More stories

  • in

    Evidence for a cryptic parasitoid species reveals its suitability as a biological control agent

    Drosophila rearing
    The starting colony of D. suzukii was collected from wild Rubus sp. and Fragaria sp. fruits in various sites in Switzerland in 201523. The flies from the initial collection are described molecularly by Fraimout et al.43. The starting colony of D. melanogaster and D. simulans were obtained from laboratory colonies of INRA (Sophia-Antipolis, France) in 2015 and 2019, respectively. The general rearing of flies was done in plastic tubes (5 cm diameter, 10 cm height) containing approximately 10 g of artificial diet (Formula 4-24 medium, Carolina Biological SupplyCo., Burlington, NC), 40 ml of methyl-4-hydroxylbenzoate solution (1.43 g/L) to inhibit fungal growth, and a few grains of commercial instant dry yeast. The tubes were kept in growth chambers at 22 ± 2 °C, 60% ± 10% RH, and a 16 h photoperiod (hereafter called general rearing conditions). To collect eggs and resulting larvae on different nutritive media (i.e., fresh and decomposing fruits or artificial diet) for the below-described parasitoid rearing and experiments with parasitoids, some adult flies were kept in gauze cages (BugDorm-4F4545) at general rearing conditions. They were fed with sugar water provided on dental cotton rolls and dried instant yeast, additional water was provided on cellulose paper. The nutritive media were exposed to adult flies when needed.
    Parasitoid rearing
    The starting colonies of G. cf. brasiliensis were obtained during surveys in Asia from 2015–2017 and names to describe their origin are based on the collection sites described by Girod et al.19: Dali, Fumin, Kunming, Shiping, and Kunming—Xining temple (Xining in this study) in the Yunnan Province of China, as well as Hasuike (Nagano) and Tokyo—Naganuma park (actually on the territory of Hachioji but named Tokyo in this study) in Japan. The parasitoids were reared in the quarantine laboratory at CABI-Switzerland (Delémont, Switzerland) separated by origin in gauze cages (BugDorm-4F4545) to prevent them from interbreeding. The general rearing was done on D. suzukii larvae feeding on blueberries as described by Girod et al.19, with the difference that fruits were only exposed for 24 h to D. suzukii for oviposition. The environmental parameters of the quarantine chamber were the above-described general rearing conditions. Up to 50 adult wasps were kept in transparent plastic containers (9 cm diameter, 5 cm height) inside each gauze cage. An Eppendorf tube with a wet cellulose paper was added as a water source and the container was closed with a foam plug on which a drop of honey was placed as food source. Six fresh blueberries, which were placed 24 h before in the D. suzukii rearing cages to collect eggs, were added every 2–3 days to each container with adults to allow for parasitism of young fly larvae. After the exposure to the wasps, infested fruits were removed from the containers and kept in clear plastic tubes (5 cm diameter, 10 cm height) with a filter paper at the bottom to absorb leaking fruit juice. Every 2–3 days, the presence of newly hatched wasps was checked among rearing tubes and adult wasps were transferred to the oviposition containers.
    Molecular characterization
    The molecular characterization was performed on (1) individuals originating from the field (nine locations from five provinces in China and three locations from three prefectures of the Honshu island in Japan), (2) the derived laboratory strains and (3) individuals used for the experiments (Table S2). Two molecular markers were used, the mitochondrial coding gene Cytochrome Oxidase subunit 1 (COI) and the nuclear region Internal Transcripted Spacer 2 (ITS2). Both were previously used to characterize Ganaspis individuals from Eastern Asia22,23 and elsewhere.
    The DNA was extracted in a total of 30 µl using either the prepGEM Insect kit (Zygem) (3 h at 75 °C and 5 min at 95 °C), or the QuickExtract DNA Extraction Solution (n°QE09050, Lucigen) (15 min at 65 °C and 2 min at 98 °C). For both molecular markers (COI and ITS2), each individual PCR was realized in a total of 25 µl, including 12.5 µl of the Multiplex PCR Master Mix (Qiagen), 0.125 µl of each primer (100 µM), and 1 µl DNA. For COI, the primers LCO (5′-GGTCAACAAATCATAAAGATATTGG-3′) and HCO (5′-TAAACTTCAGGGTGACCAAAAAATCA-3′)44 were used for more than 400 individuals. PCR conditions consisted of (1) 15 min at 95 °C, (2) 35 cycles of 30 s at 94 °C, 90 s at 50 °C and 60 s at 72 °C, (3) 10 min at 72 °C. For ITS2, the primers ITS2-F (5′-TGTGAACTGCAGGACACATG-3′) and ITS2-R (5′-AATGCTTAAATTTAGGGGTA-3′)45 were used for a subset of representative individuals. PCR conditions consisted of (1) 15 min at 95 °C; (2) 40 cycles of 30 s at 94 °C, 90 s at 53 °C, and 60 s at 72 °C; and (3) 10 min at 72 °C. In both cases, the PCR was checked using a QIAxcel DNA Fast Analysis Kit on a QIAxcel Advanced System (Qiagen). Positive PCR products were then sequenced with the Sanger method in one direction with the HCO primer for COI and both directions for ITS2. Sequences were trimmed, assembled and aligned using ClustalW for COI and Muscle for ITS2 (Geneious, version 10.2.3). For COI, only haplotypes observed twice within the panel of high-quality sequences (length  > 520 bp and no undetermined nucleotide) were considered. These data were then enriched with 83 additional GenBank accessions, including in particular sequences from Nomano et al.22 and Giorgini et al.23. The whole dataset (our own haplotypes and GenBank accessions) was then analyzed on a common part of 519 bp included between the two marks, ATTGGDTCAA and TTAGCAGGTG (5′ → 3′ on the positive strand). Three criteria were then applied to summarize and clean the data including: (1) the conservation of repres entative, necessary and sufficient sequences from the three main sources22,23 (and this study); (2) the exclusion of sequence with undetermined nucleotide(s); (3) the exclusion of each sequence with a unique amino-acid sequence. A final dataset of 62 sequences (haplotypes from this study and GenBank accessions) remained after this process. Based on this dataset, three complementary approaches were used to investigate the molecular clustering: (1) a Neighbour Joining approach using the Tamura 3 parameters distance (the best evolutionary model according to the software MEGA10.1.746), using 500 replicates for bootstrapping; (2) a Maximum Likelihood approach using the evolutionary model HKY85 + I (the best model according to the software PhyML3.047); and (3) the constitution of a network using the Median Joining method (ε set to zero, PopArt48). The Kimura 2 parameters distance (often used in the frame of barcoding’s studies) was also used to investigate the pairwise distances within and between clusters (see Discussion). For ITS2, the identified haplotypes were directly compared to those available on GenBank and mapped into the COI Neighbor-Joining tree.
    Crossing experiments
    Ganaspis brasiliensis is arrhenotokous, unmated females produce only male progeny while mated females are able to produce both males (unfertilized eggs) and females (fertilized eggs). Thus, the proportion of female progeny can be used as an indicator of reproductive isolation. With regard to already acquired knowledge on Asian Ganaspis cf. brasiliensis19,22,25,30, we more precisely investigated here the reproductive (in)compatibilities between the two main molecular clusters (G1 and G3-4—see Results and Discussion) and, within the cluster G1, between two geographically distant populations (one Chinese and one Japanese). Thus, crossing experiments with individuals from three locations were done here: Tokyo, Hasuike and Kunming. For the latter, only individuals that were a posteriori affiliated to G1 through the molecular characterization described above were taken into account. For individuals from each location, parasitized Drosophila pupae from the general parasitoid rearing (see above) were identified under a microscope (parasitoid pupae can be seen through the translucent Drosophila pupal case) and kept individually in plastic vials containing moisturized plastic foams. Within 24 h after emergence, 1–2 males were placed with each virgin female during 24 h for mating. Females were then transferred to a plastic vial containing 10–30 first instar D. suzukii larvae feeding in fresh blueberries and drops of honey for the parasitoid’s nutrition. After 3 days, females were collected and kept in 95% ethanol for potential molecular analysis. The vials containing the potentially parasitized D. suzukii larvae in blueberries were kept until adult emergence under the general rearing conditions described above. Upon emergence of the F1 generation, adults were sexed based on antennal length (males have longer antennae than females24) and the percentage of female progeny was calculated for each parental female. To test the fertility of F1 females, they were allowed mating with males from the same origin for 24 h. Then, the above described oviposition procedure was repeated, and upon emergence, the F2 progeny was sexed and percentage of females was calculated. The number of parental females for each crossing varied from 9–24 (Table 1), depending on emergence during the experimental period.
    Affinity towards the targeted host and its nutritive media
    To study the specificity of G. cf. brasiliensis from the above mentioned seven different origins in Asia, three combinations of hosts and nutritive media were tested under no-choice conditions: (1) D. suzukii larvae feeding on blueberries, (2) D. suzukii larvae feeding on artificial diet, and (3) D. melanogaster larvae feeding on artificial diet. The blue formula of the above-mentioned artificial diet was used to facilitate counting of Drosophila eggs. Additionally, the diet was blended with about 25 g of fresh blueberries, as described by Girod et al.25. The artificial diet and fresh blueberries were exposed to the respective Drosophila species for 1–3 h, until 10–30 eggs were counted under a microscope, and incubated for 24 h at room temperature to allow eggs to hatch. Mated and naïve (i.e., never exposed to hosts for oviposition) 3–4 d old G. cf. brasiliensis females were then released individually into plastic tubes (2.7 cm diameter, 5.2 cm height) containing one of the three media. The tubes were closed with a moist foam lid containing a drop of honey to nourish the parasitoids. Females were removed from the tubes after 48 h and placed in 95% ethanol for genetic identification based on CO1, as described above. The tubes containing potentially parasitized Drosophila larvae were kept at the general rearing conditions and observed for fly and parasitoid emergence on a regular basis for 40 d. For each tube, the number of Drosophila flies and parasitoids were recorded. For each parasitoid origin, 20 replicates per host species-nutritive media combination were tested, for a total of 420 individual females.
    Influence of the nutritive media on the parasitism of non-target species
    A second no-choice test was done to investigate whether G. cf. brasiliensis’ host specificity is dependent on the nutritive medium of the host. To this end, four host species-nutritive medium combinations were tested: D. melanogaster or D. simulans larvae feeding on either blueberries or artificial diet. Because both Drosophila species do not have a serrated ovipositor and can therefore not oviposit through the skin of fresh fruits, slightly decomposed blueberries were cut in half and exposed to these species until 10–30 eggs were counted on each half. As in the first no-choice test, the artificial diet used in this experiment was the blue formula blended with about 25 g blueberries. The experiment was then conducted as described above for the first no-choice test, with the difference that 10 replicates for each host species-nutritive medium combination were used for parasitoids originating from Tokyo, Xining, and Hasuike only. This brought the total number of females for this experiment to 120.
    Preference for the targeted host and its habitats
    To investigate differences in preferences for the targeted host and its habitats among the different genetic groups of G. cf. brasiliensis, a three- and a four-choice bioassay were done. The bioassays took place in a cylindrical transparent plastic container (10 cm diameter, 5 cm height) with two holes of 2.5 cm diameter in the lid: one was covered with netting for ventilation and the other closed with a foam plug on which a drop of honey was placed to nourish the parasitoid. Inside each container, one 4–5 days old mated parasitoid female was placed, a plastic vial with wet cellulose paper as a water source, and small dishes (2.5 cm diameter, 1 cm height) containing the choices for oviposition in a random order. To avoid the influence of light and colors on the wasp’s directional choice, the choice arenas were placed inside a white plastic box (100 × 50 cm), leaving only one light source from above. After 24 h in the choice arena at the general rearing conditions, female parasitoids were kept in 95% ethanol to allow for further DNA analysis confirming the genetic group they belonged to. The dishes containing the different hosts and nutritive media were placed separately in rearing tubes (5 cm diameter, 10 cm height) containing a moist filter paper at the bottom and covered with a moist foam lid to avoid drying of the media. Three weeks after the beginning of the choice test, all adult Drosophila were removed from the rearing tubes and were counted. Until the eighth week after the choice test, emerging parasitoids were collected once a week, sexed, and counted.
    The three-choice bioassay was designed to determine if also when given the choice, G1 G. cf. brasiliensis are specific to fruits as the host’s nutritive medium, rather than to the host species, while G3-4 parasitoids are not specific to either. Therefore, the three host-species-nutritive medium combinations were (1) D. suzukii or (2) D. melanogaster larvae feeding on fresh blueberry, and (3) D. melanogaster larvae feeding on artificial diet. All media were prepared as described above for the no-choice experiments. In total, 68 female wasps were tested in the three-choice bioassay, 20 originating from Hasuike, 24 from Tokyo, and 24 from Xining.
    To determine if the habitat specificity of G1 and generality of G3-4 G. cf. brasiliensis also hold true when comparing fresh to decomposing fruits, a four-choice bioassay was designed. The host species-nutritive media combinations were (1) D. suzukii or (2) D. melanogaster larvae feeding on either (3) fresh or (4) decomposing blueberry. Infestation of fresh blueberries with fly larvae was done as described above. To decompose fruits, blueberries were exposed to room temperature in a plastic container for 7–10 days until growth of molt was visible. They were then exposed to D. suzukii and D. melanogaster for the collection of eggs as described for fresh fruits. In total, 27 and 22 females originating from Tokyo (G1) and Hasuike (G3-4) were tested, respectively, in the four-choice bioassay. For all choice tests, only results from females that produced at least one offspring were analyzed.
    Statistical analysis
    Apparent parasitism (AP) was calculated as the proportion of parasitoid offspring among the total number of insects that emerged from the nutritive medium (i.e. Drosophila sp. and parasitoids). The proportion of ovipositing females (POF) was calculated as the number of female parasitoids which produced at least one offspring (or which showed an oviposition response, in the case of the behavioral experiments) divided by the number of females tested. All data were analyzed using logistic regression followed by post-hoc comparisons of means with Tukey adjustments. Differences in proportions of females in the crossing experiment as well as AP and POF in the no-choice experiments was analyzed using quasibinomial distributions to account for overdispersion of the residuals (glm function of the ‘stats’ package in R49). For the no-choice experiment with parasitoids from different origins, AP was analyzed with the explanatory variables parasitoid origin, nutritive medium, and their interaction; and the POF developing on D. melanogaster feeding on artificial diet was analyzed with the parasitoid’s genetic group (G1 or G3-4) as explanatory variable. AP in the no-choice experiment with non-target species, the explanatory variables were parasitoid origin, host species, nutritive medium, and all possible interactions.
    Mixed effects logistic regressions (glmer function of the ‘lme4’ package in R50) were used to analyze AP in the choice tests. Analyses were done for each parasitoid origin separately because of convergence problems with more than one fixed effect. Therefore, nutritive medium was the sole fixed-effect explanatory variable for all analyses concerning the choice tests. In all cases, individual females were included as a random effect to account for correlation of parasitism between the media by the same female and an additional observation-level random effect was introduced to solve the problem of residual overdispersion. More

  • in

    Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea)

    1.
    Koehn, J. D., Hobday, A. J., Pratchett, M. S. & Gillanders, B. M. Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Mar. Freshw. Res. 62(9), 1148–1164 (2011).
    Article  Google Scholar 
    2.
    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).
    Article  PubMed  Google Scholar 

    3.
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308(5730), 1912–1915 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400(1–2), 7–16 (2011).
    Article  Google Scholar 

    5.
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3(10), 919 (2013).
    ADS  Article  Google Scholar 

    6.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332), eaai9214 (2017).
    Article  CAS  PubMed  Google Scholar 

    7.
    Harley, C. D. et al. Effects of climate change on global seaweed communities. J. Phycol. 48(5), 1064–1078 (2012).
    CAS  Article  PubMed  Google Scholar 

    8.
    Smale, D. A. et al. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3(11), 4016–4038 (2013).
    Article  PubMed  Google Scholar 

    9.
    Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).
    Article  Google Scholar 

    10.
    Mineur, F. et al. European seaweeds under pressure: consequences for communities and ecosystem functioning. J. Sea. Res. 98, 91–108 (2015).
    ADS  Article  Google Scholar 

    11.
    Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21(21), 1828–1832 (2011).
    CAS  Article  PubMed  Google Scholar 

    12.
    Wahl, M. et al. The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. PiP 2(1), 11–29 (2015).
    Article  Google Scholar 

    13.
    Bates, A. E. et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014).
    Article  Google Scholar 

    14.
    Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54(3), 447–465 (2019).
    CAS  Article  Google Scholar 

    15.
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf. Sci. 181, 196–208 (2016).
    ADS  Article  Google Scholar 

    16.
    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Alberes coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50(12), 1472–1489 (2005).
    CAS  Article  PubMed  Google Scholar 

    17.
    Mangialajo, L., Chiantore, M. & Cattaneo-Vietti, R. Loss of fucoid algae along a gradient of urbanization, and structure of benthic assemblages. Mar. Ecol. Progr. Ser. 358, 63–74 (2008).
    ADS  Article  Google Scholar 

    18.
    Thibaut, T., Blanfuné, A., Boudouresque, C. F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions?. Mediterr. Mar. Sci. 16(1), 206–224 (2015).
    Article  Google Scholar 

    19.
    Gianni, F. et al. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of Marine Protected Areas. AIOL J. 4(2), 83–101 (2013).
    Google Scholar 

    20.
    Capdevila, P., Linares, C., Aspillaga, E., Riera, J. L. & Hereu, B. Effective dispersal and density-dependence in mesophotic macroalgal forests: insights from the Mediterranean species Cystoseira zosteroides. PLoS ONE 13(1), e0191346 (2018).
    Article  CAS  PubMed  Google Scholar 

    21.
    Mangialajo, L. et al. Zonation patterns and interspecific relationships of fucoids in microtidal environments. J. Exp. Mar. Biol. Ecol. 412, 72–80 (2012).
    Article  Google Scholar 

    22.
    Buonomo, R. et al. Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp. Mar. Environ. Res. 138, 119–128 (2018).
    CAS  Article  PubMed  Google Scholar 

    23.
    Mariani, S. et al. Past and present of Fucales from shallow and sheltered shores in Catalonia. Reg. Stud. Mar. Sci. 32, 100824 (2019).
    Article  Google Scholar 

    24.
    Susini, M. L. Statut et biologie de Cystoseira amentacea var. stricta (Doctoral dissertation, 2006).

    25.
    Thibaut, T. et al. Unexpected temporal stability of Cystoseira and Sargassum forests in Port-Cros, one of the oldest Mediterranean marine National Parks. Cryptogamie Algol. 37(1), 61–91 (2016).
    Article  Google Scholar 

    26.
    Buonomo, R. et al. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol. Ecol. 26(3), 766–780 (2017).
    Article  PubMed  Google Scholar 

    27.
    Thibaut, T. et al. Unexpected abundance and long-term relative stability of the brown alga Cystoseira amentacea, hitherto regarded as a threatened species, in the north-western Mediterranean Sea. Mar. Pollut. Bull. 89(1–2), 305–323 (2014).
    CAS  Article  PubMed  Google Scholar 

    28.
    Thibaut, T. et al. Connectivity of populations of the seaweed Cystoseira amentacea within the Bay of Marseille (Mediterranean Sea): genetic structure and hydrodynamic connections. Cryptogamie Algol. 37(4), 233–256 (2016).
    Article  Google Scholar 

    29.
    Iveša, L., Djakovac, T. & Devescovi, M. Long-term fluctuations in Cystoseira populations along the west Istrian Coast (Croatia) related to eutrophication patterns in the northern Adriatic Sea. Mar. Pollut. Bull. 106(1–2), 162–173 (2016).
    Article  CAS  PubMed  Google Scholar 

    30.
    Ros, J. D., Romero, J., Ballesteros, E. & Gili, J. M. Diving in blue water. The benthos. In Western Mediterranean (ed. Margalef, R.) 233–295 (Pergamon Press, Oxford, 1985).
    Google Scholar 

    31.
    Sauvageau, C. A propos des Cystoseira de Banyuls et de Guéthary. Bulletin de la Station Biologique d’Arcachon (1912).

    32.
    Feldmann, J. Les algues marines de la cote des Albères I–III: cyanophycées, chlorophycées phéophycées (1937).

    33.
    Pascual, J., Bensoussan, N., Salat, J., & Garrabou, J. Clima i règim tèrmic de les aigües de les illes Medes i el Montgrí. El fons marí de les illes Medes i el Montgrí: quatre dècades de recerca per a la conservació. (ed. Càtedra d’Ecosistemes Litorals Mediterranis) 63 (2012).

    34.
    Gómez-Garreta, A., et al. Flora phycologica iberica. I. Fucales. (ed. Servicio de Publicaciones, Universidad de Murcia) (2001).

    35.
    Rodríguez-Prieto, C., Ballesteros, E., Boisset, F., & Afonso-Carrillo, J. Guía de las macroalgas y fanerógamas marinas del Mediterráneo occidental (ed. Omega) (2013).

    36.
    Barceló, M.C., et al. Flora Phycologica Iberica Vol. 1 Fucales (ed. Servicio de Publicaciones, Universidad de Murcia) (2001).

    37.
    Sala, E. The role of fishes in the organization of a Mediterranean sublittoral community (Doctoral dissertation, 1996).

    38.
    Ballesteros, E. et al. A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. Mar. Pollut. Bull. 55(1–6), 172–180 (2007).
    CAS  Article  Google Scholar 

    39.
    Sala, E. et al. The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications. PLoS ONE 7(2), e32742 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    40.
    Medrano, A. et al. No-take marine reserves control the recovery of sea urchin populations after mass mortality events. Mar. Environ. Res. 145, 147–154 (2019).
    CAS  Article  PubMed  Google Scholar 

    41.
    Susini, M. L., Thibaut, T., Meinesz, A. & Forcioli, D. A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia 46(6), 605–611 (2007).
    Article  Google Scholar 

    42.
    Sales, M. & Ballesteros, E. Shallow Cystoseira (Fucales: Ochrophyta) assemblages thriving in sheltered areas from Menorca (NW Mediterranean): relationships with environmental factors and anthropogenic pressures. Estuar. Coast. Shelf. Sci. 84(4), 476–482 (2009).
    ADS  CAS  Article  Google Scholar 

    43.
    Medrano, A. et al. From marine deserts to algal beds: Treptacantha elegans revegetation to reverse stable degraded ecosystems inside and outside a no-take marine reserve. Restor. Ecol. 28(3), 632–644 (2020).
    Article  Google Scholar 

    44.
    Deysher, L. & Norton, T. A. Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J. Exp. Mar. Biol. Ecol. 56, 179–195 (1982).
    Article  Google Scholar 

    45.
    Calvo, E. et al. Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Clim. Res. 50(1), 1–29 (2011).
    Article  Google Scholar 

    46.
    André, G., Garreau, P., Garnier, V. & Fraunié, P. Modelled variability of the sea surface circulation in the North-western Mediterranean Sea and in the Gulf of Lions. Ocean Dyn. 55(3–4), 294–308 (2005).
    ADS  Article  Google Scholar 

    47.
    Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf. Sci. 92(3), 347–357 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    Pinedo, S., Zabala, M. & Ballesteros, E. Long-term changes in sublittoral macroalgal assemblages related to water quality improvement. Bot. Mar. 56(5–6), 461–469 (2013).
    Google Scholar 

    49.
    Ricart, A. M. et al. Long-term shifts in the north western Mediterranean coastal seascape: the habitat-forming seaweed Codium vermilara. Mar. Pollut. Bull. 127, 334–341 (2018).
    CAS  Article  PubMed  Google Scholar 

    50.
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The ups and downs of a canopy-forming seaweed over a span of more than one century. Sci. Rep. 9(1), 1–10 (2019).
    Article  CAS  Google Scholar 

    51.
    Nykjaer, L. Mediterranean Sea surface warming 1985–2006. Clim. Res. 39(1), 11–17 (2009).
    Article  Google Scholar 

    52.
    Sicre, M. A. et al. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era. Earth Planet. Sci. Lett. 456, 124–133 (2016).
    ADS  CAS  Article  Google Scholar 

    53.
    Gallon, R. K. et al. Twenty years of observed and predicted changes in subtidal red seaweed assemblages along a biogeographical transition zone: inferring potential causes from environmental data. J. Biogeogr. 41(12), 2293–2306 (2014).
    Article  Google Scholar 

    54.
    Ballesteros, E. et al. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: insights into assemblage structure and population dynamics. Estuar. Coast. Shelf. Sci. 82(3), 477–484 (2009).
    ADS  Article  Google Scholar 

    55.
    Cormaci, M., Furnari, G., Catra, M., Alongi, G. & Giaccone, G. Flora marina bentonica del Mediterraneo: Phaeophyceae. Bollettino dell’accademia Gioenia di scienze naturali di Catania 45(375), 1–508 (2012).
    Google Scholar 

    56.
    Capdevila, P. et al. Recruitment patterns in the Mediterranean deep-water alga Cystoseira zosteroides. Mar. Biol. 162(6), 1165–1174 (2015).
    CAS  Article  Google Scholar 

    57.
    Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: methods and long-term success assessment. Front. Plant Sci. 9, 1832 (2018).
    Article  PubMed  Google Scholar 

    58.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models 2nd edn, 532 (Chapman and Hall, London, 1989).
    Google Scholar 

    59.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, Berlin, 2002).
    Google Scholar 

    60.
    Bates, D. et al. Package ‘lme4’. Convergence 12(1), 2 (2015).
    Google Scholar 

    61.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2017).

    62.
    Ballesteros, E., Pérez, M. & Zabala, M. Aproximación al conocimiento de las comunidades algales de la zona infralitoral superior de la costa catalana. Collect. Bot. 15, 69–100 (1984).
    Google Scholar 

    63.
    Ballesteros, E., Romero, J., Gili, J. M. & Ros, J. D. L’estatge infralitoral de les Illes Medes: les algues fotófiles. In Els Sistemes Naturals de les Illes Medes (eds Ros, J. et al.) (Institut d’Estudis Catalans, Barcelona, 1984).
    Google Scholar 

    64.
    Toonen, R. J. & Hughes, S. Increased throughput for fragment analysis on an ABI Prism 377 automated sequencer using a membrane comb and STRand software. Biotechniques 31(6), 1320–1325 (2001).
    CAS  PubMed  Google Scholar 

    65.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4(3), 535–538 (2004).
    Article  CAS  Google Scholar 

    66.
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. https://www.genetix.univ-montp2.fr/genetix/genetix.htm (1996–2004).

    67.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    68.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin an integrated software package for population genetics data analysis. Evol. Bioinform. https://doi.org/10.1177/117693430500100003 (2005).
    Article  Google Scholar 

    69.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Earl, D. A. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361 (2012).
    Article  Google Scholar 

    71.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol 14(8), 2611–2620 (2005).
    CAS  Article  Google Scholar 

    72.
    Hereu, B., Zabala, M. & Sala, E. Multiple controls of community structure and dynamics in a sublittoral marine environment. Ecology 89(12), 3423–3435 (2008).
    Article  Google Scholar 

    73.
    Medrano, A. et al. Long-term monitoring of temperate macroalgal assemblages inside and outside a No take marine reserve. Mar. Environ. Res. 153, 104826 (2019).
    Article  CAS  Google Scholar 

    74.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3), 583–590 (1978).
    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Maize sensitivity to drought

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. More

  • in

    Subgroup level differences of physiological activities in marine Lokiarchaeota

    1.
    Vetriani C, Jannasch HW, MacGregor AJ, Stahl DA, Reysenbach AR. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol. 1999;65:4375–84.
    CAS  Article  Google Scholar 
    2.
    Jorgensen SL, Thorseth IH, Pedersen RB, Baumberger T, Schleper C. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol. 2013;4:299.
    Article  Google Scholar 

    3.
    Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol. 2003;69:7224–35.
    CAS  Article  Google Scholar 

    4.
    Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 2016;10:1696–705.
    CAS  Article  Google Scholar 

    5.
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541:353–8.
    CAS  Article  Google Scholar 

    6.
    Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.
    CAS  Article  Google Scholar 

    7.
    Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521:173–9.
    CAS  Article  Google Scholar 

    8.
    Cai M, Liu Y, Zhou Z, Yang Y, Pan J, Gu J-D, et al. Asgard archaea are diverse, ubiquitous, and transcriptionally active microbes. BioRxiv. 2018. Preprint at https://doi.org/10.1101/374165.

    9.
    Orsi WD, Vuillemin A, Rodriguez P, Coskun OK, Gomez-Saez GV, Lavik G, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol. 2019;5:248–55.
    Article  Google Scholar 

    10.
    Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol. 2019;4:1138–48.
    CAS  Article  Google Scholar 

    11.
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature. 2020;577:519–25.
    CAS  Article  Google Scholar 

    12.
    Manefield M, Whiteley AS, Griffiths RI, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol. 2002;68:5367–73.
    CAS  Article  Google Scholar 

    13.
    Aoyagi T, Hanada S, Itoh H, Sato Y, Ogata A, Friedrich MW, et al. Ultra-high-sensitivity stable-isotope probing of rRNA by high-throughput sequencing of isopycnic centrifugation gradients. Environ Microbiol Rep. 2015;7:282–7.
    CAS  Article  Google Scholar 

    14.
    Aoyagi T, Morishita F, Sugiyama Y, Ichikawa D, Mayumi D, Kikuchi Y, et al. Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing. ISME J. 2018;12:2376–88.
    CAS  Article  Google Scholar 

    15.
    Oni O, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol. 2015;6:365.
    Google Scholar 

    16.
    Yin X, Wu W, Maeke M, Richter-Heitmann T, Kulkarni AC, Oni OE, et al. CO2 conversion to methane and biomass in obligate methylotrophic methanogens in marine sediments. ISME J. 2019;13:2107–19.
    CAS  Article  Google Scholar 

    17.
    Yin X, Kulkarni AC, Friedrich MW. DNA and RNA stable isotope probing of methylotrophic methanogenic archaea. In: Dumont M, Hernández García M (eds). Stable isotope probing, methods in molecular biology. Springer: New York, 2019, pp 189–206.

    18.
    Faurobert M, Pelpoir E, Chaïb J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. In: Thiellement H, Zivy M, Damerval C, Méchin V (eds) Plant proteomics, methods in molecular biology. Humana Press: Totowa, NJ, USA, 2007, pp 9–14.

    19.
    Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol. 2004;6:73–8.
    CAS  Article  Google Scholar 

    20.
    Ovreas L, Forney L, Daae FL, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997;63:3367–73.
    CAS  Article  Google Scholar 

    21.
    Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 2000;66:5066–72.
    CAS  Article  Google Scholar 

    22.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  Article  Google Scholar 

    23.
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
    CAS  Article  Google Scholar 

    24.
    Lueders T. DNA- and RNA-based stable isotope probing of hydrocarbon degraders. Hydrocarbon and lipid microbiology protocols. In: Timmis KN (ed.), Handbook of hydrocarbon and lipid microbiology. Springer: Berlin, Heidelberg, 2015, pp 181–97.

    25.
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
    CAS  Article  Google Scholar 

    26.
    Caceres EF, Lewis WH, Homa F, Martin T, Schramm A, Kjeldsen KU, et al. Near-complete Lokiarchaeota genomes from complex environmental samples using long and short read metagenomic analyses. BioRxiv. 2019. Preprint at https://doi.org/10.1101/2019.12.17.879148.

    27.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  Article  Google Scholar 

    28.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2006;23:127–8.
    Article  Google Scholar 

    29.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
    CAS  Article  Google Scholar 

    30.
    Joshi N, Fass J. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. 2011; https://github.com/najoshi/sickle.

    31.
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
    CAS  Article  Google Scholar 

    32.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    Article  Google Scholar 

    33.
    Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
    CAS  Article  Google Scholar 

    34.
    Zhou Z, Liu Y, Xu W, Pan J, Luo ZH, Li M. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems. 2020;5:e00795–19.
    CAS  Article  Google Scholar 

    35.
    Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.
    Article  Google Scholar 

    36.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  Article  Google Scholar 

    37.
    Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ. 2018;6:e4320.
    Article  Google Scholar 

    38.
    Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science. 2015;350:432–8.
    Article  Google Scholar 

    39.
    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
    Article  Google Scholar 

    40.
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.
    CAS  Article  Google Scholar 

    41.
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.
    CAS  Article  Google Scholar 

    42.
    Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
    CAS  Article  Google Scholar 

    43.
    Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.
    CAS  Article  Google Scholar 

    44.
    Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 2019;13:663–75.
    CAS  Article  Google Scholar 

    45.
    Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013;41:e121.
    CAS  Article  Google Scholar 

    46.
    Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195.
    CAS  Article  Google Scholar 

    47.
    Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.
    Article  Google Scholar 

    48.
    Oni OE, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs KU, et al. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland Mud Area, North Sea. Front Microbiol. 2015;6:1290.
    Google Scholar 

    49.
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.
    Article  Google Scholar 

    50.
    Hesselsoe M, Nielsen JL, Roslev P, Nielsen PH. Isotope labeling and microautoradiography of active heterotrophic bacteria on the basis of assimilation of 14CO2. Appl Environ Microbiol. 2005;71:646–55.
    CAS  Article  Google Scholar 

    51.
    Roslev P, Larsen MB, Jorgensen D, Hesselsoe M. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods. 2004;59:381–93.
    CAS  Article  Google Scholar 

    52.
    Konstantinidis KT, Rossello-Mora R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
    Article  Google Scholar 

    53.
    Heider J, Ma K, Adams MWW. Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1. J Bacteriol. 1995;177:4757–64.
    CAS  Article  Google Scholar 

    54.
    Radajewski S, McDonald IR, Murrell JC. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotechnol. 2003;14:296–302.
    CAS  Article  Google Scholar 

    55.
    Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol. 2016;26:92–118.
    CAS  Google Scholar 

    56.
    Ulrich AC, Tappenden K, Armstrong J, Biggar KW. Effect of cold temperature on the rate of natural attenuation of benzene, toluene, ethylbenzene, and the three isomers of xylene (BTEX). Can Geotech J. 2010;47:516–27.
    CAS  Article  Google Scholar 

    57.
    Shivani Y, Subhash Y, Sasikala C, Ramana CV. Characterisation of a newly isolated member of a candidatus lineage, Marispirochaeta aestuarii gen. nov., sp. nov. Int J Syst Evol Microbiol. 2017;67:3929–36.
    CAS  Article  Google Scholar 

    58.
    Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 2016;1:16116.
    CAS  Article  Google Scholar 

    59.
    Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA. 2018;115:6022–7.
    CAS  Article  Google Scholar 

    60.
    Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.
    CAS  Article  Google Scholar 

    61.
    Arieli B, Shahak Y, Taglicht D, Hauska G, Padan E. Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem. 1994;269:5705–11.
    CAS  Google Scholar 

    62.
    Manefield M, Whiteley AS, Ostle N, Ineson P, Bailey MJ. Technical considerations for RNA- based stable isotope probing an approach to associating microbial diversity with microbial community function. Rapid Commun Mass Spectrom. 2002;16:2179–83.
    CAS  Article  Google Scholar 

    63.
    Glombitza C, Egger M, Røy H, Jørgensen BB. Controls on volatile fatty acid concentrations in marine sediments (Baltic Sea). Geochim Cosmochim Acta. 2019;258:226–41.
    CAS  Article  Google Scholar 

    64.
    Glombitza C, Pedersen J, Røy H, Jørgensen BB. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry. Limnol Oceanogr: Methods. 2014;12:455–68.
    CAS  Article  Google Scholar 

    65.
    Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs K-U. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta. 2009;73:3323–36.
    CAS  Article  Google Scholar 

    66.
    Stackebrandt E. The family Clostridiaceae, other genera. In: Rosenberg E, et al. (eds). The Prokaryotes—Firmicutes and Tenericutes. Springer: Berlin, Heidelberg, 2014, pp 67–73.

    67.
    Katayama T, Nobu MK, Kusada H, Meng X-Y, Yoshioka H, Kamagata Y, et al. Membrane-bounded nucleoid discovered in a cultivated bacterium of the candidate phylum ‘Atribacteria’. BioRxiv. 2019. Preprint at https://doi.org/10.1101/728279

    68.
    Kuever J. The family Desulfobacteraceae. In: Rosenberg E, et al. (eds). The Prokaryotes—Deltaproteobacteria and Epsilonproteobacteria. Springer: Berlin, Heidelberg, 2014, pp 45–73.

    69.
    Chen NH, Ong CY, O’Sullivan J, Ibranovic I, Davey K, Edwards JL, et al. Two distinct L-lactate dehydrogenases play a role in the survival of Neisseria gonorrhoeae in cervical epithelial cells. J Infect Dis. 2019;221:449–53.
    Google Scholar 

    70.
    Feijo Delgado F, Cermak N, Hecht VC, Son S, Li Y, Knudsen SM, et al. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells. PLoS ONE. 2013;8:e67590.
    Article  Google Scholar 

    71.
    Kuever J. The family Desulfobulbaceae. In: Rosenberg E, et al. (eds). The Prokaryotes—Deltaproteobacteria and Epsilonproteobacteria. Springer: Berlin, Heidelberg, 2014, pp 75–86.

    72.
    Thamdrup B, Finster K, Hansen JW, Bak F. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol. 1993;59:101–8.
    CAS  Article  Google Scholar 

    73.
    Hipp WM, Pott AS, Thum-Schmitz N, Faath I, Dahl C, Trüper HG. Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiol. 1997;143:2891–902.
    CAS  Article  Google Scholar 

    74.
    Choquet CG, Richards JC, Patel GB, Sprott GD. Ribose biosynthesis in methanogenic bacteria. Arch Microbiol. 1994;161:481–8.
    CAS  Article  Google Scholar 

    75.
    Ekiel I, Smith ICP, Sportt GD. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance. J Bacteriol. 1983;156:316–26.
    CAS  Article  Google Scholar  More

  • in

    Polyandry blocks gene drive in a wild house mouse population

    1.
    Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Belknap Press, Cambridge, 2006).
    2.
    Lindholm, A. K. et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evolution 31, 316–326 (2016).
    Google Scholar 

    3.
    Champer, J., Kim, I. K., Champer, S. E., Clark, A. G. & Messer, P. W. Performance analysis of novel toxin-antidote CRISPR gene drive systems. BMC Biol. 18, 1–17 (2020).
    Google Scholar 

    4.
    Godwin, J. et al. Rodent gene drives for conservation: opportunities and data needs. Proc. R. Soc. B 286, 20191606 (2019).
    PubMed  PubMed Central  Google Scholar 

    5.
    Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Haig, D. & Bergstrom, C. Multiple mating, sperm competition and meiotic drive. J. Evol. Biol. 8, 265–282 (1995).
    Google Scholar 

    7.
    Manser, A., Lindholm, A. K., König, B. & Bagheri, H. C. Polyandry and the decrease of a selfish genetic element in a wild house mouse population. Evolution 65, 2435–2447 (2011).
    PubMed  PubMed Central  Google Scholar 

    8.
    Holman, L., Price, T. A., Wedell, N. & Kokko, H. Coevolutionary dynamics of polyandry and sex-linked meiotic drive. Evolution 69, 709–720 (2015).
    PubMed  PubMed Central  Google Scholar 

    9.
    Price, T. & Wedell, N. Selfish genetic elements and sexual selection: their impact on male fertility. Genetica 134, 99–111 (2008).
    PubMed  Google Scholar 

    10.
    Wedell, N. The dynamic relationship between polyandry and selfish genetic elements. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–10 (2013).
    Google Scholar 

    11.
    Sutter, A. & Lindholm, A. K. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice. Proc. R. Soc. B 282, 20150974 (2015).
    Google Scholar 

    12.
    Manser, A., Lindholm, A. K., Simmons, L. W. & Firman, R. C. Sperm competition suppresses gene drive among experimentally evolving populations of house mice. Mol. Ecol. 20, 5784–5792 (2017).
    Google Scholar 

    13.
    Price, T., Hodgson, D., Lewis, Z., Hurst, G. & Wedell, N. Selfish genetic elements promote polyandry in a fly. Science 332, 1241–1243 (2008).
    ADS  Google Scholar 

    14.
    Price, T. et al. Sex ratio distorter reduces sperm competitive ability in an insect. Evolution 62, 1644–1652 (2008).
    PubMed  Google Scholar 

    15.
    Herrmann, B. G. & Bauer, H. The Mouse t-haplotype: a Selfish Chromosome—Genetics, Molecular Mechanism, and Evolution, Vol. 3, 297–314 (Cambridge University Press, Cambridge, 2012).

    16.
    Lindholm, A. K., Musolf, K., Weidt, A. & König, B. Mate choice for genetic compatibility in the house mouse. Ecol. Evolution 3, 1231–1247 (2013).
    Google Scholar 

    17.
    Dean, M., Ardlie, K. & Nachman, M. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol. Ecol. 15, 4141–4151 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Firman, R. & Simmons, L. Polyandry facilitates postcopulatory inbreeding avoidance in house mice. Evolution 62, 603–611 (2008).
    PubMed  Google Scholar 

    19.
    Thonhauser, K. E., Thoss, M., Musolf, K., Klaus, T. & Penn, D. J. Multiple paternity in wild house mice (Mus musculus musculus): effects on offspring genetic diversity and body mass. Ecol. Evolution 4, 200–209 (2013).
    Google Scholar 

    20.
    Auclair, Y., König, B. & Lindholm, A. K. Socially mediated polyandry: a new benefit of communal nesting in mammals. Behav. Ecol. 25, 1467–1473 (2014).
    PubMed  PubMed Central  Google Scholar 

    21.
    Rolland, C., Macdonald, D., de Fraipont, M. & Berdoy, M. Free female choice in house mice: leaving best for last. Behaviour 140, 1371–1388 (2003).
    Google Scholar 

    22.
    Thonhauser, K. E., Raveh, S., Hettyey, A., Beissmann, H. & Penn, D. J. Scent marking increases male reproductive success in wild house mice. Anim. Behav. 86, 1013–1021 (2013).
    PubMed  PubMed Central  Google Scholar 

    23.
    Thonhauser, K. E., Raveh, S. & Penn, D. J. Multiple paternity does not depend on male genetic diversity. Anim. Behav. 93, 135–141 (2014).
    PubMed  PubMed Central  Google Scholar 

    24.
    Bronson, F. The reproductive ecology of the house mouse. Q. Rev. Biol. 54, 265–299 (1979).
    CAS  PubMed  Google Scholar 

    25.
    Evans, J. P. & Simmons, L. W. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good-and sexy-sperm? Genetica 134, 5 (2008).
    PubMed  Google Scholar 

    26.
    McFarlane, E. S. et al. The heritability of multiple male mating in a promiscuous mammal. Biol. Lett. 7, 368–371 (2011).
    PubMed  Google Scholar 

    27.
    Reid, J. M., Arcese, P., Sardell, R. J. & Keller, L. F. Heritability of female extra-pair paternity rate in song sparrows (Melospiza melodia). Proc. R. Soc. B 278, 1114–1120 (2011).
    PubMed  Google Scholar 

    28.
    Sutter, A. & Lindholm, A. K. Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics? BMC Evolut. Biol. 16, 133 (2016).
    Google Scholar 

    29.
    Sutter, A. & Lindholm, A. K. The copulatory plug delays ejaculation by rival males and affects sperm competition outcome in house mice. J. Evol. Biol. 29, 1617–1630 (2016).
    CAS  PubMed  Google Scholar 

    30.
    Atlan, A., Joly, D., Capillon, C. & Montchamp-Moreau, C. Sex-ratio distorter of Drosophila simulans reduces male productivity and sperm competition ability. J. Evol. Biol. 17, 744 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Wilkinson, G., Johns, P., Kelleher, E., Muscedere, M. & Lorsong, A. Fitness effects of X chromosome drive in the stalk-eyed fly, Cyrtodiopsis dalmanni. J. Evol. Biol. 19, 1851–1860 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Angelard, C., Montchamp-Moreau, C. & Joly, D. Female-driven mechanisms, ejaculate size and quality contribute to the lower fertility of sex-ratio distorter males in Drosophila simulans. BMC Evol. Biol. 8, 1–12 (2008).
    PubMed  PubMed Central  Google Scholar 

    33.
    Dyer, K. A. & Hall, D. W. Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild. Proc. R. Soc. B 286, 20192529 (2019).
    PubMed  PubMed Central  Google Scholar 

    34.
    Keais, G., Lu, S. & Perlman, S. Autosomal suppression and fitness costs of an old driving X chromosome in Drosophila testacea. J. Evol. Biol. 33, 619–628 (2020).

    35.
    Price, T. A., Lewis, Z., Smith, D. T., Hurst, G. D. & Wedell, N. Sex ratio drive promotes sexual conflict and sexual coevolution in the fly Drosophila pseudoobscura. Evolution 64, 1504–1509 (2010).
    PubMed  PubMed Central  Google Scholar 

    36.
    Runge, J.-N. & Lindholm, A. K. Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice. Proc. R. Soc. B 285, 20181333 (2018).
    PubMed  PubMed Central  Google Scholar 

    37.
    Meade, L., Finnegan, S., Kad, R., Fowler, K. & Pomiankowski, A. Adaptive maintenance of fertility in the face of meiotic drive. Am. Naturalist 195, 743–751 (2019).
    Google Scholar 

    38.
    Zeh, J. & Zeh, D. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc. R. Soc. B 264, 69–75 (1997).
    ADS  Google Scholar 

    39.
    Yasui, Y. A “good-sperm” model can explain the evolution of costly multiple mating by females. Am. Naturalist 149, 573–584 (1997).
    Google Scholar 

    40.
    Ferrari, M., Lindholm, A. K. & König, B. Fitness consequences of female alternative reproductive tactics in house mice (Mus musculus domesticus). Am. Naturalist 193, 106–124 (2019).
    Google Scholar 

    41.
    Ardlie, K. G. & Silver, L. M. Low frequency of t haplotypes in natural populations of house mice (Mus musculus domesticus). Evolution 52, 1185–1196 (1998).
    PubMed  Google Scholar 

    42.
    Ardlie, K. Putting the brake on drive: meiotic drive of t haplotype in natural populations of mice. Trends Genet. 14, 189–193 (1998).
    CAS  PubMed  Google Scholar 

    43.
    Young, S. A proposition on the population dynamics of the sterile t alleles in the house mouse. Evolution 21, 190–192 (1967).
    CAS  PubMed  Google Scholar 

    44.
    Petras, M. & Topping, J. The maintenance of polymorphisms at two loci in house mouse (Mus musculus) populations. Genome 25, 190–201 (1983).
    CAS  Google Scholar 

    45.
    Bull, J. Lethal gene drive selects inbreeding. Evolution 1, 1–16 (2017).

    46.
    van Boven, M. & Weissing, F. J. Segretation distortion in a deme-structured population: opposing demands of gene, individual and group selection. J. Evol. Biol. 12, 80–93 (1999).
    Google Scholar 

    47.
    Nunney, L. The role of deme size, reproductive patterns, and dispersal in the dynamics of t-lethal haplotypes. Evolution 47, 1342–1359 (1993).
    PubMed  Google Scholar 

    48.
    Lenington, S. The t complex: a story of genes, behavior, and populations. Adv. Study Behav. 20, 51–86 (1991).
    Google Scholar 

    49.
    Sutter, A. & Lindholm, A. K. No evidence for female discrimination against male house mice carrying a selfish genetic element. Curr. Zool. 62, zow063 (2016).
    Google Scholar 

    50.
    Manser, A., König, B. & Lindholm, A. Female house mice avoid fertilization by t haplotype incompatible males in a mate choice experiment. J. Evol. Biol. 28, 54–64 (2015).
    CAS  PubMed  Google Scholar 

    51.
    Manser, A., Lindholm, A. K. & Weissing, F. J. The evolution of costly mate choice against segregation distorters. Evolution 71, 2817–2828 (2017).

    52.
    Price, T., Verspoor, R. & Wedell, N. Ancient gene drives: an evolutionary paradox. Proc. R. Soc. B 286, 20192267 (2019).
    CAS  PubMed  Google Scholar 

    53.
    Galizi, R. et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5, 3977 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Galizi, R. et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6, 31139 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Piaggio, A. J. et al. Is it time for synthetic biodiversity conservation? Trends Ecol. Evolution 32, 97–107 (2017).
    Google Scholar 

    56.
    Leitschuh, C. M. et al. Developing gene drive technologies to eradicate invasive rodents from islands. J Responsible Innov. 5, S121–138 (2017).

    57.
    Manser, A. et al. Controlling invasive rodents via synthetic gene drive and the role of polyandry. Proc. R. Soc. B 286, 20190852 (2019).
    PubMed  Google Scholar 

    58.
    Howald, G. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).
    PubMed  Google Scholar 

    59.
    Prowse, T. A., Adikusuma, F., Cassey, P., Thomas, P. & Ross, J. V. A Y-chromosome shredding gene drive for controlling pest vertebrate populations. Elife 8, e41873 (2019).
    PubMed  PubMed Central  Google Scholar 

    60.
    König, B. & Lindholm, A. The Complex Social Environment of Female House Mice (Mus domesticus), 114–134 (Cambridge University Press, Cambridge, 2012).

    61.
    Berry, R., Tattersall, F. & Hurst, J. Genus Mus (The Mammal Society Southampton, 2008).

    62.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    Google Scholar 

    63.
    Brambell, F. The influence of lactation on the implantation of the mammalian embryo. Am. J. Obstet. Gynecol. 33, 942–953 (1937).
    Google Scholar 

    64.
    Schimenti, J. & Hammer, M. Rapid identification of mouse t haplotype by PCR polymorphism (PCRP). Mouse Genome 108 (1990).

    65.
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
    PubMed  Google Scholar 

    66.
    Hadfield, J. D. et al. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 

    67.
    Bruck, D. Male segregation ratio advantage as a factor in maintaining lethal alleles in wild populations of house mice. Proc. Natl Acad. Sci. USA 43, 152–158 (1957).
    ADS  CAS  PubMed  Google Scholar  More

  • in

    Get Africa’s Great Green Wall back on track

    Forest land surrounding Ethiopia’s churches are important islands of biodiversity. The government has pledged to restore 15 million hectares of degraded and deforested land by 2030.Credit: Kieran Dodds/Panos

    The Great Green Wall of Africa, a plan to restore a 7,000-kilometre-long stretch of degraded land from Senegal in West Africa to Djibouti in the east, is a bold and ambitious idea intended to help combat drought and desertification, which currently affect around 45% of Africa’s land area. Proposed 13 years ago by two of the continent’s elder statesmen, Nigeria’s then president Olusegun Obasanjo and Senegal’s former president Abdoulaye Wade, it is even more important now, given the threat from climate change and the reliance of the continent’s people on agriculture for their livelihoods.
    But, so far, the project has struggled to reach key goals. Less than one-fifth of the designated land area has been restored or rehabilitated. The African Union’s top decision makers don’t see the green wall as a priority, and inter-national donors seem reluctant to commit further funding. Researchers, governments and international agencies must work together better to rehabilitate this crucial scheme.
    The project’s focus has widened from its founders’ vision because there are more ways to restore degraded land than by reforestation, such as creating communal gardens and nature reserves. But the addition of these and other measures has made the green wall more complex. It has required different ministries in individual countries to work together. That is always difficult, but it becomes even more so when two further variables are added: the African Union and the international donor community. These and other observations are confirmed in an independent assessment of the project, commissioned by the project’s partners and published in September by the United Nations Convention to Combat Desertification (UNCCD).
    The assessment report tries to look on the bright side. It says that 11 countries along the green wall have re-habilitated nearly 4 million hectares of land and created 350,000 jobs in the process. It also confirms that a broader group of 21 African countries is committed to restoring and rehabilitating 100 million hectares of land by 2030, creating 10 million green jobs. But it doesn’t sugar-coat the fact that governments and donors will need to find between US$3.6 billion and $4.3 billion every year for the next decade if the 100-million-hectare target is to be achieved. That will be a tall order — the report calls it a “quantum leap” — considering that the project raised around $2 billion in its first decade. But it is not impossible — and there are several key ways in which researchers can contribute.
    The UNCCD report provides headline information on each country’s progress — such as the numbers of plants and seedlings produced; the area of land reforested; and the numbers of people trained and jobs created. Most of these data were provided by each country. The next step should be for independent researchers — for example, members of IPBES (the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services) — to assess these data and publish their own reviews, to help all sides have more confidence in the data and in the monitoring process.
    Funding is always a challenge in such projects. But although it might seem feasible that the 55 member states of the African Union and their inter-national partners could raise the required amounts, nations have already committed funding to inter-national initiatives with similar goals to those of the green wall. African countries, for example, are signatories to the Aichi Bio-diversity Targets, which include a goal to reduce habitat loss and degradation. Countries have also signed up to the UN Sustainable Development Goals, which include a target of combating desertification and restoring degraded land and soil. And they are also members of the UNCCD, which has pledged to reach what it is calling “land degradation neutrality” by 2030.
    The UNCCD report suggests a single trust fund could be the answer. That would work if countries and international agencies agree to pool their resources and create harmonized reporting requirements. Researchers could help here by developing a method for measuring whether countries are succeeding in meeting their green-wall goals, as well as providing a common accounting framework.
    The need to restore and rehabilitate land is urgent. People in the affected countries are among the world’s poorest. The overwhelming majority earn their living from agriculture or livestock production. Climate change is projected to lift average temperatures by 3–6 °C by the end of the century, compared with a late-twentieth-century baseline. More extremes of weather are expected, and these, in turn, will reduce crop yields.
    The green-wall project needs international agencies to cooperate better, it needs researchers to help, and it needs the present generation of the continent’s leaders to step up and take on a more visible role in championing it, just as its two founding presidents did. More

  • in

    Assessing ecological uncertainty and simulation model sensitivity to evaluate an invasive plant species’ potential impacts to the landscape

    1.
    Sofaer, H. R., Jarnevich, C. S. & Pearse, I. S. The relationship between invader abundance and impact. Ecosphere 9, e02415. https://doi.org/10.1002/ecs2.2415 (2018).
    Article  Google Scholar 
    2.
    Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19. https://doi.org/10.1023/a:1010034312781 (1999).
    Article  Google Scholar 

    3.
    Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl. Acad. Sci. 116, 23594–23599. https://doi.org/10.1073/pnas.1908253116 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22, 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x (2008).
    Article  PubMed  Google Scholar 

    5.
    Clark, J. S. et al. Ecological forecasts: An emerging imperative. Science 293, 657–660. https://doi.org/10.1126/science.293.5530.657 (2001).
    CAS  Article  PubMed  Google Scholar 

    6.
    Andrew, M. E. & Ustin, S. L. The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens. Environ. 112, 4301–4317. https://doi.org/10.1016/j.rse.2008.07.016 (2008).
    ADS  Article  Google Scholar 

    7.
    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253. https://doi.org/10.1007/s00442-004-1551-1 (2004).
    ADS  Article  PubMed  Google Scholar 

    8.
    Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273. https://doi.org/10.1111/j.1469-8137.2007.02207.x (2007).
    Article  PubMed  Google Scholar 

    9.
    Daniel, C., Frid, L., Sleeter, B. & Fortin, M.-J. State-and-transition simulation models: A framework for forecasting landscape change. Methods Ecol. Evol. 7, 1413–1423. https://doi.org/10.1111/2041-210x.12597 (2016).
    Article  Google Scholar 

    10.
    Frid, L. & Wilmshurst, J. F. Decision analysis to evaluate control strategies for crested wheatgrass (Agropyron cristatum) in Grasslands National Park of Canada. Invasive Plant Sci. Manag. 2, 324–336 (2009).
    Article  Google Scholar 

    11.
    Jarnevich, C. S., Holcombe, T. R., Cullinane Thomas, C., Frid, L. & Olsson, A. Simulating long-term effectiveness and efficiency of management scenarios for an invasive grass. AIMS Environ. Sci. 2, 427–447, https://doi.org/10.3934/environsci.2015.2.427 (2015).

    12.
    Frid, L. et al. Using state and transition modeling to account for imperfect knowledge in invasive species management. Invasive Plant Sci. Manag. 6, 36–47 (2013).
    Article  Google Scholar 

    13.
    Grechi, I. et al. A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species. Agric. Syst. 125, 1–11. https://doi.org/10.1016/j.agsy.2013.11.005 (2014).
    Article  Google Scholar 

    14.
    Miller, B. W., Symstad, A. J., Frid, L., Fisichelli, N. A. & Schuurman, G. W. Co-producing simulation models to inform resource management: A case study from southwest South Dakota. Ecosphere 8, e02020, https://doi.org/10.1002/ecs2.2020 (2017).

    15.
    Cullinane Thomas, C., Sofaer, H. R., Cline, S. & Jarnevich, C. S. Integrating landscape simulation models with economic and decision tools for invasive species control. Manag. Biol. Invasions 10, 6–22 (2019).

    16.
    Marshall, V. M., Lewis, M. M. & Ostendorf, B. Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: A review. J. Arid Environ. 78, 1–12. https://doi.org/10.1016/j.jaridenv.2011.11.005 (2012).
    ADS  Article  Google Scholar 

    17.
    Jarnevich, C. S., Young, N. E., Talbert, M. & Talbert, C. Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information. Ecosphere 9, e02279. https://doi.org/10.1002/ecs2.2279 (2018).
    Article  Google Scholar 

    18.
    Martin, T. et al. Buffel grass and climate change: A framework for projecting invasive species distributions when data are scarce. Biol. Invasions 17, 3197–3210. https://doi.org/10.1007/s10530-015-0945-9 (2015).
    Article  Google Scholar 

    19.
    de Albuquerque, F. S., Macías-Rodríguez, M. Á., Búrquez, A. & Astudillo-Scalia, Y. Climate change and the potential expansion of buffelgrass (Cenchrus ciliaris L., Poaceae) in biotic communities of Southwest United States and northern Mexico. Biol. Invasions 21, 3335–3347, https://doi.org/10.1007/s10530-019-02050-5 (2019).

    20.
    Castellanos, A. E., Celaya-Michel, H., Rodríguez, J. C. & Wilcox, B. P. Ecohydrological changes in semiarid ecosystems transformed from shrubland to buffelgrass savanna. Ecohydrology 9, 1663–1674. https://doi.org/10.1002/eco.1756 (2016).
    Article  Google Scholar 

    21.
    McDonald, C. J. & McPherson, G. R. Fire behavior characteristics of buffelgrass-fueled fires and native plant community composition in invaded patches. J. Arid Environ. 75, 1147–1154. https://doi.org/10.1016/j.jaridenv.2011.04.024 (2011).
    ADS  Article  Google Scholar 

    22.
    McDonald, C. J. & McPherson, G. R. Creating hotter fires in the Sonoran Desert: Buffelgrass produces copious fuels and high fire temperatures. Fire Ecol. 9, 26–39 (2013).
    Article  Google Scholar 

    23.
    Bracamonte, J. A., Tinoco-Ojanguren, C., Sanchez Coronado, M. E. & Molina-Freaner, F. Germination requirements and the influence of buffelgrass invasion on a population of Mammillaria grahamii in the Sonoran Desert. J Arid Environ. 137, 50–59, https://doi.org/10.1016/j.jaridenv.2016.11.003 (2017).

    24.
    Lyons, K. G., Maldonado-Leal, B. G. & Owen, G. Community and ecosystem effects of buffelgrass (Pennisetum ciliare) and nitrogen deposition in the Sonoran Desert. Invasive Plant Sci. Manag. 6, 65–78. https://doi.org/10.1614/ipsm-d-11-00071.1 (2013).
    CAS  Article  Google Scholar 

    25.
    Olsson, A. D., Betancourt, J., McClaran, M. P. & Marsh, S. E. Sonoran Desert Ecosystem transformation by a C4 grass without the grass/fire cycle. Divers. Distrib. 18, 10–21. https://doi.org/10.1111/j.1472-4642.2011.00825.x (2012).
    Article  Google Scholar 

    26.
    Miller, G., Friedel, M., Adam, P. & Chewings, V. Ecological impacts of buffel grass (Cenchrus ciliaris L.) invasion in central Australia—Does field evidence support a fire-invasion feedback? Rangeland J. 32, 353–365, https://doi.org/10.1071/rj09076 (2010).

    27.
    Fensham, R. J., Wang, J. & Kilgour, C. The relative impacts of grazing, fire and invasion by buffel grass (Cenchrus ciliaris) on the floristic composition of a rangeland savanna ecosystem. Rangeland J. 37, 227–237. https://doi.org/10.1071/RJ14097 (2015).
    Article  Google Scholar 

    28.
    Schlesinger, C., White, S. & Muldoon, S. Spatial pattern and severity of fire in areas with and without buffel grass (Cenchrus ciliaris) and effects on native vegetation in central Australia. Austral. Ecol. 38, 831–840. https://doi.org/10.1111/aec.12039 (2013).
    Article  Google Scholar 

    29.
    Jarnevich, C. S. et al. Developing an expert elicited simulation model to evaluate invasive species and fire management alternatives. Ecosphere 10, e02730. https://doi.org/10.1002/ecs2.2730 (2019).
    Article  Google Scholar 

    30.
    Esque, T. C., Schwartz, M. W., Lissow, J. A., Haines, D. F. & Garnett, M. C. Buffelgrass fuel loads in Saguaro National Park, Arizona, increase fire danger and threaten native species. Park Sci. 24, 33–37,56 (2007).

    31.
    Wallace, C. S. et al. Mapping presence and predicting phenological status of invasive buffelgrass in Southern Arizona using MODIS, climate and citizen science observation data. Remote Sens. 8, 524 (2016).
    ADS  Article  Google Scholar 

    32.
    Martin-R, M. H., Cox, J. R. & Ibarra-F, F. Climatic effects on buffelgrass productivity in the Sonoran Desert. J. Range Manag. 48, 60–63 (1995).
    Article  Google Scholar 

    33.
    Stillman, S. et al. Spatiotemporal variability of summer precipitation in Southeastern Arizona. J. Hydrometeorol. 14, 1944–1951. https://doi.org/10.1175/jhm-d-13-017.1 (2013).
    ADS  Article  Google Scholar 

    34.
    Arias, P. A., Fu, R. & Mo, K. C. Decadal variation of rainfall seasonality in the North American monsoon region and its potential causes. J. Clim. 25, 4258–4274. https://doi.org/10.1175/jcli-d-11-00140.1 (2012).
    ADS  Article  Google Scholar 

    35.
    R Core Team. R: A Language and Environment for Statistical Computing. (Foundation for Statistical Computing. Vienna, https://www.R-project.org/. Version 3.4.3., 2017).

    36.
    Finney, M. A. FARSITE: Fire area simulator-model development and evaluation. in Research Paper RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. (2004).

    37.
    Sofaer, H. R. et al. The development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557. https://doi.org/10.1093/biosci/biz045 (2019).
    Article  Google Scholar 

    38.
    Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96. https://doi.org/10.1080/00031305.1991.10475776 (1991).
    Article  Google Scholar 

    39.
    Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse. (2017).

    40.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 2.5-2. https://CRAN.R-project.org/package=raster. (2015).

    41.
    Walsh, C. & MacNally, R. hier.part: Hierarchical Partitioning. R package version 1.0-4. https://CRAN.R-project.org/package=hier.part. (2013).

    42.
    Jarnevich, C. J., Cullinane Thomas, C. M. & Young, N. E. State-and-Transition Simulation Models of Buffelgrass in Saguaro National Park (2014–2044) to explore ecological uncertainties: U.S. Geological Survey data release. https://doi.org/10.5066/P9IZKB25.

    43.
    Daniel, C. J., Ter-Mikaelian, M. T., Wotton, B. M., Rayfield, B. & Fortin, M.-J. Incorporating uncertainty into forest management planning: Timber harvest, wildfire and climate change in the boreal forest. For Ecol Manag 400, 542–554. https://doi.org/10.1016/j.foreco.2017.06.039 (2017).
    Article  Google Scholar 

    44.
    Ford, P. L., Reeves, M. C. & Frid, L. A tool for projecting Rangeland vegetation response to management and climate. Rangelands 41, 49–60. https://doi.org/10.1016/j.rala.2018.10.010 (2019).
    Article  Google Scholar 

    45.
    Olsson, A. D., Betancourt, J. L., Crimmins, M. A. & Marsh, S. E. Constancy of local spread rates for buffelgrass (Pennisetum ciliare L.) in the Arizona Upland of the Sonoran Desert. J Arid Environ 87, 136–143, https://doi.org/10.1016/j.jaridenv.2012.06.005 (2012).

    46.
    Weston, J. D., McClaran, M. P., Whittle, R. K., Black, C. W. & Fehmi, J. S. Satellite patches, patch expansion, and doubling time as decision metrics for invasion control: Pennisetum ciliare expansion in southwestern Arizona. Invasive Plant Sci. Manag. 12, 36–42 (2019).
    Article  Google Scholar 

    47.
    Cox, J. R. et al. The influence of climate and soils on the distribution of four African grasses. J Range Manag 41, 127–139. https://doi.org/10.2307/3898948 (1988).
    Article  Google Scholar 

    48.
    de la Barrera, E. & Castellanos, A. E. High temperature effects on gas exchange for the invasive buffel grass (Pennisetum ciliare [L.] Link). Weed Biol Manag 7, 128–131, https://doi.org/10.1111/j.1445-6664.2007.00248.x (2007).

    49.
    Reichmann, L. G., Sala, O. E. & Peters, D. P. C. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology 94, 435–443. https://doi.org/10.1890/12-1237.1 (2013).
    Article  PubMed  Google Scholar 

    50.
    Colorado-Ruiz, G., Cavazos, T., Salinas, J. A., De Grau, P. & Ayala, R. Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol. 38, 5699–5716. https://doi.org/10.1002/joc.5773 (2018).
    Article  Google Scholar 

    51.
    Pascale, S. et al. Weakening of the North American monsoon with global warming. Nat. Clim. Change 7, 806, https://doi.org/10.1038/nclimate3412, https://www.nature.com/articles/nclimate3412#supplementary-information (2017).

    52.
    Pascale, S., Kapnick, S. B., Bordoni, S. & Delworth, T. L. The influence of CO2 FORCING on North American monsoon moisture surges. J. Clim. 31, 7949–7968 (2018).
    ADS  Article  Google Scholar 

    53.
    Pascale, S., Carvalho, L. M. V., Adams, D. K., Castro, C. L. & Cavalcanti, I. F. A. Current and future variations of the monsoons of the Americas in a warming climate. Curr. Clim. Change Rep. 5, 125–144. https://doi.org/10.1007/s40641-019-00135-w (2019).
    Article  Google Scholar 

    54.
    Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US Deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64, 471–478. https://doi.org/10.2111/rem-d-09-00151.1 (2011).
    Article  Google Scholar 

    55.
    Poulin, J., Sakai, A. K., Weller, S. G. & Nguyen, T. Phenotypic plasticity, precipitation, and invasiveness in the fire-promoting grass Pennisetum setaceum (Poaceae). Am J Bot 94, 533–541. https://doi.org/10.3732/ajb.94.4.533 (2007).
    Article  PubMed  Google Scholar 

    56.
    Goergen, E. & Daehler, C. C. Factors affecting seedling recruitment in an invasive grass (Pennisetum setaceum) and a native grass (Heteropogon contortus) in the Hawaiian Islands. Plant Ecol 161, 147–156. https://doi.org/10.1023/a:1020368719136 (2002).
    Article  Google Scholar 

    57.
    Eschtruth, A. K. & Battles, J. J. Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol Monogr 79, 265–280. https://doi.org/10.1890/08-0221.1 (2009).
    Article  Google Scholar 

    58.
    Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems. J Ecol 105, 1521–1533. https://doi.org/10.1111/1365-2745.12863 (2017).
    Article  Google Scholar 

    59.
    Brooks, M. L. et al. Effects of invasive alien plants on fire regimes. Bioscience 54, 677–688 (2004).
    Article  Google Scholar 

    60.
    D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23, 63–87 (1992).
    Article  Google Scholar 

    61.
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52. https://doi.org/10.1038/nature11018 (2012).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Investigating the impact of captivity and domestication on limb bone cortical morphology: an experimental approach using a wild boar model

    1.
    Magny, M. Aux racines de l’Anthropocène: une crise écologique reflet d’une crise de l’homme (2019).
    2.
    Turcotte, M. M., Araki, H., Karp, D. S., Poveda, K. & Whitehead, S. R. The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160033 (2017).
    Article  Google Scholar 

    3.
    Vigne, J.-D. The origins of animal domestication and husbandry: A major change in the history of humanity and the biosphere. C. R. Biol. 334, 171–181 (2011).
    Article  Google Scholar 

    4.
    Vigne, J.-D. Early domestication and farming: What should we know or do for a better understanding?. Anthropozoologica 50, 123–150 (2015).
    Article  Google Scholar 

    5.
    Zeder, M. A. Archaeological approaches to documenting animal domestication. Doc. Domest. New Genet. Archaeol. Paradig. 666, 171–180 (2006).
    Google Scholar 

    6.
    Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, Albermale, 1868).
    Google Scholar 

    7.
    Belyaev, D. K., Plyusnina, I. Z. & Trut, L. N. Domestication in the silver fox (Vulpes fulvus Desm): Changes in physiological boundaries of the sensitive period of primary socialization. Appl. Anim. Behav. Sci. 13, 359–370 (1985).
    Article  Google Scholar 

    8.
    Belyaev, D. K. et al. Destabilizing selection as a factor in domestication. J. Hered. 70, 301–308 (1979).
    CAS  Article  Google Scholar 

    9.
    Trut, L. N. Early canid domestication: The farm-fox experiment: Foxes bred for tamability in a 40-year experiment exhibit remarkable transformations that suggest an interplay between behavioral genetics and development. Am. Sci. 87, 160–169 (1999).
    Article  Google Scholar 

    10.
    Trut, L., Oskina, I. & Kharlamova, A. Animal evolution during domestication: The domesticated fox as a model. BioEssays 31, 349–360 (2009).
    Article  Google Scholar 

    11.
    Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The ‘Domestication Syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).
    Article  Google Scholar 

    12.
    Frantz, L. A. et al. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet. 47, 1141–1148 (2015).
    CAS  Article  Google Scholar 

    13.
    Marshall, F. B., Dobney, K., Denham, T. & Capriles, J. M. Evaluating the roles of directed breeding and gene flow in animal domestication. Proc. Natl. Acad. Sci. 111, 6153–6158 (2014).
    ADS  CAS  Article  Google Scholar 

    14.
    Lord, K. A., Larson, G., Coppinger, R. P. & Karlsson, E. K. The history of farm foxes undermines the animal domestication syndrome. Trends. Ecol. Evol. 35, 125 (2019).
    Article  Google Scholar 

    15.
    Clutton-Brock, J. The process of domestication. Mammal Rev. 22, 79–85 (1992).
    Article  Google Scholar 

    16.
    Clutton-Brock, J. Domesticated Animals from Early Times (British Museum (Natural History) and William Heinemann Ltd., London, 1981).
    Google Scholar 

    17.
    Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates Incorporated, New York, 1998).
    Google Scholar 

    18.
    Pigliucci, M., Murren, C. J. & Schlichting, C. D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209, 2362–2367 (2006).
    Article  Google Scholar 

    19.
    Ehrlich, P. J. & Lanyon, L. E. mechanical strain and bone cell function: A review. Osteoporos. Int. 13, 688–700 (2002).
    CAS  Article  Google Scholar 

    20.
    Pearson, O. M. & Lieberman, D. E. The aging of Wolff’s “law”: Ontogeny and responses to mechanical loading in cortical bone. Am. J. Phys. Anthropol. 125, 63–99 (2004).
    Article  Google Scholar 

    21.
    Pöllath, N., Schafberg, R. & Peters, J. Astragalar morphology: Approaching the cultural trajectories of wild and domestic sheep applying Geometric Morphometrics. J. Archaeol. Sci. Rep. 23, 810–821 (2019).
    Google Scholar 

    22.
    Drew, I. M., Perkins, D. Jr. & Daly, P. Prehistoric domestication of animals: Effects on bone structure. Science 171, 280–282 (1971).
    ADS  CAS  Article  Google Scholar 

    23.
    Mainland, I., Schutkowski, H. & Thomson, A. F. Macro-and micromorphological features of lifestyle differences in pigs and wild boar. Anthropozoologica 42, 89–106 (2007).
    Google Scholar 

    24.
    Scheidt, A., Wölfer, J. & Nyakatura, J. A. The evolution of femoral cross-sectional properties in sciuromorph rodents: Influence of body mass and locomotor ecology. J. Morphol. 280, 1156–1169 (2019).
    PubMed  Google Scholar 

    25.
    Kilbourne, B. M. & Hutchinson, J. R. Morphological diversification of biomechanical traits: mustelid locomotor specializations and the macroevolution of long bone cross-sectional morphology. BMC Evol. Biol. 19, 1–16 (2019).
    Article  Google Scholar 

    26.
    Parsi-Pour, P. & Kilbourne, B. M. Functional morphology and morphological diversification of hind limb cross-sectional traits in mustelid mammals. Integr. Org. Biol. 2, obz032 (2020).
    Article  Google Scholar 

    27.
    Houssaye, A. & Botton-Divet, L. From land to water: Evolutionary changes in long bone microanatomy of otters (Mammalia: Mustelidae). Biol. J. Linn. Soc. 125, 240–249 (2018).
    Article  Google Scholar 

    28.
    Ruff, C. B. Biomechanical analyses of archaeological human skeletons. Biol. Anthropol. Hum. Skelet. Second Ed. 2, 183–206 (2007).
    Google Scholar 

    29.
    Henderson, C. Subsistence strategy changes: The evidence of entheseal changes. HOMO J. Comp. Hum. Biol. 64, 491–508 (2013).
    CAS  Article  Google Scholar 

    30.
    Jurmain, R., Cardoso, F. A., Henderson, C. & Villotte, S. Bioarchaeology’s Holy Grail: The reconstruction of activity. Companion Paleopathol. 666, 531–552 (2011).
    Google Scholar 

    31.
    Niinimäki, S. The relationship between musculoskeletal stress markers and biomechanical properties of the humeral diaphysis. Am. J. Phys. Anthropol. 147, 618–628 (2012).
    Article  Google Scholar 

    32.
    Villotte, S. & Knüsel, C. J. Understanding entheseal changes: Definition and life course changes. Int. J. Osteoarchaeol. 23, 135–146 (2013).
    Article  Google Scholar 

    33.
    Bayle, P. et al. Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database. Pleistocene Databases Acquis. Storing Shar. Mettmann Wiss. Schriften Neanderthal Mus. 4, 29–46 (2011).
    Google Scholar 

    34.
    Bondioli, L. et al. Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation. Am. J. Phys. Anthropol. 142, 328–334 (2010).
    Google Scholar 

    35.
    Bondioli, L. et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation. Am. J. Phys. Anthropol. 142, 328–334 (2010).
    Google Scholar 

    36.
    Cazenave, M. et al. Inner structural organization of the distal humerus in Paranthropus and Homo. C.R. Palevol 16, 521–532 (2017).
    Article  Google Scholar 

    37.
    Morimoto, N., De León, M. S. P. & Zollikofer, C. P. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: A test of Wolff’s law. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 589–609 (2011).
    Article  Google Scholar 

    38.
    Puymerail, L. The functionally-related signatures characterizing the endostructural organisation of the femoral shaft in modern humans and chimpanzee. C.R. Palevol 12, 223–231 (2013).
    Article  Google Scholar 

    39.
    Puymerail, L. et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java). J. Hum. Evol. 63, 741–749 (2012).
    Article  Google Scholar 

    40.
    Rabey, K. N. et al. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology. J. Hum. Evol. 78, 91–102 (2015).
    Article  Google Scholar 

    41.
    Wallace, I. J., Winchester, J. M., Su, A., Boyer, D. M. & Konow, N. Physical activity alters limb bone structure but not entheseal morphology. J. Hum. Evol. 107, 14–18 (2017).
    Article  Google Scholar 

    42.
    Zumwalt, A. A new method for quantifying the complexity of muscle attachment sites. Anat. Rec. Part B New Anat. Off. Publ. Am. Assoc. Anat. 286, 21–28 (2005).
    Google Scholar 

    43.
    Karakostis, F. A., Wallace, I. J., Konow, N. & Harvati, K. Experimental evidence that physical activity affects the multivariate associations among muscle attachments (entheses). J. Exp. Biol. 222, jeb213058 (2019).
    Article  Google Scholar 

    44.
    Hecker, H. M. Domestication revisited: Its implications for faunal analysis. J. Field Archaeol. 9, 217–236 (1982).
    Google Scholar 

    45.
    Lyman, R. L. & Lyman, C. Vertebrate Taphonomy (Cambridge University Press, Cambridge, 1994).
    Google Scholar 

    46.
    Zhou, X. L., Xu, Y. C., Yang, S. H., Hua, Y. & Stott, P. Effectiveness of femur bone indexes to segregate wild from captive minks, mustela vison, and forensic implications for small mammals. J. Forensic Sci. 60, 72–75 (2015).
    Article  Google Scholar 

    47.
    Barone, R. Anatomie comparée des mammifères domestiques, Vol. 3 (Vigot, Paris, 1976).
    Google Scholar 

    48.
    Wood, S. N. Thin plate regression splines. J. R Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    49.
    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, Boca Raton, 2017).
    Google Scholar 

    50.
    Grant, A. The use of tooth wear as a guide to the age of domestic ungulates. In Ageing and Sexing Animal Bones from Archaeological Sites (eds Wilson, B. et al.) 91–108 (B.A.R, New York, 1982).
    Google Scholar 

    51.
    Horard-Herbin, M.-P. Le village celtique des Arènes à Levroux. L’élevage et les productions animales dans l’économie de la fin du second âge du Fer-Levroux 4. vol. 12 (Fédération pour l’édition de la Revue archéologique du Centre de la France, Paris, 1997).

    52.
    Koolstra, J. H., van Eijden, T. M. G. J., Weijs, W. A. & Naeije, M. A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J. Biomech. 21, 563–576 (1988).
    CAS  Article  Google Scholar 

    53.
    Bookstein, F. L. Morphometric Tools for Landmark Data (Cambridge University Press, New York, 1991).
    Google Scholar 

    54.
    Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).
    CAS  Article  Google Scholar 

    55.
    Mitteroecker, P. & Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114 (2011).
    Article  Google Scholar 

    56.
    Adams, D. C. & Otárola-Castillo, E. geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
    Article  Google Scholar 

    57.
    Schlager, S. Chapter 9—Morpho and Rvcg—shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217-256 (Academic Press, London, 2017). https://doi.org/10.1016/B978-0-12-810493-4.00011-0.
    Google Scholar 

    58.
    Carter, D. R., Van der Meulen, M. C. H. & Beaupré, G. S. Mechanical factors in bone growth and development. Bone 18, S5–S10 (1996).
    Article  Google Scholar 

    59.
    Gosman, J. H., Stout, S. D. & Larsen, C. S. Skeletal biology over the life span: A view from the surfaces. Am. J. Phys. Anthropol. 146, 86–98 (2011).
    Article  Google Scholar 

    60.
    van Der Meulen, M. C., Beaupre, G. S. & Carter, D. R. Mechanobiologic influences in long bone cross-sectional growth. Bone 14, 635–642 (1993).
    Article  Google Scholar 

    61.
    O’Regan, H. J. & Kitchener, A. C. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mammal Rev. 35, 215–230 (2005).
    Article  Google Scholar 

    62.
    Kimura, T. & Hamada, Y. Growth of wild and laboratory born chimpanzees. Primates 37, 237–251 (1996).
    Article  Google Scholar 

    63.
    Armitage, P. L. Jawbone of a South American monkey from Brooks Wharf, City of London (London Archaeologist Association, London, 1983).
    Google Scholar 

    64.
    Felson, D. T., Zhang, Y., Hannan, M. T. & Anderson, J. J. Effects of weight and body mass index on bone mineral density in men and women: The Framingham study. J. Bone Miner. Res Off. J. Am. Soc. Bone Miner. Res. 8, 567–573 (1993).
    CAS  Article  Google Scholar 

    65.
    Ravn, P. et al. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women Early Postmenopausal Intervention Cohort (EPIC) study group. J. Bone Miner. Res Off. J. Am. Soc. Bone Miner. Res. 14, 1622–1627 (1999).
    CAS  Article  Google Scholar 

    66.
    Niinimäki, S. & Salmi, A.-K. Entheseal changes in free-ranging versus zoo reindeer—Observing activity status of reindeer. Int. J. Osteoarchaeol. 26, 314–323 (2016).
    Article  Google Scholar 

    67.
    Harbers, H. et al. The mark of captivity: Plastic responses in the ankle bone of a wild ungulate (Sus scrofa). R. Soc. Open Sci. 7, 192039 (2020).
    ADS  Article  Google Scholar 

    68.
    Michopoulou, E., Nikita, E. & Valakos, E. D. Evaluating the efficiency of different recording protocols for entheseal changes in regards to expressing activity patterns using archival data and cross-sectional geometric properties. Am. J. Phys. Anthropol. 158, 557–568 (2015).
    Article  Google Scholar 

    69.
    Milella, M., Giovanna Belcastro, M., Zollikofer, C. P. & Mariotti, V. The effect of age, sex, and physical activity on entheseal morphology in a contemporary Italian skeletal collection. Am. J. Phys. Anthropol. 148, 379–388 (2012).
    Article  Google Scholar 

    70.
    Seeman, E. Bone quality: The material and structural basis of bone strength. J. Bone Miner. Metab. 26, 1–8 (2008).
    Article  Google Scholar 

    71.
    Wilkinson, S. et al. Signatures of diversifying selection in European pig breeds. PLOS Genet. 9, e1003453 (2013).
    CAS  Article  Google Scholar 

    72.
    Pelletier, F. & Coltman, D. W. Will human influences on evolutionary dynamics in the wild pervade the Anthropocene?. BMC Biol. 16, 7 (2018).
    Article  Google Scholar 

    73.
    O’Higgins, P. et al. Combining geometric morphometrics and functional simulation: An emerging toolkit for virtual functional analyses. J. Anat. 218, 3–15 (2011).
    Article  Google Scholar  More