Spatial distribution of stygobitic crustacean harpacticoids at the boundaries of groundwater habitat types in Europe
1.
Griebler, C., Avramov, M. & Hose, G. Groundwater Ecosystems and Their Services: Current Status and Potential Risks. In Atlas of Ecosystem Services (eds Schröter, M. et al.) 197–203 (Springer, Berlin, 2019).
Google Scholar
2.
Di Lorenzo, T., Cifoni, M., Lombardo, P., Fiasca, B. & Galassi, D. M. P. Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy. Hydrobiologia 743, 139–150 (2015).
Article CAS Google Scholar
3.
Banks, E., Simmons, C., Love, A. & Shand, P. Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality. J. Hydrol. 404, 30–49 (2011).
ADS CAS Article Google Scholar
4.
Di Lorenzo, T., Stoch, F. & Galassi, D. M. P. Incorporating the hyporheic zone within the river discontinuum: longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica 43, 288–296 (2013).
Article CAS Google Scholar
5.
Hose, G. C. & Stumpp, C. Architects of the underworld: bioturbation by groundwater invertebrates influences aquifer hydraulic properties. Aquat. Sci. 81, 20 (2019).
Article Google Scholar
6.
Di Lorenzo, T. & Galassi, D. M. P. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: Does global warming affect groundwater populations?. Water 9, 951 (2017).
ADS Article CAS Google Scholar
7.
Strona, G. et al. AQUALIFE software: a new tool for a standardized ecological assessment of groundwater dependent ecosystems. Water 11, 2574 (2019).
Article Google Scholar
8.
Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650 (2019).
Article Google Scholar
9.
Castellarini, F., Malard, F., Dole-Olivier, M.-J. & Gibert, J. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Divers. Distrib. 13, 213–224 (2007).
Article Google Scholar
10.
Deharveng, L. et al. Groundwater biodiversity in Europe. Freshw. Biol. 54, 709–726 (2009).
Article Google Scholar
11.
Fattorini, S., Fiasca, B., Di Lorenzo, T., Di Cicco, M. & Galassi, D. M. P. A new protocol for assessing the conservation priority of groundwater dependent ecosystems. Aquat. Conserv. 30, 1483–1504 (2020).
Article Google Scholar
12.
Pipan, T., Culver, D. C., Papi, F. & Kozel, P. Partitioning diversity in subterranean invertebrates: the epikarst fauna of Slovenia. PLoS ONE 13, e0195991 (2018).
Article CAS Google Scholar
13.
Iannella, M. et al. Jumping into the grids: mapping biodiversity hotspots in groundwater habitat types across Europe. Ecography 43, 1–17. https://doi.org/10.1111/ecog.05323 (2020).
Article Google Scholar
14.
Cantonati, M. et al. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: consequences for biodiversity conservation. Water 12, 260 (2020).
Article Google Scholar
15.
Galassi, D. M. P., Huys, R. & Reid, J. W. Diversity, ecology and evolution of groundwater copepods. Freshw. Biol. 54, 691–708 (2009).
Article Google Scholar
16.
Galassi, D. M. P. Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453, 227–253 (2001).
Article Google Scholar
17.
Fiasca, B. et al. The dark side of springs: what drives small-scale spatial patterns of subsurface meiofaunal assemblages. J. Limnol. 73, 71–80 (2014).
Article Google Scholar
18.
Galassi, D. M. P. et al. Earthquakes trigger the loss of groundwater biodiversity. Sci. Rep. 4, 6273 (2014).
CAS Article Google Scholar
19.
Fattorini, S., Di Lorenzo, T. & Galassi, D. M. P. Earthquake impacts on microcrustacean communities inhabiting groundwater-fed springs alter species-abundance distribution patterns. Sci. Rep. 8, 1501 (2018).
ADS Article CAS Google Scholar
20.
Boxshall, G. A., Kihara, T. C. & Huys, R. Collecting and processing non-planktonic copepods. J. Crustacean Biol. 36, 576–583 (2016).
Article Google Scholar
21.
Korbel, K. L., Stephenson, S. & Hose, G. C. Sediment size influences habitat selection and use by groundwater macrofauna and meiofauna. Aquat. Sci. 81, 39 (2019).
Article CAS Google Scholar
22.
Giere, O. Meiobenthology: The Microscopic motile Fauna of Aquatic Sediments 2nd edn. (Springer, Berlin, 2009).
Google Scholar
23.
Galassi, D. M. P. et al. Groundwater biodiversity in a chemoautotrophic cave ecosystem: how geochemistry regulates microcrustacean community structure. Aquat. Ecol. 51, 75–90 (2017).
CAS Article Google Scholar
24.
Lamoreux, J. Stygobites are more wide-ranging than troglobites. J. Cave Karst. Stud. 66, 18–19 (2004).
Google Scholar
25.
Kubisch, A., Holt, R. D., Poethke, H. J. & Fronhofer, E. A. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123, 5–22 (2014).
Article Google Scholar
26.
Strayer, D. L., Power, M. E., Fagan, W. F., Pickett, S. T. & Belnap, J. A classification of ecological boundaries. Bioscience 53, 723–729 (2003).
Article Google Scholar
27.
Mazzucco, R., Doebeli, M. & Dieckmann, U. The influence of habitat boundaries on evolutionary branching along environmental gradients. Evol. Ecol. 32, 563–585 (2018).
Article Google Scholar
28.
Potts, J. R., Hillen, T. & Lewis, M. A. The, “edge effect” phenomenon: deriving population abundance patterns from individual animal movement decisions. Theor. Ecol. 9, 233–247 (2016).
Article Google Scholar
29.
Ries, L., Fletcher, R. J. Jr., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522 (2004).
Article Google Scholar
30.
Cornu, J.-F., Eme, D. & Malard, F. The distribution of groundwater habitats in Europe. Hydrogeol. J. 21, 949–960 (2013).
ADS Article Google Scholar
31.
Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 6783 (2000).
Article Google Scholar
32.
Eme, D. et al. Multi-causality and spatial non-stationarity in the determinants of groundwater crustacean diversity in Europe. Ecography 38, 531–540 (2015).
Article Google Scholar
33.
Brunetti, M., Magoga, G., Iannella, M., Biondi, M. & Montagna, M. Phylogeography and species distribution modelling of Cryptocephalus barii (Coleoptera: Chrysomelidae): is this alpine endemic species close to extinction?. ZooKeys 856, 3 (2019).
Article Google Scholar
34.
Iannella, M., Liberatore, L. & Biondi, M. The effects of a sudden urbanization on micromammal communities: a case study of post-earthquake L’Aquila (Abruzzi Region, Italy). Ital. J. Zool. 83, 255–262 (2016).
Article Google Scholar
35.
Shen, X. et al. Effectiveness of management zoning designed for flagship species in protecting sympatric species. Conserv. Biol. 34, 158–167 (2020).
Article Google Scholar
36.
Zagmajster, M. et al. Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145 (2014).
Article Google Scholar
37.
Stoch, F. & Galassi, D. M. P. Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653, 217–234 (2010).
CAS Article Google Scholar
38.
Stein, H. et al. Stygoregions—a promising approach to a bioregional classification of groundwater systems. Sci. Rep. 2, 673 (2012).
Article CAS Google Scholar
39.
Council of the European Communities. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. O. J. L. 206, 7–50 (1992).
40.
Galassi, D. M. P., Stoch, F., Fiasca, B., Di Lorenzo, T. & Gattone, E. Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshw. Biol. 54, 830–847 (2009).
CAS Article Google Scholar
41.
Rouch, R. Sur la répartition spatiale des Crustacés dans le sous-écoulement d’un ruisseau des Pyrénées. Ann. Limnol. 24, 213–234 (1988).
Article Google Scholar
42.
Gibert, J., Malard, F., Turquin, M. J. & Laurent, R. Karst Ecosystems in the Rhône River Basin. In Subterranean Ecosystems. Ecosystems of the World (eds Wilkens, H. et al.) 533–558 (Elsevier, Amsterdam, 2000).
Google Scholar
43.
Boulton, A. J. Conservation of groundwaters and their dependent ecosystems: Integrating molecular taxonomy, systematic reserve planning and cultural values. Aquat. Conserv. 30, 1–7 (2020).
Article Google Scholar
44.
Smith, T. B., Kark, S., Schneider, C. J., Wayne, R. K. & Moritz, C. Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends Ecol. Evol. 16, 431 (2001).
Article Google Scholar
45.
Álvarez-Martínez, J. M. et al. Modelling the area of occupancy of habitat types with remote sensing. Methods Ecol. Evol. 9, 580–593 (2018).
Article Google Scholar
46.
Armstrong, D. P. Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conserv. Biol. 19, 1402–1410 (2005).
Article Google Scholar
47.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
ADS CAS Article Google Scholar
48.
Malard, F. et al. Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw. Biol. 54, 756–776 (2009).
Article Google Scholar
49.
Stoch, F. et al. Exploring copepod distribution patterns at three nested spatial scales in a spring system: Habitat partitioning and potential for hydrological bioindication. J. Limnol. 75, 1–13 (2016).
Google Scholar
50.
Di Lorenzo, T., Cipriani, D., Fiasca, B., Rusi, S. & Galassi, D. M. P. Groundwater drift monitoring as a tool to assess the spatial distribution of groundwater species into karst aquifers. Hydrobiologia 813, 137–156 (2018).
Article CAS Google Scholar
51.
Illies, J. Limnofauna Europaea (Fischer, Stuttgart, 1978).
Google Scholar
52.
Botosaneanu, L. Stygofauna Mundi (Brill, Leiden, 1986).
Google Scholar
53.
Knight, L. Hypogean Crustacea Recording Scheme. (Accessed 1 October 2020); https://hcrs.freshwaterlife.org (2012).
54.
Ruffo, S. & Stoch, F. Checklist e distribuzione della fauna italiana. (2005).
55.
ESRI. ArcMap 10.0. ESRI, Redlands, California (2010).
56.
Wang, Y. et al. Comparing the performance of approaches for testing the homogeneity of variance assumption in one-factor ANOVA models. Educ. Psychol. Meas. 77, 305–329 (2017).
Article Google Scholar
57.
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
MathSciNet MATH Google Scholar More
