More stories

  • in

    Divalent heavy metals and uranyl cations incorporated in calcite change its dissolution process

    1.
    Chang, L. L. Y. Carbonates. In Non-silicates: Sulphates, carbonates, phosphates, halides 5B, 95–288 (The Geological Society, New York, 1998).
    2.
    Hazen, R. M., Downs, R. T., Jones, A. P. & Kah, L. Carbon mineralogy and crystal chemistry. Rev. Miner. Geochem. 75, 7–46 (2013).
    CAS  Article  Google Scholar 

    3.
    Martin, J. B. Carbonate minerals in the global carbon cycle. Chem. Geol. 449, 58–72 (2017).
    ADS  CAS  Article  Google Scholar 

    4.
    Curti, E. Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl. Geochem. 14, 433–445 (1999).
    CAS  Article  Google Scholar 

    5.
    Stipp, S. L. S., Christensen, J. T., Lakshtanov, L. Z., Baker, J. A. & Waight, T. E. Rare earth element (REE) incorporation in natural calcite: upper limits for actinide uptake in a secondary phase. Radiochim. Acta 94, 523–528 (2006).
    CAS  Article  Google Scholar 

    6.
    Olsson, J., Stipp, S. L. S., Makovicky, E. & Gislason, S. R. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano: a carbon capture and storage analogue. Chem. Geol. 384, 135–148 (2014).
    ADS  CAS  Article  Google Scholar 

    7.
    Drake, H. et al. Incorporation of metals into calcite in a deep anoxic granite aquifer. Environ. Sci. Technol. 52, 493–502 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Chi, J., Zhang, W., Wang, L. & Putnis, C. V. Direct observations of the occlusion of soil organic matter within calcite. Environ. Sci. Technol. 53, 8097–8104 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Ware, J. R., Smith, S. V. & Reaka-Kudla, M. L. Coral reefs: sources or sinks of atmospheric CO2?. Coral Reefs 11, 127–130 (1992).
    ADS  Article  Google Scholar 

    10.
    Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci. USA 105, 17295–17300 (2008).
    ADS  CAS  Article  Google Scholar 

    11.
    Kunhikrishnan, A. et al. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 139, 1–71 (2016).
    Article  Google Scholar 

    12.
    Holland, J. E. et al. Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ. 610–611, 316–332 (2018).
    ADS  PubMed  Article  CAS  Google Scholar 

    13.
    McBride, M. B. Reactions controlling heavy metal solubility in soils. Advances in Soil Science 10th edn. (Springer, New York, 1989).
    Google Scholar 

    14.
    Lee, S. H., Lee, J. S., Jeong Choi, Y. & Kim, J. G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77, 1069–1075 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Phillips, A. J. et al. Engineered applications of ureolytic biomineralization: a review. Biofouling 29, 715–733 (2013).
    CAS  PubMed  Article  Google Scholar 

    16.
    Kumari, D. et al. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv. Appl. Microbiol. 94, 79–108 (2016).
    CAS  PubMed  Article  Google Scholar 

    17.
    Gat, D., Ronen, Z. & Tsesarsky, M. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere 184, 524–531 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Guo, J. H. et al. Significant acidification in major chinese croplands. Science 327, 1008–1010 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Rice, K. C. & Herman, J. S. Acidification of earth: an assessment across mechanisms and scales. Appl. Geochem. 27, 1–14 (2012).
    CAS  Article  Google Scholar 

    20.
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
    PubMed  Article  Google Scholar 

    21.
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Sulpis, O. et al. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc. Natl. Acad. Sci. USA. 115, 11700–11705 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    25.
    Kopáček, J. et al. Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environ. Sci. Technol. 51, 159–166 (2017).
    ADS  PubMed  Article  CAS  Google Scholar 

    26.
    Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).
    CAS  Article  Google Scholar 

    27.
    Kirsch, K., Navarre-Sitchler, A. K., Wunsch, A. & McCray, J. E. Metal release from sandstones under experimentally and numerically simulated CO2 leakage conditions. Environ. Sci. Technol. 48, 1436–1442 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Wunsch, A., Navarre-Sitchler, A. K., Moore, J. & McCray, J. E. Metal release from limestones at high partial-pressures of CO2. Chem. Geol. 363, 40–55 (2014).
    ADS  CAS  Article  Google Scholar 

    29.
    Palmer, M. R. & Edmond, J. M. Uranium in river water. Geochim. Cosmochim. Acta 57, 4947–4955 (1993).
    ADS  CAS  Article  Google Scholar 

    30.
    Edmond, J. M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258, 1594–1597 (1992).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Quezada-Hinojosa, R. P., Matera, V., Adatte, T., Rambeau, C. & Föllmi, K. B. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma 150, 287–301 (2009).
    ADS  CAS  Article  Google Scholar 

    32.
    Rambeau, C. M. C. et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France. Environ. Earth Sci. 61, 1573–1585 (2010).
    CAS  Article  Google Scholar 

    33.
    Wen, Y., Li, W., Yang, Z., Zhang, Q. & Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 245, 125620 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Qu, S., Wu, W., Nel, W. & Ji, J. The behavior of metals/metalloids during natural weathering: a systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China. Sci. Total Environ. 708, 134572 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Xia, X. et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock. Chemosphere 254, 126799 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Morse, J. W. The kinetics of calcium carbonate dissolution and precipitation in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 191–225 (1983).
    Google Scholar 

    37.
    Morse, J. W. & Arvidson, R. S. The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58, 51–84 (2002).
    ADS  CAS  Article  Google Scholar 

    38.
    Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).
    CAS  PubMed  Article  Google Scholar 

    39.
    Arvidson, R. S. et al. Magnesium inhibition of calcite dissolution kinetics. Geochim. Cosmochim. Acta 70, 583–594 (2006).
    ADS  CAS  Article  Google Scholar 

    40.
    Harstad, A. O. & Stipp, S. L. S. Calcite dissolution: Effects of trace cations naturally present in Iceland spar calcites. Geochim. Cosmochim. Acta 71, 56–70 (2007).
    ADS  CAS  Article  Google Scholar 

    41.
    Mackenzie, F. T. et al. Magnesian calcites: low-temperature occurrence, solubility and solid-solution behavior in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 97–144 (1983).
    Google Scholar 

    42.
    Bischoff, W. D., Mackenzie, F. T. & Bishop, F. C. Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim. Cosmochim. Acta 51, 1413–1423 (1987).
    ADS  CAS  Article  Google Scholar 

    43.
    Busenberg, E. & Niel Plummer, L. Thermodynamics of magnesian calcite solid-solutions at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta 53, 1189–1208 (1989).
    ADS  CAS  Article  Google Scholar 

    44.
    Davis, K. J., Dove, P. M. & De Yoreo, J. J. The role of Mg2+ as an impurity in calcite growth. Science 290, 1134–1137 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Zhang, X., Wu, S. & Chen, F. Nano precipitates formed during the dissolution of calcite incorporated with Cu and Mn. Minerals 8, 484 (2018).
    CAS  Article  Google Scholar 

    46.
    Haese, R. R., Smith, J., Weber, R. & Trafford, J. High-magnesium calcite dissolution in tropical continental shelf sediments controlled by ocean acidification. Environ. Sci. Technol. 48, 8522–8528 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Rauls, M. et al. Influence of impurities on crystallization kinetics – a case study on ammonium sulfate. J. Cryst. Growth 213, 116–128 (2000).
    ADS  CAS  Article  Google Scholar 

    48.
    Latta, D. E., Pearce, C. I., Rosso, K. M., Kemner, K. M. & Boyanov, M. I. Reaction of UVI with titanium-substituted magnetite: influence of Ti on UIV speciation. Environ. Sci. Technol. 47, 4121–4130 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    World Data Centre for Greenhouse Gases (WDCGG). https://gaw.kishou.go.jp.

    50.
    RRUFFa. https://rruff.info/repository/sample_child_record_powder/by_minerals/Smithsonite__R040035-1__Powder__DIF_File__3114.txt.

    51.
    RRUFFb. https://rruff.info/repository/sample_child_record_powder/by_minerals/Aragonite__R080142-9__Powder__DIF_File__11841.txt.

    52.
    RRUFFc. https://rruff.info/repository/sample_child_record_powder/by_minerals/Calcite__R050130-1__Powder__DIF_File__4388.txt.

    53.
    Reeder, R. J. Crystal chemistry of the rhombohedral carbonates in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 1–47 (1983).
    CAS  Google Scholar 

    54.
    Chang, L. L. Y. & Brice, W. R. Subsolidus phase relations in the system calcium carbonate-cadmium carbonate. Am. Miner. 56, 338–341 (1971).
    Google Scholar 

    55.
    Lorens, R. B. Sr. Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 45, 553–561 (1981).
    ADS  CAS  Article  Google Scholar 

    56.
    Stipp, S. L., Hochella, M. F., Parks, G. A. & Leckie, J. O. Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: Interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES). Geochim. Cosmochim. Acta 56, 1941–1954 (1992).
    ADS  CAS  Article  Google Scholar 

    57.
    Reeder, R. J. Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim. Cosmochim. Acta 60, 1543–1552 (1996).
    ADS  CAS  Article  Google Scholar 

    58.
    Tesoriero, A. J. & Pankow, J. F. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim. Cosmochim. Acta 60, 1053–1063 (1996).
    ADS  CAS  Article  Google Scholar 

    59.
    Prieto, M., Cubillas, P. & Fernández-Gonzalez, Á. Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochim. Cosmochim. Acta 67, 3859–3869 (2003).
    ADS  CAS  Article  Google Scholar 

    60.
    Horner, T. J., Rickaby, R. E. M. & Henderson, G. M. Isotopic fractionation of cadmium into calcite. Earth Planet. Sci. Lett. 312, 243–253 (2011).
    ADS  CAS  Article  Google Scholar 

    61.
    Moureaux, C. et al. Effects of field contamination by metals (Cd, Cu, Pb, Zn) on biometry and mechanics of echinoderm ossicles. Aquat. Toxicol. 105, 698–707 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Xu, M. et al. Heterogeneous growth of cadmium and cobalt carbonate phases at the (1014) calcite surface. Chem. Geol. 397, 24–36 (2015).
    ADS  CAS  Article  Google Scholar 

    63.
    Lamble, G. M., Reeder, R. J. & Northrup, P. A. Characterization of heavy metal incorporation in calcite by XAFS spectroscopy. J. Phys. IV 7, 793–797 (1997).
    CAS  Google Scholar 

    64.
    Reeder, R. J., Lamble, G. M. & Northrup, P. A. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+ and Ba2+ trace elements in calcite. Am. Miner. 84, 1049–1060 (1999).
    ADS  CAS  Article  Google Scholar 

    65.
    Cheng, L., Sturchio, N. C. & Bedzyk, M. J. Local structure of incorporated at the calcite surface: an X-ray standing wave and SEXAFS study. Phys. Rev. B Condens. Matter Mater. Phys. 61, 4877–4883 (2000).
    ADS  CAS  Article  Google Scholar 

    66.
    Katsikopoulos, D., Fernández-González, Á, Prieto, A. C. & Prieto, M. Co-crystallization of Co(II) with calcite: implications for the mobility of cobalt in aqueous environments. Chem. Geol. 254, 87–100 (2008).
    ADS  CAS  Article  Google Scholar 

    67.
    González-López, J. et al. Cobalt incorporation in calcite: thermochemistry of (Ca, Co)CO3 solid solutions from density functional theory simulations. Geochim. Cosmochim. Acta 142, 205–216 (2014).
    ADS  Article  CAS  Google Scholar 

    68.
    González-López, J., Fernández-González, Á & Jiménez, A. Precipitation behaviour in the system Ca2+-Co2+-CO32+-H2O at ambient conditions: amorphous phases and CaCO3 polymorphs. Chem. Geol. 482, 91–100 (2018).
    ADS  Article  CAS  Google Scholar 

    69.
    De Giudici, G. et al. Coordination environment of Zn in foraminifera Elphidium aculeatum and Quinqueloculina seminula shells from a polluted site. Chem. Geol. 477, 100–111 (2018).  
    ADS  Article  CAS  Google Scholar 

    70.
    Cheng, L. et al. High-resolution structural study of zinc ion incorporation at the calcite cleavage surface. Surf. Sci. 415, 976–982 (1998).
    Article  Google Scholar 

    71.
    Elzinga, E. & Reeder, R. X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: implications for site-specific metal incorporation preferences during calcite crystal growth. Geochim. Cosmochim. Acta 66, 3943–3954 (2002).  
    ADS  CAS  Article  Google Scholar 

    72.
    Elzinga, E. J., Rouff, A. A. & Reeder, R. J. The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: an X-ray absorption spectroscopy study. Geochim. Cosmochim. Acta 70, 2715–2725 (2006).  
    ADS  CAS  Article  Google Scholar 

    73.
    Menadakis, M., Maroulis, G. & Koutsoukos, P. G. A quantum chemical study of doped CaCO3 (calcite). Comput. Mater. Sci. 38, 522–525 (2007).  
    CAS  Article  Google Scholar 

    74.
    Liu, X., Lu, X., Liu, X. & Zhou, H. Atomistic simulation on mixing thermodynamics of calcite-smithsonite solid solutions. Am. Miner. 100, 172–180 (2015).
    ADS  Article  Google Scholar 

    75.
    van Dijk, I., de Nooijer, L. J., Wolthers, M. & Reichart, G. J. Impacts of pH and [CO32−] on the incorporation of Zn in foraminiferal calcite. Geochim. Cosmochim. Acta 197, 263–277 (2017).
    ADS  Article  CAS  Google Scholar 

    76.
    Hoffmann, U. & Stipp, S. L. S. The behavior of Ni2+ on calcite surfaces. Geochim. Cosmochim. Acta 65, 4131–4139 (2001).
    ADS  CAS  Article  Google Scholar 

    77.
    Lakshtanov, L. Z. & Stipp, S. L. S. Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71, 3686–3697 (2007).  
    ADS  CAS  Article  Google Scholar 

    78.
    Munsel, D. et al. Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida. Biogeosciences 7, 2339–2350 (2010).
    ADS  CAS  Article  Google Scholar 

    79.
    Andersson, M. P., Sakuma, H. & Stipp, S. L. S. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory. Langmuir 30, 6129–6133 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D. & Morris, D. E. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ. Sci. Technol. 34, 638–644 (2000).
    ADS  CAS  Article  Google Scholar 

    81.
    Reeder, R. J. et al. Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta 65, 3491–3503 (2001).  
    ADS  CAS  Article  Google Scholar 

    82.
    Chen, X., Romaniello, S. J., Herrmann, A. D., Wasylenki, L. E. & Anbar, A. D. Uranium isotope fractionation during coprecipitation with aragonite and calcite. Geochim. Cosmochim. Acta 188, 189–207 (2016).
    ADS  CAS  Article  Google Scholar 

    83.
    Niu, Z. et al. Spectroscopic studies on U(VI) incorporation into CaCO3: effects of aging time and U(VI) concentration. Chemosphere 220, 1100–1107 (2019).
    ADS  CAS  Article  Google Scholar 

    84.
    Kelly, S. D. et al. Uranyl incorporation in natural calcite. Environ. Sci. Technol. 37, 1284–1287 (2003).
    ADS  CAS  Article  Google Scholar 

    85.
    Reeder, R. J. et al. Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochim. Cosmochim. Acta 68, 4799–4808 (2004).
    ADS  CAS  Article  Google Scholar 

    86.
    Wang, Z., Zachara, J. M., Mckinley, J. P. & Smith, S. C. Cryogenic laser induced U(VI) fluorescence studies of a U(VI) substituted natural calcite: implications to U(VI) speciation in contaminated hanford sediments. Environ. Sci. Technol. 39, 2651–2659 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    87.
    Kelly, S. D., Rasbury, E. T., Chattopadhyay, S., Kropf, A. J. & Kemner, K. M. Evidence of a stable uranyl site in ancient organic-rich calcite. Environ. Sci. Technol. 40, 2262–2268 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    88.
    Arai, Y., Marcus, M. A., Tamura, N., Davis, J. A. & Zachara, J. M. Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ. Sci. Technol. 41, 4633–4639 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    89.
    Keul, N. et al. Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochem. Geophys. Geosyst. 14, 102–111 (2013).
    ADS  CAS  Article  Google Scholar 

    90.
    Balboni, E., Morrison, J. M., Wang, Z., Engelhard, M. H. & Burns, P. C. Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution. Geochim. Cosmochim. Acta 151, 133–149 (2015).
    ADS  CAS  Article  Google Scholar 

    91.
    Smith, K. F. et al. U(VI) behaviour in hyperalkaline calcite systems. Geochim. Cosmochim. Acta 148, 343–359 (2015).
    ADS  CAS  Article  Google Scholar 

    92.
    Walker, S. M. & Becker, U. Uranyl(VI) and neptunyl(V) incorporation in carbonate and sulfate minerals: insight from first-principles. Geochim. Cosmochim. Acta 161, 19–35 (2015).
    ADS  CAS  Article  Google Scholar 

    93.
    Lee, Y. J., Reeder, R. J., Wenskus, R. W. & Elzinga, E. J. Structural relaxation in the MnCO3–CaCO3 solid solution: a Mn K-edge EXAFS study. Phys. Chem. Miner. 29, 585–594 (2002).
    ADS  CAS  Article  Google Scholar 

    94.
    Rouff, A. A., Elzinga, E. J., Reeder, R. J. & Fisher, N. S. X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-Sphere adsorption complexes and precipitates at the calcite−water interface. Environ. Sci. Technol. 38, 1700–1707 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    95.
    Kerisit, S. N. & Prange, M. P. Ab initio molecular dynamics simulation of divalent metal cation incorporation in calcite: implications for interpreting X-ray absorption spectroscopy data. ACS Earth Spectr. Chem. 3, 2582 (2019).
    CAS  Article  Google Scholar 

    96.
    Elzinga, E. J. et al. EXAFS study of rare-earth element coordination in calcite. Geochim. Cosmochim. Acta 66, 2875–2885 (2002).
    ADS  CAS  Article  Google Scholar 

    97.
    Heberling, F., Denecke, M. A. & Bosbach, D. Neptunium(V) coprecipitation with calcite. Environ. Sci. Technol. 42, 471–476 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    98.
    Sturchio, N. C., Antonio, M. R., Soderholm, L., Sutton, S. R. & Brannon, J. C. Tetravalent uranium in calcite. Science 281, 971–973 (1998).
    ADS  CAS  PubMed  Article  Google Scholar 

    99.
    Stumpf, T., Marques Fernandes, M., Walther, C., Dardenne, K. & Fanghänel, T. Structural characterization of Am incorporated into calcite: A TRLFS and EXAFS study. J. Colloid Interface Sci. 302, 240–245 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    100.
    Podder, J. et al. Iodate in calcite and vaterite: insights from synchrotron X-ray absorption spectroscopy and first-principles calculations. Geochim. Cosmochim. Acta 198, 218–228 (2017).
    ADS  CAS  Article  Google Scholar 

    101.
    Saslow, S. A. et al. Chromate effect on iodate incorporation into calcite. ACS Earth Spectr. Chem. 3, 1624–1630 (2019).
    CAS  Article  Google Scholar 

    102.
    Tang, Y., Elzinga, E. J., Jae Lee, Y. & Reeder, R. J. Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 71, 1480–1493 (2007).
    ADS  CAS  Article  Google Scholar 

    103.
    Aurelio, G. et al. Structural study of selenium(IV) substitutions in calcite. Chem. Geol. 270, 249–256 (2010).
    ADS  CAS  Article  Google Scholar 

    104.
    Bardelli, F. et al. Arsenic uptake by natural calcite: an XAS study. Geochim. Cosmochim. Acta 75, 3011–3023 (2011).
    ADS  CAS  Article  Google Scholar 

    105.
    Alexandratos, V. G., Elzinga, E. J. & Reeder, R. J. Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim. Cosmochim. Acta 71, 4172–4187 (2007).
    ADS  CAS  Article  Google Scholar 

    106.
    Füger, A., Konrad, F., Leis, A., Dietzel, M. & Mavromatis, V. Effect of growth rate and pH on lithium incorporation in calcite. Geochim. Cosmochim. Acta 248, 14–24 (2019).
    ADS  Article  CAS  Google Scholar 

    107.
    vander Putten, E., Dehairs, F., Keppens, E. & Baeyens, W. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim. Cosmochim. Acta 64, 997–1011 (2000).
    ADS  CAS  Article  Google Scholar 

    108.
    Vielzeuf, D. et al. Distribution of sulphur and magnesium in the red coral. Chem. Geol. 355, 13–27 (2013).
    ADS  CAS  Article  Google Scholar 

    109.
    Trong Nguyen, L. et al. Distribution of trace element in Japanese red coral Paracorallium japonicum by μ-XRF and sulfur speciation by XANES: linkage between trace element distribution and growth ring formation. Geochim. Cosmochim. Acta 127, 1–9 (2014).
    ADS  CAS  Article  Google Scholar 

    110.
    Tanaka, K. et al. Microscale magnesium distribution in shell of the Mediterranean mussel Mytilus galloprovincialis: an example of multiple factors controlling Mg/Ca in biogenic calcite. Chem. Geol. 511, 521–532 (2019).
    ADS  CAS  Article  Google Scholar 

    111.
    Drake, H., Tullborg, E. L., Hogmalm, K. J. & Åström, M. E. Trace metal distribution and isotope variations in low-temperature calcite and groundwater in granitoid fractures down to 1km depth. Geochim. Cosmochim. Acta 84, 217–238 (2012).
    ADS  CAS  Article  Google Scholar 

    112.
    Gabitov, R. I., Sadekov, A. & Migdisov, A. REE incorporation into calcite individual crystals as one time spike addition. Minerals 7, 1–11 (2017).
    CAS  Article  Google Scholar 

    113.
    Svensson, U. & Dreybrodt, W. Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibrium. Chem. Geol. 100, 129–145 (1992).
    ADS  CAS  Article  Google Scholar 

    114.
    Eisenlohr, L., Meteva, K., Gabrovšek, F. & Dreybrodt, W. The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O–CO2 solutions. Geochim. Cosmochim. Acta 63, 989–1001 (1999).
    ADS  CAS  Article  Google Scholar 

    115.
    Briese, L., Arvidson, R. S. & Luttge, A. The effect of crystal size variation on the rate of dissolution: a kinetic Monte Carlo study. Geochim. Cosmochim. Acta 212, 167–175 (2017).
    ADS  CAS  Article  Google Scholar 

    116.
    Noiriel, C., Oursin, M. & Daval, D. Examination of crystal dissolution in 3D: a way to reconcile dissolution rates in the laboratory? Geochim. Cosmochim. Acta 273, 1–25 (2020).
    ADS  CAS  Article  Google Scholar 

    117.
    Jacquat, O., Voegelin, A., Juillot, F. & Kretzschmar, R. Changes in Zn speciation during soil formation from Zn-rich limestones. Geochim. Cosmochim. Acta 73, 5554–5571 (2009).
    ADS  CAS  Article  Google Scholar 

    118.
    Wilson, M. J. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner. 39, 233–266 (2004).
    ADS  CAS  Article  Google Scholar 

    119.
    Velde, B. & Alain, M. The Origin of Clay Minerals in Soils and Weathered Rocks (Springer, New York, 2008).
    Google Scholar 

    120.
    Nesbitt, H. W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206–210 (1979).
    ADS  CAS  Article  Google Scholar 

    121.
    Li, M. Y. H., Zhou, M. F. & Williams-Jones, A. E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China. Econ. Geol. 114, 541–568 (2019).
    Article  Google Scholar 

    122.
    Li, M. Y. H. & Zhou, M. F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. Am. Miner. 105, 92–108 (2020).
    ADS  Article  Google Scholar 

    123.
    Savage, K. S., Tingle, T. N., O’Day, P. A., Waychunas, G. A. & Bird, D. K. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl. Geochem. 15, 1219–1244 (2000).
    CAS  Article  Google Scholar 

    124.
    Zhu, Y. et al. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2–9. Geochem. Trans. 17, 1–18 (2016).
    ADS  Article  CAS  Google Scholar 

    125.
    Godelitsas, A., Astilleros, J. M., Hallam, K., Harissopoulos, S. & Putnis, A. Interaction of calcium carbonates with lead in aqueous solutions. Environ. Sci. Technol. 37, 3351–3360 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    126.
    Schindler, M., Hawthorne, F. C., Putnis, C. & Putnis, A. Growth of uranyl-hydroxy-hydrate and uranyl-carbonate minerals on the (104) surface of calcite. Can. Mineral. 42, 1683–1697 (2004).
    CAS  Article  Google Scholar 

    127.
    Schindler, M. & Putnis, A. Crystal growth of schoepite on the (104) surface of calcite. Can. Mineral. 42, 1667–1681 (2004).
    CAS  Article  Google Scholar 

    128.
    Tang, H., Xian, H., He, H., Wei, J. & Liu, H. Science of the total environment kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions. Sci. Total Environ. 668, 602–616 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    129.
    Klasa, J. et al. An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions. Geochim. Cosmochim. Acta 117, 115–128 (2013).
    ADS  CAS  Article  Google Scholar 

    130.
    Renard, F., Røyne, A. & Putnis, C. V. Timescales of interface-coupled dissolution-precipitation reactions on carbonates. Geosci. Front. 10, 17–27 (2019).
    CAS  Article  Google Scholar 

    131.
    Yang, T., Huh, W., Jho, J. Y. & Kim, I. W. Effects of fluoride and polymeric additives on the dissolution of calcite and the subsequent formation of fluorite. Colloids Surf. A 451, 75–84 (2014).
    CAS  Article  Google Scholar 

    132.
    Yuan, K., Lee, S. S., De Andrade, V., Sturchio, N. C. & Fenter, P. Replacement of calcite (CaCO3) by cerussite (PbCO3). Environ. Sci. Technol. 50, 12984–12991 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    133.
    Pearce, M. A., Timms, N. E., Hough, R. M. & Cleverley, J. S. Reaction mechanism for the replacement of calcite by dolomite and siderite: implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralisation. Contrib. Miner. Pet. 166, 995–1009 (2013).
    ADS  CAS  Article  Google Scholar 

    134.
    Jonas, L., Müller, T., Dohmen, R., Baumgartner, L. & Putlitz, B. Transport-controlled hydrothermal replacement of calcite by Mg-carbonates. Geology 43, 779–783 (2015).
    ADS  CAS  Article  Google Scholar 

    135.
    Kondratiuk, P., Tredak, H., Ladd, A. J. C. & Szymczak, P. Synchronization of dissolution and precipitation fronts during infiltration-driven replacement in porous rocks. Geophys. Res. Lett. 42, 2244–2252 (2015).
    ADS  Article  Google Scholar 

    136.
    Takahashi, Y., Miyoshi, T., Yabuki, S., Inada, Y. & Shimizu, H. Observation of transformation of calcite to gypsum in mineral aerosols by Ca K-edge X-ray absorption near-edge structure (XANES). Atmos. Environ. 42, 6535–6541 (2008).
    ADS  CAS  Article  Google Scholar 

    137.
    Ruiz-Agudo, E. et al. Experimental study of the replacement of calcite by calcium sulphates. Geochim. Cosmochim. Acta 156, 75–93 (2015).
    ADS  CAS  Article  Google Scholar 

    138.
     Ruiz-Agudo, E., Álvarez-Lloret, P., Putnis, C. V., Rodriguez-Navarro, A. B. & Putnis, A. Influence of chemical and structural factors on the calcite-calcium oxalate transformation. CrystEngComm 15, 9968–9979 (2013).
    CAS  Article  Google Scholar 

    139.
    Pedrosa, E. T., Boeck, L., Putnis, C. V. & Putnis, A. The replacement of a carbonate rock by fluorite: kinetics and microstructure. Am. Miner. 102, 126–134 (2017).
    ADS  Article  Google Scholar 

    140.
    Glover, E. D. & Sippel, R. F. Experimental pseudomorphs: replacement of calcite by fluorite. Am. Miner. 47, 1156–1165 (1962).
    CAS  Google Scholar 

    141.
    Subhas, A. V. et al. Catalysis and chemical mechanisms of calcite dissolution in seawater. Proc. Natl. Acad. Sci. USA 114, 8175–8180 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    142.
    Renard, F., Putnis, C. V., Montes-Hernandez, G. & King, H. E. Siderite dissolution coupled to iron oxyhydroxide precipitation in the presence of arsenic revealed by nanoscale imaging. Chem. Geol. 449, 123–134 (2017).
    ADS  CAS  Article  Google Scholar 

    143.
    Marocchi, M., Bureau, H., Fiquet, G. & Guyot, F. In-situ monitoring of the formation of carbon compounds during the dissolution of iron(II) carbonate (siderite). Chem. Geol. 290, 145–155 (2011).
    ADS  CAS  Article  Google Scholar 

    144.
    Perdikouri, C., Piazolo, S., Kasioptas, A., Schmidt, B. C. & Putnis, A. Hydrothermal replacement of aragonite by calcite: interplay between replacement, fracturing and growth. Eur. J. Miner. 25, 123–136 (2013).
    CAS  Article  Google Scholar 

    145.
    Greer, H. F., Zhou, W. & Guo, L. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines. Miner. Pet. 109, 453–462 (2015).
    CAS  Article  Google Scholar 

    146.
    Hacker, B. R., Kirby, S. H. & Bohlen, S. R. Time and metamorphic petrology: calcite to aragonite experiments. Science 258, 110–112 (1992).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    147.
    Hacker, B. R., Rubie, D. C., Kirby, S. H. & Bohlen, S. R. The calcite → aragonite transformation in low-Mg marble: equilibrium relations, transformations mechanisms, and rates. J. Geophys. Res. Solid Earth 110, 1–16 (2005).
    Article  CAS  Google Scholar 

    148.
    Lin, S. J. & Huang, W. L. Polycrystalline calcite to aragonite transformation kinetics: experiments in synthetic systems. Contrib. Miner. Pet. 147, 604–614 (2004).
    ADS  CAS  Article  Google Scholar 

    149.
    Huang, Y. C. et al. Calcium-43 NMR studies of polymorphic transition of calcite to aragonite. J. Phys. Chem. B 116, 14295–14301 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    150.
    Monger, H. C., Daugherty, L. A. & Lindemann, W. C. Microbial precipitation of pedogenic calcite. Geology 19, 997–1000 (1991).
    ADS  CAS  Article  Google Scholar 

    151.
    Claquin, T., Schulz, M. & Balkanski, Y. J. Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res. Atmos. 104, 22243–22256 (1999).
    ADS  CAS  Article  Google Scholar 

    152.
    Engelbrecht, J. P. & Derbyshire, E. Airborne mineral dust. Elements 6, 241–246 (2010).
    Article  Google Scholar 

    153.
    Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).
    ADS  Article  Google Scholar 

    154.
    Rodgers, A. L. & Spector, M. Human stones. Endeavour 5, 119–126 (1981).
    CAS  PubMed  Article  Google Scholar 

    155.
    Baconnier, S. et al. Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies. Bioelectromagnetics 23, 488–495 (2002).
    CAS  PubMed  Article  Google Scholar 

    156.
    Tessier, A., Campbell, P. G. C. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979).
    CAS  Article  Google Scholar 

    157.
    Gleyzes, C., Tellier, S. & Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal. Chem. 21, 451–467 (2002).
    CAS  Article  Google Scholar 

    158.
    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).
    ADS  CAS  Article  Google Scholar  More

  • in

    Rural–urban scaling of age, mortality, crime and property reveals a loss of expected self-similar behaviour

    1.
    Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. 104, 7301–7306 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Bettencourt, L. M. A., Lobo, J., Strumsky, D. & West, G. B. Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities. PLoS ONE 5, e13541 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    van Raan, A. F. J., van der Meulen, G. & Goedhart, W. Urban Scaling of Cities in the Netherlands. arXiv Prepr. arXiv1503.04795 (2015).

    4.
    Alves, L. G. A., Ribeiro, H. V. & Mendes, R. S. Scaling laws in the dynamics of crime growth rate. Phys. A 392, 2672–2679 (2013).
    Article  Google Scholar 

    5.
    Society, S., Annaler, G. & Geography, H. Urban Allometric Growth Author (s): Stig Nordbeck Published by : Wiley on behalf of the Swedish Society for Anthropology and Geography Stable URL : https://www.jstor.org/stable/490887dy/Iydx. 53, 54–67 (2016).

    6.
    Gomez-Lievano, A., Youn, H. J. & Bettencourt, L. M. A. The statistics of urban scaling and their connection to Zipf’s law. PLoS ONE 7, e40393 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Hanley, Q. S., Lewis, D. & Ribeiro, H. V. Rural to urban population density scaling of crime and property transactions in english and welsh parliamentary constituencies. PLoS ONE 11, e0149546 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Ribeiro, H. V., Hanley, Q. S. & Lewis, D. Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools. PLoS ONE 13, e0192931 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Bettencourt, L., Lobo, J. & Youn, H. The hypothesis of urban scaling: formalization, implications and challenges. arXiv Prepr. arXiv1301.5919 (2013).

    10.
    Alves, L. G. A., Ribeiro, H. V., Lenzi, E. K. & Mendes, R. S. Distance to the scaling law: A useful approach for unveiling relationships between crime and urban metrics. PLoS ONE 8, e69580 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Alves, L. G. A., Mendes, R. S., Lenzi, E. K. & Ribeiro, H. V. Scale-adjusted metrics for predicting the evolution of urban indicators and quantifying the performance of cities. PLoS ONE 10, e0134862 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Advisory Committee Allocation Resource. Public health grant : Exposition book for proposed formula for 2016–17 target allocations – Technical Guide. (2016).

    13.
    NHS England Analytical Services (Finance). Technical Guide to Allocation Formulae and Pace of Change. (2016).

    14.
    Anonymous. Fair Shares: A guide to NHS Allocations. (2018).

    15.
    Green, A. E. The north–south divide in great Britain: An examination of the evidence. Trans. Inst. Br. Geogr. 13, 179 (1988).
    Article  Google Scholar 

    16.
    Hacking, J. M., Muller, S. & Buchan, I. E. Trends in mortality from 1965 to 2008 across the English north-south divide: Comparative observational study. BMJ 342, 1–9 (2011).
    Article  Google Scholar 

    17.
    Keeble, D. & Bryson, J. Small-firm creation and growth, regional development and the North-South divide in Britain. Environ. Plan. A 28, 909–934 (1996).
    Article  Google Scholar 

    18.
    United Nations. World Urbanisation Prospects: The 2014 Revision. ST/ESA/SER.A/366, (2015).

    19.
    Salvatore, M., Pozzi, F., Ataman, E., Huddleston, B. & Bloise, M. Mapping global urban and rural population distributions. (2005).

    20.
    Swiecki-Sikora, A. L., Henry, K. A. & Kepka, D. HPV vaccination coverage among us teens across the rural–urban continuum. J. Rural Heal. 35, 506–517 (2019).
    Article  Google Scholar 

    21.
    Li, K., Chen, Y., Wang, M. & Gong, A. Spatial–temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China. Sci. Total Environ. 669, 229–247 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Leitão, J. C., Miotto, J. M., Gerlach, M. & Altmann, E. G. Is this scaling nonlinear? Subject category: Subject areas. R Soc. Open Sci. 3, 150649 (2016).
    ADS  MathSciNet  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Finance, O. & Cottineau, C. Are the absent always wrong? Dealing with zero values in urban scaling. Environ. Plan. B Urban Anal. City Sci. 2, 1–15 (2018).
    Google Scholar 

    24.
    Hanley, Q. S., Khatun, S., Yosef, A. & Dyer, R. M. Fluctuation scaling, Taylor’s law, and crime. PLoS ONE 9, 2 (2014).
    Article  CAS  Google Scholar 

    25.
    Yang, V. C., Papachristos, A. V. & Abrams, D. M. The origin of urban productivity scaling laws: mathematical model and new empirical evidence. arXiv1712.00476, 1–9 (2017).

    26.
    Caminha, C. et al. Human mobility in large cities as a proxy for crime. PLoS ONE 12, 1–13 (2017).
    Article  CAS  Google Scholar 

    27.
    Grasmick, H. G., Tittle, C. R., Bursik, R. J. & Arneklev, B. J. Testing the core empirical implications of gottfredson and hirschi’s general theory of crime. J. Res. Crime Delinq. 30, 5–29 (1993).
    Article  Google Scholar 

    28.
    Pratt, T. C. & Cullen, F. T. The empirical status of Gottfredson and Hirchi’s general theory of crime: A meta-analysis. Criminology 38, 931–964 (2000).
    Article  Google Scholar 

    29.
    Wikström, P. O. H. Why Crime Happens: A Situational Action Theory. In Analytical Sociology: Actions and Networks (ed. Manzo, G.) 74–94 (Wiley, New York, 2014).
    Google Scholar 

    30.
    Wikström, P. O. H. Crime as alternative: Towards a cross-level situational action theory of crime causation. In Beyond Empiricism: Institutions and Intentions in the Study of Crime (ed. McCord, J.) 1–38 (Transaction Publishers, Abingdon, 2004).
    Google Scholar 

    31.
    Kinney, J. B., Mann, E. & Winterdyk, J. A. Crime Prevention. Crime Prevention: International Perspectives, Issues, and Trends (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781315314211.
    Google Scholar 

    32.
    Cottineau, C., Finance, O., Hatna, E., Arcaute, E. & Batty, M. Defining urban clusters to detect agglomeration economies. Environ. Plan. B Urban Anal. City Sci. 46, 1611–1626 (2019).
    Article  Google Scholar 

    33.
    Bettencourt, L. M. A. The origins of scaling in cities. Science (80-). 340, 1438–1441 (2013).
    ADS  MathSciNet  CAS  MATH  Article  Google Scholar 

    34.
    Lee, D., Cho, Y. S., Goh, K.-I., Lee, D.-S. & Kahng, B. Recent advances of percolation theory in complex networks. J. Korean Phys. Soc. 73, 152–164 (2018).
    ADS  Article  Google Scholar 

    35.
    Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3, 1–11 (2016).
    MathSciNet  Article  Google Scholar 

    36.
    Alves, L. G. A., Andrade, J. S., Hanley, Q. S. & Ribeiro, H. V. The hidden traits of endemic illiteracy in cities. Phys. A 515, 566–574 (2019).
    Article  Google Scholar 

    37.
    Wynder, E., Covey, L., Mabuchi, K. & Mushininski, M. Environmental factors in cancer of the larynx. A second Look. Cancer 38, 1591–1601 (1976).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    South, A. P. et al. Mutation signature analysis identifies increased mutation caused by tobacco smoke associated DNA adducts in larynx squamous cell carcinoma compared with oral cavity and oropharynx. Sci. Rep. 9, 1–9 (2019).
    ADS  Article  CAS  Google Scholar 

    39.
    Barnard-Kelly, K. D. et al. Suicide and self-inflicted injury in diabetes: A balancing act. J. Diabetes Sci. Technol. https://doi.org/10.1177/1932296819891136 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Amiri, S. & Behnezhad, S. Cancer diagnosis and suicide mortality: A systematic review and meta-analysis. Arch. Suicide Res. 2, 1–19 (2019).
    Google Scholar 

    41.
    Alattas, M., Ross, C. S., Henehan, E. R. & Naimi, T. S. Alcohol policies and alcohol-attributable cancer mortality in U.S. States. Chem. Biol. Interact. 315, 108885 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA. 99, 7821–7826 (2002).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

    43.
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
    ADS  CAS  Article  Google Scholar 

    44.
    Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA. 103, 8577–8582 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, 1–12 (2008).
    MATH  Google Scholar 

    46.
    Kohonen, T. Self-organizing maps (Springer, Berlin, 2001).
    Google Scholar 

    47.
    Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480 (1990).
    Article  Google Scholar 

    48.
    Chang, M. Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare (Chapman and Hall/CRC, Boca Raton, 2020).
    Google Scholar 

    49.
    Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. https://doi.org/10.1111/1467-9868.00293 (2001).
    MathSciNet  Article  MATH  Google Scholar 

    50.
    Team, R. C. R: A language and environment for statistical computing. (2019).

    51.
    Muggeo, V. M. R. Segmented: An R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).
    Google Scholar 

    52.
    Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Muggeo, V. M. R. Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling. J. Stat. Comput. Simul. 86, 3059–3067 (2016).
    MathSciNet  MATH  Article  Google Scholar 

    54.
    Muggeo, V. M. R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 59, 311–322 (2017).
    MathSciNet  MATH  Article  Google Scholar 

    55.
    Meyer, D. & Buchta, C. Proxy: Distance and similarity measures. (2019).

    56.
    Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) Functions. (2019).

    57.
    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Applications (Cambridge University Press, Cambridge, 1997).
    Google Scholar 

    58.
    Wehrens, R. & Kruisselbrink, J. Flexible self-organizing maps in kohonen 3.0. J. Stat. Softw. 87, 1–18 (2018).
    Article  Google Scholar 

    59.
    Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: The kohonen package. J. Stat. Softw. 21, 1–19 (2007).
    Article  Google Scholar 

    60.
    Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. (2019).

    61.
    Novomestky, L. K. and F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. (2015).

    62.
    Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Huber Andy Liaw, Thomas Lumley, M. & Maechler, Arni Magnusson, Steffen Moeller, M. S. and B. V. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1.1. (2019).

    63.
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, New York, 2016).
    Google Scholar 

    64.
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression. (Sage, 2019).

    65.
    Gross, J. & Ligges, U. nortest: Tests for normality. (2015).

    66.
    Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014).

    67.
    Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust}: An {R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).
    Article  Google Scholar 

    68.
    Wickham, H. et al. Welcome to the {tidyverse}. J. Open Source Softw. 4, 1686 (2019).
    ADS  Article  Google Scholar 

    69.
    Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2019).

    70.
    Revelle, W. psych: Procedures for psychological, psychometric, and personality research. (2019).

    71.
    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
    Article  Google Scholar 

    72.
    Hijmans, R. J. raster: Geographic data analysis and modeling. (2020).

    73.
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation, R package version 0.8.3. (2019).

    74.
    Bivand, R., Nowosad, J. & Lovelace, R. spData: Datasets for Spatial Analysis. (2020).

    75.
    Tennekes, M. {tmap}: Thematic maps in {R}. J. Stat. Softw. 84, 1–39 (2018).
    Article  Google Scholar 

    76.
    Cheng, J., Karambelkar, B. & Xie, Y. leaflet: Create interactive web maps with the javascript ‘Leaflet’ library. (2019).

    77.
    Appelhans, T., Detsch, F., Reudenbach, C. & Woellauer, S. mapview: Interactive Viewing of Spatial Data in R. (2019).

    78.
    Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web Application Framework for R. (2020).

    79.
    Urbanek, S. png: Read and write PNG images. (2013).

    80.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Third international AAAI conference on weblogs and social media (2009). More

  • in

    Global distribution and conservation status of ecologically rare mammal and bird species

    1.
    Rabinowitz, D. Seven forms of rarity. In The biological aspects of rare plant conservation (ed. Synge, H.) 205–217 (1981).
    2.
    Gaston, K. J. & Kunin, W. E. The Biology of Rarity 12–29 (Springer, 1997).

    3.
    Pompa, S., Ehrlich, P. R. & Ceballos, G. Global distribution and conservation of marine mammals. Proc. Natl Acad. Sci. 108, 13600–13605 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Gaston, K. J. Ecology: rarity as double jeopardy. Nature 394, 229 (1998).
    ADS  CAS  Article  Google Scholar 

    6.
    Hughes, T. P., Bellwood, D. R., Connolly, S. R., Cornell, H. V. & Karlson, R. H. Double jeopardy and global extinction risk in corals and reef fishes. Curr. Biol. 24, 2946–2951 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Jain, M. et al. The importance of rare species: A trait‐based assessment of rare species contributions to functional diversity and possible ecosystem function in tall‐grass prairies. Ecol. Evolution 4, 104–112 (2014).
    Article  Google Scholar 

    9.
    Chapman, A. S., Tunnicliffe, V. & Bates, A. E. Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities. Diversity Distrib. 24, 568–578 (2018).
    Article  Google Scholar 

    10.
    Winter, M., Devictor, V. & Schweiger, O. Phylogenetic diversity and nature conservation: where are we? Trends in ecology &. evolution 28, 199–204 (2013).
    Google Scholar 

    11.
    Thuiller, W. et al. Conserving the functional and phylogenetic trees of life of European tetrapods. Philos. Trans. R. Soc. B: Biol. Sci. 370, 20140005 (2015).
    Article  Google Scholar 

    12.
    Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).

    13.
    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evolution 32, 356–367 (2017).
    Article  Google Scholar 

    14.
    Cooke, R. S., Eigenbrod, F. & Bates, A. E. Ecological distinctiveness of birds and mammals at the global scale. Glob. Ecol. Conserv. 22, e00970 (2020).
    Article  Google Scholar 

    15.
    Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. Funrar: an R package to characterize functional rarity. Diversity Distrib. 23, 1365–1371 (2017).
    Article  Google Scholar 

    16.
    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Roman-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).
    CAS  PubMed  Article  Google Scholar 

    18.
    Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evolution 4, 230–239 (2020).
    Article  Google Scholar 

    21.
    Elton, C. S. The nature and origin of soil-polygons in Spitsbergen. Q. J. Geol. Soc. 83, 163–1 (1927).
    Article  Google Scholar 

    22.
    Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095‐178. Ecology 95, 2027–2027 (2014).
    Article  Google Scholar 

    23.
    Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2536–2544 (2011).
    Article  Google Scholar 

    24.
    Mazel, F. et al. Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 23, 836–847 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Barnagaud, J. Y. et al. Functional biogeography of dietary strategies in birds. Glob. Ecol. Biogeogr. 28, 1004–1017 (2019).
    Article  Google Scholar 

    26.
    Cooke, R. S., Bates, A. E. & Eigenbrod, F. Global trade‐offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).
    Article  Google Scholar 

    27.
    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141 (2017).
    ADS  CAS  Article  Google Scholar 

    28.
    Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).
    PubMed  Article  Google Scholar 

    29.
    Dutilleul, P. Spatial heterogeneity and the design of ecological field experiments. Ecology 74, 1646–1658 (1993).
    Article  Google Scholar 

    30.
    Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Leitao, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B: Biol. Sci. 283, 20160084 (2016).
    Article  Google Scholar 

    34.
    Chapman, A. S. A., Tunnicliffe, V., Bates, A. E. & Kühn, I. Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities. Diversity Distrib. 24, 568–578 (2018).
    Article  Google Scholar 

    35.
    Fleming, T. H. & Kress, W. J. The Ornaments of Life: Coevolution and Conservation in the Tropics. (University of Chicago Press, 2013).

    36.
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3, e1600946 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Birkinshaw, C. R. New Directions in Lemur Studies 189-199 (Springer, 1999).

    39.
    Federman, S. et al. Implications of lemuriform extinctions for the Malagasy flora. Proc. Natl Acad. Sci. 113, 5041–5046 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Abrahamczyk, S., Poretschkin, C. & Renner, S. S. Evolutionary flexibility in five hummingbird/plant mutualistic systems: testing temporal and geographic matching. J. Biogeogr. 44, 1847–1855 (2017).
    Article  Google Scholar 

    41.
    Graham, N. A. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Benkwitt, C. E., Wilson, S. K. & Graham, N. A. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Global Change Biol. 25, 2619–2632 (2019).

    43.
    Cheke, A. S. An ecological history of the Mascarene Islands, with particular reference to extinctions and introductions of land ver-tebrates. In Studies of Mascarene Island birds (ed. Diamond, A. W.) 5–89 (Cambridge University Press, Cambridge, 1987).

    44.
    Mateo‐Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez‐Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470 (2017).
    Article  Google Scholar 

    45.
    Williams-Guillén, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a neotropical agroforestry system. Science 320, 70–70 (2008).
    ADS  PubMed  Article  CAS  Google Scholar 

    46.
    Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. 105, 17012–17017 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Kling, M. M., Mishler, B. D., Thornhill, A. H., Baldwin, B. G. & Ackerly, D. D. Facets of phylodiversity: evolutionary diversification, divergence and survival as conservation targets. Philos. Trans. R. Soc. B 374, 20170397 (2018).
    Article  Google Scholar 

    50.
    Ricklefs, R. E. Small clades at the periphery of passerine morphological space. Am. Naturalist 165, 651–659 (2005).
    Article  Google Scholar 

    51.
    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    52.
    Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    53.
    Rosauer, D. F. & Jetz, W. Phylogenetic endemism in terrestrial mammals. Glob. Ecol. Biogeogr. 24, 168–179 (2015).
    Article  Google Scholar 

    54.
    Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    55.
    Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).
    CAS  PubMed  Article  Google Scholar 

    56.
    Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    57.
    Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Leprieur, F. et al. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 11461 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Orme, C. D. L. et al. Global patterns of geographic range size in birds. PLoS Biol. 4, e208 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Grenié, M. et al. Functional rarity of coral reef fishes at the global scale: Hotspots and challenges for conservation. Biol. Conserv. 226, 288–299 (2018).
    Article  Google Scholar 

    61.
    Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data‐deficient species. Conserv. Biol. 29, 250–259 (2015).
    PubMed  Article  Google Scholar 

    62.
    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. science 332, 53–58 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    63.
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. 113, 13791–13796 (2016).
    PubMed  Article  CAS  Google Scholar 

    64.
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205 (2017).
    ADS  Article  Google Scholar 

    65.
    Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. B: Biol. Sci. 279, 4969–4976 (2012).
    Article  Google Scholar 

    66.
    Bender, I. M. et al. Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Sci. Rep. 9, 1–12 (2019).
    ADS  CAS  Article  Google Scholar 

    67.
    Buytaert, W., Cuesta‐Camacho, F. & Tobón, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 20, 19–33 (2011).
    Article  Google Scholar 

    68.
    Berry, L. et al. Patterns of habitat use by three threatened mammals 10 years after reintroduction into a fenced reserve free of introduced predators. Biol. Conserv. 230, 1–9 (2019).
    Article  Google Scholar 

    69.
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323 (2019).
    ADS  Article  Google Scholar 

    70.
    Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D. & Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 34, 325–333 (2007).
    Article  Google Scholar 

    71.
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Cooke, R. S., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Smith, R. J., Muir, R. D., Walpole, M. J., Balmford, A. & Leader-Williams, N. Governance and the loss of biodiversity. Nature 426, 67 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    von Bieberstein, K. R. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).
    Article  Google Scholar 

    77.
    Pimm, S. L., Jenkins, C. N. & Li, B. V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 4, eaat2616 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Neeson, T. M. et al. Conserving rare species can have high opportunity costs for common species. Glob. change Biol. 24, 3862–3872 (2018).
    ADS  Article  Google Scholar 

    79.
    IUCN, S. IUCN SSC Guiding Principles on Creating Proxies of Extinct Species for Conservation Benefit. Gland, Switzerland. https://portals.iucn.org/library/sites/library/files/documents/Rep-2016-009.pdf (2016).

    80.
    Pearson, R. G. Reasons to conserve nature. Trends Ecol. Evol. 31, 366–371 (2016).
    PubMed  Article  Google Scholar 

    81.
    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 267, 1947–1952 (2000).
    CAS  Article  Google Scholar 

    82.
    Team, R. C. R: A language and environment for statistical computing. (2013).

    83.
    BirdLife. BirdLife international. http://www.birdlife.org (2019).

    84.
    Mazel, F. et al. The geography of ecological niche evolution in mammals. Curr. Biol. 27, 1369–1374 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).

    86.
    Dray, S., Dufour, A. B. & Thiolouse, J. ade4. CRAN| L”(K) (2014).

    87.
    Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).
    Article  Google Scholar 

    88.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Article  Google Scholar 

    89.
    Legendre, P. & Legendre, L. Numerical ecology. 3rd English ed. Developments in environmental modelling 24 (2012).

    90.
    Bininda-Emonds, O. R. et al. The delayed rise of present-day mammals. Nature 456, 274–274 (2007).
    Article  CAS  Google Scholar 

    91.
    Fritz, S. A., Bininda‐Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).
    PubMed  Article  Google Scholar 

    92.
    Kuhn, T. S., Mooers, A. Ø. & Thomas, G. H. A simple polytomy resolver for dated phylogenies. Methods Ecol. Evolution 2, 427–436 (2011).
    Article  Google Scholar 

    93.
    Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    94.
    Prendergast, J. R., Qulnn, R. M., Lawton, J. H., Evershamt, B. C. & Glbbonst, D. W. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365, 335–337 (1993).
    ADS  Article  Google Scholar 

    95.
    Orme, D. et al. Caper: comparative analyses of phylogenetics and evolution in R. R package version 0.5 2, 458 (2012).

    96.
    Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PloS one 2, e296 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
    CAS  PubMed  Article  Google Scholar 

    98.
    Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    99.
    Chamberlain, S. A. & Szöcs, E. Taxize: taxonomic search and retrieval in R. F1000Research 2 (2013).

    100.
    De Mendiburu, F. Agricolae: statistical procedures for agricultural research. R package version 1 (2014).

    101.
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. data 3, 160067 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    102.
    UNDP. Human Development Indices and Indicators: 2018 Statistical Update. (UNDP, 2018).

    103.
    PRIO, U. UCDP/PRIO Armed Conflict Dataset v. 4-2016 from the Version 2.2-2016. (2016).

    104.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    105.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    106.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    107.
    Lindsay, K. et al. Preindustrial-control and twentieth-century carbon cycle experiments with the Earth System Model CESM1 (BGC). J. Clim. 27, 8981–9005 (2014).
    ADS  Article  Google Scholar 

    108.
    Scoccimarro, E. et al. Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Clim. 24, 4368–4384 (2011).
    ADS  Article  Google Scholar 

    109.
    Persechino, A., Mignot, J., Swingedouw, D., Labetoulle, S. & Guilyardi, E. Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model. Clim. Dyn. 40, 2359–2380 (2013).
    Article  Google Scholar 

    110.
    Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).
    ADS  Article  Google Scholar 

    111.
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Modeling Earth Syst. 5, 572–597 (2013).
    ADS  Article  Google Scholar 

    112.
    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Diversity Distrib. 15, 59–69 (2009).
    Article  Google Scholar 

    113.
    Rodrigues, A. S. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    An agent-based algorithm resembles behaviour of tree-dwelling bats under fission–fusion dynamics

    1.
    Rood, J. P. Group size, survival, reproduction, and routes to breeding in dwarf mongooses. Anim. Behav. 39(3), 566–572 (1990).
    Article  Google Scholar 
    2.
    Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentation. Proc. R. Soc. B 268(1463), 187–196 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kerth, G. Causes and consequences of sociality in bats. Bioscience 58(8), 737–746 (2008).
    Article  Google Scholar 

    4.
    Kunz, T. H. Roosting ecology of bats in Ecology of bats (ed. Kunz, T. H.) 1–55 (University of Chicago Press, Chicago, 1982).

    5.
    Kunz, T. H. & Lumsden, L. F. Ecology of cavity and foliage roosting bats in Bat ecology (eds. Kunz, T. H. & Fenton M. B.) 3–89 (University of Chicago Press, Chicago. 2003).

    6.
    Lacki, M. J. & Baker, M. D. A prospective power analysis and review of habitat characteristics used in studies of tree-roosting bats. Acta Chiropterol. 5(2), 199–208 (2003).
    Article  Google Scholar 

    7.
    Naďo, L. & Kaňuch, P. Roost site selection by tree-dwelling bats across biogeographical regions: an updated meta-analysis with meta-regression. Mammal Rev. 45(4), 215–226 (2015).
    Article  Google Scholar 

    8.
    Barclay, R. M. R., Faure, P. A. & Farr, D. R. Roosting behaviour and roost selection by migrating silver-haired bats (Lasyonycteris noctivagans). J. Mammal. 69(4), 821–825 (1988).
    Article  Google Scholar 

    9.
    Lewis, S. E. Roost fidelity of bats: a review. J. Mammal. 76(2), 481–496 (1995).
    MathSciNet  Article  Google Scholar 

    10.
    Ruczyński, I. & Bogdanowicz, W. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, eastern Poland. J. Mammal. 86(5), 921–930 (2005).
    Article  Google Scholar 

    11.
    Ruczyński, I. & Bogdanowicz, W. Summer roost selection by tree-dwelling bats Nyctalus noctula and N. leisleri: a multiscale analysis. J. Mammal. 89(4), 942–951 (2008).
    Article  Google Scholar 

    12.
    Lučan, R. K., Hanák, V. & Horáček, V. Long-term re-use of tree roosts by European forest bats. For. Ecol. Manag. 258(7), 1301–1306 (2009).
    Article  Google Scholar 

    13.
    Kuhnert, E., Schonbachler, C., Arlettaz, R. & Christe, P. Roost selection and switching in two forest-dwelling bats: implications for forest management. Eur. J. Wildl. Res. 62(4), 497–500 (2016).
    Article  Google Scholar 

    14.
    Dietz, M., Brombacher, M., Erasmy, M., Fenchuk, V. & Simon, O. Bat community and roost site selection of tree-dwelling bats in a well-preserved European lowland forest. Acta Chiropterol. 20(1), 117–127 (2018).
    Article  Google Scholar 

    15.
    Jensen, M. E., Moss, C. F. & Surlykke, A. Echolocating bats can use acoustic landmarks for spatial orientation. J. Exp. Biol. 208(23), 4399–4410 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Kerth, G. & Reckardt, K. Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proc. R. Soc. B 270(1514), 511–515 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Kerth, G., Ebert, C. & Schmidtke, C. Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein’s bats. Proc. R. Soc. B 273(1602), 2785–2790 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Reckardt, K. & Kerth, G. Roost selection and roost switching of female Bechstein’s bats (Myotis bechsteinii) as a strategy of parasite avoidance. Oecologia 154(3), 581–588 (2007).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    19.
    Metheny, J. D., Kalcounis-Rueppell, M. C., Willis, C. K. R., Kolar, K. A. & Brigham, R. M. Genetic relationship between roost-mates in a fission-fusion society of tree-roosting big brown bats (Eptesicus fuscus). Behav. Ecol. Sociobiol. 62(7), 1043–1051 (2008).
    Article  Google Scholar 

    20.
    Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission-fusion societies in an aerial-hawking, carnivorous bat. Anim. Behav. 75(2), 471–482 (2008).
    Article  Google Scholar 

    21.
    Rueegger, N., Law, B. & Goldingay, R. Interspecific differences and commonalities in maternity roosting by tree cavity-roosting bats over a maternity season in a timber production landscape. PLoS ONE 13(3), e0194429 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278(1719), 2761–2767 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Patriquin, K. J. et al. Weather as a proximate explanation for fission-fusion dynamics in female northern long-eared bats. Anim. Behav. 122, 47–57 (2016).
    Article  Google Scholar 

    24.
    Kerth, G., Weissmann, K. & König, B. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126(1), 1–9 (2001).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    25.
    Sedgeley, J. A. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, New Zealand. J. Appl. Ecol. 38(2), 425–438 (2001).
    Article  Google Scholar 

    26.
    Patriquin, K. J. & Ratcliffe, J. M. Should I stay or should I go? Fission-fusion dynamics in bats in Sociality in bats (ed. Ortega, J.). 65–103 (Springer, New York, 2016).

    27.
    Fenton, M. B. et al. Raptors and bats: threats and opportunities. Anim. Behav. 48(1), 9–18 (1994).
    Article  Google Scholar 

    28.
    Lučan, R. K. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex- and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour. Folia Parasitol. 53(2), 147–152 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Barataud, M. Acoustic Ecology of European Bats. Species Identification and Studies of Their Habitats and Foraging Behavior (Biotope Editions & National Museum of Natural History, Paris, 2015).
    Google Scholar 

    30.
    Russo, D., Cistrone, L. & Jones, G. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography 28(6), 769–776 (2005).
    Article  Google Scholar 

    31.
    Chaverri, G., Gillam, E. H. & Vonhof, M. J. Social calls used by leaf-roosting bat to signal location. Biol. Lett. 6(4), 441–444 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schöner, C., Schöner, M. & Kerth, G. Similar is not the same: Social calls of conspecifics are more effective in attracting wild bats to day roosts than those of other bat species. Behav. Ecol. Sociobiol. 64(12), 2053–2063 (2010).
    Article  Google Scholar 

    33.
    Furmankiewicz, J., Ruczyński, I., Urban, R. & Jones, G. Social calls provide tree-dwelling bats with information about the location of conspecifics at roosts. Ethology 117(6), 480–489 (2011).
    Article  Google Scholar 

    34.
    Gillam, E. H. & Chaverri, G. Strong individual signatures and weaker group signatures in contact calls of Spix’s disc-winged bat, Throptera tricolor. Anim. Behav. 83(1), 269–276 (2012).
    Article  Google Scholar 

    35.
    Naďo, L. & Kaňuch, P. Dawn swarming in tree-dwelling bats: an unexplored behaviour. Acta Chiropterol. 15(2), 387–392 (2013).
    Article  Google Scholar 

    36.
    Naďo, L. & Kaňuch, P. Swarming behaviour associated with group cohesion in tree-dwelling bats. Behav. Proces. 120, 80–86 (2015).
    Article  Google Scholar 

    37.
    Gillam, E. H., Chaverri, G., Montero, K. & Sagot, M. Social calls produced within and near the roost in two species of tent-making bats, Dermanura watsoni and Ectophylla alba. PLoS ONE 8(4), e61731 (2013).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    38.
    Ruczyński, I. & Bartoń, K. A. Modelling sensory limitation: the role of tree selection, memory and information transfer in bats’ roost searching strategies. PLoS ONE 7(9), e44897 (2012).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    39.
    Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    40.
    Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D. & Crofoot, M. C. Shared decision-making drives collective movement in wild baboons. Science 348(6241), 1358–1361 (2015).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    41.
    Egnor, S. E. R. & Branson, K. Computational analysis of behavior. Annu. Rev. Neurosci. 39, 217–236 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Ilany, A. & Akcay, E. Social inheritance can explain the structure of animal social networks. Nat. Commun. 7(1), 1–10 (2016).
    Article  CAS  Google Scholar 

    43.
    Paolucci, M., Conte, R. & Tosto, G. D. A model of social organization and the evolution of food sharing in vampire bats. Adapt. Behav. 14(3), 223–238 (2006).
    Article  Google Scholar 

    44.
    Witkowski, M. Energy sharing for swarms modeled on the common vampire bat. Adapt. Behav. 15(3), 307–328 (2007).
    Article  Google Scholar 

    45.
    Mavrodiev, P., Fleischmann, D., Kerth, G. & Schweitzer, F. Data-driven modeling of leading-following behavior in Bechstein’s bats. bioRxiv 1, 843938 (2019).
    Google Scholar 

    46.
    Ripperger, S. P. et al. Vampire bats that cooperate in the lab maintain their social networks in the wild. Curr. Biol. 29(23), 4139–4144 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Perony, N., Kerth, G. & Schweitzer, F. Data-driven modeling of group formation in the fission-fusion dynamics of Bechstein’s bats. bioRxiv 1, 862219 (2019).
    Google Scholar 

    48.
    Zelenka, J., Kasanický, T., Budinská, I., Naďo, L. & Kaňuch, P. SkyBat: a swarm robotic model inspired by fission-fusion behaviour of bats in advances in service and industrial robotics. RAAD 2018. Mechanisms and machine science 67 (eds. Aspragathos, N., Koustoumpardis, P. & Moulianitis, V.) 521–528 (Springer, New York, 2019).

    49.
    Zelenka, J., Kasanický, T. & Budinská, I. A swarm algorithm inspired by tree-dwelling bats. Experiments and evaluations in advances in service and industrial robotics. RAAD 2019. Advances in intelligent systems and computing 980 (eds. Berns, K. & Görges, D.) 527–534 (Springer, New York, 2020).

    50.
    Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Publishing, London, 2016).
    Google Scholar 

    51.
    Kaňuch, P., Krištín, A. & Krištofík, J. Phenology, diet, and ectoparasites of Leisler’s bat (Nyctalus leisleri) in the Western Carpathians (Slovakia). Acta Chiropterol. 7(2), 249–258 (2005).
    Article  Google Scholar 

    52.
    Kaňuch, P. & Ceľuch, M. Bat assemblage of an old pastured oak woodland (Gavurky Protected Area, central Slovakia). Vespertilio 11, 57–64 (2007).
    Google Scholar 

    53.
    Naďo, L. & Kaňuch, P. Why sampling ratio matters: Logistic regression and studies of habitat use. PLoS ONE 13(7), e0200742 (2018).
    Article  CAS  Google Scholar 

    54.
    Naďo, L., Chromá, R. & Kaňuch, P. Structural, temporal and genetic properties of social groups in the short-lived migratory bat Nyctalus leisleri. Behaviour 154(7–8), 785–807 (2017).
    Article  Google Scholar 

    55.
    Schutt, W. A. Jr. et al. The dynamics of flight-initiating jumps in the common vampire bat Desmodus rotundus. J. Exp. Biol. 200(23), 3003–3012 (1997).
    PubMed  PubMed Central  Google Scholar 

    56.
    Shiel, C. B., Shiel, R. E. & Fairley, J. S. Seasonal changes in the foraging behaviour of Leisler’s bats (Nyctalus leisleri) in Ireland as revealed by radio-telemetry. J. Zool. 249(3), 347–358 (1999).
    Article  Google Scholar 

    57.
    Dechmann, D. K. N., Wikelski, M., van Noordwijk, H. J., Voigt, C. C. & Voigt-Heucke, S. L. Metabolic costs of bat echolocation in a non-foraging context support a role in communication. Front. Physiol. 4, 66 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Andresen, M. A. An area-based nonparametric spatial point pattern test: The test, its applications, and the future. Methodol. Innovat. 9, 1–11 (2016).
    Google Scholar 

    59.
    Steenbeek, W., Vandeviver, C. Andresen, M. A., Malleson, N. & Wheeler, A. sppt: spatial point pattern test. R package version 0.2.1. https://github.com/wsteenbeek/sppt (2018).

    60.
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

    61.
    Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.25. https://cran.r-project.org/package=rcompanion(2020).

    62.
    Torchiano, M. effsize: efficient effect size computation. R package version 0.8.0. https://cran.r-project.org/package=effsize (2020).

    63.
    Cohen, J. A power primer. Psychol. Bull. 112(1), 155–159 (1992).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Hedenström, A. & Johansson, L. C. Bat flight: aerodynamics, kinematics and flight morphology. J. Exp. Biol. 218, 653–663 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Durlauf, S. & Young, P. Social Dynamics (MIT Press, Cambridge, 2001).
    Google Scholar 

    66.
    Yang X.-S. A new metaheuristic bat-inspired algorithm in Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence 284 (eds. Gonzales, J. R., Pelta, D. A., Cruz, C., Terrazas, G. & Krasnogor, N.) 65–74 (Springer, New York, 2010).

    67.
    Gandomi, A. H. & Yang, X.-S. Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014).
    MathSciNet  Article  Google Scholar 

    68.
    Taha, A. M., Chen, S.-D. & Mustapha, A. Multi-swarm bat algorithm. Res. J. Appl. Sci. Eng. Tech. 10(12), 1389–1395 (2015).
    Article  Google Scholar 

    69.
    Jordehi, A. R. Chaotic bat swarm optimisation (CBSO). Appl. Softw. Comput. 26, 523–530 (2015).
    Article  Google Scholar 

    70.
    Wang, G.-G., Chang, B. & Zhang, Z. A multi-swarm bat algorithm for global optimization. Conference: IEEE Congress on Evolutionary Computation (CEC 2015). Sendai, Japan (2015).

    71.
    Dechmann, D. K. N., Kranstauber, B., Gibbs, D. & Wikelski, M. Group hunting: a reason for sociality in molossid bats?. PLoS ONE 5(2), e9012 (2010).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    72.
    Roeleke, M. et al. Landscape structure influences the use of social information in an insectivorous bat. Oikos 129(6), 912–923 (2020).
    Article  Google Scholar 

    73.
    Binitha, S. & Sathya, S. S. A survey of bio-inspired optimization algorithms. Int. J. Softw. Comput. Eng. 2(2), 137–151 (2012).
    Google Scholar  More

  • in

    Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs

    1.
    Pfeiffer, J. K. & Virgin, H. W. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351, 5872 (2016).
    Article  CAS  Google Scholar 
    2.
    Ramanan, D. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science 352, 608–612 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Leclaire, S. & Faulkner, C. T. Gastrointestinal parasites in relation to host traits and group factors in wild meerkats Suricata suricatta. Parasitology 141, 925–933 (2014).
    PubMed  Article  Google Scholar 

    4.
    Kabat, A. M., Srinivasan, N. & Maloy, K. J. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 35, 507–517 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    McHardy, I. L. X. T. M. et al. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome 1, 1 (2013).
    Article  Google Scholar 

    6.
    Sekirov, I., Russell, S. & Antunes, L. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).
    CAS  PubMed  Article  Google Scholar 

    7.
    de Vos, W. M. & de Vos, E. A. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr. Rev. 70, 45–56 (2012).
    Article  Google Scholar 

    8.
    Patterson, E. et al. Gut microbiota, the pharmabiotics they produce and host health. Proc. Nutr. Soc. 73, 477–489 (2014).
    CAS  PubMed  Article  Google Scholar 

    9.
    Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 1, 1–10 (2016).
    Google Scholar 

    10.
    Belongia, E. A. Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector-Borne Zoonotic Dis. 2, 265–273 (2002).
    PubMed  Article  Google Scholar 

    11.
    Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2015).
    ADS  Article  Google Scholar 

    12.
    Tompkins, D. M., Dunn, A. M., Smith, M. J. & Telfer, S. Wildlife diseases: from individuals to ecosystems. J. Anim. Ecol. 80, 19–38 (2011).
    PubMed  Article  Google Scholar 

    13.
    Hansen, J., Gulati, A. & Sartor, R. B. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr. Opin. Gastroenterol. 26, 564–571 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    McKenney, E. A., Rodrigo, A. & Yoder, A. D. Patterns of gut bacterial colonization in three primate species. PLoS ONE 10, 1–18 (2015).
    Article  CAS  Google Scholar 

    16.
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. 107, 14691–14696 (2010).
    ADS  PubMed  Article  Google Scholar 

    18.
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Proc. Natl. Acad. Sci. 332, 970–974 (2012).
    Google Scholar 

    19.
    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Boutin, S., Bernatchez, L., Audet, C. & Derom̂e, N. Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS ONE 8, 1–16 (2013).
    Google Scholar 

    21.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 716, 1344–1353 (2013).
    Article  CAS  Google Scholar 

    23.
    Dishaw, L. J. et al. The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS ONE 9, e93386 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).
    CAS  PubMed  Article  Google Scholar 

    25.
    Moore, S. L. & Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 2015–2018 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Nunn, C. L., Thrall, P. H., Leendertz, F. H. & Boesch, C. The spread of fecally transmitted parasites in socially-structured populations. PLoS ONE 6, e21677 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Huffman, M. A., Gotoh, S. & Turner, L. A. Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the mahale mountains. Tanzania. 38, 111–125 (1997).
    Google Scholar 

    28.
    Benavides, J. A. et al. From parasite encounter to infection: multiple-scale drivers of parasite richness in a wild social primate population. Am. J. Phys. Anthropol. 147, 52–63 (2012).
    PubMed  Article  Google Scholar 

    29.
    Barrett, M. A., Brown, J. L., Junge, R. E. & Yoder, A. D. Climate change, predictive modeling and lemur health: assessing impacts of changing climate on health and conservation in Madagascar. Biol. Conserv. 157, 409–422 (2013).
    Article  Google Scholar 

    30.
    Aivelo, T., Laakkonen, J. & Jernvall, J. Population and individual level dynamics of intestinal microbiota of a small primate. Appl. Environ. Microbiol. 82, 00559–16 (2016).
    Article  CAS  Google Scholar 

    31.
    Nunn, C. C. & Altizer, S. S. Infectious Diseases in Primates: Behavior, Ecology and Evolution (Oxford University, Press, 2006).
    Google Scholar 

    32.
    Raharivololona, B. & Ganzhorn, J. Seasonal variations in gastrointestinal parasites excreted by the gray mouse lemur Microcebus murinus in Madagascar. Endanger. Species Res. 11, 113–122 (2010).
    Article  Google Scholar 

    33.
    Huffman, M. & Chapman, C. Primate Parasite Ecology: the Dynamics and Study of Host–Parasite Relationships (Cambridge University, Press, 2009).
    Google Scholar 

    34.
    Setchell, J. M. et al. Parasite prevalence, abundance, and diversity in a semi-free-ranging colony of Mandrillus sphinx. Int. J. Primatol. 28, 1345–1362 (2007).
    Article  Google Scholar 

    35.
    Maldonado-López, S., Maldonado-López, Y., Gómez-Tagle, C. A., Cuevas-Reyes, P. & Stoner, K. E. Patterns of infection by intestinal parasites in sympatric howler monkey (Alouatta palliata) and spider monkey (Ateles geoffroyi) populations in a tropical dry forest in Costa Rica. Primates 55, 383–392 (2014).
    PubMed  Article  Google Scholar 

    36.
    Caldwell, J. P. Pinworms (enterobius vermicularis). Can. Fam. Physician 28, 306–309 (1986).
    Google Scholar 

    37.
    Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 1–10 (2012).
    Article  CAS  Google Scholar 

    38.
    Keele, B. et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313, 523–526 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Gillespie, T. R., Chapman, C. A. & Greiner, E. C. Effects of logging on gastrointestinal parasite infections and infection risk in African primates. J. Appl. Ecol. 42, 699–707 (2005).
    Article  Google Scholar 

    40.
    Chapman, C. A., Gillespie, T. R. & Goldberg, T. L. Primates and the ecology of their infectious diseases: how will anthropogenic change affect host-parasite interactions?. Evol. Anthropol. 14, 134–144 (2005).
    Article  Google Scholar 

    41.
    McCord, A. I. et al. Fecal microbiomes of non-human primates in Western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am. J. Primatol. 76, 347–354 (2014).
    PubMed  Article  Google Scholar 

    42.
    Chapman, C., Speirs, M. & Gillespie, T. Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups. Am. J. Primatol. 409, 397–409 (2006).
    Article  Google Scholar 

    43.
    Kowalewski, M. M. et al. Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human-primate contact. Am. J. Primatol. 73, 75–83 (2011).
    PubMed  Article  Google Scholar 

    44.
    Chapman, C. A. et al. do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534 (2006).
    PubMed  Article  Google Scholar 

    45.
    Hughes, S. & Kelly, P. Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol. 28, 577–588 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Angelstam, P. et al. Habitat modelling as a tool for landscape-scale conservation : a review of parameters for focal forest birds source. Ecol. Bull. 51, 427–453 (2004).
    Google Scholar 

    47.
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. (2015) Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. B Biol. Sci.370, 20140295.

    48.
    Mutapi, F. The gut microbiome in the helminth infected host. Trends Parasitol. 31, 405–406 (2015).
    PubMed  Article  Google Scholar 

    49.
    Kay, G. L. et al. Differences in the faecal microbiome in schistosoma haematobium infected children vs. uninfected children. PLoS Negl. Trop. Dis. 9, e0003861 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8, 1–10 (2014).
    ADS  Google Scholar 

    51.
    Morton, E. R. et al. Variation in rural African gut microbiomes is strongly shaped by parasitism and diet. bioRxiv (2015).

    52.
    Cooper, P. et al. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS ONE 8, 1–10 (2013).
    Google Scholar 

    53.
    Cantacessi, C. et al. Impact of experimental hookworm infection on the human gut microbiota. J. Infect. Dis. 210, 1–4 (2014).
    Article  CAS  Google Scholar 

    54.
    Houlden, A. et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects reversed by pathogen clearance. PLoS ONE 10, e0125945 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    McKenney, E. A., Greene, L. K., Drea, C. M. & Yoder, A. D. Down for the count: cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas. Microb. Ecol. Health Dis. 28, 1335165 (2017).
    PubMed  PubMed Central  Google Scholar 

    56.
    Fogel, A. T. The gut microbiome of wild lemurs: a comparison of sympatric lemur catta and propithecus verreauxi. Folia Primatol. 86, 85–95 (2015).
    PubMed  Article  Google Scholar 

    57.
    Springer, A. et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol. Evol. 7, 5732–5745 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Walk, S. T., Blum, A. M., Ewing, S. A. S., Weinstock, J. V. & Young, V. B. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis. 16, 1841–1849 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Li, R. W. et al. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect. Immun. 80, 2150–2157 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Rausch, S. et al. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS ONE 8, 1–13 (2013).
    Article  CAS  Google Scholar 

    61.
    Irwin, M. T., Johnson, S. E. & Wright, P. C. The state of lemur conservation in south-eastern Madagascar: population and habitat assessments for diurnal and cathemeral lemurs using surveys, satellite imagery and GIS. Oryx 39, 204–218 (2005).
    Article  Google Scholar 

    62.
    Markolf, M. et al. True lemurs…true species: species delimitation using multiple data sources in the brown lemur complex. BMC Evol. Biol. 13, 233 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Wright, P. et al. Long-term lemur research at Centre Valbio, Ranomafana National Park, Madagascar. in Long-term field studies of primates (eds. Kappeler, P. M. & Watts, D. P.) 67–100 (Springer, Berlin Heidelberg, 2012). https://doi.org/10.1007/978-3-642-22514-7

    64.
    de Winter, I. et al. Occupancy strongly influences faecal microbial composition of wild lemurs. Microbiol. Ecol. 94, 1–13 (2018).
    Google Scholar 

    65.
    IUCN. The IUCN Red List of Threatened Species. Version 2016–1. (2016).

    66.
    Chabaud, A. G. & Petter, A. J. Les nématodes parasites de Lémuriens malgaches, II Un nouvel oxyure: Lemuricola contagiosus. Mém. Inst. Sci. MadagascarA, 127–158 (1959).

    67.
    Chabaud, A. G., Brygoo, E.-R. & Petter, A.-J. Les Nématodes parasites de Lémuriens malgaches VI. Description de six espèces nouvelles et conclusions générales. Ann. Parasitol. Hum. Comparée 181–214 (1965).

    68.
    Irwin, M. T. & Raharison, J. A review of the endoparasites of the lemurs of Madagascar. 66–93 (2009).

    69.
    Schwitzer, N. et al. Parasite prevalence in blue-eyed black lemurs Eulemur flavifrons in differently degraded forest fragments. Endanger. Species Res. 12, 215–225 (2010).
    Article  Google Scholar 

    70.
    Junge, R. E. & Louis, E. E. Biomedical evaluation of black lemurs (Eulemur macaco macaco) in Lokobe Reserve, Madagascar. J. Zoo Wildl. Med. 38, 67–76 (2007).
    PubMed  Article  Google Scholar 

    71.
    Nègre, A., Tarnaud, L., Roblot, J. F., Gantier, J. C. & Guillot, J. Plants consumed by Eulemur fulvus in Comoros Islands (Mayotte) and potential effects on intestinal parasites. Int. J. Primatol. 27, 1495–1517 (2006).
    Article  Google Scholar 

    72.
    Junge, R. E. et al. Comparison of biomedical evaluation for white-fronted brown lemurs (Eulemur fulvus albifrons) from four sites in Madagascar. J. Zoo Wildl. Med. 39, 567–575 (2008).
    PubMed  Article  Google Scholar 

    73.
    Rajilić-Stojanović, M., Heilig, H. G. H. J., Tims, S., Zoetendal, E. G. & De Vos, W. M. Long-term monitoring of the human intestinal microbiota composition. Environ. Microbiol. 15, 1146–1159 (2013).
    Article  CAS  Google Scholar 

    74.
    Crowley, B. E., McGoogan, K. C. & Lehman, S. M. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest. PLoS ONE 7, e44538 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Sato, H., Ichino, S. & Hanya, G. Dietary modification by common brown lemurs (Eulemur fulvus) during seasonal drought conditions in western Madagascar. Primates 55, 219–230 (2014).
    PubMed  Article  Google Scholar 

    76.
    Styger, E., Rakotoarimanana, J. E. M., Rabevohitra, R. & Fernandes, E. C. M. Indigenous fruit trees of Madagascar: potential components of agroforestry systems to improve human nutrition and restore biological diversity. Agrofor. Syst. 46, 289–310 (1999).
    Article  Google Scholar 

    77.
    Sato, H. Habitat shifting by the common brown lemur (Eulemur fulvus fulvus): a response to food scarcity. Primates 54, 229–235 (2013).
    PubMed  Article  Google Scholar 

    78.
    Guernier, V., Hochberg, M. E. & Guégan, J. F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    79.
    Froeschke, G., Harf, R., Sommer, S. & Matthee, S. Effects of precipitation on parasite burden along a natural climatic gradient in southern Africa: implications for possible shifts in infestation patterns due to global changes. Oikos 119, 1029–1039 (2010).
    Article  Google Scholar 

    80.
    Brooker, S., Clements, A. C. A. & Bundy, D. A. P. Global epidemiology, ecology and control of soil-transmitted helminth infections. Adv. Parasitol. 62, 221–261 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Luong, L. T., Grear, D. A. & Hudson, P. J. Manipulation of host-resource dynamics impacts transmission of trophic parasites. Int. J. Parasitol. 44, 737–742 (2014).
    PubMed  Article  Google Scholar 

    82.
    Wright, P. C., Vololontiana, R. & Pochron, S. T. The key to Madagascar frugivores. in Tropical fruits and frugivores 121–138 (Springer, Dordrecht, 2005).

    83.
    Tecot, S. R. Seasonality and predictability: The hormonal and behavioral responses of the redbellied lemur (Eulemur rubriventer) in Ranomafana National Park, southeastern Madagascar (University of Texas, Austin, 2008).
    Google Scholar 

    84.
    Clough, D. Gastro-intestinal parasites of red-fronted lemurs in Kirindy Forest, western Madagascar. J. Parasitol. 96, 245–251 (2010).
    PubMed  Article  Google Scholar 

    85.
    Overdorff, D. J. & Johnson, S. E. Eulemur, true lemurs. in The Natural History of Madagascar (eds. Goodman, S. M. & Benstead, J.) 1320–1324 (University of Chicago Press, Chiago, 2003).

    86.
    Ostner, J., Kappeler, P. M. & Heistermann, M. Androgen and glucocorticoid levels reflect seasonally occurring social challenges in male redfronted lemurs (Eulemur fulvus rufus). Behav. Ecol. Sociobiol. 62, 627–638 (2008).
    PubMed  Article  Google Scholar 

    87.
    Johns, A. D. & Skorupa, J. P. Responses of rain-forest primates to habitat disturbance: a review. Int. J. Primatol. 8, 157–191 (1987).
    Article  Google Scholar 

    88.
    Wright, P. & Andriamihaja, B. Making a rain forest national park work in Madagascar: Ranomafana National Park and its long-term research commitment. in Making parks work: Strategies for preserving tropical nature 112–136 (2002).

    89.
    de Winter, I. I. et al. Past disturbance effects on forest structure and lemur abundances (Biol, Conserv, 2018).
    Google Scholar 

    90.
    Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. Elife 2, 1 (2013).
    Article  CAS  Google Scholar 

    91.
    Vitazkova, S. & Wade, S. Effects of ecology on the gastrointestinal parasites of Alouatta pigra. Int. J. Primatol. 28(28), 1327–1343 (2007).
    Article  Google Scholar 

    92.
    Martinez-Mota, R. The effects of habitat disturbance, host traits, and host physiology on patterns of gastrointestinal parasite infection in black howler monkeys (Alouatta pigra). PhD dissertation, Department ofAnthropology, University of Illinois (2015).

    93.
    Arneberg, P. Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25, 88–94 (2002).
    Article  Google Scholar 

    94.
    Reynolds, L. A. et al. Commensal-pathogen interactions in the intestinal tract: lactobacilli promote infection with, and are promoted by, helminth parasites. Gut Microbes 5, 522–532 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    95.
    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Hayes, K. S. et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 328, 1391–1394 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Reynolds, L. A., Finlay, B. B. & Maizels, R. M. Cohabitation in the intestine: interactions among helminth parasites, bacterial microbiota, and host immunity. J. Immunol. 195, 4059–4066 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Pedersen, A. B., Altizer, S., Poss, M., Cunningham, A. & Nunn, C. L. Patterns of host specificity and transmission among parasites of wild primates. Int. J. Parasitol. 35, 647–657 (2005).
    PubMed  Article  Google Scholar 

    99.
    Goodman, S. M. et al. The distribution and conservation of bats in the dry regions of Madagascar. Anim. Conserv. 8, 153–165 (2005).
    Article  Google Scholar 

    100.
    Irwin, M. T. et al. Patterns of species change in anthropogenically disturbed forests of Madagascar. Biol. Conserv. 143, 2351–2362 (2010).
    Article  Google Scholar 

    101.
    Balko, E. A. & Underwood, H. B. Effects of forest structure and composition on food availability for Varecia variegata at Ranomafana National Park, Madagascar. Am. J. Primatol. 66, 45–70 (2005).
    PubMed  Article  Google Scholar 

    102.
    Köhler, J., Glaw, F. & Vences, M. First record of Mabuya comorensis (Reptilia: Scincidae) for Madagascar, with notes on the herpetofauna of Nosy Tanikely. Boll. Mus. Reg. Sci. Nat. Torino 15, 75–82 (1998).
    Google Scholar 

    103.
    Erhart, E. M. & Overdorff, D. J. Population demography and social structure changes in Eulemur fulvus rufus from 1988 to 2003. Am. J. Phys. Anthropol. 136, 183–193 (2008).
    PubMed  Article  Google Scholar 

    104.
    Johnson, S. E., Gordon, A. D., Stumpf, R. M., Overdorff, D. J. & Wright, P. C. Morphological variation in populations of Eulemur albocollaris and E. fulvus rufus. Int. J. Primatol. 26, 1399–1416 (2005).
    Article  Google Scholar 

    105.
    Pyritz, L. W., Kappeler, P. M. & Fichtel, C. Coordination of group movements in wild red-fronted lemurs (Eulemur rufifrons): processes and influence of ecological and reproductive seasonality. Int. J. Primatol. 32, 1325–1347 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Tecot, S. R. It’s all in the timing: birth seasonality and infant survival in Eulemur rubriventer. Int. J. Primatol. 31, 715–735 (2010).
    Article  Google Scholar 

    107.
    Mittermeier, R. A. et al. Lemur diversity in Madagascar. Int. J. Primatol. 29, 1607–1656 (2008).
    Article  Google Scholar 

    108.
    Overdorff, D. Similarities, differences, and seasonal patterns in the diets of Eulemur rubriventer and Eulemur rufifrons in the Ranomafana National Park, Madagascar. Int. J. Primatol. 14, 721–753 (1993).
    Article  Google Scholar 

    109.
    Berg, W., Jolly, A., Rambeloarivony, H., Andrianome, V. & Rasamimanana, H. A scoring system for coat and tail condition in ringtailed lemurs, Lemur catta. Am. J. Primatol. 71, 183–190 (2009).
    PubMed  Article  Google Scholar 

    110.
    Van Gool, T., Weijts, R., Lommerse, E. & Mank, T. G. Triple faeces test: an effective tool for detection of intestinal parasites in routine clinical practice. Eur. J. Clin. Microbiol. Infect. Dis. 22, 284–290 (2003).
    PubMed  Article  Google Scholar 

    111.
    Yu, Z. & Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808–812 (2004).
    CAS  PubMed  Article  Google Scholar 

    112.
    Salonen, A. et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J. Microbiol. Methods 81, 127–134 (2010).
    CAS  PubMed  Article  Google Scholar 

    113.
    Tian, L. et al. Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Mol. Nutr. Food Res. 1–11 (2016).

    114.
    van den Bogert, B., de Vos, W. M., Zoetendal, E. G. & Kleerebezem, M. Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl. Environ. Microbiol. 77, 2071–2080 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    115.
    Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).
    CAS  PubMed  Article  Google Scholar 

    116.
    Ramiro-Garcia, J. et al. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. NF1000 Res. 5, 5 (2016).
    Google Scholar 

    117.
    Dryden, M. W., Payne, P. A., Ridley, R. & Smith, V. Comparison of common fecal flotation techniques for the recovery of parasite eggs and oocysts. Vet. Ther. 6, 15–28 (2005).
    CAS  PubMed  Google Scholar 

    118.
    Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129–1143 (2006).
    Article  Google Scholar 

    119.
    Gillespie, T. R. & Chapman, C. A. Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conserv. Biol. 20, 441–448 (2006).
    PubMed  Article  Google Scholar 

    120.
    Zeger, S. L., Liang, K.-Y. & Albert, P. S. Models for longitudinal data: a generalized estimating equation approach. Biometrics 44, 1049–1060 (1988).
    MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    121.
    Scrucca, L. Dispmod: Dispersion Models. R package version 1.1. (2012). https://cran.r-project.org/package=dispmod.

    122.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Article  Google Scholar 

    123.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.r-project.org/.

    124.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    125.
    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw.69, (2016).

    126.
    Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. R J. 5, 39–52 (2013).
    Article  Google Scholar 

    127.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (multi-level/mixed) Regression Models. R package version 0.1. 5. (2017).

    128.
    Barton, K. MuMIn: Multi-model Inference, R package version 0.12. 0. (2009). More

  • in

    Data mining and model-predicting a global disease reservoir for low-pathogenic Avian Influenza (A) in the wider pacific rim using big data sets

    Study area
    The study area consists of the wider northern Pacific Rim area which is known to be an exchange frontier between diseases and cultures (Fig. 12,9). We followed methods outlined in5,11,12 and specifically13 drawing inference from predictions.
    The conducted international landscape investigation in this study area is described in a research workflow (Fig. 2), and it mainly consists of different steps: field work, open access data compilation, data cleaning and lab work, GIS mapping, data mining and prediction, reflection and inference, as further described below (for more clarifications or questions please contact authors).
    Figure 2

    Workflow of this study to obtain best-available AI data and to data mine and predict them with machine learning in a geographic information system (GIS) for best-possible predictions and inference for the Pacific Rim study area (IRD = Influenza Research Database; USDA = U.S. Department of Agriculture); for more details, model specifications etc. see manuscript text.

    Full size image

    Field work
    As part of the eASIA program the field sampling of AI was conducted in Russia and Japan primarily during the fall (August) 2016, 2017 and 2018. Fall is a season when birds finished breeding and started to migrate southwards to their wintering sites. Birds are known during that time to disperse relatively slowly along flyways10,12,14,15. Traditionally, this time period has the highest known prevalence of virus, thus far9 In Vietnam, the surveillance targeting domestic birds was conducted in summers and falls. Together with all eASIA participants, we extracted data from an agreeable compatible workflow and protocol that allowed for geo-referenced and time-referenced AI samples in the field. Hunters were not directly involved in the study (see permits for bird specimen details). In Russia, following their lab method protocol and according to standard procedures16,17 it resulted in 52 samples (10 LPAI presences) from years 2016 and 2017 with 13 unique locations. In Japan, their respective lab method protocol was followed (details in18) resulting in 203 samples from years 2016 and 2017 based on 5 unique locations. In Vietnam, the lab method protocol of Japan was followed (details in19) resulting in 1,182 samples (951 LPAI presences) from years 2016 and 2017 based on 102 unique locations. Finally, we were also able to obtain 407 samples (395 LPAI presences) for Mongolia for 27 unique locations, also following the protocol from Japan. Alaska was not part of field campaign but had data available through the IRD ‘flu’ database (see details below).
    All field data were compiled into one eASIA database for further analysis (Appendix 1), namely to carry out data mining, model-training and subsequent predictions with machine learning and geographic information system (GIS; details in9,10).
    Compilations of open access AI data
    To reach across the Pacific Rim for a wider and more robust inference, and to make a connection with North America and other available data, further AI data from Alaska were obtained from the IRD database online (https://www.fludb.org/brc/home.spg? Decorator = influenza). This resulted in 38,517 samples (448 low-path AI presences) from 1,175 unique locations. We then queried all these data for low-path AI strains which resulted in 110 strains and 40,837 samples from 157 host species entries that we used for this study (see Appendix 2 for details). To our knowledge, that is the biggest and most diverse AI database ever compiled and analysed for the Pacific Rim (see Herrick et al. 2013 for a first initial model and using all of AI).
    Data mining of low-path AI
    We queried the obtained data for the number of low-path AI strains, host species distribution, proportion of host species carrying a specific low-path AI strain, and prevalence.
    Compilations of open access GIS data layers for the study area
    GIS layers are used as predictors for model-predictions in the study area. Here we used 19 global GIS layers available from earlier research (Sriram and Huettmann unpublished https://www.earth-syst-sci-data-discuss.net/essd-2016-65/; Table 1). For polygon outlines we used data with our ArcGIS UAF campus license (FH). All GIS data layers were displayed for the study area as a Mercator projection using WGS84, decimal degrees coordinates (latitude and longitude) with a precision of 6 decimals (GPS and GIS, a real world precision of 5 decimals).
    Table 1 List of GIS Predictors used in this study to data mine and predict low path (LP) Avian Influenza (AI) *
    Full size table

    GIS mapping and data processing
    We used commercial and open source GIS softwares (ArcGIS, QGIS) to operate, map and overlay all data. We imported the AI Data from ASCII table (MS Excel) into a shapefile layer of AI, and overlaid them with 19 environmental GIS layers we had available from compiled global data sets. This resulted into a data cube that is analyzed with data mining and for modeling and predictions.
    Modeling and predictions
    The resulting data cube was imported into SPM 8.2 (https://www.minitab.com/en-us/products/spm/) and then modeled and predicted. We ran a stochastic grading boosting (TreeNet) algorithm for best-possible predictions and inference (20see also9,10,12,21; for an R implementation see22). As outlined in9,12,21 we started with default settings for this powerful software as they are known to achieve best inference, as taken from the predictive performance13. Models then used 6 Maximum nodes per tree, 10 Cases as a Terminal Node Minimum, 200 trees to converge, a balanced class weight and a ten-fold cross-validation (a repeated 90% training vs 10% testing setting) optimizing on the ROC. To avoid overfitting we used an auto learn rate and a 50% subsampling. The resulting tree model was stored as a grove and applied to an equally-spaced lattice of the predictors (excluding species information). The maps were presented in GIS with a resolution of a 5 km pixel size (Appendix 3).
    Model assessment data
    We were able to obtain two alternative data set on AI for an assessment of our predictions. The Influenza Research Database (IRD) has an Asian subset (n = 28,205 and 19,405) comparable to our work, and which was used to confront our predictions for the study area.
    Although the U.S. Department of Agriculture (USDA) has a U.S-wide AI survey data set (3,589 for Alaska), it actually lacks geo-referencing with coordinates (just done by counties etc.) and just includes H5, H7 Avian Flu columns; presumably done trying to protect the industry. We still used this best-available alternative data set for further assessment of the model predictions.
    Ethics statement
    For this eASIA project oropharyngeal and cloacal samples in Russia were collected according to the “Federal Law on Hunting and Sharing of Hunting Resources of Russian Federation # 209-ФЗ” and with the permissions of local governments in hunting regions during each hunting seasons. Hunted birds were provided for sampling by licensed hunters to our group during expeditions.
    Fecal samples in Japan were collected with the permission of the municipality managing the sampling areas and Hokkaido University. Fecal samples in Mongolia were collected with the permission of the State Central Veterinary Laboratory, Mongolia. These samples were transferred to Japan under the permissions of the Animal Quarantine Service, Japan (27douken560-2, 28douken563-6, 29douken 683–2). Swab samples in Vietnam were collected with the permission of the Department of Animal Health, Vietnam. These samples were transferred to Japan under the permissions of the Animal Quarantine Service, Japan (27douken560-3, 28douken563-1, 28douken563-4, 28douken563-5, 29douken683-3, 29douken683-4).
    Data reported in the Influenza Research Database (IRD) were from samples obtained and submitted under NIH-funded avian influenza surveillance collection efforts (CEIRS) and are publicly available at: www.fludb.org . This work was supported in part by a National Institute of Allergy and Infectious Disease Centers of Excellence in Influenza Research and Surveillance (CEIRS) award, Contract HHSN272201400008C (to Eric Bortz).
    For Alaska USDA data, wild bird samples primarily came from hunter-killed waterfowl, with voluntary participation from hunters. These sampling activities were covered under US Fish and Wildlife Service Federal Permit MB124992-0. More

  • in

    Cooperative rescue of a juvenile capuchin (Cebus imitator) from a Boa constrictor

    1.
    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).
    Article  Google Scholar 
    2.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    3.
    van Schaik, C. P., van Noordwijk, M. A., de Boer, R. J. & den Tonkelaar, I. The effect of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca fascicularis). Behav. Ecol. Sociobiol. 13, 173–181 (1983).
    Article  Google Scholar 

    4.
    Sterck, E. H. M., Watts, D. P. & van Schaik, C. P. The evolution of female social relationships in non-human primates. Behav. Ecol. Sociobiol. 41, 291–309 (1997).
    Article  Google Scholar 

    5.
    Isbell, L. A. The Fruit, the Tree, and the Serpet: Why We See So Well (Harvard University Press, Cambridge, 2009).
    Google Scholar 

    6.
    Seyfarth, R. M., Cheney, D. L. & Marler, P. Vervet monkey alarm calls: semantic communication in a free-ranging primate. Anim. Behav. 28, 1070–1094 (1980).
    Article  Google Scholar 

    7.
    Crofoot, M. C. Why Mob? Reassessing the costs and benefits of primate predator harassment. Folia Primatol. 83, 252–273 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Carlson, N. V., Healy, S. D. & Templeton, C. N. Mobbing. Curr. Biol. 28, R1081–R1082 (2018).
    CAS  PubMed  Article  Google Scholar 

    9.
    Tórrez, L., Robles, N., González, A. & Crofoot, M. C. Risky business? Lethal attack by a jaguar sheds light on the costs of predator mobbing for capuchins (Cebus capucinus). Int. J. Primatol. 33, 440–446 (2012).
    Article  Google Scholar 

    10.
    Corrêa, H. K. M. & Coutinho, P. E. G. Fatal attack of a pit viper, Bothrops jararaca, on an infant buffy-tufted ear marmoset (Callithrix aurita). Primates 38, 215–217 (1997).
    Article  Google Scholar 

    11
    Foerster, S. Two incidents of venomous snakebite on juvenile blue and Sykes monkeys (Cercopithecus mitis stuhlmanni and C. m. albogularis). Primates 49, 300–303 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ferrari, S. F. & Beltrão-Mendes, R. Do snakes represent the principal predatory threat to callitrichids? Fatal attack of a viper (Bothrops leucurus) on a common marmoset (Callithrix jacchus) in the Atlantic Forest of the Brazilian Northeast. Primates 52, 207–209 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Rose, L. M. et al. Interspecific interactions between Cebus capucinus and other species: data from three Costa Rican sites. Int. J. Primatol. 24, 759–796 (2003).
    Article  Google Scholar 

    14.
    Perry, S., Manson, J. H., Dower, G. & Wikberg, E. White-faced capuchins cooperate to rescue a groupmate from a Boa constrictor. Folia Primatol. 74, 109–111 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    van Schaik, C. P. & van Noordwijk, M. A. The special role of male Cebus monkeys in predation avoidance and its effect on group composition. Behav. Ecol. Sociobiol. 24, 265–276 (1989).
    Article  Google Scholar 

    16.
    Fragaszy, D. M., Visalberghi, E. & Fedigan, L. M. The Complete Capuchin: The Biology of the Genus Cebus (Cambridge University Press, Cambridge, 2004).
    Google Scholar 

    17.
    Meno, W., Coss, R. G. & Perry, S. Development of snake-directed antipredator behavior by wild white-faced capuchin monkeys: I. Snake-species discrimination. Am. J. Primatol. 75, 281–291 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Fedigan, L. M. & Jack, K. M. Tracking neotropical monkeys in Santa Rosa: lessons from a regenerating Costa Rican dry forest. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D.) 165–184 (Springer, Berlin, 2012).
    Google Scholar 

    19.
    Campos, F. A. A synthesis of long-term environmental change in Santa Rosa, Costa Rica. In Primate Life Histories, Sex Roles, and Adaptability (eds Kalbitzer, U. & Jack, K. M.) 331–358 (Springer, Berlin, 2018).
    Google Scholar 

    20.
    Rose, L. M. Sex differences in diet and foraging behavior in white-faced capuchins (Cebus capucinus). Int. J. Primatol. 15, 95–114 (1994).
    Article  Google Scholar 

    21.
    Shields, W. M. Factors affecting nest and site fidelity in adirondack barn swallows (Hirundo rustica). Auk 101, 780–789 (1984).
    Article  Google Scholar 

    22.
    Teunissen, N., Kingma, S. A. & Peters, A. Predator defense is shaped by risk, brood value and social group benefits in a cooperative breeder. Behav. Ecol. 31, 761–771 (2020).
    Article  Google Scholar 

    23.
    Kennedy, R. A. W., Evans, C. S. & McDonald, P. G. Individual distinctiveness in the mobbing call of a cooperative bird, the noisy miner Manorina melanocephala. J. Avian Biol. 40, 481–490 (2009).
    Article  Google Scholar 

    24.
    Briones-Fourzán, P., Pérez-Ortiz, M. & Lozano-Álvarez, E. Defense mechanisms and antipredator behavior in two sympatric species of spiny lobsters, Panulirus argus and P. guttatus. Mar. Biol. 149, 227–239 (2006).
    Article  Google Scholar 

    25.
    Leuchtenberger, C., Almeida, S. B., Andriolo, A. & Crawshaw, P. G. Jaguar mobbing by giant otter groups. Acta Ethol. 19, 143–146 (2016).
    Article  Google Scholar 

    26.
    Graw, B. & Manser, M. B. The function of mobbing in cooperative meerkats. Anim. Behav. 74, 507–517 (2007).
    Article  Google Scholar 

    27.
    Boesch, C. The effects of leopard predation on grouping patterns in forest chimpanzees. Behaviour 117, 220–242 (1991).
    Article  Google Scholar 

    28.
    Pitman, R. L. et al. Humpback whales interfering when mammal-eating killer whales attack other species: Mobbing behavior and interspecific altruism?. Mar. Mammal Sci. 33, 7–58 (2017).
    Article  Google Scholar 

    29.
    Gusset, M. Banded together: a review of the factors favouring group living in a social carnivore, the banded mongoose Mungos mungo (Carnivora: Herpestidae). Mammalia 71, 80–82 (2007).
    Article  Google Scholar 

    30.
    Johnson, C. & Norris, K. S. Delphinid social organisation and social behavior. In Dolphin Cognition and Behavior: a Comparative Approach (eds Schusterman, R. J. et al.) 335–346 (Lawrence Erlbaum Associates, Mahwah, 1986).
    Google Scholar 

    31.
    Hollis, K. L. & Nowbahari, E. Toward a behavioral ecology of rescue behavior. Evol. Psychol. 11, 647–664 (2013).
    PubMed  Article  Google Scholar 

    32.
    Nowbahari, E. & Hollis, K. L. Distinguishing between rescue, cooperation and other forms of altruistic behavior. Commun. Integr. Biol. 3, 77–79 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Gursky, S. Predation on a wild spectral tarsier (Tarsius spectrum) by a snake. Folia Primatol. 73, 60–62 (2002).
    PubMed  Article  Google Scholar 

    34.
    Quintino, E. P. & Bicca-Marques, J. C. Predation of Alouatta puruensis by Boa constrictor. Primates 54, 325–330 (2013).
    PubMed  Article  Google Scholar 

    35.
    Teixeira, D. S. et al. Fatal attack on black-tufted-ear marmosets (Callithrix penicillata) by a Boa constrictor: a simultaneous assault on two juvenile monkeys. Primates 57, 123–127 (2016).
    PubMed  Article  Google Scholar 

    36.
    Cisneros-Heredia, D. F., León-Reyes, A. & Seger, S. Boa constrictor predation on a Titi monkey, Callicebus discolor. Neotrop. Primates 13, 11–12 (2005).
    Article  Google Scholar 

    37.
    Chapman, C. A. Boa constrictor predation and group response in white-faced Cebus monkeys. Biotropica 18, 171–172 (1986).
    Article  Google Scholar 

    38.
    Ferrari, S. F., Pereira, W. L. A., Santos, R. R. & Veiga, L. M. Fatal attack of a Boa constrictor on a bearded saki (Chiropotes satanas utahicki). Folia Primatol. 75, 111–113 (2004).
    PubMed  Article  Google Scholar 

    39.
    Heymann, E. W. A field observation of predation on a moustached tamarin (Saguinus mystax) by an anaconda. Int. J. Primatol. 8, 193–195 (1987).
    Article  Google Scholar 

    40.
    Burney, D. A. Sifaka predation by a large boa. Folia Primatol. 73, 144–145 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Pennisi, E. How did cooperative behavior evolve. Science 309, 93 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Foster, K. R., Wenseleers, T. & Ratnieks, F. L. W. Kin selection is the key to altruism. Trends Ecol. Evol. 21, 57–60 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Fedigan, L. M. & Jack, K. M. Neotropical primates in a regenerating Costa Rican dry forest: a comparison of howler and capuchin population patterns. Int. J. Primatol. 22, 689–713 (2001).
    Article  Google Scholar 

    44.
    Gould, L., Fedigan, L. M. & Rose, L. M. Why be vigilant? The case of the alpha animal. Int. J. Primatol. 18, 401–414 (1997).
    Article  Google Scholar 

    45.
    Schoof, V. A. M. & Jack, K. M. Rank-based differences in fecal androgen and cortisol levels in male white-faced capuchins, Cebus capucinus, in the Santa Rosa Sector, Area de Conservacíon Guanacaste, Costa Rica. Am. J. Primatol. 71, 76 (2009).
    Google Scholar 

    46.
    Schaebs, F. S., Perry, S. E., Cohen, D., Mundry, R. & Deschner, T. Social and demographic correlates of male androgen levels in wild white-faced capuchin monkeys (Cebus capucinus). Am. J. Primatol. 79, 79 (2017).
    Article  CAS  Google Scholar 

    47.
    Jack, K. M. et al. Hormonal correlates of male life history stages in wild white-faced capuchin monkeys (Cebus capucinus). Gen. Comp. Endocrinol. 195, 58–67 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Godoy, I., Vigilant, L. & Perry, S. E. Inbreeding risk, avoidance and costs in a group-living primate, Cebus capucinus. Behav. Ecol. Sociobiol. 70, 1601–1611 (2016).
    Article  Google Scholar 

    49.
    Wikberg, E. C. et al. Inbreeding avoidance and female mate choice shape reproductive skew in capuchin monkeys (Cebus capucinus imitator). Mol. Ecol. 26, 653–667 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Van Schaik, C. P. Why are diurnal primates living in groups?. Behaviour 87, 120–144 (1983).
    Article  Google Scholar 

    51.
    Tello, N. S., Huck, M. & Heymann, E. W. Boa constrictor attack and successful group defence in moustached tamarins, Saguinus mystax. Folia Primatol. 73, 146–148 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Gardner, C. J., Radolalaina, P., Rajerison, M. & Greene, H. W. Cooperative rescue and predator fatality involving a group-living strepsirrhine, Coquerel’s sifaka (Propithecus coquereli), and a Madagascar ground boa (Acrantophis madagascariensis). Primates 56, 127–129 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Eberle, M. & Kappeler, P. M. Mutualism, reciprocity, or kin selection? Cooperative rescue of a conspecific from a boa in a nocturnal solitary forager the gray mouse lemur. Am. J. Primatol. 70, 410–414 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Ribeiro-Júnior, M. A., Ferrari, S. F., Lima, J. R. F., da Silva, C. R. & Lima, J. D. Predation of a squirrel monkey (Saimiri sciureus) by an Amazon tree boa (Corallus hortulanus): even small Boids may be a potential threat to small-bodied platyrrhines. Primates 57, 317–322 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Wiens, F. & Zitzmann, A. Predation on a wild slow loris (Nycticebus coucang) by a reticulated python (Python reticulatus). Folia Primatol. 70, 362–364 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Raktondravony, D., Goodman, S. M. & Soarimalala, V. Predation on Hapalemur griseus griseus by Boa manditra (Boidae) in the littoral forest of eastern Madagascar. Folia Primatol. 69, 405–408 (1998).
    Article  Google Scholar  More

  • in

    Implication of single year seasonal sampling to genetic diversity fluctuation that coordinates with oceanographic dynamics in torpedo scads near Taiwan

    1.
    Dunn, D. C., Boustany, A. M. & Halpin, P. N. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12, 110–119 (2011).
    Article  Google Scholar 
    2.
    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).
    Article  Google Scholar 

    3.
    Wedding, L. M. et al. Geospatial approaches to support pelagic conservation planning and adaptive management. Endang. Species Res. 30, 1–9 (2016).
    Article  Google Scholar 

    4.
    André, C. et al. Population structure in Atlantic cod in the eastern North Sea-Skagerrak-Kattegat: early life stage dispersal and adult migration. BMC Res. Notes 9, 1 (2016).
    Article  Google Scholar 

    5.
    Canales-Aguirre, C. B., Ferrada-Fuentes, S., Galleguillos, R. & Hernández, C. E. Genetic structure in a small pelagic fish coincides with a marine protected area: seascape genetics in Patagonian Fjords. PLoS ONE 11, e0160670. https://doi.org/10.1371/journal.pone.0160670 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Eggers, F. et al. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats. PLoS ONE 9, e111985 (2014).
    ADS  Article  Google Scholar 

    7.
    Saraux, C. et al. Small pelagic fish dynamics: a review of mechanisms in the Gulf of Lions. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 52–61 (2019).
    ADS  Article  Google Scholar 

    8.
    Silva, A. et al. Adult-mediated connectivity and spatial population structure of sardine in the Bay of Biscay and Iberian coast. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 62–74 (2019).
    ADS  Article  Google Scholar 

    9.
    Sreenivasan, P. Observations on the fishery and biology of Megalaspis cordyla (Linnaeus) at Vizhinjam. Indian J. Fish. 25, 122–140 (1978).
    Google Scholar 

    10.
    Nakabō, T. Fishes of Japan: With Pictorial Keys to the Species Vol. 1 (Tokai University Press, Tokyo, 2002).
    Google Scholar 

    11.
    Shao, K. T. Taiwan Fish Database. WWW Web electronic publication. https://fishdb.sinica.edu.tw. Accessed October 20, 2019.

    12.
    Sreenivasan, P. Observations on the food and feeding habits of the Ttorpedo trevally Megalaspis cordyla (Linnaeus) from Vizhinjam bay. Indian J. Fish. 21, 76–84 (1974).
    Google Scholar 

    13.
    Hu, J., Kawamura, H., Hong, H. & Qi, Y. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. J. Oceanogr. 56, 607–624 (2000).
    Article  Google Scholar 

    14.
    Gallagher, S. J. et al. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. Paleoceanography https://doi.org/10.1029/2008PA001660 (2009).
    Article  Google Scholar 

    15.
    Gallagher, S. J. et al. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach. Prog. Earth Planet. Sci. 2, 17 (2015).
    ADS  Article  Google Scholar 

    16.
    Jan, S., Wang, J., Chern, C.-S. & Chao, S.-Y. Seasonal variation of the circulation in the Taiwan Strait. J. Mar. Syst. 35, 249–268 (2002).
    Article  Google Scholar 

    17.
    Winans, G. A. Geographic variation in the milkfish Chanos chanos I. Biochemical evidence. Evolution 34, 558–574 (1980).
    CAS  PubMed  Google Scholar 

    18.
    Bell, L., Moyer, J. & Numachi, K. Morphological and genetic variation in Japanese populations of the anemonefish Amphiprion clarkii. Mar. Biol. 72, 99–108 (1982).
    Article  Google Scholar 

    19.
    Richardson, B. Distribution of protein variation in skipjack tuna (Katsumonuspelamis) from the central and south-west Pacific. Aust. J. Mar. Freshw. Res. 34, 231–251 (1983).
    CAS  Article  Google Scholar 

    20.
    Rosenblatt, R. H. & Waples, R. S. A genetic comparison of allopatric populations of shore fish species from the eastern and central Pacific Ocean: dispersal or vicariance?. Copeia 1986, 275–284 (1986).
    Article  Google Scholar 

    21.
    McMillan, W. O. & Palumbi, S. R. Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc. R. Soc. B 260, 229–236 (1995).
    ADS  CAS  Article  Google Scholar 

    22.
    Grant, W. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).
    Article  Google Scholar 

    23.
    Palumbi, S. R. & Wilson, A. C. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 44, 403–415 (1990).
    Article  Google Scholar 

    24.
    Ayala, F. J., Hedgecock, D., Zumwalt, G. S. & Valentine, J. W. Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution 27, 177–191 (1973).
    PubMed  Google Scholar 

    25.
    Benzie, J. A. & Williams, S. T. Genetic structure of giant clam (Tridacna maxima) populations from reefs in the Western Coral Sea. Coral Reefs 11, 135–141 (1992).
    ADS  Article  Google Scholar 

    26.
    Williams, S. T. & Benzie, J. A. H. Genetic uniformity of widely separated populations of the coral reef starfish Linckia laevigata from the East Indian and West Pacific Oceans, revealed by allozyme electrophoresis. Mar. Biol. 126, 99–107 (1996).
    Article  Google Scholar 

    27.
    Arnaud, S., Bonhomme, F. & Borsa, P. Mitochondrial DNA analysis of the genetic relationships among populations of scad mackerel (Decapterus macarellus, D. macrosoma, and D. russelli) in South-East Asia. Mar. Biol. 135, 699–707. https://doi.org/10.1007/s002270050671 (1999).
    CAS  Article  Google Scholar 

    28.
    Huang, C., Weng, C. & Lee, S. Distinguishing two types of gray mullet, Mugil cephalus L. (Mugiliformes: Mugilidae), by using glucose-6-phosphate isomerase (GPI) allozymes with special reference to enzyme activities. J. Comp. Physiol. B 171, 387–394 (2001).
    CAS  Article  Google Scholar 

    29.
    McCafferty, S. et al. Historical biogeography and molecular systematics of the Indo-Pacific genus Dascyllus (Teleostei: Pomacentridae). Mol. Ecol. 11, 1377–1392 (2002).
    CAS  Article  Google Scholar 

    30.
    Benzie, J. A. & Williams, S. T. Genetic structure of giant clam (Tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51, 768–783 (1997).
    PubMed  Google Scholar 

    31.
    Fauvelot, C. & Planes, S. Understanding origins of present-day genetic structure in marine fish: biologically or historically driven patterns? Mar. Biol. 141, 773–788 (2002).
    Article  Google Scholar 

    32.
    Rajanna, K., Benakappa, S., Anjanayappa, H. & Honnananda, B. Maturation and spawning of the horse mackerel, Megalaspis cordyla (Linnaeus) from Mangalore waters. Environ. Ecol. 30, 41–44 (2012).
    Google Scholar 

    33.
    Song, N., Jia, N., Yanagimoto, T., Lin, L. & Gao, T. Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712 (2013).
    CAS  Article  Google Scholar 

    34.
    Niu, S.-F. et al. Demographic history and population genetic analysis of Decapterus maruadsi from the northern South China Sea based on mitochondrial control region sequence. PeerJ 7, e7953 (2019).
    Article  Google Scholar 

    35.
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).
    ADS  CAS  Article  Google Scholar 

    36.
    Lavery, S., Moritz, C. & Fielder, D. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol. Ecol. 5, 557–570 (1996).
    Article  Google Scholar 

    37.
    Planes, S. Geographic structure and gene flow in the manini (convict surgeonfish, Acanthurustriostegus) in the South Central Pacific. Genetics and Evolution of Aquatic Organisms, 113–122 (1994).

    38.
    Ocean Data Bank of the Ministry of Science and Technology, Republic of China. https://www.odb.ntu.edu.tw/.

    39.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  Article  Google Scholar 

    40.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    41.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol. 4, vey016 (2018).
    Article  Google Scholar 

    42.
    Damerau, M., Freese, M. & Hanel, R. Multi-gene phylogeny of jacks and pompanos (Carangidae), including placement of monotypic vadigo Campogramma glaycos. J. Fish Biol. 92, 190–202 (2018).
    CAS  Article  Google Scholar 

    43.
    Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).
    CAS  Article  Google Scholar 

    44.
    Múrias dos Santos, A., Cabezas, M. P., Tavares, A. I., Xavier, R. & Branco, M. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32, 627–628. https://doi.org/10.1093/bioinformatics/btv636 (2015).
    CAS  Article  PubMed  Google Scholar 

    45.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
    CAS  Article  Google Scholar 

    46.
    Global Administrative Areas (2012). GADM database of Global Administrative Areas. https://www.gadm.org.

    47.
    QGIS.org (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.org.

    48.
    Adobe Inc. (2019). Adobe Illustrator. https://adobe.com/products/illustrator. More