More stories

  • in

    State-level needs for social distancing and contact tracing to contain COVID-19 in the United States

    Our overall approach is as follows: (1) develop a mathematical model (an SEIR-type compartmental model)18,19 that incorporates social-distancing data, case identification via testing, isolation of detected cases and contact tracing; (2) assess the model’s predictive performance by training (calibrating) it to reported cases and mortality data from 19 March to 30 April 2020 and validating its predictions against data from 1 May to 20 June 2020; and (3) use the model, trained on data to 22 July 2020, to predict future incidence and mortality. The final stage of our approach predicts future events under a set of scenarios that include increased case detection through expansion of testing rate, contact tracing and relaxation or increase of measures to promote social distancing. All model fitting is performed in a Bayesian framework to incorporate available prior information and address multivariate uncertainty in model parameters.
    Model formulation
    We modified the standard SEIR model to address testing and contact tracing, as well as asymptomatic individuals. A fraction fA of those exposed (E) to enter the asymptomatic A class (divided into AU for untested and AC for contact traced) instead of the infected I class, which in our model formulation also includes infectious presymptomatic individuals. With respect to testing, separate compartments were added for untested, ‘freely roaming’ infected individuals (IU), tested/isolated cases (IT) and fatalities (FT). Following recovery, untested infected individuals (IU) and all asymptomatic individuals move to the untested recovered compartment, IU, and tested infected individuals move to the tested recovered compartment, IT. In balancing considerations of model fidelity and parameter identifiability, we made the reasonably conservative assumptions that all tested cases are effectively isolated (through self-quarantine or hospitalization) and thus unavailable for transmission, and that all COVID-related deaths are identified/tested.
    With respect to contact tracing, the additional compartment SC represents unexposed contacts who undergo a period of isolation during which they are not susceptible before returning to S, while EC, AC and IC represent contacts who were exposed. Again, the reasonably conservative assumption was made that all exposed contacts undergo testing, with an accelerated testing rate compared to the general population. We assume a closed population of constant size, N, for each state.
    The ordinary differential equations governing our model are as follows:

    $$begin{array}{l}frac{{mathrm{d}S}}{{mathrm{d}t}} = – S times c times left[ {beta + (1 – beta ) times f_{mathrm{C}}} right] times (I_{mathrm{U}} + A_{mathrm{U}})/N + S_{mathrm{C}} times gamma \ frac{{mathrm{d}S_{mathrm{C}}}}{{mathrm{d}t}} = – S_{mathrm{C}} times gamma + S times c times (1 – beta ) times f_{mathrm{C}} times (I_{mathrm{U}} + A_{mathrm{U}})/N\ frac{{mathrm{d}E}}{{mathrm{d}t}} = – E times kappa + S times c times beta times (1 – f_{mathrm{C}}) times (I_{mathrm{U}} + A_{mathrm{U}})/N\ frac{{mathrm{d}E_{mathrm{C}}}}{{mathrm{d}t}} = – E_{mathrm{C}} times kappa + S times c times beta times f_{mathrm{C}} times (I_{mathrm{U}} + A_{mathrm{U}})/N\ frac{{mathrm{d}I_{mathrm{U}}}}{{mathrm{d}t}} = – I_{mathrm{U}} times (lambda + rho ) + E times kappa times (1 – f_{mathrm{A}})\ frac{{mathrm{d}A_{mathrm{U}}}}{{mathrm{d}t}} = – A_{mathrm{U}} times rho + E times kappa times f_{mathrm{A}}\ frac{{mathrm{d}I_{mathrm{C}}}}{{mathrm{d}t}} = – I_{mathrm{C}} times (lambda _{mathrm{C}} + rho _{mathrm{C}}) + E_{mathrm{C}} times kappa times (1 – f_{mathrm{A}})\ frac{{mathrm{d}A_{mathrm{C}}}}{{mathrm{d}t}} = – A_{mathrm{C}} times rho _{mathrm{C}} + E_{mathrm{C}} times kappa times f_{mathrm{A}}\ frac{{mathrm{d}R_{mathrm{U}}}}{{mathrm{d}t}} = (I_{mathrm{U}} + A_{mathrm{U}} + A_{mathrm{C}}) times rho + I_{mathrm{C}} times rho _{mathrm{C}}\ frac{{mathrm{d}I_{mathrm{T}}}}{{mathrm{d}t}} = – I_{mathrm{T}} times (rho + delta ) + I_{mathrm{U}} times lambda + I_{mathrm{C}} times lambda _{mathrm{C}}\ frac{{mathrm{d}R_{mathrm{T}}}}{{mathrm{d}t}} = I_{mathrm{T}} times rho \ frac{{mathrm{d}F_{mathrm{T}}}}{{mathrm{d}t}} = I_{mathrm{T}} times delta end{array}$$

    where c is the contact rate between individuals, β is the transmission probability per infected contact, fC is the fraction of contacts identified through contact tracing, 1/γ is the duration of self-isolation after contact tracing, 1/κ is the latent period, fA is the fraction of exposed who are asymptomatic, λ is the testing rate, δ is the fatality rate, ρ is the recovery rate and λC and ρC are the testing and recovery rates, respectively, of contact-traced individuals. The testing rates λ and λC, the fatality rate δ and the recovery rate of traced contacts ρC are each composites of several underlying parameters. The testing rate defined as

    $$lambda (t) = F_{{mathrm{test}},0} times left[ {1 – frac{1}{{1 + mathrm{e}^{(t – T50_T)/tau _T}}}} right] times {mathrm{Sens}_{rm{test}}} times k_{{mathrm{test}}},$$

    where Ftest,0 is the current testing coverage (fraction of infected individuals tested), Senstest is the test sensitivity (true positive rate) and ktest is the rate of testing for those tested, with a typical time-to-test equal to 1/ktest. The time-dependence term models the ramping up of testing using a logistic function with a growth rate of 1/τT d−1, where T50T is the time where 50% of the current testing rate is achieved. Similarly, for testing of traced contacts, the same definition is used with the assumption that all identified contacts are tested, Ftest,0 = 1 and at a faster assumed testing rate, kC,test:

    $$lambda _{mathrm{C}}(t) = left[ {1 – frac{1}{{1 + mathrm{e}^{(t – T50_T)/tau _T}}}} right] times {mathrm{Sens}_{rm{test}}} times k_{{mathrm{C,test}}},$$

    Because all contacts are assumed to be tested, the rate ρC at which they enter the ‘recovered’ compartment, RU is simply the rate of false negative test results:

    $$rho _{mathrm{C}}(t) = left[ {1 – frac{1}{{1 + mathrm{e}^{(t – T50_T)/tau _T}}}} right] times (1 – {mathrm{Sens}_{rm{test}}}) times k_{{mathrm{test}}}$$

    The fatality rate is adjusted to maintain consistency with the assumption that all COVID-19 deaths are identified, assuming constant IFR. Specifically, we first calculated the fraction of infected that is tested and positive:

    $$f_{{mathrm{pos}}}(t) = f_{mathrm{C}}frac{{lambda _{mathrm{C}}(t)}}{{lambda _{mathrm{C}}(t) + rho _{mathrm{C}}(t)}} + (1 – f_{mathrm{C}})frac{{lambda (t)}}{{lambda (t) + rho }}.$$

    Then the case fatality rate CFR(t) = IFR/fpos(t). Because CFR = δ/(δ + ρ), this implies

    $$delta (t) = rho frac{{{mathrm{CFR}}(t)}}{{1 – {mathrm{CFR}}(t)}} = rho frac{{{mathrm{IFR}}}}{{f_{{mathrm{pos}}}(t) – {mathrm{IFR}}}}.$$

    The model is ‘seeded’ Ninitial cases on 29 February 2020. Because in the early stages of the outbreak there may be multiple ‘imported’ cases, we fit to data only from 19 March 2020 onwards, 1 week after the US travel ban was put in place31.
    Our model is fit to daily case yc and death yd data (cumulative data are not used for fitting because of autocorrelation). To adequately fit the case and mortality data, we accounted for two lag times. First, a lag is assumed between leaving the IU compartment and public reporting of a positive test result, accounting for the time it takes to seek a test, obtain testing and have the result reported. No lag is assumed for tests from contact tracing. Second, a lag time is assumed between entering the fatally ill compartment FT and publicly reported deaths. Additionally, we use a negative binomial likelihood to account for the substantial day-to-day over-dispersion in reporting results. The corresponding equations are as follows:

    $$begin{array}{l}y_{{mathrm{obs}},[c,d]}(t) approx {mathrm{NegBin}}[alpha _{[c,d]},p_{[c,d]}(t)]\ p_{[c,d]}(t) = frac{{y_{{mathrm{pred}},[c,d]}(t)}}{{alpha _{[c,d]} + y_{{mathrm{pred}},[c,d]}(t)}}\ y_{{mathrm{pred}},c}(t) = I_{mathrm{U}}(t – tau _{{mathrm{case}}}) times lambda (t) + I_{mathrm{C}}(t) times lambda _{mathrm{C}}(t)\ y_{{mathrm{pred}},d}(t) = I_{mathrm{T}}(t – tau _{{mathrm{death}}}) times delta (t)end{array}$$

    In this parameterization, because the dispersion parameter α → ∞, the likelihood becomes a Poisson distribution with expected value ypred,[c,d], whereas for small values of α there is substantial interindividual variability. Case and death data were sourced from The COVID Tracking Project32.
    Finally, we derived the time-dependent reproduction number, R(t) and the effective reproduction number, Reff(t) of this model, given by

    $$R(t) = c times beta times (1 – f_{mathrm{C}})left( {frac{{1 – f_{mathrm{A}}}}{{lambda + rho }} + frac{{f_{mathrm{A}}}}{rho }} right)$$

    and

    $$R_{{mathrm{eff}}}(t) = R(t) times frac{{{{S}}(t)}}{N}$$

    Reff(t) is the average number of secondary infection cases generated by a single infectious individual during their infectious period in partially susceptible population at time t. It is equal to the product of the transmission risk per contact of an infectious individual with their untraced contacts, c × β × (1 − fC), times their average duration of infection, (left( {frac{{1 – f_{mathrm{A}}}}{{lambda + rho }} + frac{{f_{mathrm{A}}}}{rho }} right)), and the portion of contacts that are susceptible, (frac{{{{S}}(t)}}{N}). This accounts for the relative contribution of asymptomatic, (c times beta times left( {1 – f_{mathrm{C}}} right)left( {frac{{f_{mathrm{A}}}}{rho }} right) times frac{{{{S}}(t)}}{N}) and symptomatic infection, (c times beta times (1 – f_{mathrm{C}})left( {frac{{1 – f_{mathrm{A}}}}{{lambda + rho }}} right) times frac{{{{S}}(t)}}{N}). Using posterior samples for all 50 states and the District of Columbia, we conducted an analysis of variance using a linear model to characterize the contributions to the combined interstate and intrastate variation in Reff. Specifically, we used a linear model for Reff with the model parameters R0, η, θmin, rmax, fC, fA, λ and ρ as predictors, and evaluated the percentage of variance in Reff contributed by each parameter.
    Incorporating social distancing, enhanced hygiene practices and reopening
    The impact of social distancing, hygiene practices and reopening was modelled through a time dependence in the contact rate, c and the transmission probability per infected contact, β:

    $$begin{array}{l}c(t) = c_0 times left[ {theta (t) + (1 – theta _{mathrm{min}}) times r(t)} right]\ beta (t) = beta _0 times theta (t)^eta end{array}$$

    The θ(t) function parameterized social distancing during the progression to shelter-in-place, and is modelled as a Weibull function:

    $$theta (t) = theta _{{mathrm{min}}} + (1 – theta _{{mathrm{min}}}){mathrm{e}}^{ – (t/tau _theta )^{n_theta }},$$

    which starts as unity and decreases to θmin, with τθ being the Weibull scale parameter and nθ the Weibull shape parameter (Fig. 1).
    The r(t) function parameterized relative increase in contacts due to reopening after shelter-in-place, with r = 1 corresponding to a return to baseline c = c0.

    $$begin{array}{l}r(t) = r_{{mathrm{max}}}frac{{t – tau _theta – tau _s}}{{tau _r}}left[ {u(t – t_r) – u(t – t_{r{mathrm{max}}})} right] + u(t – t_{r{mathrm{max}}})\ u(t) = {mathrm{Heaviside}}(t) approx 1 – frac{1}{{1 + {mathrm{e}}^{4t}}}\ t_r = tau _theta + tau _s\ t_{r{mathrm{max}}} = tau _theta + tau _s + tau _rend{array}$$

    The term r(t) is 0 before tr, linear between tr and trmax and constant at a value of rmax after that, and made continuous by approximating the Heaviside function by a logistic function. The reopening time is defined as τs days after τθ, and the maximum relative increase in contacts rmax happens τr days after that.
    We selected the functional form above for c(t) because it was found to be able to represent a wide variety of social-distancing data, including mobile phone mobility data from Unacast33 and Google34 as well as restaurant booking data from OpenTable35. We used these different mobility sources to derive state-specific prior distributions because different social-distancing datasets had different values for θmin, τθ, nθ, τs, rmax and τr (Supplementary Fig. 1).
    With respect to the reduction in transmission probability β, we assumed that during the shelter-in-place phase, hygiene-based mitigation paralleled this decline with an effectiveness power η, and that this mitigation continued through reopening.
    Finally, we define an overall reopening parameter Δ that measures the rebound in disease transmission, c × β relative to its minimum, defined to be 0 during shelter-in-place (that is, R(t) is at a minimum) and 1 when all restrictions are removed (when R(t) = R0), which can be derived as:

    $${Delta}(t) = frac{{c times beta /(c_0 times beta _0) – theta _{{mathrm{min}}}^{1 + eta }}}{{1 – theta _{{mathrm{min}}}^{1 + eta }}}.$$

    Our model is illustrated in Fig. 1, with parameters and prior distributions listed in Table 1.
    Scenario evaluation
    We used the model to make several inferences about the current and future course of the pandemic in each state. First, we consider the effective reproduction number. Two time points of particular interest are the time of minimum Reff, reflecting the degree to which shelter-in-place and other interventions were effective in reducing transmission, and the final time of the simulation, 22 July 2020, reflecting the extent to which reopening has increased Reff. Additional parameters of interest are the current levels of reopening Δ(t), testing λ and contact tracing fC.
    We then conducted scenario-based prospective predictions using our model’s parameters as estimated to 22 July 2020. We then asked the following questions:
    (1)
    Assuming current levels of reopening, what increases in general testing λ and/or contact tracing fC would be necessary to bring Reff  More

  • in

    A salmon diet database for the North Pacific Ocean

    1.
    Pacific Salmon Life Histories. (eds. Groot, C & Margolis, L.) (University of British Columbia Press, 1991).
    2.
    Beamish, R. J. & Mahnken, C. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change. Prog. Oceanogr. 49, 423–437 (2001).
    ADS  Article  Google Scholar 

    3.
    Bradford, M. J. Comparative review of Pacific salmon survival rates. Can. J. Fish. Aquat. Sci. 52, 1327–1338 (1995).
    Article  Google Scholar 

    4.
    Mueter, F. J., Peterman, R. M. & Pyper, B. J. Corrigendum: Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Can. J. Fish. Aquat. Sci. 60, 757–757 (2003).
    Article  Google Scholar 

    5.
    Zimmerman, M. S. et al. Spatial and temporal patterns in smolt survival of wild and hatchery coho salmon in the Salish Sea. Mar. Coast. Fish. 7, 116–134 (2015).
    Article  Google Scholar 

    6.
    Dale, K. E., Daly, E. A. & Brodeur, R. D. Interannual variability in the feeding and condition of subyearling Chinook salmon off Oregon and Washington in relation to fluctuating ocean conditions. Fish. Oceanogr. 26, 1–16 (2017).
    Article  Google Scholar 

    7.
    Davis, N. D. et al. Review of BASIS salmon food habits studies. North Pacific Anadromous Fish Comm. Bull. 5, 197–208 (2009).
    Google Scholar 

    8.
    Qin, Y. & Kaeriyama, M. Feeding habits and trophic levels of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean. North Pacific Anadromous Fish Comm. Bull. 6, 469–481 (2016).
    Article  Google Scholar 

    9.
    Chapman, W. M. The Pilchard Fishery of the State of Washington in 1936 with Notes on the Food of the Silver and Chinook Salmon off the Washington Coast. Biological Report No. 36C (State of Washington, Division of Scientific Research, Department of Fisheries, 1936).

    10.
    Silliman, R. P. Fluctuations in the diet of the Chinook and silver salmons (Oncorhynchus tschawytscha and O. kisutch) off Washington, as related to the troll catch of salmon. Copeia 1941, 80–87 (1941).
    Article  Google Scholar 

    11.
    Brodeur, R. D., Daly, E. A., Schabetsberger, R. A. & Mier, K. L. Interannual and interdecadal variability in juvenile coho salmon (Oncorhynchus kisutch) diets in relation to environmental changes in the northern California Current. Fish. Oceanogr. 16, 395–408 (2007).
    Article  Google Scholar 

    12.
    Brodeur, R. D. A Synthesis of the Food Habits and Feeding Ecology of Salmonids in Marine Waters of the North Pacific. INPFC Doc; FRI-UW-9016. (Fisheries Research Institute, University of Washington, 1990).

    13.
    Karpenko, V. I., Volkov, F. & Koval, M. V. Diets of Pacific salmon in the Sea of Okhotsk. Bering Sea, and Northwest Pacific Ocean. North Pacific Anadromous Fish Comm. Bull. 4, 105–116 (2007).
    Google Scholar 

    14.
    Starovoytov, A. N. Trends in abundance and feeding of chum salmon in the Western Bering Sea. North Pacific Anadromous Fish Comm. Bull. 4, 45–51 (2007).
    Google Scholar 

    15.
    Kaeriyama, M. et al. Change in feeding ecology and trophic dynamics of Pacific salmon (Oncorhynchus spp.) in the central Gulf of Alaska in relation to climate events. Fish. Oceanogr. 13, 197–207 (2004).
    Article  Google Scholar 

    16.
    Jamieson, G., Livingston, P. & Zhang, C.-I. Report of Working Group 19 on Ecosystem-based Management Science and its Application to the North Pacific. PICES Scientific Report 37 (North Pacific Marine Science Organization, 2010).

    17.
    Schoen, E. R. et al. Future of Pacific salmon in the face of environmental change: Lessons from one of the world’s remaining productive salmon regions. Fisheries 42, 538–553 (2017).
    Article  Google Scholar 

    18.
    Healey, M. The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Can. J. Fish. Aquat. Sci. 68, 718–737 (2011).
    Article  Google Scholar 

    19.
    Carmack, E., Winsor, P. & Williams, W. The contiguous panarctic Riverine Coastal Domain: A unifying concept. Prog. Oceanogr. 139, 13–23 (2015).
    ADS  Article  Google Scholar 

    20.
    MySQL version 8.0.18. MySQL, https://www.mysql.com/ (2019).

    21.
    Graham, C, Pakhomov, E. A., & Hunt, B. P. V. North Pacific Marine Salmon Diet Database. GitHub, https://github.com/mcarolinegraham/North_Pacific_Marine_Salmon_Diet_Database (2020).

    22.
    Graham, C, Pakhomov, E. A., & Hunt, B. P. V. A salmon diet database for the North Pacific Ocean. figshare https://doi.org/10.6084/m9.figshare.c.4974128 (2020)

    23.
    R Core Development Team. R: A language and environment for statistical computing, version 3.6.1. The R Project for Statistical Computing https://www.r-project.org/ (2019).

    24.
    Andrievskaya, L. D. Food relationships of the Pacific salmon in the sea. Vopr. Ikhtiologii 6, 84–90 (1966).
    Google Scholar 

    25.
    Carlson, H. R. Foods of juvenile sockeye salmon, Oncorhynchus nerka, in the inshore coastal waters of Bristol Bay, Alaska, 1966–67. Fish. Bull. 74, 458–462 (1976).
    Google Scholar 

    26.
    Chuchukalo, V. L., Volkov, A. F., Efimkin, A. Y. & Kuznetsova, N. A. Feeding and Daily Rations of Sockeye Salmon (Oncorhynchus nerka) During the Summer Period. NPAFC Doc. 125 (Pacific Research Institute of Fisheries Oceanography (TINRO), 1995).

    27.
    Davis, N. D., Takahashi, M. & Ishida, Y. The 1996 Japan-U.S. Cooperative High-seas Salmon Research Cruise of the Wakatake maru and a Summary of 1991-1996 Results. NPAFC Doc. 194; FRI-UW-9617 (Fisheries Research Institute, University of Washington; National Research Institute of Far Seas Fisheries, 1996).

    28.
    Davis, N. D., Aydin, K. Y. & Ishida, Y. Diel Feeding Habits and Estimates of Prey Consumption of Sockeye, Chum, and Pink Salmon in the Bering Sea in 1997. NPAFC Doc. 363; FRI-UW-9816 (Fisheries Research Institute, University of Washington; National Research Institute of Far Seas Fisheries, 1998).

    29.
    Davis, N. D., Aydin, K. Y. & Ishida, Y. Diel catches and food habits of sockeye, pink, and chum salmon in the Central Bering Sea in summer. North Pacific Anadromous Fish Comm. Bull. 2, 99–109 (2000).
    Google Scholar 

    30.
    Dulepova, E. P. & Dulepov, V. I. Interannual and Interregional Analysis of Chum Salmon Feeding Features in the Bering Sea and Adjacent Pacific Waters of Eastern Kamchatka. NPAFC Doc. 728 (Pacific Research Fisheries Centre, TINRO-Centre, 2003).

    31.
    Fukataki, H. Stomach contents of the pink salmon, Oncorhynchus gorbuscha (Walbaum), in the Japan Sea during the spring season of 1965. Bull. Jap. Sea Reg. Fish. Res. Lab. 17, 49–66 (1967).
    Google Scholar 

    32.
    Glebov, I. I. Chinook and Coho Salmon Feeding Habits in the Far Eastern Seas in the Course of Yearly Migration Cycle. NPAFC Doc. 378 (Pacific Research Fisheries Centre TINRO-Centre, 1998).

    33.
    Ito, J. Food and feeding habits of Pacific salmon (genus Oncorhynchus) in their oceanic life. Bull. Hokkaido Reg. Fish. Res. Lab. 29, 85–97 (1964).
    Google Scholar 

    34.
    Kaeriyama, M. et al. Feeding ecology of sockeye and pink salmon in the Gulf of Alaska. North Pacific Anadromous Fish Comm. Bull. 2, 55–63 (2000).
    Google Scholar 

    35.
    Kanno, Y. & Hamai, I. Food of salmonid fish in the Bering Sea in summer of 1966. Bull. Fac. Fish. Hokkaido Univ. 22, 107–128 (1971).
    Google Scholar 

    36.
    Manzer, J. I. Food of Pacific salmon and steelhead trout in the Northeast Pacific Ocean. J. Fish. Res. Board Canada 25, 1085–1089 (1968).
    Article  Google Scholar 

    37.
    Perry, R. I., Hargreaves, N. B., Waddell, B. J. & Mackas, D. L. Spatial variations in feeding and condition of juvenile pink and chum salmon off Vancouver Island, British Columbia. Fish. Oceanogr. 5, 73–88 (1996).
    Article  Google Scholar 

    38.
    Tadokoro, K., Ishida, Y., Davis, N. D., Ueyanagi, S. & Sugimoto, T. Change in chum salmon (Oncorhynchus keta) stomach contents associated with fluctuation of pink salmon (O. gorbuscha) abundance in the central subarctic Pacific and Bering Sea. Fish. Oceanogr. 5, 89–99 (1996).
    Article  Google Scholar 

    39.
    Takeuchi, I. Food animals collected from the stomachs of three salmonid fishes (Oncorhynchus) and their distribution in the natural environments in the northern North Pacific. Bull. Hokkaido Reg. Fish. Res. Lab. 38, 1–119 (1972).
    MathSciNet  Google Scholar 

    40.
    Ueno, M., Kosaka, S. & Ushiyama, H. Food and feeding behavior of Pacific salmon—II. Sequential change of stomach contents. Bull. Japanese Soc. Sci. Fish. 35, 1060–1066 (1969).
    Article  Google Scholar 

    41.
    Volkov, A. F., Chuchukalo, V. I., Efimkin, A. Y. Feeding of Chinook and Coho Salmon in the Northwestern Pacific Ocean. NPAFC Doc. 124 (Pacific Research Institute of Fisheries Oceanography, 1995).

    42.
    Auburn, M. E. & Ignell, S. E. Food habits of juvenile salmon in the Gulf of Alaska July–August 1996. North Pacific Anadromous Fish Comm. Bull. 2, 89–97 (2000).
    Google Scholar 

    43.
    Aydin, K. Y. Abiotic and Biotic Factors Influencing Food Habits of Pacific Salmon in the Gulf of Alaska. In Technical report: Workshop of Climate Change and Salmon Production (ed. Myers, K. W.) 39–40 (North Pacific Anadromous Fish Commission, 1998).

    44.
    Daly, E. A. & Brodeur, R. D. Warming ocean conditions relate to increased trophic requirements of threatened and endangered salmon. PLoS One 10, e0144066 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Davis, N. D., Armstrong, J. L. & Myers, K. W. Bering Sea Salmon Food Habits: Diet Overlap in Fall and Potential for Interactions Among Salmon. SAFS-UW-0311 (Fisheries Research Institute, School of Aquatic and Fisheries Sciences, University of Washington, 2003).

    46.
    Kawamura, H., Miyamoto, M., Nagata, M. & Hirano, K. Interaction between chum salmon and fat greenling juveniles in the coastal Sea of Japan off northern Hokkaido. North Pacific Anadromous Fish Comm. Bull. 1, 412–418 (1998).
    Google Scholar 

    47.
    Ueno, Y. Deepwater migrations of chum salmon (Oncorhynchus keta) along the Pacific coast of northern Japan. Can. J. Fish. Aquat. Sci. 49, 2307–2312 (1992).
    Article  Google Scholar 

    48.
    Ueno, Y., Seki, J., Shimizu, I. P. & Shershnev, A. Large juvenile chum salmon Oncorhynchus keta collected in coastal waters of Iturup Island. Nippon Suisan Gakkaishi 58, 1393–1397 (1992).
    Article  Google Scholar 

    49.
    Waddell, B. J., Morris, J. F. T. & Healey, M. C. The abundance, distribution, and biological characteristics of Chinook and coho salmon on the fishing banks off southwest Vancouver Island, May 18-30, 1989 and April 23-May 5, 1990. Can. Tech. Rep. Fish. Aquat. Sci. 1891, 1–113 (1992).
    Google Scholar 

    50.
    Andrievskaya, L. D. The feeding of Pacific salmon fry in the sea. Proceedings of the Pacific Research Institute of Fisheries and Oceanography 64, 73–80 (1970).
    Google Scholar 

    51.
    Atcheson, M. E., Myers, K. W., Beauchamp, D. A. & Mantua, N. J. Bioenergetic response by steelhead to variation in diet, thermal habitat, and climate in the North Pacific Ocean. Trans. Am. Fish. Soc. 141, 1081–1096 (2012).
    Article  Google Scholar 

    52.
    Carlson, H. R. et al. Cruise Report of the F/V Great Pacific Survey of Young Salmon in the North Pacific–Dixon Entrance to Western Aleutians—July–August 1996. NPAFC Doc. 222 (Auke Bay Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1996).

    53.
    Davis, N. D., Fukuwaka, M., Armstrong, J. L. & Myers, K. W. Salmon food habits studies in the Bering Sea. 1960 to present. North Pacific Anadromous Fish Comm. Tech. Rep. 6, 24–28 (2005).
    Google Scholar 

    54.
    Myers, K. W. & Aydin, K. Y. The 1996 International Cooperative Salmon Research Cruise of the Oshoro maru and a Summary of 1994-1996 Results. NPAFC Doc. 195; FRI-UW-9613 (University of Washington, Fisheries Research Institute, 1996).

    55.
    Myers, K. W. et al. Migrations, Abundance, and Origins of Salmonids in Offshore Waters of the North Pacific – 1995. NPAFC Doc. 152; FRI-UW-9613 (University of Washington, Fisheries Research Institute, 1995).

    56.
    Sturdevant, M. V, Ignell, S. E. & Morris, J. Diet of Juvenile Salmon off Southeastern Alaska, October-November 1995. NPAFC Doc. 275 (Auke Bay Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1997).

    57.
    Walker, R. V. Summary of Cooperative U.S.-Japan High Seas Salmonid Research Aboard the Japanese Research Vessel Oshoro Maru, 1993. NPAFC Doc. 21 (Fisheries Research Institute, University of Washington, 1993).

    58.
    Suzuki, T. et al. Feeding selectivity of juvenile chum salmon in the Japan Sea Coast of Northern Honshu. Sci. Reports Hokkaido Salmon Hatch. 48, 11–16 (1994).
    Google Scholar 

    59.
    Shimazaki, K. & Mishima, S. On the diurnal change of the feeding activity of salmon in the Okhotsk Sea. Bull. Fac. Fish. Hokkaido University 20, 82–93 (1969).
    Google Scholar 

    60.
    Weitkamp, L. A. Ocean Conditions, Marine Survival, and Performance of Juvenile Chinook (Oncorhynchus tshawytscha) and Coho (O. kisutch) Salmon in Southeast Alaska. PhD thesis, University of Washington (2004).

    61.
    Starovoytov, A. N. Chum salmon (Oncorhynchus keta (Walbaum)) in the Far East Seas – biological description of the species 2. Diet composition and trophic linkages of chum salmon in the Far East Seas and adjacent waters of the Northwest Pacific Ocean. Izv. TINRO 133, 3–34 (2003).
    Google Scholar 

    62.
    LeBrasseur, R. J. & Doidge, D. A. Stomach Contents of Salmonids Caught in the Northeastern Pacific Ocean – 1959 & 1960. In Circular, Statistical Series. vol. 3 (Fisheries Research Board of Canada, 1966).

    63.
    Lebrasseur, R. J. & Doidge, D. A. Stomach Contents of Salmonids Caught in the Northeastern Pacific Ocean – 1962. In Circular, Statistical Series. vol. 4 (Fisheries Research Board of Canada, 1966).

    64.
    Lebrasseur, R. J. & Doidge, D. A. Stomach Contents of Salmonids Caught in the Northeastern Pacific Ocean – 1963 & 1964. In Circular, Statistical Series. vol. 5 (Fisheries Research Board of Canada, 1966).

    65.
    Ishida, Y. & Davis, N. D. Chum salmon feeding habits in relation to growth reduction. Salmon Rep. Ser. 47, 104–110 (1999).
    Google Scholar 

    66.
    Tamura, R., Shimazaki, K. & Ueno, Y. Trophic relations of juvenile salmon (genus Oncorhynchus) in the Okhotsk Sea and Pacific waters off the Kuril Islands. Salmon Rep. Ser. 47, 138–168 (1999).
    Google Scholar 

    67.
    Seki, J. & Shimizu, I. Diel migration of zooplankton and feeding behavior of juvenile chum salmon in the central Pacific coast of Hokkaido. Bull. Nat. Salmon Resour. Cent. 1, 13–27 (1998).
    Google Scholar 

    68.
    Suzuki, T., Fukuwaka, M., Kawana, M., Ohkuma, K. & Seki, J. Investigation on survival mechanism of juvenile chum salmon during the early sea life in 1994. Salmon Database 3, 59–68 (1995).
    Google Scholar 

    69.
    Andrievskaya, L. D. The feeding of pink salmon in the wintering areas in the Sea of Japan. Izv. TINRO 90, 97–110 (1974).
    Google Scholar 

    70.
    Andrievskaya, L. D. Feeding of Pacific salmon juveniles in the Sea of Okhotsk. Izv. TINRO 78, 105–115 (1970).
    Google Scholar 

    71.
    Chuchukalo, V. I., Volkov, A. F., Efimkin, Ay. & Blagoderov, A. I. Distribution and feeding of the Chinook salmon (Oncorhynchus tschawytscha) in the northwest Pacific. Izv. TINRO, 137–141 (1994).

    72.
    Gorbatenko, K. M. Food and feeding habits of juvenile pink and chum salmons in the epipelagic zone of the Okhotsk Sea in winter. Izv. TINRO 199, 234–243 (1996).
    Google Scholar 

    73.
    Kayev, A. M., Chupakhin, V. M. & Fedotova, N. A. Feeding peculiarities and interrelationships between juvenile salmons in coastal waters of the Etorofu Island. Vopr. Ikhtiologii 33, 215–224 (1993).
    Google Scholar 

    74.
    Klovatch, N. V. Ecological Consequences of Large-scale Breeding Operations of Chum Salmon (Oncorhynchus keta). PhD extended summary (VNIRO, 2002).

    75.
    Shershnev, A. P., Chupakhin, V. M. & Rudnev, V. A. Some features of the ecology of young Sakhalin and Iturup pink salmon Oncorhynchus gorbuscha (Walbaum) (Salmonidae) during marine period of life. Vopr. Ikhtiologii 22, 441–448 (1982).
    Google Scholar 

    76.
    Tutubalin, B. G. & Chuchukalo, V. I. The Feeding of Genus Oncorhynchus Pacific Salmons in the North Pacific During the Winter-Spring Period. In Living Resources of the Pacific Ocean: Collected Papers (eds. Gristenko, O. F., Churikov, A. A. & Klovach, N. V.) 77–85 (VNIRO, 1992).

    77.
    Volkov, A. F. Food and feeding habits of young Pacific salmon in the Okhotsk Sea during the autumn-winter period. Okeanologiya 36, 80–85 (1996).
    Google Scholar 

    78.
    Volkov, A. F. Food and feeding habits of pink, chum and sockeye salmon during their anadromous migrations. Izv. TINRO 116, 128–137 (1994).
    Google Scholar 

    79.
    Fisheries Agency of Japan. Report on research by Japan for the International North Pacific Fisheries Commission during the year 1965. International North Pacific Fisheries Commission Ann. Rep., 42–55 (1965).

    80.
    Davis, N. D. U.S.-Japan Cooperative High Seas Salmonid Research in 1990: Summary of Research Aboard the Japanese Research Vessel Hokuho Maru, 4 June to 19 July. INPFC Doc.; FRI-UW-9010. (Fisheries Research Institute, University of Washington, 1990). More

  • in

    Single-virus genomics and beyond

    1.
    Koonin, E. V. The wonder world of microbial viruses. Expert Rev. Anti Infect. Ther. 8, 1097–1099 (2010).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Yong, E. I Contain Multitudes: The Microbes Within Us and A Grander View of Life (Ecco, 2016).

    3.
    Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).
    CAS  PubMed  Article  Google Scholar 

    4.
    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). This is a massive metagenomic study on global viral diversity and distribution and host specificity of viruses. A total of 125,000 partial DNA virus genomes are discovered.
    CAS  PubMed  Article  Google Scholar 

    5.
    Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).
    CAS  PubMed  Article  Google Scholar 

    6.
    Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007). This is a fundamental must-read review of the general role of viruses in marine ecosystems.
    CAS  PubMed  Article  Google Scholar 

    7.
    Abedon, S. T. Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses (Cambridge Univ. Press, 2008).

    8.
    Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1051 (2003).
    CAS  PubMed  Article  Google Scholar 

    9.
    Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).
    CAS  PubMed  Article  Google Scholar 

    11.
    Atanasova, N. S., Roine, E., Oren, A., Bamford, D. H. & Oksanen, H. M. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14, 426–440 (2012).
    CAS  PubMed  Article  Google Scholar 

    12.
    Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).
    CAS  PubMed  Article  Google Scholar 

    13.
    Enav, H., Kirzner, S., Lindell, D., Mandel-Gutfreund, Y. & Béjà, O. Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nat. Commun. 9, 1–11 (2018).
    CAS  Article  Google Scholar 

    14.
    Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003). This is a comprehensive review addressing a fundamental question in microbial ecology on the difficulty of culturing most microorganisms in the laboratory and how this bias impacts microbial discovery.
    PubMed  Article  CAS  Google Scholar 

    15.
    Pedrós-Alió, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).
    PubMed  Article  Google Scholar 

    16.
    Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015). This is a pioneering, comprehensive metagenomic study on global marine viral diversity from hundreds of samples collected during the Tara expedition.
    PubMed  Article  CAS  Google Scholar 

    18.
    Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Paez-Espino, D. et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 47, D678–D686 (2019). This article describes the most comprehensive genome database of uncultured viruses recovered by metagenomics from different ecosystems, including the human body, with more than 700,000 viral genome fragments.
    CAS  PubMed  Article  Google Scholar 

    20.
    Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).
    PubMed  Article  Google Scholar 

    21.
    Carroll, D. et al. The Global Virome Project. Science 359, 872–874 (2018).
    CAS  PubMed  Article  Google Scholar 

    22.
    Cesar Ignacio-Espinoza, J., Solonenko, S. A. & Sullivan, M. B. The global virome: not as big as we thought? Curr. Opin. Virol. 3, 566–571 (2013). The authors address a hot topic in viral ecology (that is, how big the viral diversity in nature is) and estimate the total number of different viral proteins, which is a proxy for quantifying the number of different existing viruses.
    PubMed  Article  Google Scholar 

    23.
    Rohwer, F. Global phage diversity. Cell 113, 141 (2003).
    CAS  PubMed  Article  Google Scholar 

    24.
    Suttle, C. A. Environmental microbiology: viral diversity on the global stage. Nat. Microbiol. 1, 1–2 (2016).
    Article  CAS  Google Scholar 

    25.
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Schulz, F. et al. Hidden diversity of soil giant viruses. Nat. Commun. 9, 1–9 (2018). The article reports the discovery of several relevant giant viruses, including one with a genome of 2.4 Mb, using metagenomics and a method that is similar to those used in SVG, but in this case targeting multiple sets of 100 viruses, instead of single-virus particles.
    Article  CAS  Google Scholar 

    27.
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
    CAS  PubMed  Article  Google Scholar 

    28.
    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 1–11 (2016).
    Article  CAS  Google Scholar 

    29.
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
    CAS  PubMed  Article  Google Scholar 

    30.
    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).
    CAS  PubMed  Article  Google Scholar 

    33.
    Dávila-Ramos, S. et al. A review on viral metagenomics in extreme environments. Front. Microbiol. 10, 2403 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Chatterjee, A., Sicheritz-Pontén, T., Yadav, R. & Kondabagil, K. Genomic and metagenomic signatures of giant viruses are ubiquitous in water samples from sewage, inland lake, waste water treatment plant, and municipal water supply in Mumbai, India. Sci. Rep. 9, 1–9 (2019).
    Article  CAS  Google Scholar 

    35.
    Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).
    CAS  PubMed  Article  Google Scholar 

    36.
    Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 1–13 (2017). This is a pioneering reference high-throughput SVG study that unveils extremely abundant and ubiquitous uncultured marine viruses overlooked for years by current state-of-the-art, standard metagenomic-based studies.
    Article  CAS  Google Scholar 

    37.
    Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017). This in silico study performs a through bioinformatic comparison of different tools used commonly in viral metagenomics and aims to provide useful recommendations and standards for the scientific community.
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Aguirre de Cárcer, D., Angly, F. E. & Alcamí, A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes. BMC Genomics 15, 1–12 (2014).
    Article  CAS  Google Scholar 

    39.
    López-Pérez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Moltó, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13, e1007018 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Labonté, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015). The screening of sequencing data from hundreds of single cells obtained from seawater unveils virus–host interactions in different ecologically important bacterial and archaeal groups.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 2014, e03125 (2014).
    Article  CAS  Google Scholar 

    42.
    Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011). This is the first report of SCG in uncultivated widespread microbial eukaryotes, showing complex viral interactions and metabolic insights into phycobiliphyte groups.
    CAS  PubMed  Article  Google Scholar 

    43.
    Castillo, Y. M. et al. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol. Ecol. 28, 4272–4289 (2019).
    CAS  PubMed  Article  Google Scholar 

    44.
    Benites, L. F. et al. Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Phil. Trans. R. Soc. B 374, 20190089 (2019).
    CAS  PubMed  Article  Google Scholar 

    45.
    Martinez-Hernandez, F. et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 13, 232–236 (2019).
    CAS  PubMed  Article  Google Scholar 

    46.
    Brussaard, C. P. D., Noordeloos, A. A. M., Sandaa, R. A., Heldal, M. & Bratbak, G. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 319, 280–291 (2004).
    CAS  PubMed  Article  Google Scholar 

    47.
    Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).
    CAS  PubMed  Article  Google Scholar 

    48.
    Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007).
    CAS  PubMed  Article  Google Scholar 

    50.
    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).
    CAS  PubMed  Article  Google Scholar 

    51.
    Martinez-Garcia, M., Martinez-Hernandez, F. & Martínez Martínez, J. Single-virus genomics: studying uncultured viruses, one at a time. Ref. Module Life Sci. https://doi.org/10.1016/b978-0-12-809633-8.21497-0 (2020). The authors provide methodological details and protocols for implementing SVG to complement other existing methods in viral ecology.
    Article  Google Scholar 

    52.
    Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).
    CAS  PubMed  Article  Google Scholar 

    53.
    Breitbart, M., Thompson, L., Suttle, C. & Sullivan, M. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).
    Article  Google Scholar 

    54.
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015). This review is recommended for readers who would like an introduction to recent technological advances in marine virology.
    CAS  PubMed  Article  Google Scholar 

    55.
    De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. 10, 1801 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).
    CAS  PubMed  Article  Google Scholar 

    57.
    Luo, E., Aylward, F. O., Mende, D. R. & Delong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903-17 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, 2121–2131 (2006).
    CAS  Article  Google Scholar 

    59.
    Coutinho, F. H., Rosselli, R. & Rodríguez-Valera, F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems 4, 1–17 (2019).
    Article  Google Scholar 

    60.
    Roux, S., Krupovic, M., Debroas, D., Forterre, P. & Enault, F. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol. 3, 130160 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).
    CAS  PubMed  Article  Google Scholar 

    62.
    Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front. Genet. 9, 304 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Ponsero, A. J. & Hurwitz, B. L. The promises and pitfalls of machine learning for detecting viruses in aquatic metagenomes. Front. Microbiol. 10, 806 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Crummett, L. T., Puxty, R. J., Weihe, C., Marston, M. F. & Martiny, J. B. H. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 499, 219–229 (2016).
    CAS  PubMed  Article  Google Scholar 

    66.
    Pagarete, A., Allen, M. J., Wilson, W. H., Kimmance, S. A. & de Vargas, C. Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ. Microbiol. 11, 2840–2848 (2009).
    CAS  PubMed  Article  Google Scholar 

    67.
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Kavagutti, V. S., Andrei, A. Ş., Mehrshad, M., Salcher, M. M. & Ghai, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7, 1–15 (2019).
    Article  Google Scholar 

    69.
    Sutton, T. D. S., Clooney, A. G., Ryan, F. J., Ross, R. P. & Hill, C. Choice of assembly software has a critical impact on virome characterisation. Microbiome 7, 12 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Warwick-Dugdale, J. et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 7, e6800 (2019). This pioneering study successfully combines long-read and short-read sequencing data to improve viral metagenomic assemblies and shows the potential of Nanopore sequencing data to advance virus discovery.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Beaulaurier, J. et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 30, 437–446 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    73.
    Mizuno, C. M., Rodriguez-Valera, F., Kimes, N. E. & Ghai, R. Expanding the marine virosphere using metagenomics. PLoS Genet. 9, e1003987 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Garcia-Heredia, I. et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7, e33802 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Chow, C. E. T., Winget, D. M., White, R. A., Hallam, S. J. & Suttle, C. A. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front. Microbiol. 6, 265 (2015).
    PubMed  PubMed Central  Google Scholar 

    76.
    Mizuno, C. M., Ghai, R., Saghaï, A., López-García, P. & Rodriguez-Valera, F. Genomes of abundant and widespread viruses from the deep ocean. mBio 7, e00805–e00816 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Martinez-Garcia, M. et al. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J. 6, 113–123 (2012).
    CAS  PubMed  Article  Google Scholar 

    78.
    Stepanauskas, R. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15, 613–620 (2012).
    CAS  PubMed  Article  Google Scholar 

    79.
    Sieracki, M. E. et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Sci. Rep. 9, 1–11 (2019).
    CAS  Article  Google Scholar 

    80.
    Lasken, R. S. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10, 631–640 (2012).
    CAS  PubMed  Article  Google Scholar 

    81.
    López-Escardó, D. et al. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci. Rep. 7, 1–14 (2017).
    Article  CAS  Google Scholar 

    82.
    Mangot, J. F. et al. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci. Rep. 7, 1–12 (2017).
    Article  CAS  Google Scholar 

    83.
    Seeleuthner, Y. et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9, 1–10 (2018).
    CAS  Article  Google Scholar 

    84.
    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013). This article is an excellent example of the power of single-cell technologies to provide biological insights into uncultured microorganisms.
    CAS  PubMed  Article  Google Scholar 

    85.
    Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).
    CAS  PubMed  Article  Google Scholar 

    86.
    Garcia, S. L. et al. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J. 7, 137–147 (2013).
    CAS  PubMed  Article  Google Scholar 

    87.
    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE 7, e35314 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 1–10 (2017). The authors use flow cytometry to sort uncultured single viruses and they amplify their genomes with a new variant of an efficient Φ29 enzyme, which is commonly used in SCG and SVG. This study is another SVG example targeting uncultured viruses.
    Article  CAS  Google Scholar 

    89.
    Ghylin, T. W. et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 8, 2503–2516 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Wilson, W. H. et al. Genomic exploration of individual giant ocean viruses. ISME J. 11, 1736–1745 (2017). This reference SVG study targets for the first time uncultured giant viruses in nature, which are commonly ignored with standard metagenomic techniques.
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    de la Cruz Peña, M. et al. Deciphering the human virome with single-virus genomics and metagenomics. Viruses 10, 113 (2018). This is the first study on SVG applied to the human virome. The authors implement this novel technology, combined with metagenomics, in salivary human samples and discover important, abundant phages.
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    92.
    Allen, L. Z. et al. Single virus genomics: a new tool for virus discovery. PLoS ONE 6, e17722 (2011). This is the first report showing the feasibility of SVG as a new tool for virus discovery. The authors successfully use this technology to sequence several single sorted virus particles of viral isolates T4 and λ of E. coli.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Holmfeldt, K., Odić, D., Sullivan, M. B., Middelboe, M. & Riemann, L. Cultivated single-stranded DNA phages that infect marine bacteroidetes prove difficult to detect with DNA-binding stains. Appl. Environ. Microbiol. 78, 892–894 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Pospichalova, V. et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles 4, 25530 (2015).
    PubMed  Article  CAS  Google Scholar 

    95.
    Giesecke, C. et al. Determination of background, signal-to-noise, and dynamic range of a flow cytometer: a novel practical method for instrument characterization and standardization. Cytometry A 91, 1104–1114 (2017).
    CAS  PubMed  Article  Google Scholar 

    96.
    Schmidt, H. & Hawkins, A. R. Single-virus analysis through chip-based optical detection. Bioanalysis 8, 867–870 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Brussaard, C., Payet, J. P., Winter, C. & Weinbauer, M. G. Quantification of aquatic viruses by flow cytometry. Man. Aquat. Viral Ecol. 11, 102–109 (2010).
    Article  Google Scholar 

    98.
    Mojica, K. D. A. & Brussaard, C. P. D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 89, 495–515 (2014).
    CAS  PubMed  Article  Google Scholar 

    99.
    Blainey, P. C. & Quake, S. R. Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res. 39, e19 (2011).
    PubMed  Article  CAS  Google Scholar 

    100.
    Woyke, T. et al. Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6, e26161 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique. Protein Eng. Des. Sel. 29, 617–628 (2016).
    CAS  PubMed  Article  Google Scholar 

    102.
    Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016). This is one of the most comprehensive technical and scientific reviews of SCG technologies of unicellular and multicellular organisms, and discusses how these technologies have enabled new discoveries in multiple fields from microbiology to cancer or immunology.
    CAS  PubMed  Article  Google Scholar 

    103.
    Martínez Martínez, J., Swan, B. K. & Wilson, W. H. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 8, 1079–1088 (2014). This study uses technologies similar to those used in SVG to discover giant viruses and other relevant uncultured viruses from a sorted pool of marine uncultured viruses.
    PubMed  Article  CAS  Google Scholar 

    104.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Woyke, T. et al. One bacterial cell, one complete genome. PLoS ONE 5, e10314 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    106.
    Roux, S. et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat. Biotechnol. 37, 29–37 (2019).
    CAS  PubMed  Article  Google Scholar 

    107.
    Hercher, M., Mueller, W. & Shapiro, H. M. Detection and discrimination of individual viruses by flow cytometry. J. Histochem. Cytochem. 27, 350–352 (1979).
    CAS  PubMed  Article  Google Scholar 

    108.
    Lippé, R. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 92, e01765-17 (2017).
    Article  Google Scholar 

    109.
    Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).
    CAS  PubMed  Article  Google Scholar 

    110.
    Brum, J. R. et al. Illuminating structural proteins in viral ‘dark matter’ with metaproteomics. Proc. Natl Acad. Sci. USA 113, 2436–2441 (2016).
    CAS  PubMed  Article  Google Scholar 

    111.
    Alonso-Sáez, L., Morán, X. A. G. & Clokie, M. R. Low activity of lytic pelagiphages in coastal marine waters. ISME J. 12, 2100–2102 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    112.
    Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).
    CAS  PubMed  Article  Google Scholar 

    113.
    McMullen, A., Martinez‐Hernandez, F. & Martinez‐Garcia, M. Absolute quantification of infecting viral particles by chip‐based digital polymerase chain reaction. Environ. Microbiol. Rep. 11, 855–860 (2019).
    CAS  PubMed  Google Scholar 

    114.
    Fukuda, R., Ogawa, H., Nagata, T. & Koike, I. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64, 3352–3358 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    115.
    Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Phil. Trans. R. Soc. B 374, 20190086 (2019).
    CAS  PubMed  Article  Google Scholar 

    116.
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).
    CAS  PubMed  Article  Google Scholar 

    117.
    Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl Acad. Sci. USA 103, 9482–9487 (2006).
    CAS  PubMed  Article  Google Scholar 

    118.
    Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Pasulka, A. L. et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ. Microbiol. 20, 671–692 (2018).
    CAS  PubMed  Article  Google Scholar 

    120.
    Dominguez-Medina, S. et al. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science 362, 918–922 (2018).
    CAS  PubMed  Article  Google Scholar 

    121.
    Hermelink, A. et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 142, 1342–1349 (2017).
    CAS  PubMed  Article  Google Scholar 

    122.
    Ruokola, P. et al. Raman spectroscopic signatures of echovirus 1 uncoating. J. Virol. 88, 8504–8513 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    123.
    Schatz, D. et al. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat. Microbiol. 2, 1485–1492 (2017).
    CAS  PubMed  Article  Google Scholar 

    124.
    Berleman, J. & Auer, M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ. Microbiol. 15, 347–354 (2013).
    CAS  PubMed  Article  Google Scholar 

    125.
    Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
    PubMed  Article  CAS  Google Scholar 

    126.
    Machtinger, R., Laurent, L. C. & Baccarelli, A. A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22, 182–193 (2016).
    CAS  PubMed  Google Scholar 

    127.
    Biller, S. J. et al. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 11, 394–404 (2017).
    CAS  PubMed  Article  Google Scholar 

    128.
    Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    129.
    Jacob, F. & Wollman, E. L. Viruses and genes. Sci. Am. 204, 93–107 (1961).
    CAS  PubMed  Article  Google Scholar 

    130.
    Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013).
    CAS  PubMed  Article  Google Scholar 

    131.
    Forterre, P. Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C. R. Chim. 14, 392–399 (2011).
    CAS  Article  Google Scholar 

    132.
    Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    133.
    Martinez-Garcia, M. et al. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 6, 703–707 (2012).
    CAS  PubMed  Article  Google Scholar 

    134.
    Martínez-García, M., Santos, F., Moreno-Paz, M., Parro, V. & Antón, J. Unveiling viral–host interactions within the ‘microbial dark matter’. Nat. Commun. 5, 1–8 (2014).
    Article  CAS  Google Scholar 

    135.
    Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019). This is probably one of the most comprehensive SCG studies within the context of the human gut microbiota, and unveils a total of 363 unique host–phage pairings, expanding the known host–phage network of the gut microbiota.
    PubMed  Article  CAS  Google Scholar 

    136.
    Munson-Mcgee, J. H. et al. A virus or more in (nearly) every cell: Ubiquitous networks of virus-host interactions in extreme environments. ISME J. 12, 1706–1714 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    137.
    Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    138.
    Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).
    CAS  PubMed  Article  Google Scholar 

    139.
    Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306–2318 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    140.
    Zanini, F. et al. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc. Natl Acad. Sci. USA 115, E12363–E12369 (2018).
    CAS  PubMed  Article  Google Scholar 

    141.
    Steuerman, Y. et al. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 6, 679–691 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    142.
    Wyler, E. et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat. Commun. 10, 1–14 (2019).
    Article  CAS  Google Scholar 

    143.
    Guo, Q., Duffy, S. P., Matthews, K., Islamzada, E. & Ma, H. Deformability based cell sorting using microfluidic ratchets enabling phenotypic separation of leukocytes directly from whole blood. Sci. Rep. 7, 1–11 (2017).
    Article  CAS  Google Scholar 

    144.
    Liu, W. et al. More than efficacy revealed by single-cell analysis of antiviral therapeutics. Sci. Adv. 5, eaax4761 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    145.
    Lasken, R. S. Single-cell genomic sequencing using multiple displacement amplification. Curr. Opin. Microbiol. 10, 510–516 (2007).
    CAS  PubMed  Article  Google Scholar 

    146.
    Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).
    CAS  PubMed  Article  Google Scholar 

    147.
    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).
    CAS  PubMed  Article  Google Scholar 

    148.
    Ahrendt, S. R. et al. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3, 1417–1428 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    149.
    McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    150.
    Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).
    PubMed  Article  CAS  Google Scholar 

    151.
    Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    152.
    Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22–24 (2014).
    CAS  PubMed  Article  Google Scholar 

    153.
    Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    154.
    Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).
    CAS  PubMed  Article  Google Scholar 

    155.
    Roux, S., Tournayre, J., Mahul, A., Debroas, D. & Enault, F. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics 15, 1–12 (2014).
    Article  CAS  Google Scholar 

    156.
    Watson, M., Schnettler, E. & Kohl, A. viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29, 1902–1903 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    157.
    Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS ONE 11, e0163111 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    158.
    Zheng, T. et al. Mining, analyzing, and integrating viral signals from metagenomic data. Microbiome 7, 1–15 (2019).
    CAS  Article  Google Scholar 

    159.
    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    160.
    Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    161.
    Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS ONE 14, e0222271 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    162.
    Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
    Article  CAS  Google Scholar 

    163.
    Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    164.
    Van Etten, J. L., Burbank, D. E., Kuczmarski, D. & Meints, R. H. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 219, 994–996 (1983).
    Article  Google Scholar 

    165.
    Maxwell, K. L. & Frappier, L. Viral proteomics. Microbiol. Mol. Biol. Rev. 71, 398–411 (2007).
    CAS  Article  Google Scholar 

    166.
    Lum, K. K. & Cristea, I. M. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev. Proteom. 13, 325–340 (2016).
    CAS  Article  Google Scholar 

    167.
    Cheng, W. & Schimert, K. A method for tethering single viral particles for virus-cell interaction studies with optical tweezers. Proc. SPIE 10723, 107233B (2018).
    Google Scholar 

    168.
    Ekeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).
    PubMed  Article  CAS  Google Scholar 

    169.
    Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    170.
    Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    171.
    Subramaniam, S., Bartesaghi, A., Liu, J., Bennett, A. E. & Sougrat, R. Electron tomography of viruses. Curr. Opin. Struct. Biol. 17, 596–602 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    172.
    Gamage, S. et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 13, e0199112 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    173.
    Martínez Martínez, J., Schroeder, D. C., Larsen, A., Bratbak, G. & Wilson, W. H. Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl. Environ. Microbiol. 73, 554–562 (2007).
    Article  CAS  Google Scholar 

    174.
    Martínez Martínez, J. et al. New lipid envelope-containing dsDNA virus isolates infecting Micromonas pusilla reveal a separate phylogenetic group. Aquat. Microb. Ecol. 74, 17–28 (2015).
    Article  Google Scholar  More

  • in

    Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora

    1.
    Aleklett K, Hart M, Shade A. The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany. 2014;92:253–66.
    Article  Google Scholar 
    2.
    Shade A, McManus PS, Handelsman J. Unexpected diversity during community succession in the apple flower microbiome. MBio. 2013;4:e00602–12.
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Ambika Manirajan B, Ratering S, Rusch V, Schwiertz A, Geissler‐Plaum R, Cardinale M, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species‐specificity. Environ Microbiol. 2016;18:5161–74.
    Article  Google Scholar 

    4.
    Tucker CM, Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc R Soc B: Biol Sci. 2014;281:20132637.
    Article  Google Scholar 

    5.
    Pusey PL, Rudell DR, Curry EA, Mattheis JP. Characterization of stigma exudates in aqueous extracts from apple and pear flowers. HortScience. 2008;43:1471–8.
    Article  Google Scholar 

    6.
    Stockwell V, McLaughlin R, Henkels M, Loper J, Sugar D, Roberts R. Epiphytic colonization of pear stigmas and hypanthia by bacteria during primary bloom. Phytopathology. 1999;89:1162–8.
    CAS  Article  Google Scholar 

    7.
    Steven B, Huntley RB, Zeng Q. The influence of flower anatomy and apple cultivar on the apple flower phytobiome. Phytobiomes. 2018;2:171–9.
    Article  Google Scholar 

    8.
    Norelli JL, Jones AL, Aldwinckle HS. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 2003;87:756–65.
    Article  Google Scholar 

    9.
    Thomson S, Wagner A, Gouk S, editors. Rapid epiphytic colonization of apple flowers and the role of insects and rain. VIII International Workshop on Fire Blight. vol 489. ISHS Acta Horticulturae; Kusadasi, Turkey. 1998.

    10.
    Pusey PL, Stockwell VO, Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology. 2009;99:571–81.
    Article  Google Scholar 

    11.
    Sinclair L, Osman OA, Bertilsson S, Eiler A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE. 2015;10:e0116955.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Pirc M, Ravnikar M, Tomlinson J, Dreo T. Improved fireblight diagnostics using quantitative real‐time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathol. 2009;58:872–81.
    CAS  Article  Google Scholar 

    13.
    Cui Z, Yuan X, Yang C-H, Huntley RB, Sun W, Wang J, et al. Development of a method to monitor gene expression in single bacterial cells during the interaction with plants and use to study the expression of the type III secretion system in single cells of Dickeya dadantii in potato. Front Microbiol. 2018;9:1429.
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Schloss PD, W S, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Rognes T, F T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Westcott SL, S P. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. MSphere. 2017;2:e00073–17.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Quast C, P E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Dixon P. VEGAN, a package of R functions for community ecology. J Vegetation Sci. 2003;14:927–30.
    Article  Google Scholar 

    20.
    Wickham H. ggplot2: elegant graphics for data analysis. Springer; New York. 2016.

    21.
    Palacio-Bielsa A, R M, Llop P, López MM. Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees. 2012;26:13–29.
    Article  Google Scholar 

    22.
    Kube M, M A, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K. The genome of Erwinia tasmaniensis strain Et1/99, a non‐pathogenic bacterium in the genus Erwinia. Environ Microbiol. 2008;10:2211–22.
    CAS  Article  Google Scholar 

    23.
    Geider K, A G, Du Z, Jakovljevic V, Jock S, Völksch B. Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evolut Microbiol. 2006;56:2937–43.
    CAS  Article  Google Scholar 

    24.
    Thomson S. The role of the stigma in fire blight infections. Phytopathology. 1986;76:476–82.
    Article  Google Scholar 

    25.
    Johnson KB, S V. Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol. 1998;36:227–48.
    CAS  Article  Google Scholar 

    26.
    Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Albrecht M, Padrón B, Bartomeus I, Traveset A. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc R Soc B: Biol Sci. 2014;281:20140773.
    Article  Google Scholar 

    28.
    Edlund AF, Swanson R, Preuss D. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell. 2004;16:S84–S97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Fridman S, Izhaki I, Gerchman Y, Halpern M. Bacterial communities in floral nectar. Environ Microbiol Rep. 2012;4:97–104.
    Article  Google Scholar 

    30.
    Yuan J, Chaparro JM, Manter DK, Zhang R, Vivanco JM, Shen Q. Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem. 2015;89:206–9.
    CAS  Article  Google Scholar 

    31.
    Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil. 2002;246:167–74.
    CAS  Article  Google Scholar 

    32.
    Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol. 2005;20:634–41.
    Article  Google Scholar 

    33.
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Pusey P, Stockwell V, Reardon C, Smits T, Duffy B. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology. 2011;101:1234–41.
    CAS  Article  Google Scholar 

    35.
    Herrera CM. Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology. 1995;76:1516–24.
    Article  Google Scholar 

    36.
    Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hamdan-Partida A, González-García S, de la Rosa García E, Bustos-Martínez J. Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat. Int J Med Microbiol. 2018;308:469–75.
    Article  Google Scholar 

    38.
    Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 2001;9:605–10.
    CAS  Article  Google Scholar 

    39.
    Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001;344:11–6.
    Article  Google Scholar 

    40.
    Paetzold B, Willis JR, de Lima JP, Knödlseder N, Brüggemann H, Quist SR, et al. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019;7:95.
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Trosvik P, Stenseth NC, Rudi K. Convergent temporal dynamics of the human infant gut microbiota. ISME J. 2010;4:151.
    CAS  Article  Google Scholar 

    42.
    Shenhav L, Furman O, Briscoe L, Thompson M, Silverman JD, Mizrahi I, et al. Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Comput Biol. 2019;15:e1006960.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Giatsis C, Sipkema D, Smidt H, Verreth J, Verdegem M. The colonization dynamics of the gut microbiota in tilapia larvae. PLoS ONE. 2014;9:e103641.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Booijink CC, El‐Aidy S, Rajilić‐Stojanović M, Heilig HG, Troost FJ, Smidt H, et al. High temporal and inter‐individual variation detected in the human ileal microbiota. Environ Microbiol. 2010;12:3213–27.
    CAS  Article  Google Scholar 

    45.
    Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. 2014;5:4500.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Colman DR, Toolson EC, Takacs‐Vesbach C. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol. 2012;21:5124–37.
    CAS  Article  Google Scholar 

    47.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027.
    Article  Google Scholar 

    48.
    Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007;318:812–4.
    Article  CAS  Google Scholar  More

  • in

    Groundwater arsenic

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. More

  • in

    Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils

    1.
    Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev. 1996;60:609–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Rhee TS, Brenninkmeijer CAM, Röckmann T. The overwhelming role of soils in the global atmospheric hydrogen cycle. Atmos Chem Phys. 2006;6:1611–25.
    CAS  Article  Google Scholar 

    3.
    Downey NVS, Randerson JT, Eiler JM. Molecular hydrogen uptake by soils in forest, desert, and marsh ecosystems in California. J Geophys Res. 2008;113:G03037.
    Article  Google Scholar 

    4.
    Schmitt S, Hanselmann A, Wollschläger U, Hammer S, Levin I. Investigation of parameters controlling the soil sink of atmospheric molecular hydrogen. Tellus B Chem Phys Meter. 2009;61:416–23.
    Article  CAS  Google Scholar 

    5.
    Novelli PC, Lang PM, Masarie KA, Hurst DF, Myers R, Elkins JW. Molecular hydrogen in the troposphere: Global distribution and budget. J Geophys Res. 1999;104:30427–44.
    CAS  Article  Google Scholar 

    6.
    Downey NVS, Randerson JT, Eiler JM. Temperature and moisture dependence of soil H2 uptake measured in the laboratory. Geophys Res Lett. 2006;33:1–5.
    Google Scholar 

    7.
    Häring V, Conrad R. Demonstration of two different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay. Biol Fertil Soils. 1994;17:125–8.
    Article  Google Scholar 

    8.
    Schuler S, Conrad R. Soils contain two different activities for oxidation of hydrogen. FEMS Microbiol Ecol. 1990;73:77–84.
    CAS  Article  Google Scholar 

    9.
    Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl Environ Microbiol. 2011;77:6027–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, et al. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl Environ Microbiol. 2015;81:1190–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Maimaiti J, Zhang Y, Yang J, Cen YP, Layzell DB, Peoples M, et al. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol. 2007;9:435–44.
    CAS  PubMed  Article  Google Scholar 

    12.
    Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008;2:1066–76.
    CAS  PubMed  Article  Google Scholar 

    13.
    Constant P, Hallenbeck PC. Chapter 5 – Hydrogenase. In: Pandey A, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen, 1st edition. Amsterdam: Elsevier; 2013.

    14.
    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilized energy source for microbial growth and survival. ISME J. 2016;10:761–77.
    CAS  PubMed  Article  Google Scholar 

    15.
    Constant P, Hallenbeck PC. Chapter 3 – Hydrogenase. In . Editors: Pandey A, Mohan SV, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen, 2nd edition. Amsterdam: Elsevier; 2019;49–78.

    16.
    Piché-Choquette S, Constant P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl Environ Microbiol. 2019;85:e02418–18.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61.
    CAS  PubMed  Article  Google Scholar 

    18.
    Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high‐affinity [NiFe]‐hydrogenase. Environ Microbiol. 2010;12:821–9.
    CAS  PubMed  Article  Google Scholar 

    19.
    Meredith LK, Rao D, Bosak T, Klepec-Ceraj V, Tada KR, Hansel CM, et al. Consumption of atmospheric hydrogen during the life cycle of soil‐dwelling actinobacteria. Environ Microbiol Rep. 2014;6:226–38.
    CAS  PubMed  Article  Google Scholar 

    20.
    Piché-Choquette S, Khdhiri M, Constant P. Survey of high-affinity H2-oxidizing bacteria in soil reveals their vast diversity yet underrepresentation in genomic databases. Micro Ecol. 2017;74:771–5.
    Article  CAS  Google Scholar 

    21.
    Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497–502.
    CAS  PubMed  Article  Google Scholar 

    22.
    Islam ZF, Cordero PRF, Feng J, Chen YJ, Bay SK, Jirapanjawat T, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801–13.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.
    CAS  PubMed  Article  Google Scholar 

    24.
    Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Barns SM, Cain EC, Sommerville L, Kuske CR. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol. 2007;73:3113–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Dedysh SN, Yilmaz P. Refining the taxonomic structure of the phylum Acidobacteria. Int J Syst Evol Microbiol. 2018;68:3796–806.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The ecology of acidobacteria: moving beyond genes and genomes. Front Microbiol. 2016;7:744.
    PubMed  PubMed Central  Google Scholar 

    28.
    Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria sub-division I, from a geothermally-heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ Microbiol. 2018;20:1041–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gödde R, Meuser K, Conrad R. Hydrogen consumption and carbon monoxide production in soils with different properties. Biol Fertil Soils. 2000;32:129–34.
    Article  Google Scholar 

    31.
    Meredith LK, Commane R, Keenan TF, Klosterman ST, Munger JW, Templer PH, et al. Ecosystem fluxes of hydrogen in a mid‐latitude forest driven by soil microorganisms and plants. Glob Change Biol. 2017;23:906–19.
    Article  Google Scholar 

    32.
    Turlapati SA, Minocha R, Bhiravarasa PS, Tisa LS, Thomas WK, Minocha SC. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol Ecol. 2012;83:478–93.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    33.
    Søndergaard D, Pedersen CNS, Greening C. HydDB: A web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:1–8.
    Article  CAS  Google Scholar 

    34.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inf. 2009;23:205–11.
    Google Scholar 

    38.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. N. Phytol. 2010;187:843–58.
    CAS  Article  Google Scholar 

    42.
    Spohn M, Pötsch EM, Eichorst SA, Woebken D, Wanek W, Richter A. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol Biochem. 2016;97:168–75.
    CAS  Article  Google Scholar 

    43.
    Šťovíček A, Kim M, Or D, Gillor O. Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep. 2017;7:1–19.
    Article  CAS  Google Scholar 

    44.
    Angel R. Total nucleic acid extraction from soil. Protocol Exchange. 2012; https://doi.org/10.1038/protex.2012.046.

    45.
    Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucl Acids Res. 1998;26:1628–35.
    CAS  PubMed  Article  Google Scholar 

    46.
    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol. 2015;6:731.
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Constant P, Chowdhury SP, Hesse L, Conrad R. Co-localization of atmospheric H2 oxidation activity and high affinity H2-oxidizing bacteria in non-axenic soil and sterile soil amended with Streptomyces sp. PCB7. Soil Biol Biochem. 2011;43:1888–93.
    CAS  Article  Google Scholar 

    53.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
    CAS  PubMed  Article  Google Scholar 

    56.
    Eichorst SA, Kuske CR, Schmidt TM. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl Environ Microbiol. 2011;77:586–96.
    CAS  PubMed  Article  Google Scholar 

    57.
    Koch IH, Gich F, Dunfield PF, Overmann J. Edaphobacter modestus gen. nov., sp. nov. and Edaphobacter aggregans sp. nov., two novel acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol. 2008;58:1114–22.
    CAS  PubMed  Article  Google Scholar 

    58.
    Eichorst SA, Breznak JA, Schmidt TM. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol. 2007;73:2708–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS ONE. 2015;10:e0146021.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol. 2003;69:7210–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Männistö MK, Rawat S, Starovoytov V, Haggblom MM. Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. Int J Syst Evol Microbiol. 2012;62:2097–106.
    PubMed  Article  CAS  Google Scholar 

    62.
    Crowe MA, Power JF, Morgan XC, Dunfield PF, Lagutin K, Rijpstra WIC, et al. Pyrinomonas methylaliphatogenes gen. nov., sp. nov., a novel group 4 thermophilic member of the phylum Acidobacteria from geothermal soils. Int J Syst Evol Microbiol. 2014;64:220–7.
    CAS  PubMed  Article  Google Scholar 

    63.
    Belova SE, Ravin NV, Pankratov TA, Rakitin AL, Ivanova AA, Beletsky AV, et al. Hydrolytic capabilities as a key to environmental success: chitinolytic and cellulolytic acidobacteria from acidic sub-arctic soils and boreal peatlands. Front Microbiol. 2018;9:1–14.
    Article  Google Scholar 

    64.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Article  Google Scholar 

    65.
    Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, et al. Three genomes in the phylum Acidobacteria provide insight into their lifestyles in soils. Appl Environ Microbiol. 2009;75:2046–56.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Schäfer C, Bommer M, Hennig SE, Jeoung JH, Dobbek H, Lenz O. Structure of an actinobacterial-type [NiFe]-hydrogenase reveals insight into O2-tolerant H2 oxidation. Structure. 2016;24:285–92.
    PubMed  Article  CAS  Google Scholar 

    67.
    Liot Q, Constant P. Breathing air to save energy–new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis. Microbiologyopen. 2016;5:47–59.
    CAS  PubMed  Article  Google Scholar 

    68.
    Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009;3:442–53.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Kolter R, Siegele DA, Tormo A. The stationary phase of the bacterial life cycle. Ann Rev Microbiol. 1993;47:855–74.
    CAS  Article  Google Scholar 

    71.
    Lennon JTJ, Jones SES. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev. 2011;9:119–30.
    CAS  Google Scholar 

    72.
    Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Morita RY. Is H2 the universal energy source for long-term survival? Micro Ecol. 1999;38:307–20.
    CAS  Article  Google Scholar 

    74.
    Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans

    1.
    Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. Nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649 (2013).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Chaturvedi, V. & Chaturvedi, S. Editorial: What is in a Name? A proposal to use geomycosis instead of white nose syndrome (WNS) to describe bat infection caused by geomyces destructans. Mycopathologia 171, 231–233. https://doi.org/10.1007/s11046-010-9385-3 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Frick, W. F., Puechmaille, S. J. & Willis, C. K. Bats in the Anthropocene: Conservation of Bats in a Changing World 245–262 (Springer, Berlin, 2016).
    Google Scholar 

    5.
    Bandouchova, H. et al. Alterations in the health of hibernating bats under pathogen pressure. Sci. Rep. 8, 6067 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Zukal, J. et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 6, 19829 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Drees, K. P. et al. Phylogenetics of a fungal invasion: Origins and widespread dispersal of white-nose syndrome. mBio 8, 11941–11917 (2017).
    Article  Google Scholar 

    8.
    Leopardi, S., Blake, D. & Puechmaille, S. J. White-nose syndrome fungus introduced from Europe to North America. Curr. Biol. 25, 217–219 (2015).
    Article  CAS  Google Scholar 

    9.
    Palmer, J. M. et al. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3 Genes Genomes Genet. 4, 1755–1763 (2014).
    Google Scholar 

    10.
    Trivedi, J. N. Population genomics and mutational history of the invasive, epidemic clone of Pseudogymnoascus destructans, causal agent of White-nose Syndrome in bats (University of Toronto, Toronto, 2017).
    Google Scholar 

    11.
    Rajkumar, S. S. et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis 17, 1273–1276 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lorch, J. M. et al. First detection of bat white-nose syndrome in western North America. mSphere 1, e00148-e1116 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Forsythe, A., Giglio, V., Asa, J. & Xu, J. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose syndrome pathogen, Pseudogymnoascus destructans, North America. Appl. Environ. Microbiol. 84, e00863-e1818. https://doi.org/10.1128/aem.00863-18 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Khankhet, J. et al. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS ONE 9, e104684 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Cryan, P. M., Meteyer, C. U., Boyles, J. G. & Blehert, D. S. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8, 1–8. https://doi.org/10.1186/1741-7007-8-135 (2010).
    Article  Google Scholar 

    16.
    Meteyer, C. U. et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 21, 411–414. https://doi.org/10.1177/104063870902100401 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    17.
    Pikula, J. et al. White-nose syndrome pathology grading in nearctic and palearctic bats. PLoS ONE 12, e0180435 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. 109, 6999–7003 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Flieger, M. et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep. 6, 33200 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Hayman, D. T. S., Pulliam, J. R. C., Marshall, J. C., Cryan, P. M. & Webb, C. T. Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Sci. Adv. 2, e1500831. https://doi.org/10.1126/sciadv.1500831 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Vol. 9 (2013).

    22.
    Wibbelt, G. in Emerging and Epizootic Fungal Infections in Animals 289–307 (Springer, Berlin, 2018).
    Google Scholar 

    23.
    Achterman, R. R. & White, T. C. Dermatophyte virulence factors: Identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J. Microbiol. 20, 12 (2011).
    Google Scholar 

    24.
    Chinnapun, D. Virulence factors involved in pathogenicity of dermatophytes. Walailak J. Sci. Technol. (WJST) 12, 573–580 (2015).
    Google Scholar 

    25.
    Pannkuk, E. L., Risch, T. S. & Savary, B. J. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans. PLoS ONE 10, e0120508. https://doi.org/10.1371/journal.pone.0120508 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Raudabaugh, D. B. & Miller, A. N. Nutritional capability of and substrate suitability for Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE 8, e78300. https://doi.org/10.1371/journal.pone.0078300 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Mascuch, S. J. et al. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS ONE 10, e0119668. https://doi.org/10.1371/journal.pone.0119668 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    van Burik, J. A. H. & Magee, P. T. Aspects of fungal pathogenesis in humans. Annu. Rev. Microbiol. 55, 743–772 (2001).
    PubMed  Article  Google Scholar 

    29.
    Donaldson, M. E. et al. Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: Implications in identifying virulence factors. Mycologia 110, 300–315 (2018).
    CAS  PubMed  Article  Google Scholar 

    30.
    Field, K. A. et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 11, e1005168. https://doi.org/10.1371/journal.ppat.1005168 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Reeder, S. M. et al. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections. Virulence 8, 1695–1707 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Lorch, J. M. et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105, 237–252. https://doi.org/10.3852/12-207 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Meyer, A. D., Stevens, D. F. & Blackwood, J. C. Predicting bat colony survival under controls targeting multiple transmission routes of white-nose syndrome. J. Theor. Biol. 409, 60–69 (2016).
    MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

    35.
    Gargas, A., Trest, M., Christensen, M., Volk, T. J. & Blehert, D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).
    Article  Google Scholar 

    36.
    Chaturvedi, V. et al. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with white nose syndrome (WNS). PLoS ONE 5, e10783 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Verant, M. L., Boyles, J. G., Waldrep, W. Jr., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Palmer, J. M., Drees, K. P., Foster, J. T. & Lindner, D. L. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat. Commun. 9, 35. https://doi.org/10.1038/s41467-017-02441-z (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Campbell, L. J., Walsh, D. P., Blehert, D. S. & Lorch, J. M. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildlife Dis. 56, 278–287 (2020).
    Article  Google Scholar 

    40.
    Reynolds, H. T. & Barton, H. A. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity. PLoS ONE 9, e86437. https://doi.org/10.1371/journal.pone.0086437 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Smyth, C., Schlesinger, S., Overton, B. & Butchkoski, C. The alternative host hypothesis and potential virulence genes in Geomyces destructans. Bat Res. News 54, 17–24 (2013).
    Google Scholar 

    42.
    Chaturvedi, V., DeFiglio, H. & Chaturvedi, S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Research 7, 2 (2018).
    Article  CAS  Google Scholar 

    43.
    Vanderwolf, K. J., Malloch, D., McAlpine, D. F. & Forbes, G. J. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 42, 9 (2013).
    Article  Google Scholar 

    44.
    Wilson, M. B., Held, B. W., Freiborg, A. H., Blanchette, R. A. & Salomon, C. E. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS ONE 12, e0178968. https://doi.org/10.1371/journal.pone.0178968 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Gabriel, K. T., Neville, J. J., Pierce, G. E. & Cornelison, C. T. Lipolytic activity and the utilization of fatty acids associated with bat sebum by Pseudogymnoascus destructans. Mycopathologia 184, 625–636. https://doi.org/10.1007/s11046-019-00381-4 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Park, M., Do, E. & Jung, W. H. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41, 67–72. https://doi.org/10.5941/myco.2013.41.2.67 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Carlini, C. R. & Ligabue-Braun, R. Ureases as multifunctional toxic proteins: A review. Toxicon 110, 90–109 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Cox, G. M., Mukherjee, J., Cole, G. T., Casadevall, A. & Perfect, J. R. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 68, 443–448 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Vylkova, S. & Lorenz, M. C. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 10, e1003995. https://doi.org/10.1371/journal.ppat.1003995 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Vylkova, S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 13, e1006149. https://doi.org/10.1371/journal.ppat.1006149 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Shawcross, D. L. et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 48, 1202–1212 (2008).
    CAS  PubMed  Article  Google Scholar 

    52.
    O’Donoghue, A. J. et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PNAS 112, 7478–7483. https://doi.org/10.1073/pnas.1507082112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    53.
    Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of humidity on development of Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 24, 54–64 (2017).
    Article  Google Scholar 

    54.
    Kolařík, M. et al. Geosmithia associated with bark beetles and woodborers in the western USA: Taxonomic diversity and vector specificity. Mycologia 109, 185–199. https://doi.org/10.1080/00275514.2017.1303861 (2017).
    CAS  Article  PubMed  Google Scholar 

    55.
    Garland, J. L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28, 213–221. https://doi.org/10.1016/0038-0717(95)00112-3 (1996).
    CAS  Article  Google Scholar 

    56.
    Dobranic, J. K. & Zak, J. C. A microtiter plate procedure for evaluating fungal functional diversity. Mycologia 91, 756–765 (1999).
    Article  Google Scholar 

    57.
    Harch, B. D., Correll, R. L., Meech, W., Kirkby, C. A. & Pankhurst, C. E. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J. Microbiol. Methods 30, 91–101. https://doi.org/10.1016/s0167-7012(97)00048-1 (1997).
    CAS  Article  Google Scholar 

    58.
    Sobek, E. A. & Zak, J. C. The Soil FungiLog procedure: Method and analytical approaches toward understanding fungal functional diversity. Mycologia 95, 590–602 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Kouker, G. & Jaeger, K.-E. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53, 211–213 (1987).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Lupan, D. M. & Nziramasanga, P. Collagenolytic activity of Coccidioides immitis. Infect. Immun. 51, 360–361 (1986).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Saleh-Rastin, N., Petersen, M., Coleman, S. & Hubbell, D. The rhizosphere and plant growth 188–188 (Springer, Berlin, 1991).
    Google Scholar 

    62.
    NziramasangaM, P. & Lupan, D. Elastase activity of Coccidioides immitis. J. Med. Microbiol. 19, 109–114 (1985).
    Article  Google Scholar 

    63.
    Dietz, M. & Kalko, E. K. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B. 176, 223–231 (2006).
    PubMed  Article  Google Scholar 

    64.
    Sephton-Clark, P. C. S. & Voelz, K. In Advances in applied microbiology (eds Sima, S. & Geoffrey, M. G.) 117–157 (Academic Press, New York, 2018).
    Google Scholar 

    65.
    Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    66.
    Martínková, N. et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE 5, e13853 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Větrovský, T., Kolařík, M., Žifčáková, L., Zelenka, T. & Baldrian, P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 16, 388–401 (2016).
    PubMed  Article  CAS  Google Scholar 

    68.
    Crous, P. et al. Fungal planet description sheets: 558–624. Persoonia 38, 240 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Hubka, V. et al. A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Syst. Evol. 302, 1267–1299 (2016).
    CAS  Article  Google Scholar 

    70.
    Kubátová, A., Hujslová, M., Frisvad, J. C., Chudíčková, M. & Kolařík, M. Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils. Mycol. Progr. 18, 215–228 (2019).
    Article  Google Scholar 

    71.
    Gabrielová, A. et al. The oomycete Pythium oligandrum can suppress and kill the causative agents of dermatophytoses. Mycopathologia 183, 751–764 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Plant agrodiversity to the rescue

    1.
    FAO. In World Food Summit — Food for All Ch. 2 (FAO, 1996).
    2.
    Challinor, A. J. et al. Nat. Clim. Change 4, 287–291 (2014).
    Article  Google Scholar 

    3.
    Myers, S. S. et al. Annu. Rev. Publ. Health 38, 259–277 (2017).
    Article  Google Scholar 

    4.
    Woolfe, J. A. Sweet Potato: An Untapped Food Resource (Cambridge Univ. Press, 1992).

    5.
    Heider, B. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00924-4 (2020).

    6.
    Meyer, R. S. & Purugganan, M. D. Nat. Rev. Genet. 14, 840–852 (2013).
    CAS  Article  Google Scholar 

    7.
    Pironon, S. et al. Nat. Clim. Change 9, 758–763 (2019).
    Article  Google Scholar 

    8.
    Borrell, J. S. et al. Environ. Exp. Bot. 170, 103872 (2020).
    CAS  Article  Google Scholar 

    9.
    Wu, S. et al. Nat. Commun. 9, 4580 (2018).
    Article  Google Scholar 

    10.
    Khoury, C. K. et al. Front. Plant Sci. 6, 251 (2015).
    Article  Google Scholar 

    11.
    Shiotani, I., Huang, Z. Z., Sakamoto, S. & Miyazaki, T. Acta Hortic. 380, 388–398 (1994).
    Article  Google Scholar 

    12.
    Dempewolf, H. et al. Crop Sci. 57, 1070–1082 (2017).
    Article  Google Scholar 

    13.
    Castañeda-Álvarez, N. P. et al. Nat. Plants 2, 16022 (2016).
    Article  Google Scholar 

    14.
    Cámara-Leret, R., Fortuna, M. A. & Bascompte, J. Proc. Natl Acad. Sci. USA 116, 9913–9918 (2019).
    Article  Google Scholar 

    15.
    McCouch, S. et al. Nature 499, 23–24 (2013).
    CAS  Article  Google Scholar  More