More stories

  • in

    Prioritizing where to restore Earth’s ecosystems

    NEWS AND VIEWS
    14 October 2020

    Targets for ecosystem restoration are usually specified in terms of the total area to be restored. A global analysis reveals that the benefits and costs of achieving such targets depend greatly on where this restoration occurs.

    Simon Ferrier

    Simon Ferrier is at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory 2601, Australia.
    Contact

    Search for this author in:

    Figure 1 | Tree planting during forest restoration in Madagascar.Credit: RIJASOLO/AFP/Getty

    The declaration by the United Nations of 2021–30 as the UN Decade on Ecosystem Restoration is drawing worldwide attention to the challenge of restoring natural ecosystems that have been degraded or converted (for agricultural use, for example)1. Ecosystem-restoration targets already feature prominently in global and national policy frameworks aimed at limiting ongoing biodiversity loss and climate change. These targets are set mainly in terms of the total area or percentage of land to be restored. But how can this restoration effort be best distributed spatially to maximize benefits for both biodiversity conservation and efforts to tackle climate change? Writing in Nature, Strassburg et al.2 address this crucial question across all of Earth’s biomes (broad zones of vegetation adapted to particular climates). To do this, they analyse data on the benefits and costs of restoration, using information assembled at high spatial resolution across the entire global land surface.
    Ecosystem-restoration targets have long been regarded as complementing targets for protecting relatively intact ecosystems. For example, the Aichi Biodiversity Targets3 for 2011–20, which were established under a key UN biodiversity treaty, the Convention on Biological Diversity, coupled the ambition of restoring “at least 15 per cent of degraded ecosystems” with that of increasing the coverage of protected areas to include “at least 17 per cent of terrestrial and inland water, and 10 per cent of coastal and marine areas”. However, until now, the science of prioritizing where best to invest in ecosystem restoration at global and national scales has lagged behind the many notable scientific advances made in prioritizing additions to protected areas4.

    One of the biggest challenges in prioritizing areas for restoration (Fig. 1) is balancing the benefits for biodiversity conservation against those for climate-change mitigation. Forests are usually the biomes with the highest potential to sequester carbon. However, all biomes, including non-forest biomes such as natural grasslands and shrublands, can contain ecosystems in urgent need of restoration to prevent the extinction of species found only in those ecosystems. Even areas offering similar potential for carbon sequestration within the same biome (for example, in tropical rainforests) can vary greatly in terms of potential restoration benefits for biodiversity conservation. This is because such benefits depend on the number and uniqueness of the species associated with a given area of that biome, and the extent to which these species have lost habitat elsewhere across their range.
    Balancing benefits is further complicated by variation in the probable costs of ecosystem restoration in different parts of the world — both the direct costs of restoration and the indirect costs of forgoing income from other land uses, particularly agricultural production. Strassburg and colleagues confront this daunting prioritization challenge head-on using a new multicriteria approach based on a mathematical technique called linear programming. This enabled them to optimize restoration outcomes that balance the benefits for biodiversity and climate-change mitigation, and the associated costs, in a variety of ways. The authors carried out their analysis using state-of-the-art data sets that describe the spatial distribution of: ecosystem types expected in the absence of major human activity; current land uses; the potential for carbon sequestration by living and dead organic matter; habitats of vertebrate species; and expected restoration costs.

    Strassburg et al. show that the benefits and costs of restoring a given total area of land depend very much on where this restoration is undertaken. Prioritizing the spatial distribution of restoration using a single criterion of benefit or cost generally performs poorly in achieving desirable outcomes for the other criteria. For example, restoring 15% of the world’s converted lands by focusing solely on maximizing benefits for climate-change mitigation would achieve only 65% of the gains potentially achievable for biodiversity (assessed as the resulting reduction in risk of species extinctions) if the restoration focused instead on maximizing biodiversity benefits. Restoration focused solely on minimizing costs would achieve only 34% of the maximum potential gain for biodiversity and 39% of the potential gain for climate-change mitigation. Encouragingly, however, optimizing for all three criteria simultaneously yields a solution that would achieve 91% and 82% of potential gains for biodiversity and climate-change mitigation, respectively, while maximizing cost-effectiveness.
    These findings have major implications for the setting and implementation of global targets for ecosystem restoration. A key discovery by Strassburg and colleagues is that the total area restored is a relatively weak metric of how restoration might help in reaching fundamental goals for biodiversity conservation and climate-change mitigation. This is conveyed most compellingly by the finding that the reduction in risk of species extinctions that is achieved by different spatial allocations of the same total area of restoration can vary by a factor of up to six. Thus, any high-level goal for ecosystem restoration, and associated indicators for assessing progress, should ideally be specified in a way that ensures actions are directed towards areas that will contribute most effectively to achieving fundamental biodiversity and climate goals.

    Strassburg and co-workers’ study is particularly laudable for linking perspectives on ecosystem restoration to bridge the domains of biodiversity conservation and climate-change mitigation. However, challenges remain in further linking such prioritization to other key drivers and pressures, and other types of action beyond restoration. Multiple interactions between these factors will together determine overall global outcomes for biodiversity and climate. Consider, for example, the scope of such interactions just in relation to the goal of preventing species extinctions. Strassburg and colleagues’ extinction-risk modelling assumes that the distribution of potentially suitable environments for species will remain fixed, despite growing evidence that many of these distributions are already shifting, or are likely to shift over time, owing to climate change5. Research assessing the combined effects of land use and climate change on biodiversity suggests that not considering climate-change effects might lead to a severe underestimation of extinction risk6.
    The authors’ modelling also assumes that all habitat currently provided by intact ecosystems will remain intact. But, given current trends in ecosystem degradation worldwide7, it seems probable that the area of habitat available for species will ultimately be determined not only by gains made through restoration, but also by the interplay of such gains with losses occurring elsewhere in the extent and integrity of ecosystems8. The magnitude and spatial configuration of future losses will, in turn, be determined by ongoing interactions between socio-economic drivers of demand for converted lands, and actions aimed at either reducing the demand itself, or ameliorating the effect of this demand by protecting key areas of intact habitat from conversion9.
    The role of such interactions in shaping ultimate outcomes underscores the need to take these interactions into account when defining, implementing and assessing progress in achieving global targets10. The post-2020 global biodiversity framework (see go.nature.com/36fqq44), currently being developed for adoption by the parties to the Convention on Biological Diversity, offers a timely opportunity to address this need by explicitly defining interlinkages between any agreed ecosystem protection and restoration targets and the framework’s over-arching biodiversity goals.

    doi: 10.1038/d41586-020-02750-2

    References

    1.
    Temperton, V. M. et al. Restor. Ecol. 27, 705–719 (2019).

    2.
    Strassburg, B. N. et al. Nature https://doi.org/10.1038/s41586-020-2784-9 (2020).

    3.
    Convention on Biological Diversity. COP Decision X/2: Strategic Plan for Biodiversity 2011–2020 (2012).

    4.
    Dinerstein, E. et al. Sci. Adv. 6, eabb2824 (2020).

    5.
    Pecl, G. T. et al. Science 355, eaai9214 (2017).

    6.
    Di Marco, M. et al. Glob. Change Biol. 25, 2763–2778 (2019).

    7.
    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Conserv. Lett. 13, e12692 (2020).

    8.
    Maron, M. et al. Nature Ecol. Evol. 4, 46–49 (2020).

    9.
    Leclère, D. et al. Nature 585, 551–556 (2020).

    10.
    Nicholson, E. et al. Trends Ecol. Evol. 34, 57–68 (2019).

    Download references

    Latest on:

    Agriculture

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More

  • in

    Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management

    1.
    Shi, Y., Cui, S., Ju, X., Cai, Z. & Zhu, Y.-G. Impacts of reactive nitrogen on climate change in China. Sci. Rep. 5, 8118 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Gu, B., Sutton, M. A., Chang, S. X., Ge, Y. & Chang, J. Agricultural ammonia emissions contribute to China’s urban air pollution. Environ. Sci. Technol. 45, 168–174 (2014).
    Google Scholar 

    3.
    Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Cui, K. & Shoemaker, S. P. A look at food security in China. NPJ Sci. Food 2, 4 (2018).
    PubMed  PubMed Central  Google Scholar 

    5.
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
    ADS  CAS  PubMed  Google Scholar 

    6.
    Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).
    Google Scholar 

    7.
    Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, eaar8534 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Bai, Z. et al. Livestock housing and manure storage need to be improved in China. Environ. Sci. Technol. 51, 8212–8214 (2017).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Bai, Z. et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environ. Sci. Technol. 50, 13409–13418 (2016).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Brauer, M. et al. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 50, 79–88 (2016).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1803222115 (2018).

    12.
    Huang, R. J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Pinder, R. W., Adams, P. J. & Pandis, S. N. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States. Environ. Sci. Technol. 41, 380–386 (2007).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Banzhaf, S. et al. Impact of emission changes on secondary inorganic aerosol episodes across Germany. Atmos. Chem. Phys. 13, 11675–11693 (2013).
    ADS  Google Scholar 

    15.
    Megaritis, A. G., Fountoukis, C., Charalampidis, P. E., Pilinis, C. & Pandis, S. N. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmos. Chem. Phys. 13, 3423–3443 (2013).
    ADS  Google Scholar 

    16.
    Wang, S. et al. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ. Sci. Technol. 45, 9293–9300 (2011).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Three-Year Action Plan to Win the Battle for a Blue Sky [in Chinese] (The National Development and Reform Commission of the State Council of China, 2018); http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm?gs_ws=weixin_636662351573937202&from=timeline&isappinstalled=0

    18.
    Xia, L. et al. Can knowledge‐based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta‐analysis. Glob. Change Biol. 23, 1917–1925 (2017).
    ADS  Google Scholar 

    19.
    Action Plan for Zero Growth of Fertilizer Consumption by 2020 [in Chinese] (Chinese Ministry of Agriculture, 2015); http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm

    20.
    Action Plan for Manure Nutrient Usage (2017–2020) [in Chinese] (Chinese Ministry of Agriculture, 2017); http://www.moa.gov.cn/nybgb/2017/dbq/201801/t20180103_6134011.htm

    21.
    Standard of Animal Waste Discharge to Waters (Draft Version for Public Review) [in Chinese] (Ministry of Ecology and Environment of the People’s Republic of China, 2011); http://www.mee.gov.cn/gkml/hbb/bgth/201103/W020110328492079276914.pdf

    22.
    Paulot, F. & Jacob, D. J. Hidden cost of US agricultural exports: particulate matter from ammonia emissions. Environ. Sci. Technol. 48, 903–908 (2014).
    ADS  CAS  PubMed  Google Scholar 

    23.
    Liu, M. et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl Acad. Sci. USA 116, 7760–7765 (2019).
    ADS  CAS  PubMed  Google Scholar 

    24.
    Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).
    ADS  CAS  PubMed  Google Scholar 

    25.
    Velthof, G. L. et al. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Sci. Total Environ. 468, 1225–1233 (2014).
    ADS  PubMed  Google Scholar 

    26.
    Zhang, L. et al. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 18, 339–355 (2018).
    ADS  CAS  Google Scholar 

    27.
    Seinfeld, J. H., Pandis, S. N. & Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (American Institute of Physics, 1998).

    28.
    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Huang, X. et al. A high-resolution ammonia emission inventory in China.Global Biogeochem. Cycles 26, GB1030 (2012).
    ADS  Google Scholar 

    30.
    Gu, B. J. et al. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ. Sci. Technol. 46, 9420–9427 (2012).
    ADS  CAS  PubMed  Google Scholar 

    31.
    Kang, Y. et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 16, 2043–2058 (2016).
    ADS  CAS  Google Scholar 

    32.
    Wu, L., Chen, X., Cui, Z., Zhang, W. & Zhang, F. Establishing a regional nitrogen management approach to mitigate greenhouse gas emission intensity from intensive smallholder maize production. PLoS ONE 9, e98481 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    33.
    FAOSTAT Database (Food and Agriculture Organization of the United Nations, accessed 13 March 2018); http://www.fao.org/faostat/en/#data

    34.
    Li, Q. et al. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain. Sci. Rep. 7, 43853 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    35.
    Strokal, M. et al. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environ. Res. Lett. 11, 024014 (2016).
    ADS  Google Scholar 

    36.
    Lu, X. et al. Exploring 2016-2017 surface ozone pollution over China: source contributions and meteorological influences. Atmos. Chem. Phys. 19, 8339–8361 (2019).
    ADS  CAS  Google Scholar 

    37.
    Lin, J.-T. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid. Atmos. Chem. Phys. 12, 2881–2898 (2012).
    ADS  CAS  Google Scholar 

    38.
    Zhu, L. et al. Sources and impacts of atmospheric NH3: current understanding and frontiers for modeling, measurements, and remote sensing in North America. Curr. Pollut. Rep. 1, 95–116 (2015).
    CAS  Google Scholar 

    39.
    Zhu, L. et al. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmos. Chem. Phys. 15, 12823–12843 (2015).
    ADS  CAS  Google Scholar 

    40.
    Sutton, M. A. et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Phil. Trans. R. Soc. B Biol. Sci. 368, 20130166 (2013).
    Google Scholar 

    41.
    Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).
    ADS  CAS  PubMed  Google Scholar 

    42.
    Erda, L. et al. Climate change impacts on crop yield and quality with CO2 fertilization in China. Phil. Trans. R. Soc. B Biol. Sci. 360, 2149–2154 (2005).
    Google Scholar 

    43.
    Chen, X.-P. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399–6404 (2011).
    ADS  CAS  PubMed  Google Scholar 

    44.
    Oikawa, P. et al. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. Nat. Commun. 6, 8753 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Riddick, S. N. et al. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model. Biogeosciences 12, 3397–3426 (2015).
    Google Scholar 

    46.
    Kanada, M. et al. Regional disparity and cost-effective SO2 pollution control in China: a case study in 5 mega-cities. Energy Policy 61, 1322–1331 (2013).
    Google Scholar 

    47.
    Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).
    ADS  CAS  PubMed  Google Scholar 

    48.
    Development Research Center of the State Council of China & Shandong Supply and Marketing Cooperatives Scale service and modernization of agriculture: supply and marketing cooperatives in Shandong Province Exploration Theory and Practice [in Chinese] (China Development Press, 2015).

    49.
    Baylis, K., Peplow, S., Rausser, G. & Simon, L. Agri-environmental policies in the EU and United States: a comparison. Ecol. Econ. 65, 753–764 (2008).
    Google Scholar 

    50.
    NCAR Command Language Version 6.3.0 (UCAR, NCAR, CISL & TDD, 2020); http://dx.doi.org/10.5065/D6WD3XH5

    51.
    Zhang, W. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl Acad. Sci. USA 110, 8375–8380 (2013).
    ADS  CAS  PubMed  Google Scholar 

    52.
    Wu, L. et al. Current potassium-management status and grain-yield response of Chinese maize to potassium application. J. Plant Nutr. Soil Sci. 176, 441–449 (2013).
    CAS  Google Scholar 

    53.
    Huang, J., Hu, R., Cao, J. & Rozelle, S. Training programs and in-the-field guidance to reduce China’s overuse of fertilizer without hurting profitability. J. Soil Water Conserv. 63, 165A–167A (2008).
    Google Scholar 

    54.
    Wu, L. Fertilizer Recommendations for Three Major Cereal Crops Based on Regional Fertilizer Formula and Site Specific Adjustment in China. PhD thesis, China Agricultural Univ. (2014).

    55.
    Chen, X. Fertilizer Use Recommendations for China’s Three Major Crops in Their Typical Agri-Ecological Zones [in Chinese] (China Agricultural Press, 2016).

    56.
    Wu, L. Nitrogen Fertilizer Demand and Greenhouse Gas Mitigation Potential Under Nitrogen Limiting Conditions for Chinese Agriculture Production. PhD thesis, China Agricultural Univ. (2014).

    57.
    Wu, L., Chen, X., Cui, Z., Wang, G. & Zhang, W. Improving nitrogen management via a regional management plan for Chinese rice production. Environ. Res. Lett. 10, 095011 (2015).
    ADS  Google Scholar 

    58.
    Mi, G. et al. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. China Life Sci. 53, 1369–1373 (2010).
    PubMed  Google Scholar 

    59.
    Trenkel, M. E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture (International Fertilizer Association, 2010).

    60.
    Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).
    ADS  CAS  PubMed  Google Scholar 

    61.
    Chen, S., Zhang, S., Sun, X. & Li, Y. Design and experiment of self-propelled high-ground-clearance spreader for paddy variable-rate fertilization [in Chinese with English abstract]. Trans. Chin. Soc. Agricult. Eng. 28, 16–21 (2012).
    CAS  Google Scholar 

    62.
    Cao, Y. et al. Review on ammonia emission mitigation techniques of crop-livestock production system [in Chinese]. Sci. Agricult. Sinica 51, 566–580 (2018).
    Google Scholar 

    63.
    Paulot, F. et al. Ammonia emissions in the United States, European Union, and China derived by high‐resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 119, 4343–4364 (2014).
    ADS  CAS  Google Scholar 

    64.
    Morrison, H., Curry, J. A. & Khvorostyanov, V. I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description. J. Atmos. Sci. 62, 1665–1677 (2005).
    ADS  Google Scholar 

    65.
    Hong, S.-Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).
    ADS  Google Scholar 

    66.
    Chen, F. & Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001).
    ADS  Google Scholar 

    67.
    Li, M. et al. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17, 935–963 (2017).
    ADS  CAS  Google Scholar 

    68.
    Janssens-Maenhout, G. et al. HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15, 11411–11432 (2015).
    ADS  CAS  Google Scholar 

    69.
    Guenther, A. et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006).
    ADS  CAS  Google Scholar 

    70.
    Cui, Z. et al. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Glob. Change Biol. 19, 2467–2477 (2013).
    ADS  Google Scholar 

    71.
    Cui, Z. et al. Closing the N-use efficiency gap to achieve food and environmental security. Environ. Sci. Technol. 48, 5780–5787 (2014).
    ADS  CAS  PubMed  Google Scholar 

    72.
    Zhao, Y. et al. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmos. Environ. 153, 32–40 (2017).
    ADS  CAS  Google Scholar 

    73.
    Gu, B. J., Ju, X. T., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).
    ADS  CAS  PubMed  Google Scholar 

    74.
    Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).
    ADS  CAS  PubMed  Google Scholar 

    75.
    All China Marketing Research Co, China Census Data by County 2000–2010 (2014); https://chinadatacenter.net/Data/ServiceContent.aspx?id=1622

    76.
    Burnett, R. T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122, 397–403 (2014).
    PubMed  PubMed Central  Google Scholar 

    77.
    Xu, X., Chen, R., Kan, H. & Ying, X. Meta-analysis of contingent valuation studies on air pollution-related value of statistical life in China. Chin. Health Res. 1, 64–67 (2013).
    Google Scholar 

    78.
    Xie, X. The Value of Health: Applications of Choice Experiment Approach and Urban Air Pollution Control Strategy. PhD thesis, Peking Univ. (2011).

    79.
    Nielsen, C. P. & Ho, M. S. Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals (MIT Press, 2013).

    80.
    Chinese National Development and Reform Commission Information Summary on the Production Costs and Revenues of National Agricultural Products [in Chinese] (China Statistics Press, 2016).

    81.
    Ying, H., Ye, Y., Cui, Z. & Chen, X. Managing nitrogen for sustainable wheat production. J. Clean. Prod. 162, 1308–1316 (2017).
    CAS  Google Scholar 

    82.
    Schiermeier, Q. Prices plummet on carbon market. Nature 457, 365 (2009).
    CAS  Google Scholar  More

  • in

    Species composition and invasion risks of alien ornamental freshwater fishes from pet stores in Klang Valley, Malaysia

    1.
    Strecker, A. L., Campbell, P. M. & Olden, J. D. The aquarium trade as an invasion pathway in the Pacific Northwest. Fisheries 36, 74–85 (2011).
    Article  Google Scholar 
    2.
    Magalhães, A. L. et al. Small size today, aquarium dumping tomorrow: sales of juvenile non-native large fish as an important threat in Brazil. Neotrop. Ichthyol. 15, 1–10 (2017).
    Google Scholar 

    3.
    Maceda-Veiga, A., Escribano-Alacid, J., de Sostoa, A. & García-Berthou, E. The aquarium trade as a potential source of fish introductions in Southwestern Europe. Biol. Invasions 15, 2707–2716 (2014).
    Article  Google Scholar 

    4.
    Gertzen, E., Familiar, O. & Leung, B. Quantifying invasion pathways: fish introductions from the aquarium trade. Can. J. Fish. Aquat. Sci. 65, 1265–1273 (2008).
    Article  Google Scholar 

    5.
    Ishikawa, T. & Tachihara, K. Introduction history of non-native freshwater fish in Okinawa-Jima Island: ornamental aquarium fish pose the greatest risk for future invasions. Ichthyol. Res. 61, 17–26 (2014).
    Article  Google Scholar 

    6.
    Khairul-Adha, R., Yuzine, E. & Aziz, A. The influence of alien fish species on native fish community structure in Malaysian waters. Kuroshio Sci. 7, 81–93 (2013).
    Google Scholar 

    7.
    Department of Fisheries (DOF). Annual Fisheries Statistics, Department of Fisheries, Ministry of Agriculture and Agro-Based Industry, Putrajaya, Malaysia. https://www.dof.gov.my/index.php/pages/view (2007).

    8.
    Department of Fisheries (DOF). Annual Fisheries Statistics, Department of Fisheries, Ministry of Agriculture and Agro-Based Industry, Putrajaya, Malaysia. https://www.dof.gov.my/index.php/pages/view (2014).

    9.
    Duggan, I. C., Rixon, C. A. & MacIsaac, H. J. Popularity and propagule pressure: determinants of introduction and establishment of aquarium fish. Biol. Invasions 8, 377–382 (2006).
    Article  Google Scholar 

    10.
    Simonovic, P. et al. Risk assessment of non-native fishes in the Balkans Region using FISK, the invasiveness screening tool for non-native freshwater fishes. Mediterr. Mar. Sci. 14, 369–376 (2013).
    Article  Google Scholar 

    11.
    Singh, A. K. & Lakra, W. S. Risk and benefit assessment of alien fish species of the aquaculture and aquarium trade into India. Rev. Aquacult. 3, 3–18 (2011).
    Article  Google Scholar 

    12.
    Puntila, R., Vilizzi, L., Lehtiniemi, M. & Copp, G. H. First application of FISK, the Freshwater Fish Invasiveness Screening Kit, in Northern Europe: example of Southern Finland. Risk Anal. 33, 1397–1403 (2013).
    PubMed  Article  Google Scholar 

    13.
    Tarkan, A. S., Ekmekçi, F. G., Vilizzi, L. & Copp, G. H. Risk screening of non-native freshwater fishes at the frontier between Asia and Europe: first application in Turkey of the Fish Invasiveness Screening Kit. J. Appl. Ichthyol. 30, 392–398 (2014).
    Article  Google Scholar 

    14.
    Mendoza, R., Luna, S. & Aguilera, C. Risk assessment of the ornamental fish trade in Mexico: analysis of freshwater species and effectiveness of the FISK (Fish Invasiveness Screening Kit). Biol. Invasions 17, 3491–3502 (2015).
    Article  Google Scholar 

    15.
    Perdikaris, C. et al. Risk screening of non-native, translocated and traded aquarium freshwater fishes in Greece using Fish Invasiveness Screening Kit. Fisheries Manag. Ecol. 23, 32–43 (2016).
    Article  Google Scholar 

    16.
    Tarkan, A. S. et al. Identification of potentially invasive freshwater fishes, including translocated species, in Turkey using the Aquatic Species Invasiveness Screening Kit (AS-ISK). Int. Rev. Hydrobiol. 102, 47–56 (2017).
    Article  Google Scholar 

    17.
    Bilge, G., Filiz, H., Yapici, S., Tarkan, A. S. & Vilizzi, L. A risk screening study on the potential invasiveness of Lessepsian fishes in the South-Western coasts of Anatolia. Acta. Ichthyol. Piscat. 49, 23–31 (2019).
    Article  Google Scholar 

    18.
    Kiruba-Sakar, R. et al. Invasive species in freshwater ecosystems – threats to ecosystem services. In Biodiversity and Climate Change Adaptation in Tropical Islands(eds. Chandrakasan, S., Velmurugan, A., Singh, A. & Jaisankar, I.) 257–289 (Elsevier Inc. USA, 2018).

    19.
    Gaygusuz, Ö et al. Stocking of common carp (Cyprinus carpio) into some newly-established reservoirs of North-West Anatolia may enhance the spread of non-native fish. Turk. J. Fish. Aquat. S. 15, 833–840 (2015).
    Google Scholar 

    20.
    Rashid, M. F. A. & Ishak, A. G. The importance of internal migration: in the context of urban planning decision making. (International Conference on Built Environment in Developing Countries, Penang Malaysia, 2–3 December 2009. Penang, Malaysia, 2009).

    21.
    Naji, A., Ismail, A., Kamrani, E. & Sohrabi, T. Correlation of MT levels in livers and gills with heavy metals in wild tilapia (Oreochromis mossambicus) from the Klang River Malaysia. B. Environ. Contam. Tox. 92, 674–679 (2014).
    CAS  Article  Google Scholar 

    22.
    Rainboth, W. J. Fishes of the Cambodian Mekong. Mekong River Commission, Food and Agriculture Organization, Rome. https://library.enaca.org/inland/fishes-cambodian-mekong.pdf (1996).

    23.
    Mohsin, A. K. & Ambak, M. A. Ikan air tawar di Semenanjung Malaysia. (Freshwater fishes of Peninsular Malaysia). (Dewan Bahasa dan Pustaka, Kuala Lumpur, Malaysia, 1991).

    24.
    Berra, T. M. Freshwater fish distribution (The University of Chicago Press, Chicago, 2001).
    Google Scholar 

    25.
    Ng, H. H. & Tan, H. H. An annotated checklist of the non-native freshwater fish species in the reservoirs of Singapore. Cosmos. 6, 95–116 (2010).
    Article  Google Scholar 

    26.
    Tran, D. D. et al. Fishes of Mekong Delta (Can Tho University Publisher, Vietnam, 2010).
    Google Scholar 

    27.
    Ng, C. K. C., Lim, T. Y., Ahmad, A. B. & Khaironizam, M. Z. Provisional checklist of freshwater fish diversity and distribution in Perak, Malaysia, and some latest taxonomic concerns. Zootaxa 4567, 515–545 (2019).
    Article  Google Scholar 

    28.
    Zakaria-Ismail, M., Fatimah, A. & Khaironizam, M. Z. Fishes of the freshwater ecosystems of Peninsular Malaysia (Lambert Academic Publishing, Saarbrücken, 2019).
    Google Scholar 

    29.
    Froese, R. & Pauly, D. (eds.) FishBase. World Wide Web Electronic Publication. https://www.fishbase.org/search.php (2019).

    30.
    Fricke, R., Eschmeyer, W. N. & van der Laan, R. (eds.) Catalog of fishes: genera, species, references. California Academy of Sciences. https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2020).

    31.
    Papavlasopoulou, I. et al. Ornamental fish in pet stores in Greece: a threat to biodiversity?. Mediterr. Mar. Sci. 15, 126–134 (2014).
    Article  Google Scholar 

    32.
    IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org. (2020).

    33.
    Lawson, L. L., Vilizzi, L, Hill, J. E., Hardin, S. & Copp, G. H. Revisions of the Fish Invasiveness Scoring Kit (FISK) for its application in warmer climatic zones, with particular reference to Peninsular Florida. Risk Anal. 33, 1414–1431 (2013).

    34.
    Garcia de León, F. J. G., González-García, L., Herrera-Castillo, J. M., Winemiller, K. O. & Banda-Valdés, A. Ecology of the alligator gar, Atractosteus spatula, in the Vicente Guerrero Reservoir, Tamaulipas, Mexico. Southwest Nat.46, 151–157 (2001).

    35.
    Carman, S. M. Special animal abstract for Lepisosteus oculatus (spotted gar). (Michigan Natural Features Inventory, Lansing, MI.) https://mnfi.anr.msu.edu/abstracts/zoology/Lepisosteus_oculatus.pdf (2002).

    36.
    COSEWIC. Committee on the status of endangered wildlife in Canada (COSEWIC) assessment and update status report on the lake sturgeon Acipenser fulvescens in Canada, https://wildlife-species.canada.ca/species-risk-registry/virtual_sara/files/cosewic/sr_Lake%20Sturgeon_2017_e.pdf (2006).

    37.
    Roberts, D. “Atractosteus spatula”, Animal Diversity Web. https://animaldiversity.org/accounts/Atractosteus_spatula/ (2006).

    38.
    Herder, F. et al. Alien invasion in Wallace’s Dreamponds: records of the hybridogenic “flowerhorn” cichlid in Lake Matano, with an annotated checklist of fish species introduced to the Malili Lakes system in Sulawesi. Aquat. Invasions 7, 521–535 (2012).
    Article  Google Scholar 

    39.
    Speigel, J. “Potamotrygon motoro”, Animal Diversity Web., https://animaldiversity.org/accounts/Potamotrygon_motoro/ (2013).

    40.
    Franklin, P. A. Dissolved oxygen criteria for freshwater fish in New Zealand: a revised approach. New Zeal. J. Mar. Fresh. 48, 112–126 (2014).
    CAS  Article  Google Scholar 

    41.
    Felterman, M. A. Population dynamics, reproductive biology, and diet of alligator gar Atractosteus spatula in Terrebonne Estuary and Rockefeller Wildlife Refuge. Master’s Thesis, Nicholls State University, Thibodaux, Louisiana, USA. (2015).

    42.
    Fuller, P. Atractosteus spatula (Lacepède, 1803): U.S. geological survey, non-indigenous aquatic species database, Gainesville, Florida, USA. https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=755 (2019).

    43.
    Islam, M. A., Uddin, M. H., Uddin, M. J. & Shahjahan, M. Temperature changes influenced the growth performance and physiological functions of Thai Pangas Pangasianodon hypophthalmus. Aquacult. Rep. 13, 100179 (2019).
    Article  Google Scholar 

    44.
    Lawson, L. L., Hill, J. E., Hardin, S., Vilizzi, L. & Copp, G. H. Evaluation of the fish invasiveness screening kit (FISK v2) for peninsular Florida. Manag. of Biol. Invasions 6, 413–422 (2015).
    Article  Google Scholar 

    45.
    Copp, G. H. et al. Calibration of FISK, an invasiveness screening tool for non-native freshwater fishes. Risk Anal. 29, 457–467 (2009).
    PubMed  Article  Google Scholar 

    46.
    Almeida, D., Ribeiro, F., Leunda, P. M., Vilizzi, L. & Copp, G. H. Effectiveness of FISK, an invasiveness screening tool for non-native freshwater fishes, to perform risk identification assessments in the Iberian Peninsula. Risk Anal. 33, 1404–1413 (2013).
    PubMed  Article  Google Scholar 

    47.
    Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).
    CAS  PubMed  Article  Google Scholar 

    48.
    Bewick, V., Cheek, L. & Ball, J. Statistics review 13: receiver operating characteristic curves. Crit. Care 8, 508–512 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Tricarico, E., Vilizzi, L., Gherardi, F. & Copp, G. H. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates. Risk Anal. 30, 285–292 (2010).
    PubMed  Article  Google Scholar 

    50.
    Chang, A. L. et al. Tackling aquatic invasions: risks and opportunities for the aquarium fish industry. Biol. Invasions 11, 773–785 (2009).
    Article  Google Scholar 

    51.
    Magalhães, A. L. & Jacobi, C. M. Invasion risks posed by ornamental freshwater fish trade to south eastern Brazilian rivers. Neotrop. Ichthyol. 11, 433–441 (2013).
    Article  Google Scholar 

    52.
    Reis, R. E. et al. Fish biodiversity and conservation in South America. J. Fish. Biol. 89, 12–47 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Rixon, C. A., Duggan, I. C., Bergeron, N. M., Ricciardi, A. & Macisaac, H. J. Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodivers. Conserv. 14, 1365–1381 (2005).
    Article  Google Scholar 

    54.
    Cucherousset, J. & Olden, J. D. Ecological impacts of non-native freshwater fishes. Fisheries 36, 215–230 (2011).
    Article  Google Scholar 

    55.
    Ng, C. K. C. et al. A working checklist of the freshwater fish diversity for habitat management and conservation work in Sabah, Malaysia North Borneo. Biodiversitas 18, 560–574 (2017).
    Article  Google Scholar 

    56.
    Zakaria, R. Alien fish devouring local species in Sg Pahang. New Strait Times. https://www.nst.com.my/news/nation/2019/02/462595/alien-fish-devouring-local-species-sg-pahang (2019).

    57.
    Sharifudin, M. & Sharip, Z. Fisheries practices and fish diversity in Muda and Beris Lakes: a preliminary survey study. Geografia 16, 1–12 (2020).
    Article  Google Scholar 

    58.
    Zakaria, R. Alien fish ‘killing’ local boat operators. New Strait Times. https://www.nst.com.my/news/nation/2017/04/231359/alien-fish-killing-local-boat-operators/ (2017).

    59.
    Chong, V. C., Lee, P. K. Y. & Lau, C. M. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066 (2010).
    CAS  PubMed  Article  Google Scholar 

    60.
    NWGIAS. National Working Group on Invasive Alien Species (NWGIAS). National action plan for prevention, eradication, containment and control of aquatic invasive alien species in Malaysia. Department of Agriculture, Putrajaya (2014).

    61.
    Samat, A. et al. Reproductive biology of the introduced sailfin catfish Pterygoplichthys pardalis (Pisces: Loricariidae) in Peninsular Malaysia. Indian. J. Fish. 63, 35–41 (2016).
    Google Scholar 

    62.
    Tan, B. Bottom-feeding fish sucking life out of Johor Rivers, nature society warns. Malay Mail, https://www.malaymail.com/news/malaysia/2019/01/14/bottom-feeding-fish-suckinglife-out-of-johor-rivers-nature-society-warns/1712205 (2019).

    63.
    Hussan, A., Choudhury, T. G., Das, A. & Gita, S. Suckermouth sailfin catfishes: A future threat to aquatic ecosystems of India. Aquaculture Times 2, 20–22 (2016).
    Google Scholar 

    64.
    Ng, C. The ornamental freshwater fish trade in Malaysia. UTAR Agric Sci. J. 2, 7–18 (2016).
    Google Scholar 

    65.
    Lokman, E. D. et al. Use of GIS and remote sensing on ornamental fish farm’s activities monitoring in Layang-Layang, Kluang Johor. Adv. Ecol. Envir. Res. 4, 211–230 (2019).
    Google Scholar 

    66.
    Evers, H. G., Pinnegar, J. K. & Taylor, M. I. Where are they all from?–sources and sustainability in the ornamental freshwater fish trade. J. Fish Biol. 94, 909–916 (2019).
    PubMed  PubMed Central  Google Scholar 

    67.
    Chan, F. T. et al. Leaving the fish bowl: the ornamental trade as a global vector for freshwater fish invasions. Aquat. Ecosyst. Health 22, 417–439 (2019).
    Article  Google Scholar 

    68.
    Banha, F., Diniz, A. & Anastácio, P. M. Patterns and drivers of aquarium pet discharge in the wild. Ecol. Indicat. 106, 105513 (2019).
    Article  Google Scholar 

    69.
    Zakaria, R. & Bahrin, H. B. Two more foreign predatory fishes threaten survival of native species. New Strait Times, https://www.nst.com.my/news/exclusive/2018/05/372369/two-more-foreign-predatory-fishes-threaten-survival-native-species (2018).

    70.
    Daehler, C. C., Denslow, J. S., Ansari, S. & Kuo, S. A risk assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conserv. Biol. 18, 360–368 (2004).
    Article  Google Scholar 

    71.
    Marchetti, M. P., Moyle, P. B. & Levine, R. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshwater Biol. 49, 646–661 (2004).
    Article  Google Scholar 

    72.
    Piria, M. et al. Risk screening of non-native freshwater fishes in Croatia and Slovenia using the Fish Invasiveness Screening Kit. Fisheries Manag. Ecol. 23, 21–31 (2016).
    Article  Google Scholar 

    73.
    Marr, S. M. et al. Evaluating invasion risk for freshwater fishes in South Africa. Bothalia 47, 1–10 (2017).
    Article  Google Scholar 

    74.
    Thompson, K. A., Hill, J. E. & Nico, L. G. Eastern mosquitofish resists invasion by nonindigenous poeciliids through agnostic behaviors. Biol. Invasions 14, 1515–1529 (2012).
    Article  Google Scholar 

    75.
    Onikura, N. et al. Evaluating the potential for invasion by alien freshwater fishes in northern Kyushu Island, Japan, using the Fish Invasiveness Scoring Kit. Ichthyol. Res. 58, 382–387 (2011).
    Article  Google Scholar 

    76.
    Troca, D. A. & Vieira, J. P. Potential invasive non-native fish farmed in the coastal region of Rio Grande Do Sul Brazil. Boletim do Instituto de Pesca 38, 109–120 (2012).
    Google Scholar 

    77.
    Vilizzi, L. V. & Copp, G. H. Application of FISK, an invasiveness screening tool for non-native freshwater fishes, in the Murray-Darling Basin (Southeastern Australia). Risk Anal. 33, 1432–1440 (2013).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current

    1.
    Pachauri, R. K. & Meyer, L. A. Intergovernmental panel on climate change (IPCC). In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
    2.
    Feely, R. A., Sabine, C. L., Hernández-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. II 56, 1083–1094 (2009).
    Article  Google Scholar 

    4.
    Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2009).
    ADS  Article  Google Scholar 

    5.
    Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. 109, 15996–16003 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Thamdrup, B., Dalsgaard, T. & Revsbech, N. P. Widespread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep Sea Res. I 65, 36–45 (2012).
    CAS  Article  Google Scholar 

    7.
    Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920–920 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Friederich, G. E., Ledesma, J., Ulloa, O. & Chavez, F. P. Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Prog. Oceanogr. 79, 156–166 (2008).
    ADS  Article  Google Scholar 

    10.
    Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 88, 442–449 (2010).
    ADS  CAS  Article  Google Scholar 

    11.
    Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006. https://doi.org/10.1029/2010JC006344 (2011).
    ADS  CAS  Article  Google Scholar 

    12.
    Vargas, C. A. et al. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications. J. Geophys. Res. Biogeosci. 121, 15. https://doi.org/10.1002/2015JG003213 (2016).
    Article  Google Scholar 

    13.
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084. https://doi.org/10.1038/s41559-017-0084 (2017).
    Article  Google Scholar 

    14.
    Booth, J. A. et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf Res. 45, 108–115 (2012).
    ADS  Article  Google Scholar 

    15.
    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Annu. Rev 26, 1–393 (1988).
    Google Scholar 

    16.
    Cohen, J. H. & Forward, R. B. Jr. Zooplankton diel vertical migration: A review of proximate control. Oceanogr. Mar. Biol. Ann. Rev 47, 77–110 (2009).
    Google Scholar 

    17.
    Brinton, E. Vertical migration and avoidance capability of euphausiids in the California current. Limnol. Oceanogr. 12, 451–483 (1967).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    McQuinn, I. H., Dion, M. & St. Pierre, J.-F. The acoustic multifrequency classification of two sympatric euphausiid species (Meganyctiphanes norvegica and Thysanoessa raschii), with empirical and SDWBA model validation. ICES J. Mar. Sci. 70, 636–649 (2013).
    Article  Google Scholar 

    19.
    Tremblay, N. & Abele, D. Response of three krill species to hypoxia and warming: An experimental approach to oxygen minimum zones expansion in coastal ecosystems. Mar. Ecol. 37, 179–199 (2016).
    ADS  CAS  Article  Google Scholar 

    20.
    Ambriz-Arreola, I. et al. Vertical pelagic habitat of euphausiid species assemblages in the Gulf of California. Deep Sea Res. I 123, 75–89 (2017).
    CAS  Article  Google Scholar 

    21.
    Cooper, H. L., Potts, D. & Paytan, A. Metabolic responses of the North Pacific krill, Euphausia pacifica, to short- and long-term pCO2 exposure. Mar. Biol. 163, 207 (2016).
    Article  CAS  Google Scholar 

    22.
    Seibel, B. A., Schneider, J. L., Kaartvedt, S., Wishner, K. F. & Daly, K. L. Hypoxia tolerance and metabolic suppression in Oxygen Minimum Zone euphausiids: Implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56, 510–523 (2016).
    CAS  PubMed  Article  Google Scholar 

    23.
    Barry, J. P., Hall-Spencer, J. M. & Tyrrell, T. In Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds. Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. P.) 53–66 (Publications Office of the European Union, 2010).

    24.
    Paulmier, A., Ruiz-Pino, D., Garçon, V. & Farías, L. Maintaining of the eastern south Pacific oxygen minimum zone (OMZ) off Chile. Geophys. Res. Lett. 33, L20601 (2006).
    ADS  Article  CAS  Google Scholar 

    25.
    Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
    PubMed  Article  Google Scholar 

    27.
    Garcia-Robledo, E. et al. Cryptic oxygen cycling in anoxic marine zones. Proc. Natl. Acad. Sci. USA 114, 8319–8324 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).
    ADS  CAS  Article  Google Scholar 

    29.
    Wishner, K. F. et al. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci. Adv. 4, eaa518 (2018).
    Article  CAS  Google Scholar 

    30.
    Kawaguchi, S. et al. Will krill fare well under Southern Ocean acidification?. Biol. Lett. 7, 288–291 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Sperfeld, E., Mangor-Jensen, A. & Dalpadado, P. Effect of increasing seawater pCO2 on the northern Atlantic krill species Nyctiphanes couchii. Mar. Biol. 165, 116. https://doi.org/10.1007/s00227-018-3370-7 (2014).
    CAS  Article  Google Scholar 

    32.
    Cooper, H. L., Potts, D. C. & Paytan, A. Effects of elevated pCO2 on the survival, growth, and moulting of the Pacific krill species, Euphausia pacifica. ICES J. Mar. Sci. 74, 1005–1012. https://doi.org/10.1093/icesjms/fsw021 (2017).
    Article  Google Scholar 

    33.
    Ericson, J. A. et al. Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Commun. Biol. 1, 190 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Opstad, I. et al. Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden. Mar. Biol. 165, 116 (2018).
    Article  CAS  Google Scholar 

    35.
    Powers, E. B. The physiology of the respiration of fishes relation to the hydrogen ion concentration of the medium. J. Gen. Physiol. 4, 305–317 (1922).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Mayol, E., Ruiz-Halpern, S., Duarte, C. M., Castilla, J. C. & Pelegrí, J. L. Coupled CO2 and O2-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences 9, 1183–1194 (2012).
    ADS  CAS  Article  Google Scholar 

    37.
    González, H. E., Ortiz, V. C. & Sobarzo, M. The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23 S), before and during the 1997–1998 El Niño. J. Plankton Res. 22, 499–529 (2000).
    Article  Google Scholar 

    38.
    González, H. E. et al. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Progr. Oceanogr. 83, 217–227 (2009).
    ADS  Article  Google Scholar 

    39.
    Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep Sea Res. 94, 72–86 (2014).
    Article  Google Scholar 

    40.
    Sato, M., Dower, J. F., Kunze, E. & Dewey, R. Second-order seasonal variability in diel vertical migration timing of euphausiids in a coastal inlet. Mar. Ecol. Prog. Ser. 480, 39–56 (2013).
    ADS  Article  Google Scholar 

    41.
    Platt, S. A. & Sanislow, C. A. Norm-of-reaction: Definition and misinterpretation of animal research. J. Comp. Psychol. 102, 254–261 (1988).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. & Williams, R. L. Zooplankton in the Eastern Tropical North Pacific: Boundary effects of oxygen minimum zone expansion. Deep Sea Res. I 79, 122–140 (2013).
    CAS  Article  Google Scholar 

    43.
    Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).
    CAS  Article  Google Scholar 

    44.
    Pierrot, D.E., Lewis, E. & Wallace, D.W.R. MS Excel program developed for CO2system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (2006). https://cdiac.ornl.gov/ftp/co2sys.

    45.
    Mehrbach, C., Culberson, C., Hawley, J. & Pytkovicz, R. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).
    ADS  CAS  Article  Google Scholar 

    46.
    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. 34, 1733–1743 (1987).
    ADS  CAS  Article  Google Scholar 

    47.
    Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12 H 2 (g) 1⁄4 Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO in synthetic seawater from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).
    CAS  Article  Google Scholar 

    48.
    Mitson, R. B. Underwater noise of research vessels: Review and recommendations. ICES Coop. Res. Rep. 209, 61 (1995).
    Google Scholar 

    49.
    Simrad. Simrad ER60 scientific echo sounder manual. Reference Manual. Release 2.2.0, Kongsberg Maritime AS, Norway, 226 (2008).

    50.
    Mair, A., Fernandes, P., Lebourges-Dhaussy, A. & Brierley, A. An investigation into the zooplankton composition of a prominent 38-khz scattering layer in the North Sea. J. Plank. Res. 27, 623–633 (2005).
    CAS  Article  Google Scholar 

    51.
    Cade, D. E. & Benoit-Bird, K. J. Depths, migration rates and environmental associations of acoustic scattering layers in the Gulf of California. Deep Sea Res. I 102, 78–89 (2015).
    Article  Google Scholar 

    52.
    Sato, M. et al. Impacts of moderate hypoxia on fish and zooplankton prey distributions in a coastal fjord. Mar. Ecol. Prog. Ser 560, 57–72 (2016).
    ADS  CAS  Article  Google Scholar 

    53.
    Pérez-Santos, I. et al. Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system. Ocean Sci. 14, 1185–1206 (2018).
    ADS  Article  CAS  Google Scholar 

    54.
    Díaz-Astudillo, M., Cáceres, M. & Landaeta, M. Zooplankton structure and vertical migration: Using acoustics and biomass to compare stratified and mixed fjord systems. Cont. Shelf Res 148, 208–218 (2017).
    ADS  Article  Google Scholar 

    55.
    MacLennan, D. N., Fernandez, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics, ICES. J. Mar. Sci. 59, 365–369 (2002).
    Google Scholar 

    56.
    Ballón, M. et al. Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer. Prog. Oceanogr. 91, 360–381 (2011).
    ADS  Article  Google Scholar 

    57.
    Clarke, K.R. & Gorley, R.N. PRIMER v7: User Manual/Tutorial PRIMER-E: Plymouth (2015).

    58.
    Kloser, R. J., Ryan, T., Sakov, P., Williams, A. & Koslow, J. A. Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59, 1065–1077 (2002).
    Article  Google Scholar 

    59.
    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: Seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35, 792–812 (2013).
    CAS  Article  Google Scholar 

    60.
    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5(4), e10330 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    McLaskey, A. K. et al. Development of Euphausia pacifica (krill) larvae is impaired under pCO2 levels currently observed in the Northeast Pacific. Mar. Ecol. Prog. Ser. 555, 65–78 (2016).
    ADS  CAS  Article  Google Scholar 

    62.
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
    ADS  Article  Google Scholar 

    63.
    Brewer, P. G. & Peltzer, E. T. Limits to marine life. Science 324, 347–348 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Montgomery, D. W. et al. Rising CO2 enhances hypoxia tolerance in a marine fish. Sci. Rep. 9, 15152 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Kiko, R., Hauss, H., Buchholz, F. & Melzner, F. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosciences 13, 2241–2255 (2016).
    ADS  CAS  Article  Google Scholar 

    66.
    Antezana, T. Adaptive behaviour of Euphausia mucronata in relation to the oxygen minimum layer of the Humboldt Current. In Oceanography of the Eastern Pacific (ed. J. Farber), vol. 2, 29–40 (2002).

    67.
    Torres, J. J. & Childress, J. J. Relationship of oxygen consumption to swimming speed in Euphausia pacifica. Mar. Biol. 74, 79–86 (1983).
    Article  Google Scholar 

    68.
    Anderson, M.J., Gorley R.N. & Clarke K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth, UK (2008)

    69.
    Hansen, H.P. & Koroleff, F. Determination of nutrients. In Methods sof Seawater Analysis (eds. K. Grasshoff, K. Kremling & M. Ehrhardt) 159–228 https://doi.org/10.1002/9783527613984.ch10 (2007).

    70.
    Tremblay, N., Hünerlage, K. & Werner, T. Hypoxia tolerance of 10 Euphausiid species in relation to vertical temperature and oxygen gradients. Front. Physiol. 11, 248. https://doi.org/10.3389/fphys.2020.00248 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    71.
    Tremblay, N., Gómez-Gutiérrez, J., Zenteno-Savín, T., Robinson, C. & Sánchez-Velascoa, L. Role of oxidative stress in seasonal and daily vertical migration of three krill species in the Gulf of California. Limnol. Oceanogr. 55, 2570–2584 (2010).
    ADS  CAS  Article  Google Scholar 

    72.
    Herrera, I. et al. Vertical variability of Euphausia distinguenda metabolic rates during diel migration into the oxygen minimum layer of the Eastern Tropical Pacific off Mexico. J. Plankton Res. 41, 165–176 (2019).
    CAS  Article  Google Scholar 

    73.
    Hernández-León, S., Calles, S. & Fernández de Puelles, M. L. The estimation of metabolism in the mesopelagic zone: Disentangling deep-sea zooplankton respiration. Progr. Oceanogr. 178, 102163 (2019).
    Article  Google Scholar 

    74.
    Hernández-León, S. et al. Carbon export through zooplankton active flux in the Canary Current. J. Mar. Syst. 189, 12–21 (2019).
    Article  Google Scholar 

    75.
    Baker, A. de C., Boden, B.P. & Brinton, E. A Practical Guide to the Euphausiids of the World. British Museum (Natural History), London, 96 pp. (1990).

    76.
    Alegría, N., Arana, P.M. & Sepúlveda, A. Hydroacoustic survey around Elephant Island (Sub-area 48.1) and South Orkney Islands (Subarea 48.2), austral summer 2016. 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), 5 pp. (2017).

    77.
    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
    Article  Google Scholar 

    78.
    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
    Article  Google Scholar 

    79.
    Hewitt, R. P. & Demer, D. A. The use of acoustic sampling to estimate the dispersion and abundance of euphausiids, with an emphasis on Antarctic krill (Euphausia superba). Fish. Res. 47, 215–229 (2000).
    Article  Google Scholar 

    80.
    Watkins, J. & Brierley, A. Verification of the acoustic techniques used to identify Antarctic krill. ICES J. Mar. Sci. 59, 1326–1336 (2002).
    Article  Google Scholar 

    81.
    Simmonds, E. & MacLennan, D. Observation and measurement of fish. In Fisheries Acoustics: Theory and Practice (ed. Pitcher, T. J.) 163–215 (Blackwell Science, Oxford, UK, 2005).
    Google Scholar 

    82.
    Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).
    Article  Google Scholar 

    83.
    Santora, J. A. et al. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem. Sci. Rep. 8, 7579 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Hartin, C. A., Bond-Lamberty, B., Patel, P. & Mundra, A. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities. Biogeosciences 13, 4329–4342 (2016).
    ADS  CAS  Article  Google Scholar  More

  • in

    Plant species determine tidal wetland methane response to sea level rise

    1.
    Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B. & Trettin, C. The carbon balance of North American wetlands. Wetlands 26, 889–916 (2006).
    Article  Google Scholar 
    2.
    Windham-Myers, L. et al. Tidal wetlands and estuaries. in Second State of the Carbon Cycle Report (eds Cavallaro, N. et al.) 596–648 (U.S. Global Change Research Program, 2018)

    3.
    Poulter, B. et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 12, https://doi.org/10.1088/1748-9326/aa8391 (2017).

    4.
    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. 12, 1561–1623 (2020).
    ADS  Article  Google Scholar 

    5.
    Megonigal, J. P., Hines, M. E. & Visscher, P. T. Anaerobic metabolism: linkages to trace gases and aerobic processes. in Biogeochemistry (ed. Schlesinger, W. H.) 317–424 (Elsevier-Pergamon, 2004).

    6.
    Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity influence on methane emissions from tidal marshes. Wetlands 31, 831–842 (2011).
    Article  Google Scholar 

    7.
    Al-Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol 26, 2988–3005 (2020).
    ADS  Article  Google Scholar 

    8.
    Oreska, M. P. J. et al. The greenhouse gas offset potential from seagrass restoration. Sci. Rep. https://doi.org/10.1038/s41598-020-64094-1 (2020).

    9.
    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. https://doi.org/10.1126/sciadv.aao4985 (2018).

    10.
    Crooks, S. et al. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory. Nat. Clim. Chang. 8, 1109–1112 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Chang. Biol. 24, 4107–4121 (2018).
    Article  Google Scholar 

    12.
    Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225 (2015).
    ADS  CAS  Article  Google Scholar 

    13.
    van der Nat, F.-J. W. A. & Middelburg, J. J. Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry 43, 79–104 (1998).
    Article  Google Scholar 

    14.
    Mueller, P. et al. Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biol. Invasions 18, 2635–2647 (2016).
    Article  Google Scholar 

    15.
    Tong, C., Morris, J. T., Huang, J., Xu, H. & Wan, S. Changes in pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh. Limnol. Oceanogr. 63, 384–396 (2018).
    ADS  CAS  Article  Google Scholar 

    16.
    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).
    ADS  CAS  Article  Google Scholar 

    18.
    Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marba, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).
    ADS  CAS  Article  Google Scholar 

    20.
    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Megonigal, J. P. & Schlesinger, W. H. Enhanced CH4 emissions from a wetland soil exposed to elevated CO2. Biogeochemistry 37, 77–88 (1997).
    CAS  Article  Google Scholar 

    22.
    Beaulieu, J. J., DelSontro, T. & Downing, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10, 1375 (2019).
    Article  CAS  Google Scholar 

    23.
    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Stocker, B. D. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Chang. 3, 666–672 (2013).
    ADS  CAS  Article  Google Scholar 

    25.
    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Whiting, G. J. & Chanton, J. P. Primary production control of methane emission from wetlands. Nature 364, 794–795 (1993).
    ADS  CAS  Article  Google Scholar 

    27.
    Langley, J. A., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B. & Megonigal, J. P. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob. Chang. Biol. 19, 1495–1503 (2013).
    Article  Google Scholar 

    28.
    Mueller, P. et al. Global-change effects on early-stage decomposition processes in tidal wetlands—implications from a global survey using standardized litter. Biogeosciences 15, 3189–3202 (2018).
    ADS  CAS  Article  Google Scholar 

    29.
    Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).
    Article  Google Scholar 

    30.
    Redelstein, R., Dinter, T., Hertel, D. & Leuschner, C. Effects of inundation, nutrient availability and plant species diversity on fine root mass and morphology across a saltmarsh flooding gradient. Front. Plant Sci. 9, 1–15 (2018).
    Article  Google Scholar 

    31.
    Morris, J. T. Estimating net primary production of salt marsh macrophytes. in Principles and Standards for Measuring Primary Production (eds Fahey, T. J. & Knapp, A. K.) 106–119 (Oxford University Press, 2007).

    32.
    Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegetatio. 104, 133–143 (1993).
    Article  Google Scholar 

    33.
    Erickson, J. E., Megonigal, J. P., Peresta, G. & Drake, B. G. Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Glob. Chang. Biol. 13, 202–215 (2007).
    ADS  Article  Google Scholar 

    34.
    Drake, B. G. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: Review of a 28-year study. Glob. Chang. Biol. 20, 3329–3343 (2014).
    ADS  PubMed  Article  Google Scholar 

    35.
    Kirwan, M. L., Langley, J. A., Guntenspergen, G. R. & Megonigal, J. P. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10, 1869–1876 (2013).
    ADS  CAS  Article  Google Scholar 

    36.
    Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).
    PubMed  Article  Google Scholar 

    37.
    Phillips, R. P., Bernhardt, E. S. & Schlesinger, W. H. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol. 29, 1513–1523 (2009).
    CAS  PubMed  Article  Google Scholar 

    38.
    Lin, G., Ehleringer, J. R., Rygiewicz, P. T., Johnson, M. G. & Tingey, D. T. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Glob. Chang. Biol. 5, 157–168 (1999).
    ADS  Article  Google Scholar 

    39.
    Megonigal, J. P. et al. A plant-soil-atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Sci. Soc. Am. J. 63, 665–671 (1999).
    ADS  CAS  Article  Google Scholar 

    40.
    Dacey, J. W. H., Drake, B. G. & Klug, M. J. Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Nature 370, 47–49 (1994).
    ADS  CAS  Article  Google Scholar 

    41.
    Keller, J. K., Wolf, A. A., Weisenhorn, P. B., Drake, B. G. & Megonigal, J. P. Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96, 101–117 (2009).
    CAS  Article  Google Scholar 

    42.
    Langley, J. A. & Megonigal, J. P. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466, 96–99 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. U.S.A. 106, 6182–6186 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Langley, J. A. et al. Ambient changes exceed treatment effects on plant species abundance in global change experiments. Glob. Chang. Biol. 24, 5668–5679 (2018).
    ADS  PubMed  Article  Google Scholar 

    45.
    Bhullar, G. S., Edwards, P. J. & Olde Venterink, H. Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J. Plant Ecol. 6, 298–304 (2013).
    Article  Google Scholar 

    46.
    van der Nat, F.-J. W. A., Middelburg, J. J., Van Meteren, D. & Wielemakers, A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry 41, 1–22 (1998).
    Article  Google Scholar 

    47.
    Van Der Nat, F. J. W. A. & Middelburg, J. J. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat. Bot. 61, 95–110 (1998).
    Article  Google Scholar 

    48.
    Wolf, A. A., Drake, B. G., Erickson, J. E. & Megonigal, J. P. An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Glob. Chang. Biol. 13, 2036–2044 (2007).
    ADS  Article  Google Scholar 

    49.
    Bernal, B., Megonigal, J. P. & Mozdzer, T. J. An invasive wetland grass primes deep soil carbon pools. Glob. Chang. Biol. 23, 2104–2116 (2017).
    ADS  PubMed  Article  Google Scholar 

    50.
    Mueller, P., Jensen, K. & Megonigal, J. P. Plants mediate soil organic matter decomposition in response to sea level rise. Glob. Chang. Biol. 22, 404–414 (2016).
    ADS  PubMed  Article  Google Scholar 

    51.
    Yuan, J. et al. Spartina alterniflora invasion drastically increases methane production potential by shifting methanogenesis from hydrogenotrophic to methylotrophic pathway in a coastal marsh. J. Ecol. 107, 2436–2450 (2019).
    CAS  Article  Google Scholar 

    52.
    Marsh, A. S., Rasse, D. P., Drake, B. G. & Megonigal, J. P. Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries 28, 694–704 (2005).
    CAS  Article  Google Scholar 

    53.
    Broome, S. W., Mendelssohn, I. A. & McKee, K. L. Relative growth of Spartina patens (Ait.) Muhl. and Scirpus olneyi gray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands 15, 20–30 (1995).
    Article  Google Scholar 

    54.
    Mozdzer, T. J., Langley, J. A., Mueller, P. & Megonigal, J. P. Deep rooting and global change facilitate spread of invasive grass. Biol. Invasions 18, 2619–2631 (2016).
    Article  Google Scholar 

    55.
    IPCC. United Nations Framework Convention on Climate Change. United Nations Framew. Conv. Clim. Chang. https://doi.org/10.1111/j.1467-9388.1992.tb00046.x (2014).

    56.
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl Acad. Sci. U.S.A. 116, 21623–21628 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Megonigal, J. P. & Rabenhorst, M. Reduction–oxidation potential and oxygen. in Methods in Biogeochemistry of Wetlands (eds DeLaune, R. D., Reddy, K. R., Richardson, C. J. & Megonigal, J. P.) 71–85 (Soil Science Society of America, Inc., 2013).

    58.
    Aselmann, I. & Crutzen, P. J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8, 307–358 (1989).
    CAS  Article  Google Scholar 

    59.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar  More

  • in

    An integrated analysis of Maglemose bone points reframes the Early Mesolithic of Southern Scandinavia

    1.
    Jessen, C. A. et al. Early Maglemosian culture in the Preboreal landscape: archaeology and vegetation from the earliest Mesolithic site in Denmark at Lundby Mose Sjælland. Quat. Int. 378, 73–87 (2015).
    Article  Google Scholar 
    2.
    Mortensen, M. F., Henriksen, P. S., Christensen, C., Petersen, P. V. & Olsen, J. Vegetation development in south-east Denmark during the Weichselian Late Glacial: palaeoenvironmental studies close to the Palaeolithic site of Hasselø. Danish J. Archaeol. 3, 33–51 (2014).
    Article  Google Scholar 

    3.
    Sarauw, G. F. L. En Stenalders Boplads i Maglemose ved Mullerup Sammenholdt med Beslægtede Fund (H.H Thieles Bogtrykkeri, København, 1903).
    Google Scholar 

    4.
    Broholm, H. C. Nye fund fra den Ældste Stenalder, Holmegaard- og Sværdborgfundene. Aarbøger for Nordisk Oldkyndighed og Historie 1–144 (1924).

    5.
    Mathiassen, T., Troels-Smith, J. & Degerbøl, M. Stenalderbopladser i Aamosen. (1943).

    6.
    Clark, J. G. D. The Mesolithic Settlement of Northern Europe: A Study of the Food-Gathering Peoples of Northern Europe During the Early Post-Glacial Period (Greenwood Press, New York, 1936).
    Google Scholar 

    7.
    Verhart, L. B. M. Stone Age Bone and Antler As Indicators for ‘Social Territories’ in the European Mesolithic. In Contributions to the Mesolithic in Europe (eds Vermeersch, P. M. & Van Peer, P.) 139–151 (Leuven University Press, Leuven, 1990).
    Google Scholar 

    8.
    Larsson, L., Sjöström, A. & Nilsson, B. Lost at the bottom of the lake. Early and Middle Mesolithic leister points found in the bog Rönneholms Mosse, southern Sweden. In Working at the Sharp End: From Bone and Antler to Early Mesolithic Life in Northern Europe (eds Groß, D. et al.) 1–8 (Wacholtz, Kiel, 2019).
    Google Scholar 

    9.
    Andersen, K. Stenalder bebyggelsen i den Vestsjællandske Åmose (Fredningsstyrelsen, Copenhagen, 1983).
    Google Scholar 

    10.
    David, E. L’industrie en matières dures animale du Mésolithique ancien et moyen d’ Europe du nord, contribution de l’ analyse technologique à la définition du Maglemosien. (Université Paris X-Nanterre, 1999).

    11.
    Leduc, C. Ungulates exploitation for subsistence and raw material, during the Maglemose culture in Denmark: the example of Mullerup site (Sarauw’s Island) in Sjælland. Danish J. Archaeol. 1, 62–81 (2012).
    Article  Google Scholar 

    12.
    David, É The osseous technology of Hohen Viecheln: a Maglemosian idiosyncrasy? In From Bone and Antler to Early Mesolithic Life in Northern Europe (eds Groß, D. et al.) 1–36 (Wachholtz Verlag, Neumünster, 2019).
    Google Scholar 

    13.
    Gummesson, S. & Molin, F. Points of bone and antler from the Late Mesolithic settlement in Motala, eastern central Sweden. In Working at the Sharp End: From Bone and Antler to Early Mesolithic Life in Northern Europe (eds Groß, D. et al.) 1–25 (Wacholtz, Kiel, 2019).
    Google Scholar 

    14.
    Fischer, A. At the border of human habitat. The late Palaeolithic and early Mesolithic in Scandinavia. In The Earliest Settlement of Scandinavia and Its Relationship with Neighbouring Areas (ed. Larsson, L.) 157–176 (Almquist & Wiksell, Stockholm, 1996).
    Google Scholar 

    15.
    Fischer, A. Tissø og Amoserne som trafikforbindelse og kultsted i stenalderen. Historisk Samfund for Holbæk Amt 27–44 (2003).

    16.
    Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).
    CAS  Article  Google Scholar 

    17.
    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl. Acad. Sci. USA 113, 11162–11167 (2016).
    CAS  PubMed  Article  Google Scholar 

    18.
    Buckley, M. & Collins, M. J. Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua 1, 1–7 (2011).
    Article  Google Scholar 

    19.
    Rodriguez, J., Gupta, N., Smith, R. D. & Pevzner, P. A. Does trypsin cut before proline?. J. Proteome Res. 7, 300–305 (2008).
    CAS  PubMed  Article  Google Scholar 

    20.
    Ekström, J. The Late Quaternary history of the urus (Bos primigenius Bojanus 1827) in Sweden. vol. 29 (Lund Univ., Dep. of Quaternary Geology, 1993).

    21.
    Aaris-Sørensen, K., Mühldorff, R. & Petersen, E. B. The Scandinavian reindeer (Rangifer tarandus L.) after the last glacial maximum: time, seasonality and human exploitation. J. Archaeol. Sci.34, 914–923 (2007/6).

    22.
    Aaris-Sørensen, K. Diversity and dynamics of the mammalian fauna in Denmark throughout the last glacial-interglacial cycle, 115–0 kyr bp. Fossils Strata 57, 1–59 (2010).
    Google Scholar 

    23.
    Aaris-Sørensen, K. Diversity and Dynamics of the Mammalian Fauna in Denmark Throughout the Last Glacial-Interglacial Cycle, 115–0 kyr BP (Wiley, New York, 2010).
    Google Scholar 

    24.
    Aaris-Sørensen, K. Depauperation of the Mammalian Fauna of the Island of Zealand during the Atlantic Period. Vidensk. Meddr Dansk Naturh. Foren. 142, 131–138 (1980).
    Google Scholar 

    25.
    Noe-Nygaard, N., Price, T. D. & Hede, S. Diet of aurochs and early cattle in southern Scandinavia: evidence from N and C stable isotopes. J. Archaeol. Sci. 32, 855–871 (2005).
    Article  Google Scholar 

    26.
    McGrath, K. et al. Identifying archaeological bone via non-destructive ZooMS and the materiality of symbolic expression: examples from iroquoian bone points. Sci. Rep. 9, 11027 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Sjöström, A. Mesolitiska lämningar i Rönneholms mosse. Arkeologisk förundersökning 2010: Hassle 32:18, Stehag socken, Eslövs kommun 1–79 (Skåne. Lund University, Lund, 2011).
    Google Scholar 

    28.
    Sjöström, A. Mesolitiska lämningar i Rönneholms mosse. Arkeologisk förundersökning. Hassle 32:18, Stehag socken, Eslövs kommun Skåne 1–84 (. Lund University, Lund, 2014).
    Google Scholar 

    29.
    Fischer, A. Dating the early trapeze horizon. Radiocarbon dates from submerged settlements in Musholm Bay and Kalø Vig, Denmark. Mesolithc Misc. 15, 1–7 (1994).
    Google Scholar 

    30.
    Sørensen, S. A. Kongemosekulturen i Sydskandinavien (Egnsmuseet Færgegården, Jægerspris, 1996).
    Google Scholar 

    31.
    Sjöström, A. Ringsjöholm. A boreal-early atlantic settlement in Central Scania, Sweden. Lund Archaeol. Rev. 3, 5–20 (1997).
    Google Scholar 

    32.
    Fischer, A. People and the sea—settlement and fishing along the mesolithic coasts. In The Danish Storebælt Since the Ice Age—Man, Sea and Forest (eds Pedersen, L. et al.) 63–77 (A/S Storebælt Fixed Link, Copenhagen, 1997).
    Google Scholar 

    33.
    Tauber, H. Copenhagen radiocarbon dates VII. Radiocarbon 8, 213–234 (1966).
    Article  Google Scholar 

    34.
    Tauber, H. Copenhagen radiocarbon dates X. Radiocarbon 15, 86–112 (1973).
    Article  Google Scholar 

    35.
    Fischer, A. Food for Feasting? An evaluation of explanations of the neolithisation of Denmark and southern Sweden. In The Neolithisation of Denmark—150 Years of Debate (eds Fischer, A. & Krisiansen, K.) 343–393 (J. R Collis, Sheffield, 2002).
    Google Scholar 

    36.
    Andersen, S. H. & Petersen, P. V. Maglemosekulturens stortandede harpuner. Aarbøger Nordisk Oldkynd. Hist. 2004, 7–41 (2009).
    Google Scholar 

    37.
    Larsson, L. The colonization of South Sweden during the deglaciation. In The Earliest Settlement of Scandinavia and Its Relationship with Neighbouring Areas 24 (ed. Larsson, L.) 141–155 (Acta Archaeologica Ludensia, Stockholm, 1996).
    Google Scholar 

    38.
    Sørensen, L. & Casati, C. Hunter-gatherers living in a flooded world: the change of climate, landscapes and settlement patterns during the Late Palaeolithic and Mesolithic on Bornholm, Denmark. In Climate and Ancient Societies (eds Kerner, S. et al.) 41–69 (Museum Tusculanum, Copenhagen, 2015).
    Google Scholar 

    39.
    Sørensen, M. Early mesolithic regional mobility and social organization: evidence from lithic blade technology and microlithic production in southern Scandinavia. In Technology of Early Settlement in Northern Europe—Transmission of Knowledge and Culture (eds Knutsson, K. et al.) 173–201 (Equinox Publishing, London, 2018).
    Google Scholar 

    40.
    Bond, G. et al. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial Climates. Science 278, 1257–1266 (1997).
    ADS  CAS  Article  Google Scholar 

    41.
    Björck, S. et al. High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology 29, 1107–1110 (2001).
    ADS  Article  Google Scholar 

    42.
    Dahl, S. O., Nesje, A., Lie, Ø, Fjordheim, K. & Matthews, J. A. Timing, equilibrium-line altitudes and climatic implications of two early-Holocene glacier readvances during the Erdalen Event at Jostedalsbreen, western Norway. Holocene 12, 17–25 (2002).
    ADS  Article  Google Scholar 

    43.
    Nesje, A., Dahl, S. O. & Bakke, J. Were abrupt Lateglacial and early-Holocene climatic changes in northwest Europe linked to freshwater outbursts to the North Atlantic and Arctic Oceans?. Holocene 14, 299–310 (2004).
    ADS  Article  Google Scholar 

    44.
    Bakke, J., Dahl, S. O. & Nesje, A. Lateglacial and early Holocene palaeoclimatic reconstruction based on glacier fluctuations and equilibrium-line altitudes at northern Folgefonna, Hardanger, Western Norway. J. Quat. Sci. 2, 179–198 (2005).
    Article  Google Scholar 

    45.
    Nesje, A. Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quat. Sci. Rev. 28, 2119–2136 (2009).
    ADS  Article  Google Scholar 

    46.
    Berner, K. S., Koç, N. & Godtliebsen, F. High frequency climate variability of the Norwegian Atlantic Current during the early Holocene period and a possible connection to the Gleissberg cycle. Holocene 20, 245–255 (2010).
    ADS  Article  Google Scholar 

    47.
    Balascio, N. L. & Bradley, R. S. Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems. J. Paleolimnol. 48, 259–273 (2012).
    ADS  Article  Google Scholar 

    48.
    Jørgensen, S. Early Postglacial in Aamosen: Geological and Pollen-analytical Investigations of Maglemosian Settlements in the West-Zealand Bog Aamosen (Reitzel, Aigle, 1963).
    Google Scholar 

    49.
    Noe-Nygaard, N. Sedimentary, geochemical and ecological evolution of a Lateglacial-Postglacial lacustrine basin: lakelevel and climatic influence on flora, fauna and human population (Aamosen, Denmark). Foss. Strata 37, 1–436 (1995).
    Google Scholar 

    50.
    Noe-Nygaard, N., Abildtrup, C. H., Albrechtsen, T., Gotfredsen, A. B. & Richter, J. Palæobiologiske, sedimentologiske og geokemiske undersøgelser af Sen Weichel og Holocæne aflejringer i Store Åmose Danmark. Geol. tidsskr. 2, 1–65 (1998).
    Google Scholar 

    51.
    Gedda, B. Environmental and climatic aspects of the early to mid Holocene calcareous tufa and land mollusc fauna in southern Sweden (Lund University, Lund, 2001).
    Google Scholar 

    52.
    Digerfeldt, G., Björck, S., Hammarlund, D. & Persson, T. Reconstruction of Holocene lake-level changes in Lake Igelsjön, southern Sweden. GFF 135, 162–170 (2013).
    CAS  Article  Google Scholar 

    53.
    Gaillard, M.-J. Postglacial paleoclimatic changes in Scandinavia and Central Europe. A tentative correlation based on studies of lake-level fluctuations. Ecol. Mediterr. 11, 159–175 (1985).
    Article  Google Scholar 

    54.
    Nilsson, T. Die pollenanalytische Zonengliederung der spät- und postglazialen Bildungen Schonens. Geol. Föreningen Stockh. Förhandlingar 57, 385–562 (1935).
    Article  Google Scholar 

    55.
    Digerfeldt, G. Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjon South Sweden. Boreas 17, 165–182 (1988).
    Article  Google Scholar 

    56.
    Dreibrodt, S. et al. Are mid-latitude slopes sensitive to climatic oscillations? Implications from an Early Holocene sequence of slope deposits and buried soils from eastern Germany. Geomorphology 122, 351–369 (2010).
    ADS  Article  Google Scholar 

    57.
    Olsson, F., Gaillard, M. J., Lemdahl, G. & Greisman, A. A continuous record of fire covering the last 10,500 calendar years from southern Sweden—the role of climate and human activities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 128–141 (2010).
    Article  Google Scholar 

    58.
    Manninen, M. A., Tallavaara, M. & Seppä, H. Human responses to early Holocene climate variability in eastern Fennoscandia. Quat. Int. 465, 287–297 (2018).
    Article  Google Scholar 

    59.
    Grünberg, J. The Mesolithic burials of the Middle Elbe-Saale region. In: Mesolithic burials—Rites, symbols and socialorganisation of early postglacial communities (eds. Judith M. Grünberg, B. G., Larsson, L., Orscheidt, J. & Meller, H.) vol. 13,1 257–290 (Halle (Saale) Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte 2016, 2016).

    60.
    Crombé, P. Mesolithic projectile variability along the southern North Sea basin (NW Europe): hunter-gatherer responses to repeated climate change at the beginning of the Holocene. PLoS ONE 14, e0219094 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Solheim, S., Damlien, H. & Fossum, G. Technological transitions and human-environment interactions in Mesolithic southeastern Norway, 11 500–6000 cal. BP. Quat. Sci. Rev. 246, 106501 (2020).
    Article  Google Scholar 

    62.
    Hammarlund, D., Björck, S., Buchardt, B., Israelson, C. & Thomsen, C. T. Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quat. Sci. Rev. 22, 353–370 (2003).
    ADS  Article  Google Scholar 

    63.
    Cziesla, E. & Pettitt, P. B. AMS-14C-Datieirungen von spätpaläolithischen und mesolithischen Funden aus dem Bützsee (Brandenburg). Archäol. Korresp. 33, 21–38 (2003).
    Google Scholar 

    64.
    Nordqvist, B. The Mesolithic settlements of the west coast of Sweden-with special emphasis on chronology and topography of coastal settlements. In Man and the Sea in the Mesolithic: Coastal Settlements Above and Below Present Sea Level; 1993; Kalundborg; Denmark (ed. Fischer, A.) 185–196 (Oxbow Books, Oxford, 1995).
    Google Scholar 

    65.
    Nordqvist, B. Coastal Adaptations in the Mesolitic [Mesolithic]: A Study of Coastal Sites with Organic Remains from the Boreal and Atlantic Periods in Western Sweden (Department of Archaeology Göteborg University, Gothenburg, 2000).
    Google Scholar 

    66.
    Johansson, G. En 10 000 år gammal boplats med organiskt material i Mölndal. Ytterligare en överlagrad Sandarnaboplats vid Balltorp. Västra Götalands län, Västergötland, Mölndal stad, Balltorp Ytterligare en överlagrad Sandarnaboplats vid Balltorp Västra Götalands län, Västergötland, Mölndal stad, Balltorp 1:124, Mölndal 182 Dnr 3.1.1-04306-2008(2014).

    67.
    Boethius, A. Fishing for Ways to Thrive: Integrating Zooarchaeology to Understand Subsistence Strategies and Their Implications Among EARLY and Middle Mesolithic Southern Scandinavian Foragers (Lunds University, Lund, 2018).
    Google Scholar 

    68.
    Astrup, P. M. Sea-Level Change in Mesolithic Southern Scandinavia. Long- and Short-Term Effects on Society and the Environment 106 (Jutland Archaeological Society Publications, Højbjerg, 2018).
    Google Scholar 

    69.
    Fischer, A. & Petersen, P. V. Denmark—a sea of archaeological plenty. In Oceans of Archaeology (eds Fischer, A. & Pedersen, L.) 68–83 (Jutland Archaeological Society, Højbjerg, 2018).
    Google Scholar 

    70.
    Fischer, A. et al. Coast–inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J. Archaeol. Sci. 34, 2125–2150 (2007).
    Article  Google Scholar 

    71.
    Ahlström, T. & Sjögren, K.-G. Kvinnan från Österöd—ett tidigmesolitiskt skelett från Bohuslän. In Situ Archaeologica 7, 47–69 (2007).
    Google Scholar 

    72.
    Ahlström, T. Mesolithic human skeletal remains from Tågerup, Scania, Sweden. In: Mesolithic on the Move. Papers Presented at the Sixth International Conference on the Mesolithic in Europe, Stockholm 2000 (eds. Larsson, L., Kindgren, H., Knutsson, K., Loeffler, D. & Åkerlund, A.) 478–484 (Oxbow Books, Oxford, 2003).

    73.
    Desrosiers, P. M. The Emergence of Pressure Blade Making: From Origin to Modern Experimentation (Springer, Berlin, 2012).
    Google Scholar 

    74.
    Sørensen, M. The arrival and development of pressure blade technology in Southern Scandinavia. In The Emergence of Pressure Blade Making: From Origin to Modern Experimentation (ed. Desrosiers, P. M.) 237–259 (Springer, Cham, 2012).
    Google Scholar 

    75.
    Sørensen, M. et al. The first eastern migrations of people and knowledge into Scandinavia: evidence from studies of Mesolithic Technology, 9th-8th Millennium BC. Nor. Archaeol. Rev. 46, 19–56 (2013).
    Article  Google Scholar 

    76.
    Günther, T. et al. Population genomics of Mesolithic Scandinavia: investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol. 16, 1–22 (2018).
    Article  CAS  Google Scholar 

    77.
    Kashuba, N. et al. Ancient DNA from mastics solidifies connection between material culture and genetics of mesolithic hunter–gatherers in Scandinavia. Nat. Commun. Biol. 2, 1–10 (2019).
    Article  Google Scholar 

    78.
    Damlien, H., Kjällquist, M. & Knutsson, K. The pioneer settlement of Scandinavia and its aftermath: new evidence from Western and Central Scandinavia. In The Technology of Early Settlement in Northern Europe—Transmission of Knowledge and Culture 2 (eds Knutsson, K. et al.) 99–137 (Equinox Publishing, Sheffield, 2018).
    Google Scholar 

    79.
    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator unit (Orau). Radiocarbon 52, 103–112 (2010).
    CAS  Article  Google Scholar 

    80.
    Dee, M. & Bronk Ramsey, C. Refinement of graphite target production at ORAU. Nucl. Instrum. Methods Phys. Res. B 172, 449–453 (2000).
    ADS  CAS  Article  Google Scholar 

    81.
    Ramsey, C. B., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004).
    CAS  Article  Google Scholar 

    82.
    Ramsey, C. B. C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    CAS  Article  Google Scholar 

    83.
    Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    84.
    van Doorn, N. L., Hollund, H. & Collins, M. J. A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction. Archaeol. Anthropol. Sci. 3, 281 (2011).
    Article  Google Scholar 

    85.
    Kirby, D. P., Buckley, M., Promise, E., Trauger, S. A. & Holdcraft, T. R. Identification of collagen-based materials in cultural heritage. Analyst 138, 4849–4858 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    86.
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucl. Acids Res. 47, D442–D450 (2019).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Effects of canopy midstory management and fuel moisture on wildfire behavior

    1.
    Westerling, A. L. Increasing western us forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B 371, 20150178 (2016).
    Article  Google Scholar 
    2.
    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western united states, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
    ADS  Article  Google Scholar 

    3.
    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33 (2006).

    4.
    Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
    PubMed  Article  Google Scholar 

    5.
    Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).
    Article  Google Scholar 

    6.
    Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. 110, 13055–13060 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Williams, A. P. & Abatzoglou, J. T. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).
    Article  Google Scholar 

    9.
    Seager, R. et al. Climatology, variability, and trends in the us vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).
    ADS  Article  Google Scholar 

    10.
    Radeloff, V. C. et al. Rapid growth of the us wildland–urban interface raises wildfire risk. Proc. Natl. Acad. Sci. 115, 3314–3319 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Fried, J. S. et al. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Change 87, 251–264 (2008).
    Article  Google Scholar 

    12.
    Agee, J. K. & Skinner, C. N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 211, 83–96 (2005).
    Article  Google Scholar 

    13.
    Schwilk, D. W. et al. The national fire and fire surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels. Ecol. Appl. 19, 285–304 (2009).
    PubMed  Article  Google Scholar 

    14.
    Whitehead, R. et al. Effect of a spaced thinning in mature lodgepole pine on within-stand microclimate and fine fuel moisture content. In Andrews, P. L., & Butler, B. W., comps. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, vol. 41, 523–536 (2006).

    15.
    Whitehead, R. J. et al. Effect of commercial thinning on within-stand microclimate and fine fuel moisture conditions in a mature lodgepole pine stand in southeastern British Columbia. Canadian Forest Service, Canadian Wood Fibre Centre. British Columbia, Information Report, FI-X-004 (2008).

    16.
    Parsons, R. A. et al. Modeling thinning effects on fire behavior with standfire. Ann. For. Sci. 75, 7 (2018).
    Article  Google Scholar 

    17.
    Kalies, E. L. & Kent, L. L. Y. Tamm review: Are fuel treatments effective at achieving ecological and social objectives? A systematic review. For. Ecol. Manag. 375, 84–95 (2016).
    Article  Google Scholar 

    18.
    Banerjee, T. Impacts of forest thinning on wildland fire behavior. Forests 11, 918 (2020).
    Article  Google Scholar 

    19.
    Syifa, M., Panahi, M. & Lee, C.-W. Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: the case of the camp fire wildfire in California, USA. Remote Sensing 12, 623 (2020).
    ADS  Article  Google Scholar 

    20.
    Storey, M. A., Price, O. F., Sharples, J. J. & Bradstock, R. A. Drivers of long-distance spotting during wildfires in south-eastern Australia. Int. J. Wildland Fire (2020).

    21.
    Arienti, M. C., Cumming, S. G. & Boutin, S. Empirical models of forest fire initial attack success probabilities: the effects of fuels, anthropogenic linear features, fire weather, and management. Can. J. For. Res. 36, 3155–3166 (2006).
    Article  Google Scholar 

    22.
    Van Wagner, C. E. Fire Behaviour Mechanisms in a Red Pine Plantation: Field and Laboratory Evidence, vol. 1229 (Ministry of Forestry and Rural Development, 1968).

    23.
    Wagner, C. V. Conditions for the start and spread of crown fire. Can. J. For. Res. 7, 23–34 (1977).
    Article  Google Scholar 

    24.
    Graham, R. T., Harvey, A. E., Jain, T. B. & Tonn, J. R. Effects of thinning and similar stand treatments on fire behavior in western forests. USDA Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-463 (1999).

    25.
    Graham, R. T., McCaffrey, S. & Jain, T. B. Science basis for changing forest structure to modify wildfire behavior and severity. The Bark Beetles, Fuels, and Fire Bibliography 167 (2004).

    26.
    Varner, M. & Keyes, C. R. Fuels treatments and fire models: errors and corrections. Fire Manag. Today 69, 47–50 (2009).
    Google Scholar 

    27.
    Amiro, B., Stocks, B., Alexander, M., Ana, F. & Wotton, B. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 10, 405–4 (2001).
    Article  Google Scholar 

    28.
    Pollet, J. & Omi, P. N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int. J. Wildland Fire 11, 1–10 (2002).
    Article  Google Scholar 

    29.
    Peterson, D. L. et al. Forest structure and fire hazard in dry forests of the western United States. Gen. Tech. Rep. PNW-GTR-628. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 30 p 628 (2005).

    30.
    Stephens, S. L. & Moghaddas, J. J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a california mixed conifer forest. For. Ecol. Manag. 215, 21–36 (2005).
    Article  Google Scholar 

    31.
    Safford, H. D., Schmidt, D. A. & Carlson, C. H. Effects of fuel treatments on fire severity in an area of wildland-urban interface, angora fire, lake Tahoe basin, California. For. Ecol. Manag. 258, 773–787 (2009).
    Article  Google Scholar 

    32.
    Stephens, S. L. et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western us forests. Ecol. Appl. 19, 305–320 (2009).
    PubMed  Article  Google Scholar 

    33.
    Hudak, A. et al. Review of fuel treatment effectiveness in forests and rangelands and a case study from the 2007 megafires in central Idaho USA (no. rmrs-gtr-252). Fort Collins, CO: Rocky Mountain Research Station Publishing Services (2011).

    34.
    Waldrop, T. A. & Goodrick, S. L. Introduction to prescribed fires in southern ecosystems. Science Update SRS-054. Asheville, NC: US Department of Agriculture Forest Service, Southern Research Station. 80 p. 54, 1–80 (2012).

    35.
    Martinson, E. J. & Omi, P. N. Fuel treatments and fire severity: a meta-analysis. Res. Pap. RMRS-RP-103WWW. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 38, p. 103 (2013).

    36.
    Kennedy, M. C. & Johnson, M. C. Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland–urban interface during the Wallow Fire, Arizona, USA. For. Ecol. Manag. 318, 122–132 (2014).
    Article  Google Scholar 

    37.
    Barnett, K., Parks, S. A., Miller, C. & Naughton, H. T. Beyond fuel treatment effectiveness: characterizing interactions between fire and treatments in the US. Forests 7, 237 (2016).
    Article  Google Scholar 

    38.
    Just, M. G., Hohmann, M. G. & Hoffmann, W. A. Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecol. 217, 631–644 (2016).
    Article  Google Scholar 

    39.
    Veenendaal, E. M. et al. On the relationship between fire regime and vegetation structure in the tropics. New Phytol. 218, 153–166 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Bessie, W. & Johnson, E. The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76, 747–762 (1995).
    Article  Google Scholar 

    41.
    Rothermel, R. C. A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: US Department of Agriculture, Intermountain Forest and Range Experiment Station. 40 p. 115 (1972).

    42.
    Hoffman, C. M. et al. Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle-caused tree mortality. For. Sci. 59, 390–399 (2012).
    Article  Google Scholar 

    43.
    Keyes, C. & Varner, J. Pitfalls in the silvicultural treatment of canopy fuels. Fire Management Today (2006).

    44.
    Moon, K., Duff, T. & Tolhurst, K. Sub-canopy forest winds: understanding wind profiles for fire behaviour simulation. Fire Saf. J. 105, 320–329 (2016).
    Article  Google Scholar 

    45.
    Beer, T. The interaction of wind and fire. Boundary-Layer Meteorol.https://doi.org/10.1007/BF00183958 (1991).
    ADS  Article  Google Scholar 

    46.
    Cheney, N., Gould, J. & Catchpole, W. The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. Wildland Fire 3, 31–44 (1993).
    Article  Google Scholar 

    47.
    Cochrane, M. A. Fire science for rainforests. Nature 421, 913 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Fulé, P. Z., McHugh, C., Heinlein, T. A. & Covington, W. W. Potential fire behavior is reduced following forest restoration treatments (Technical Report 2001).

    49.
    Fulé, P. Z., Crouse, J. E., Roccaforte, J. P. & Kalies, E. L. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior?. For. Ecol. Manag. 269, 68–81 (2012).
    Article  Google Scholar 

    50.
    Contreras, M. A., Parsons, R. A. & Chung, W. Modeling tree-level fuel connectivity to evaluate the effectiveness of thinning treatments for reducing crown fire potential. For. Ecol. Manag. 264, 134–149 (2012).
    Article  Google Scholar 

    51.
    White, D. L., Waldrop, T. A. & Jones, S. M. Forty years of prescribed burning on the santee fire plots: effects on understory vegetation. Gen. Tech. Rep. SE-69. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. pp. 51–59 (1990).

    52.
    Davies, G., Domenech-Jardi, R., Gray, A. & Johnson, P. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires. Biogeosciences 12, 15737–15762 (2016).
    Article  Google Scholar 

    53.
    Keeley, J. E. & Syphard, A. D. Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecol. 15, 24 (2019).
    Article  Google Scholar 

    54.
    Hiers, J. K. et al. Fine dead fuel moisture shows complex lagged responses to environmental conditions in a saw palmetto (Serenoa repens) flatwoods. Agric. For. Meteorol. 266, 20–28 (2019).
    ADS  Article  Google Scholar 

    55.
    Finney, M. A. et al. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. 112, 9833–9838 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Reisner, J., Wynne, S., Margolin, L. & Linn, R. Coupled atmospheric-fire modeling employing the method of averages. Mon. Weather Rev. 128, 3683–3691 (2000).
    ADS  Article  Google Scholar 

    57.
    Mell, W., Maranghides, A., McDermott, R. & Manzello, S. L. Numerical simulation and experiments of burning douglas fir trees. Combust. Flame 156, 2023–2041 (2009).
    CAS  Article  Google Scholar 

    58.
    Morvan, D. Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling. Fire Technol. 47, 437–460 (2011).
    Article  Google Scholar 

    59.
    Parsons, R. A., Mell, W. E. & McCauley, P. Linking 3d spatial models of fuels and fire: effects of spatial heterogeneity on fire behavior. Ecol. Model. 222, 679–691 (2011).
    Article  Google Scholar 

    60.
    Parsons, R. et al. STANDFIRE: An IFT-DSS module for spatially explicit, 3d fuel treatment analysis (Technical Report 2015).

    61.
    Hoffman, C. M., Linn, R., Parsons, R., Sieg, C. & Winterkamp, J. Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest. Agric. For. Meteorol. 204, 79–93 (2015).
    ADS  Article  Google Scholar 

    62.
    Hoffman, C. et al. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 52, 221–237 (2016).
    Article  Google Scholar 

    63.
    Pimont, F. et al. Modeling fuels and fire effects in 3d: model description and applications. Environ. Model. Softw. 80, 225–244 (2016).
    Article  Google Scholar 

    64.
    Pimont, F., Dupuy, J.-L., Linn, R. R., Parsons, R. & Martin-StPaul, N. Representativeness of wind measurements in fire experiments: lessons learned from large-eddy simulations in a homogeneous forest. Agric. For. Meteorol. 232, 479–488 (2017).
    ADS  Article  Google Scholar 

    65.
    Pimont, F., Dupuy, J.-L., Linn, R. R. & Dupont, S. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Ann. For. Sci. 68, 523 (2011).
    Article  Google Scholar 

    66.
    Linn, R. R., Sieg, C. H., Hoffman, C. M., Winterkamp, J. L. & McMillin, J. D. Modeling wind fields and fire propagation following bark beetle outbreaks in spatially-heterogeneous Pinyon–Juniper woodland fuel complexes. Agric. For. Meteorol. 173, 139–153 (2013).
    ADS  Article  Google Scholar 

    67.
    Kiefer, M. T., Heilman, W. E., Zhong, S., Charney, J. J. & Bian, X. Mean and turbulent flow downstream of a low-intensity fire: influence of canopy and background atmospheric conditions. J. Appl. Meteorol. Climatol. 54, 42–57 (2015).
    ADS  Article  Google Scholar 

    68.
    Clements, C. B. et al. Observing the dynamics of wildland grass fires: fireflux—a field validation experiment. Bull. Am. Meteorol. Soc. 88, 1369–1382 (2007).
    ADS  Article  Google Scholar 

    69.
    Clements, C. B., Zhong, S., Bian, X., Heilman, W. E. & Byun, D. W. First observations of turbulence generated by grass fires. J. Geophys. Res. Atmos. 113, D22 (2008).
    Article  Google Scholar 

    70.
    Seto, D., Clements, C. B. & Heilman, W. E. Turbulence spectra measured during fire front passage. Agric. For. Meteorol. 169, 195–210. https://doi.org/10.1016/j.agrformet.2012.09.015 (2013).
    ADS  Article  Google Scholar 

    71.
    Heilman, W. E. et al. Observations of fire-induced turbulence regimes during low-intensity wildland fires in forested environments: implications for smoke dispersion. Atmos. Sci. Lett. 16, 453–460 (2015).
    ADS  Article  Google Scholar 

    72.
    Clements, C. B. et al. The fireflux II experiment: a model-guided field experiment to improve understanding of fire–atmosphere interactions and fire spread. Int. J. Wildland Fire 28, 308–326 (2019).
    Article  Google Scholar 

    73.
    Banerjee, T. & Katul, G. Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget. Phys. Fluids 25, 125106 (2013).
    ADS  Article  CAS  Google Scholar 

    74.
    Heilman, W. E. et al. Atmospheric turbulence observations in the vicinity of surface fires in forested environments. J. Appl. Meteorol. Climatol. 56, 3133–3150 (2017).
    ADS  Article  Google Scholar 

    75.
    Keeley, J. E. & Zedler, P. H. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecol. Appl. 19, 69–94 (2009).
    PubMed  Article  Google Scholar 

    76.
    Jin, Y. et al. Contrasting controls on wildland fires in southern California during periods with and without Santa Ana winds. J. Geophys. Res. Biogeosciences 119, 432–450 (2014).
    ADS  Article  Google Scholar 

    77.
    Hiers, J. K., O’Brien, J. J., Will, R. E. & Mitchell, R. J. Forest floor depth mediates understory vigor in xeric pinus palustris ecosystems. Ecol. Appl. 17, 806–814 (2007).
    PubMed  Article  Google Scholar 

    78.
    Parresol, B. R., Shea, D. & Ottmar, R. Creating a fuels baseline and establishing fire frequency relationships to develop a landscape management strategy at the savannah river site. In Andrews, P. L. & Butler, B. W., comps Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, vol. 41, pp 351–366 (2006).

    79.
    Sackett, S. S. & Haase, S. M. Fuel loadings in southwestern ecosystems of the United States. United States Department of Agriculture, Forest Service General Technical Report 187–192 (1996).

    80.
    Bigelow, S. W. & North, M. P. Microclimate effects of fuels-reduction and group-selection silviculture: implications for fire behavior in Sierran mixed-conifer forests. For. Ecol. Manag. 264, 51–59 (2012).
    Article  Google Scholar 

    81.
    Faiella, S. M. & Bailey, J. D. Fluctuations in fuel moisture across restoration treatments in semi-arid ponderosa pine forests of northern Arizona, USA. Int. J. Wildland Fire 16, 119–127 (2007).
    Article  Google Scholar 

    82.
    Estes, B. L., Knapp, E. E., Skinner, C. N. & Uzoh, F. C. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA. Int. J. Wildland Fire 21, 428–435 (2012).
    Article  Google Scholar 

    83.
    Pook, E. & Gill, A. Variation of live and dead fine fuel moisture in pinus radiata plantations of the Australian-capital-territory. Int. J. Wildland Fire 3, 155–168 (1993).
    Article  Google Scholar 

    84.
    Weatherspoon, C. P. & Skinner, C. Fire-silviculture relationships in sierra forests. Sierra nevada ecosystem project: final report to congress 2, 1167–1176 (1996).

    85.
    Countryman, C. Old-growth conversion also converts fire climate. US Forest Service Fire Control Notes 17, 15–19 (1955).
    Google Scholar 

    86.
    Linn, R. R. A transport model for prediction of wildfire behavior. Technical Report, Los Alamos National Lab., NM (United States) (1997).

    87.
    Linn, R., Winterkamp, J., Colman, J. J., Edminster, C. & Bailey, J. D. Modeling interactions between fire and atmosphere in discrete element fuel beds. Int. J. Wildland Fire 14, 37–48 (2005).
    Article  Google Scholar 

    88.
    Linn, R. R. & Cunningham, P. Numerical simulations of grass fires using a coupled atmosphere-fire model: basic fire behavior and dependence on wind speed. J. Geophys. Res. Atmos. 110, D13 (2005).
    Article  Google Scholar  More

  • in

    Superconductivity gets heated

    NATURE PODCAST
    14 October 2020

    A high pressure experiment reveals the world’s first room-temperature superconductor, and a method to target ecosystem restoration.

    Nick Howe &

    Search for this author in:

    Shamini Bundell

    Search for this author in:

    Hear all the latest from the world of science, brought to you by Nick Howe and Shamini Bundell.
    Your browser does not support the audio element.
    Download MP3

    In this episode:
    00:44 Room-temperature superconductivity
    For decades, scientists have been searching for a material that superconducts at room temperature. This week, researchers show a material that appears to do so, but only under pressures close to those at the centre of the planet. Research Article: Snider et al.; News: First room-temperature superconductor puzzles physicists
    08:26 Coronapod
    The Coronapod team revisit mask-use. Does public use really control the virus? And how much evidence is enough to turn the tide on this ongoing debate? News Feature: Face masks: what the data say
    19:37 Research Highlights
    A new method provides 3D printed materials with some flexibility, and why an honest post to Facebook may do you some good. Research Highlight: A promising 3D-printing method gets flexible; Research Highlight: Why Facebook users might want to show their true colours
    22:11 The best way to restore ecosystems
    Restoring degraded or human-utilised landscapes could help fight climate change and protect biodiversity. However, there are multiple costs and benefits that need to be balanced. Researchers hope a newly developed algorithm will help harmonise these factors and show the best locations to target restoration. Research Article: Strassburg et al.; News and Views: Prioritizing where to restore Earth’s ecosystems
    28:40 Briefing Chat
    We discuss some highlights from the Nature Briefing. This time, a 44 year speed record for solving a maths problem is beaten… just, and an ancient set of tracks show a mysterious journey. Quanta: Computer Scientists Break Traveling Salesperson Record; The Conversation: Fossil footprints: the fascinating story behind the longest known prehistoric journey
    Subscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.
    Other links
    Don’t miss our latest YouTube video – Science under Trump: Four key moments
    Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed.

    Latest on:

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More