW, Klaus A, Party SS. Initial Reports. Proc. Ocean Drill. Progam. 1995;155. https://doi.org/10.2973/odp.proc.ir.155.1995.

    13.
    Kasten S, Freudenthal T, Gingele FX, Schulz HD. Simultaneous formation of iron-rich layers at different redox boundaries in sediments of the Amazon deep-sea fan. Geochim Cosmochim Acta. 1998;62:2253–64.
    CAS  Article  Google Scholar 

    14.
    Meyers SR. Production and preservation of organic matter: the significance of iron. Paleoceanography. 2007;22:PA4211.

    15.
    Barber A, Brandes J, Leri A, Lalonde K, Balind K, Wirick S, et al. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. Sci Rep. 2017;7:1–10.
    CAS  Article  Google Scholar 

    16.
    Lalonde K, Mucci A, Ouellet A, GĂ©linas Y. Preservation of organic matter in sediments promoted by iron. Nature. 2012;483:198–200.
    CAS  Article  Google Scholar 

    17.
    Middelburg JJ. A simple rate model for organic matter decomposition in marine sediments. Geochim Cosmochim Acta. 1989;53:1577–81.
    CAS  Article  Google Scholar 

    18.
    Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sþrensen KB, Anderson R, et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA. 2006;103:3846–51.
    CAS  Article  Google Scholar 

    19.
    Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Front Microbiol. 2020;10:3041.
    PubMed Central  Article  PubMed  Google Scholar 

    20.
    Lovley DR, Phillips EJ. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol. 1986;51:683–9.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    21.
    Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature. 1996;382:445–8.
    CAS  Article  Google Scholar 

    22.
    Lovley D. Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes, In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer: Berlin Heidelberg; 2006, Vol. 2, p. 635–58.

    23.
    Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988;54:1472–80.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    24.
    Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron‐oxide minerals. Environ Microbiol. 2012;14:1646–54.
    CAS  Article  Google Scholar 

    25.
    Jiang S, Park S, Yoon Y, Lee J-H, Wu W-M, Phuoc Dan N, et al. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Environ Sci Technol. 2013;47:10078–84.
    CAS  Article  Google Scholar 

    26.
    Aromokeye DA, Richter-Heitmann T, Oni O, Emmanuel, Kulkarni A, Yin X, et al. Temperature controls crystalline iron oxide utilization by microbial communities in methanic ferruginous marine sediment incubations. Front Microbiol. 2018;9:2574.
    PubMed Central  Article  PubMed  Google Scholar 

    27.
    Zhuang L, Tang J, Wang Y, Hu M, Zhou S. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J Hazard Mater. 2015;293:37–45.
    CAS  Article  Google Scholar 

    28.
    Hebbeln D, Scheurle C, Lamy F. Depositional history of the Helgoland Mud Area, German Bight, North Sea. Geo Mar Lett. 2003;23:81–90.
    Article  Google Scholar 

    29.
    Oni OE, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs K-U, et al. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland Mud Area, North Sea. Front Microbiol. 2015;6:1290.
    PubMed Central  PubMed  Google Scholar 

    30.
    Gan S, Schmidt F, Heuer VB, Goldhammer T, Witt M, Hinrichs K-U. Impacts of redox conditions on dissolved organic matter (DOM) quality in marine sediments off the River Rhîne, Western Mediterranean Sea. Geochim Cosmochim Acta. 2020;276:151–69.
    CAS  Article  Google Scholar 

    31.
    Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, et al. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev. 2009;73:71–133.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    32.
    Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol. 2011;9:803–16.
    CAS  Article  Google Scholar 

    33.
    Gibson J, Harwood SC. Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol. 2002;56:345–69.
    CAS  Article  Google Scholar 

    34.
    Hopkins BT, McInerney MJ, Warikoo V. Evidence for anaerobic syntrophic benzoate degradation threshold and isolation of the syntrophic benzoate degrader. Appl Environ Microbiol. 1995;61:526.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    35.
    Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61:262–80.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    36.
    Schöcke L, Schink B. Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology. 1997;143:2345–51.
    Article  Google Scholar 

    37.
    Widdel F, Kohring G-W, Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol. 1983;134:286–94.
    CAS  Article  Google Scholar 

    38.
    Widdel F. Anaerober Abbau von FettsÀuren und BenzoesÀure durch neu isolierte Arten sulfat-reduzierender Bakterien [PhD Thesis]. Göttingen, Germany: Georg-August-UniversitÀt zu Göttingen; 1980.

    39.
    Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol. 1981;129:395–400.
    CAS  Article  Google Scholar 

    40.
    Viollier E, Inglett P, Hunter K, Roychoudhury A, Van, Cappellen P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem. 2000;15:785–90.
    CAS  Article  Google Scholar 

    41.
    Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs K-U. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta. 2009;73:3323–36.
    CAS  Article  Google Scholar 

    42.
    Lin Y-S, Heuer VB, Goldhammer T, Kellermann MY, Zabel M, Hinrichs K-U. Towards constraining H2 concentration in subseafloor sediment: a proposal for combined analysis by two distinct approaches. Geochim Cosmochim Acta. 2012;77:186–201.
    CAS  Article  Google Scholar 

    43.
    Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA‐and rRNA‐based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol. 2004;6:73–8.
    CAS  Article  Google Scholar 

    44.
    Amann R, Fuchs BM, Behrens S. The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol. 2001;12:231–6.
    CAS  Article  Google Scholar 

    45.
    Poulton SW, Krom MD, Raiswell R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim Cosmochim Acta. 2004;68:3703–15.
    CAS  Article  Google Scholar 

    46.
    Herndon EM, Yang Z, Bargar J, Janot N, Regier TZ, Graham DE, et al. Geochemical drivers of organic matter decomposition in arctic tundra soils. Biogeochemistry. 2015;126:397–414.
    CAS  Article  Google Scholar 

    47.
    Yang Z, Wullschleger SD, Liang L, Graham DE, Gu B. Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biol Biochem. 2016;95:202–11.
    CAS  Article  Google Scholar 

    48.
    Yang Z, Shi X, Wang C, Wang L, Guo R. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors. Sci Rep. 2015;5;16118. https://doi.org/10.1038/srep16118.

    49.
    McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci. 2008;1125:58–72.
    CAS  Article  Google Scholar 

    50.
    Sieber J, McInerney M, Plugge C, Schink B, Gunsalus R. Methanogenesis: syntrophic metabolism. In: Timmis KN (ed), Handbook of hydrocarbon and lipid microbiology. Springer: Berlin, Heidelberg; 2010. p. 337–55.

    51.
    Vandieken V, Mußmann M, Niemann H, Jþrgensen BB. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol. 2006;56:1133–9.
    CAS  Article  Google Scholar 

    52.
    Jones DL, Edwards AC. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem. 1998;30:1895–902.
    CAS  Article  Google Scholar 

    53.
    Bray MS, Wu J, Reed BC, Kretz CB, Belli KM, Simister RL, et al. Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations. Geobiology. 2017;15:678–89.
    CAS  Article  Google Scholar 

    54.
    Dolfing J, Tiedje JM. Acetate inhibition of methanogenic, syntrophic benzoate degradation. Appl Environ Microbiol. 1988;54:1871–3.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    55.
    Warikoo V, McInerney MJ, Robinson JA, Suflita JM. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol. 1996;62:26–32.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    56.
    Elshahed MS, McInerney MJ. Benzoate Fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms. Appl Environ Microbiol. 2001;67:5520–5.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    57.
    Watanabe M, Kojima H, Fukui M. Review of Desulfotomaculum species and proposal of the genera Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov. Int J Syst Evol Microbiol. 2018;68:2891–9.
    CAS  Article  Google Scholar 

    58.
    Harwood CS, Burchhardt G, Herrmann H, Fuchs G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev. 1998;22:439–58.
    CAS  Article  Google Scholar 

    59.
    Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, et al. Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol. 2016;26:5–28.
    CAS  Google Scholar 

    60.
    Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol. 2013;15:1759–71.
    CAS  Article  Google Scholar 

    61.
    Kadnikov VV, Mardanov AV, Podosokorskaya OA, Gavrilov SN, Kublanov IV, Beletsky AV, et al. Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteriodetes/Chlorobi group. PLoS ONE 8:e53047. https://doi.org/10.1371/journal.pone.0053047.

    62.
    Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles. 2007;11:1–7.
    CAS  Article  Google Scholar 

    63.
    Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2008;2:1146–56.
    CAS  Article  Google Scholar 

    64.
    Byrne-Bailey KG, Wrighton KC, Melnyk RA, Agbo P, Hazen TC, Coates JD. Complete genome sequence of the electricity-producing “Thermincola potens” strain JR. J Bacteriol. 2010;192:4078–9.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    65.
    Wrighton KC. Following electron flow: from a gram-positive community to mechanisms of electron transfer. Berkeley, CA, USA: UC Berkeley; 2010.

    66.
    Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles. 2013;17:1003–12.
    CAS  Article  Google Scholar 

    67.
    Sorokin DY, Tourova TP, Mußmann M, Muyzer G. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles. 2008;12:431–9.
    CAS  Article  Google Scholar 

    68.
    Zhuang L, Tang Z, Ma J, Yu Z, Wang Y, Tang J. Enhanced anaerobic biodegradation of benzoate under sulfate-reducing conditions with conductive iron-oxides in sediment of Pearl River Estuary. Front Microbiol. 2019;10:374.
    PubMed Central  Article  PubMed  Google Scholar 

    69.
    Kamagata Y, Kitagawa N, Tasaki M, Nakamura K, Mikami E. Degradation of benzoate by an anaerobic consortium and some properties of a hydrogenotrophic methanogen and sulfate-reducing bacterium in the consortium. J Ferment Bioeng. 1992;73:213–8.
    CAS  Article  Google Scholar 

    70.
    Junghare M, Schink B. Desulfoprunum benzoelyticum gen. nov., sp. nov., a gram-negative benzoate-degrading sulfate-reducing bacterium isolated from the wastewater treatment plant. Int J Syst Evol Microbiol. 2015;65:77–84.
    CAS  Article  Google Scholar 

    71.
    Oren A. The order Halanaerobiales, and the families Halanaerobiaceae and Halobacteroidaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: firmicutes and tenericutes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 153–77.

    72.
    Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H. Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Appl Environ Microbiol. 2008;74:3610–4.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    73.
    Nobu MK, Narihiro T, Liu M, Kuroda K, Mei R, Liu WT. Thermodynamically diverse syntrophic aromatic compound catabolism. Environ Microbiol. 2017;19:4576–86.
    CAS  Article  Google Scholar 

    74.
    Lentini CJ, Wankel SD, Hansel CM. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front Microbiol. 2012;3:404.
    PubMed Central  Article  PubMed  Google Scholar 

    75.
    Newsome L, Lopez Adams R, Downie HF, Moore KL, Lloyd JR. NanoSIMS imaging of extracellular electron transport processes during microbial iron(III) reduction. FEMS Microbiol Ecol. 2018;94:fiy104.

    76.
    Wang H, Byrne JM, Liu P, Liu J, Dong X, Lu Y. Redox cycling of Fe(II) and Fe(III) in magnetite accelerates aceticlastic methanogenesis by Methanosarcina mazei. Environ Microbiol Rep. 2020;12:97–109.
    CAS  Article  Google Scholar 

    77.
    Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG, et al. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun. 2013;4:1854.
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    78.
    Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’(OP9/JS1) inferred from cultivation-independent genomics. ISME J. 2016;10:273–86.
    CAS  Article  Google Scholar 

    79.
    Algora C, Vasileiadis S, Wasmund K, Trevisan M, KrĂŒger M, Puglisi E, et al. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol Ecol. 2015;91:fiv056.
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Lehours A-C, Rabiet M, Morel-Desrosiers N, Morel J-P, Jouve L, Arbeille B, et al. Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France). Geomicrobiol J. 2010;27:714–22.
    CAS  Article  Google Scholar 

    81.
    Liu D, Wang H, Dong H, Qiu X, Dong X, Cravotta CA. Mineral transformations associated with goethite reduction by Methanosarcina barkeri. Chem Geol. 2011;288:53–60.
    CAS  Article  Google Scholar 

    82.
    Sivan O, Shusta S, Valentine D. Methanogens rapidly transition from methane production to iron reduction. Geobiology. 2016;14:190–203.
    CAS  Article  Google Scholar 

    83.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Nat Acad Sci USA. 1998;95:6578–83.
    CAS  Article  Google Scholar 

    84.
    Aromokeye AD. Iron oxide driven methanogenesis and methanotrophy in methanic sediments of Helgoland Mud Area, North Sea. Bremen, Germany: UniversitÀt Bremen; 2018. More

  • in

    Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities

    The methodological framework for simulating the dispersal of bryophytes under changing climate conditions is presented in Fig. 4. A grid of pixel-specific environmental conditions and dispersal kernels, combining information on species dispersal traits, local wind conditions, as well as landscape features affecting dispersal by wind, is generated and used as input in simulations of species dispersal in the landscape under changing climate conditions.
    Fig. 4: Overview of workflow implemented in the present study to integrate mechanistic dispersal kernels and correlative climatic suitability models in simulations of future wind-dispersed species distributions under climate change.

    Species distribution data (left) are combined with climatic variables to produce climatic suitability models that are calibrated under present and projected under future climatic conditions (Part 1) and used to build mechanistic dispersal models (Part 2). The latter combine species intrinsic features (spore settling velocity Vt and release height Z0) and extrinsic environmental features (mean horizontal wind speed ĆȘ and canopy height h) to generate maps of spatially explicit dispersal kernels. Climatic suitability and dispersal kernel maps, updated at regular intervals, are finally combined to parameterize simulations of dynamic range shifts under changing climatic conditions (Part 3).

    Full size image

    Data sampling
    The European bryophyte flora includes 1817 native or naturalized species41. Because information on bryophyte species distribution is scarce and very heterogeneous, challenging the application of climatic suitability models42, we selected 10 species based upon their representativeness for each of the four main biogeographic elements (i.e., groups of species sharing similar distribution patterns), namely the Arctic-Alpine, Atlantic, Mediterranean, and wide-temperate elements (Supplementary Table 2). For each of these species, we downloaded data from the Global Biodiversity Information Facility (https://www.gbif.org). We excluded data collected before 1960, which represented, on average, 41 ± 12% of the data available, for two reasons. First, old records often lack sufficiently precise location information. Second, we wanted to avoid a potential mismatch between old observations and current climate conditions used for modeling. To complete these data and generate a dataset across the entire range of each species in Europe, we specifically performed a thorough literature review to document their occurrence from more than 600 sources. Only points that were separated by at least 0.1° from each other were subsequently retained for modeling (“ecospat.occ.desaggregation” function in Ecospat 3.143) to avoid sampling bias and reduce the risk of spatial autocorrelation. Altogether, the number of observations available for each species ranged between 55 and 34,035 (database available from Figshare, https://doi.org/10.6084/m9.figshare.8289650).
    Average spore diameter was recorded for each species from Zanatta et al.44 and references therein. Species unknown to produce sporophytes were assigned a spore size of 150 ”m to take dispersal through larger asexual propagules into account. Spore settling velocities Vt and release height (0.03, 1 and 10 m, which roughly correspond to habitat preferences for ground-dwelling, saxicolous, and epiphytic species, respectively) were determined for each species (Supplementary Table 2) following Zanatta et al.44.
    Nineteen bioclimatic variables, averaged over the period from 1970 to 2000, were retrieved from WorldClim 1.4 at a resolution of 30 arc-seconds45. Although snow is an important driver of species distributions in Arctic regions46, the lack of sufficiently detailed information on snow precipitation across Europe prevented us from implementing this variable.
    Given the spatial grain of our study, the hypothesis that some species will persist in small microhabitats, where temperatures can be cooler and humidity higher than in the surrounding environment, cannot be rejected. Data at finer scales for both present and future conditions would therefore be desirable47. Recently developed methods to generate fine-grained climatic data taking into account microclimatic effects modulated by microtopographic variation in the terrain, vegetation cover and ground properties using energy balance equations cannot, however, yet be implemented across large spatial scales48.
    For future climate conditions, a wide range of GCMs have been described and their variation represents the largest source of uncertainty in future range prediction studies49. No criterion exists to evaluate GCMs, whose performance may vary among regions and variables50. Due to computational constrains associated with our migration simulations (see below), we followed Didersky et al.51. and selected two GCMs that reflected the highest and lowest levels of predicted changes due to climate change for two angiosperm species in Europe50, namely MPI-ESM-LR52 and HadGem2-ES53. For each GCM, we analyzed two climate change scenarios. These scenarios are expressed by the representative concentration pathways (RCPs), using values comparing the level of radiative forcing between the preindustrial era and 2100. The moderate scenario RCP4.5 assumes 650 ppm CO2 and 1.0–2.6 °C increase by 2100, and refers to AR4 guideline scenario B1 of IPCC AR4 guidelines. The pessimistic scenario RCP8.5 assumes 1350 ppm CO2 and 2.6–4.8 °C increase by 2100, and refers to A1F1 scenario of IPCC AR4 guidelines54. Climatic data for each GCM and each RCP were averaged for each of the four time periods considered, i.e., 2010–2020, 2020–2030, 2030–2040 and 2040–2050.
    Monthly average and daily maximum wind speeds measured at 10 m as well as predicted wind speeds for the same ten-year time periods between 2010 and 2050, were computed from EURO-CORDEX (https://euro-cordex.net). Canopy height data were obtained from the global scale mapping of canopy height and biomass at a 1-km spatial resolution55. Wind speed and canopy height were sampled for each pixel and each time-slice to generate kernel maps through time (see below).
    Deriving climatic suitability maps
    The correlation among the 19 bioclimatic variables was computed from 50,000 random points. To avoid multicollinearity, five bioclimatic variables with a Pearson correlation value of R 10 km from a potential source could be colonized by LDD. The maximum LDD distance was set to unlimited based on phylogeographic evidence39. Following Robledo-Arnuncio et al.31, we employed the results of previous Approximate Bayesian Computation methods for LDD inference from genetic structure data in bryophytes39,77 to define the range of LDD probability values, set to 0, 10−4, 10−3, 10−2 and 10−1.
    Migclim simulations
    We modeled the dispersal of a species under a climate change scenario over a period of 40 years, from 2010 to 2050. Starting with an initial distribution for the year 2010, the climatic suitability of cells was updated every 10 years to reflect the projected changes in climatic conditions under the considered climate change scenario. Since our simulations run over 40 years, we need four different climatic suitability maps. The wind layers were updated at the same 10 years intervals as the climatic data to produce series of spatially and temporally explicit kernel maps. We assume that our species disperse once a year, and hence, our simulations performed a total of 40 dispersal steps between 2010 and 2050. For each 10 years climatic period, pixels were identified as potentially suitable based on the binarized climatic suitability model projections. While climatic suitability thus drove colonization probability, a recent study raised the intriguing idea that spread rates at the migration front increase as climatic suitability decreases as a response to the need to seek for more suitable habitats78. In bryophytes, however, such a mechanism would be unlikely as inadequate resources and investment in environmental stress defence typically result in shifts from sexual to asexual reproduction79.
    For each species, we ran a sensitivity analysis by testing the impact of variation of the free parameters described above: two values of horizontal windspeed ĆȘ (monthly average and daily maximum), three values of spore release height Z0 (0.03, 1 and 10 m), and four values of LDD probabilities (see above). For each parameter combination, 30 MigClim replicates were performed.
    We computed the ratio between the predicted loss of suitable area (fraction of initially suitable cells that became unsuitable by 2050) and the simulated effective colonization rate (fraction of newly suitable cells by 2050 that were effectively colonized) using two extreme values of the LDD probability range, that is, 0 and 0.1.
    To determine the time-lag of the colonization of newly suitable habitats, the analyses were run for 500 years, keeping the environmental parameters at their 2050 values.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More