Comparison of soil microbial community between reseeding grassland and natural grassland in Songnen Meadow
1.
Zhang, Y. et al. Variation of soil microbial community along elevation in the Shennongjia Mountain. For. Sci. 50, 161–166 (2014).
ADS CAS Google Scholar
2.
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
ADS CAS PubMed Article Google Scholar
3.
Mariotte, P. et al. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–136 (2018).
PubMed Article Google Scholar
4.
Mommer, L. et al. Lost in diversity: The interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. 218, 542–553 (2018).
PubMed PubMed Central Article Google Scholar
5.
Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).
ADS CAS Article Google Scholar
6.
Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar
7.
Tripathi, B. M. et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 12, 1072–1083 (2018).
CAS PubMed PubMed Central Article Google Scholar
8.
Zhang, Y. G. et al. Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. Sci. Rep. 6, 28–39 (2016).
ADS Article CAS Google Scholar
9.
Yang, Y. F. et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J. 8, 430–440 (2014).
CAS PubMed Article Google Scholar
10.
Zhang, Y. G. et al. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microb. Biotechnol. 8, 739–746 (2015).
PubMed PubMed Central Article Google Scholar
11.
Shen, C. C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).
CAS Article Google Scholar
12.
Zhang, Y. G. et al. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow. Mol. Ecol. 26, 3676–3686 (2017).
CAS PubMed Article Google Scholar
13.
Davidson, E. A., Janssens, I. A. & Luo, Y. Q. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).
ADS Article Google Scholar
14.
Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
ADS CAS PubMed Article Google Scholar
15.
Zhang, Q. et al. Effects of clipping frequency on the relationships between species diversity and productivity in temperate steppe. Int. J. Agric. Biol. 20, 2325–2328 (2018).
Google Scholar
16.
Guo, Z. G., Cheng, G. D. & Wang, G. X. Plant Diversity of Alpine Kobresia Meadow in the Northern Region of the Tibetan Plateau. J. Glaciol. Geocryol. 26, 95–100 (2004).
Google Scholar
17.
Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).
ADS CAS Article Google Scholar
18.
Yang, Y., Dou, Y. & An, S. Testing association between soil bacterial diversity and soil carbon storage on the loess plateau. Sci. Total Environ. 626, 48–58 (2018).
ADS CAS PubMed Article Google Scholar
19.
Yang, Y., Cheng, H., Liu, L. X., Dou, Y. X. & An, S. S. Comparison of soil microbial community between planted woodland and natural grass vegetation on the Loess Plateau. For. Ecol. Manage. 460, 117–128 (2020).
Article Google Scholar
20.
Tong, X. W. et al. Rasmus Fensholt. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).
Article Google Scholar
21.
Liu, Y. et al. Temporal and spatial succession and dynamics of soil fungal communities in restored grassland on the Loess Plateau in China. Land Degrad. Dev. 30, 1273–1287 (2019).
Article Google Scholar
22.
Bardgett, R. D. et al. Below-ground microbial community development in a high temperature world. Oikos 85, 193–203 (1999).
Article Google Scholar
23.
Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in us top soils in a century. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1719685115 (2018).
Article PubMed Google Scholar
24.
Chen, J. S., Zhu, R. F. & Zhang, Y. X. The effect of nitrogen addition on seed yield and yield components of Leymus chinensis. J. Soil Sci. Plant Nutr. 13, 329–339 (2013).
Google Scholar
25.
Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).
ADS CAS PubMed Article Google Scholar
26.
Lal, R. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Change Biol. 24, 3285–3301 (2018).
ADS Article Google Scholar
27.
Gao, Q. Z. et al. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quatern. Int. 226, 143–150 (2010).
Article Google Scholar
28.
Li, N. et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau. Acta Ecol. Sin. 31, 0895–0905 (2011).
CAS Google Scholar
29.
Gao, Y. H. et al. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 444, 356–362 (2013).
ADS CAS PubMed Article Google Scholar
30.
Chen, J. S. et al. Effects of clipping and fertilizing n on the relationship between diversity and productivity of Leymus Chinensis Meadow. Acta Agrestia Sin. 24, 910–914 (2016).
Google Scholar
31.
Peng, F. et al. Intensified plant N and C pool with more available nitrogen under experimental warming in an alpine meadow ecosystem. Ecol. Evol. 6, 8546–8555 (2016).
PubMed PubMed Central Article Google Scholar
32.
Li, L. et al. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau. Sci. Rep. 6, 31–38 (2016).
Google Scholar
33.
Niu, S. Q. et al. Microbial diversity in saline alkali soil from Hexi Corridor analyzed by Illumina MiSeq high-throughput sequencing system. Microbiology China 9, 66–72 (2017).
Google Scholar
34.
Chaffron, S. et al. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).
CAS PubMed PubMed Central Article Google Scholar
35.
Steele, J. A. et al. Marine bacterial, archaeal and protest an association networks reveal ecological linkages. ISME J. 5, 1414–1425 (2011).
PubMed PubMed Central Article Google Scholar
36.
Kreimer, A. et al. NetCmpt: a network-based tool for calculating the metabolic competition between bacterial species. Bioinformatics 28, 2195–2197 (2012).
CAS PubMed Article Google Scholar
37.
O’Brien, J. D. et al. A Bayesian approach to inferring the phylogenetic structure of communities from metagenomic data. Genetics 197, 925–937 (2014).
PubMed PubMed Central Article Google Scholar
38.
Deng, Y. et al. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Glob. Change Biol. 22, 957–964 (2016).
ADS Article Google Scholar
39.
Zhou, J. Z. et al. Functional molecular ecological networks. mBio 1, e00169-10 (2010).
PubMed PubMed Central Article CAS Google Scholar
40.
Zhou, J. Z. et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2, e00122-e211 (2011).
PubMed PubMed Central Article Google Scholar
41.
Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).
PubMed PubMed Central Article Google Scholar
42.
Wang, J. F. & Wu, Q. B. Influences of the vegetaion degradation on the shallow cryic soil environment in the wet meadow areas on the Qinghai-Tibetan plateau. J. Lanzhou Univ. 47, 39–45 (2011).
Google Scholar
43.
Wang, Y. et al. Artificial reforestation produces less diverse soil nitrogen-cycling genes than natural restoration. Ecosphere 10, e02562 (2019).
Google Scholar
44.
Bao, S. D. Soil and Agricultural Chemical Analysis (China Agriculture Press, Beijing, 2000).
Google Scholar
45.
Zhou, J. Z., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).
CAS PubMed PubMed Central Article Google Scholar
46.
Shen, C. C. et al. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain. Front. Microbiol. 7, 1184 (2016).
PubMed PubMed Central Google Scholar
47.
Chen, W., Koide, R. T. & Eissenstat, D. M. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes. Funct. Ecol. 32, 858–869 (2018).
Article Google Scholar
48.
Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Glob. Change 8, 813–818 (2018).
ADS Article Google Scholar
49.
Jiao, S., Xu, Y., Zhang, J. & Lu, Y. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Microbiome 6, 146–156 (2018).
PubMed PubMed Central Article Google Scholar
50.
Brabcová, V., Štursová, M. & Baldrian, P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 118, 187–198 (2018).
Article CAS Google Scholar
51.
He, J. Z. & Ge, Y. Recent advances in soil microbial biogeography. Acta Ecol. Sin. 28, 5571–5582 (2008).
CAS Google Scholar
52.
Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).
ADS CAS PubMed Article Google Scholar
53.
McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).
ADS CAS Article Google Scholar
54.
Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).
ADS Article Google Scholar
55.
Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).
ADS CAS PubMed Article Google Scholar
56.
Sun, X., Gao, Y. & Yang, Y. F. Recent advancement in environmental research with metagenomics tools. Biodivers. Sci. 21, 393–400 (2013).
CAS Google Scholar
57.
Barabási, A. L. & Oltvai, Z. N. Network biology: understan Mommer the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).
PubMed Article CAS Google Scholar
58.
Ding, J. J. et al. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Sci. Rep. 5, 7994 (2015).
CAS PubMed PubMed Central Article Google Scholar
59.
Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 55–61 (2018).
Article Google Scholar
60.
Xiong, J. B. et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ. Microbiol. 14, 2457–2466 (2012).
CAS PubMed PubMed Central Article Google Scholar More