1.
Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant diversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).
CAS PubMed Google Scholar
2.
Dornelas, M. et al. Assemblage time series reveal biodiversity change but no systematic loss. Science 344, 296–299 (2014).
CAS PubMed Google Scholar
3.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
CAS PubMed Google Scholar
4.
McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).
PubMed Google Scholar
5.
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
6.
Schroeder-Georgi, T. et al. From pots to plots: hierarchical trait-based prediction of plant performance in a mesic grassland. J. Ecol. 104, 206–218 (2016).
Google Scholar
7.
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
Google Scholar
8.
Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).
PubMed Google Scholar
9.
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
PubMed Google Scholar
10.
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
Google Scholar
11.
Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).
CAS PubMed Google Scholar
12.
Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
PubMed Google Scholar
13.
Grigulis, K. et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J. Ecol. 101, 47–57 (2013).
Google Scholar
14.
Liu, J. et al. Explaining maximum variation in productivity requires phylogenetic diversity and single functional traits. Ecology 96, 176–183 (2015).
PubMed Google Scholar
15.
Yuan, Z. et al. Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia 182, 1175–1185 (2016).
PubMed Google Scholar
16.
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
CAS Google Scholar
17.
Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).
Google Scholar
18.
Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
Google Scholar
19.
Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).
CAS PubMed Google Scholar
20.
Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).
CAS Google Scholar
21.
Butterfield, B. J. & Suding, K. N. Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. J. Ecol. 101, 9–17 (2013).
Google Scholar
22.
Gustafsson, C. & Norkko, A. Quantifying the importance of functional traits for primary production in aquatic plant communities. J. Ecol. 107, 154–166 (2018).
Google Scholar
23.
Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).
PubMed Google Scholar
24.
Clark, C. M., Flynn, D. F. B., Butterfield, B. J. & Reich, P. B. Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS ONE 7, e52821 (2012).
CAS PubMed PubMed Central Google Scholar
25.
Flombaum, P. & Sala, O. E. Effects of plant species traits on ecosystem processes: experiments in Patagonian steppe. Ecology 93, 227–234 (2012).
PubMed Google Scholar
26.
Laliberté, E. & Tylianikis, J. M. Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. Ecology 93, 145–155 (2012).
PubMed Google Scholar
27.
Lienin, P. & Kleyer, M. Plant trait responses to the environment and effects on ecosystem properties. Basic Appl. Ecol. 13, 301–311 (2012).
Google Scholar
28.
Chanteloup, P. & Bonis, A. Functional diversity in root and above-ground traits in a fertile grassland shows a detrimental effect on productivity. Basic Appl. Ecol. 14, 208–216 (2013).
Google Scholar
29.
Jiang, J. et al. Litter species traits, but not richness, contribute to carbon and nitrogen dynamics in an alpine meadow on the Tibetan Plateau. Plant Soil 373, 931–941 (2013).
CAS Google Scholar
30.
Lavorel, S. et al. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 24, 942–948 (2013).
Google Scholar
31.
Makkonen, M., Berg, M. P., van Logtestijn, R. S. P., van Hal, J. R. & Aerts, R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987–997 (2013).
Google Scholar
32.
Ziter, C., Bennett, E. M. & Gonzalez, A. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4, 1–21 (2013).
33.
Barrufol, M. et al. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8, e81246 (2014).
Google Scholar
34.
Bu, W., Zang, R. & Ding, Y. Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest. Acta Oecol. (Montrouge) 55, 1–7 (2014).
Google Scholar
35.
Carvalho, G. H., Batalha, M. A., Silva, I. A., Cianciaruso, M. V. & Petchey, O. L. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savannah? Oecologia 175, 923–935 (2014).
PubMed Google Scholar
36.
Cavanaugh, K. C. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 23, 563–573 (2014).
Google Scholar
37.
Hantsch, L. et al. No plant functional diversity effects of foliar fungal pathogens in experimental tree communities. Fungal Divers. 66, 139–151 (2014).
Google Scholar
38.
Lasky, J. R. et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 17, 1158–1167 (2014).
PubMed Google Scholar
39.
Milcu, A. et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecol. Lett. 17, 435–444 (2014).
PubMed Google Scholar
40.
Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr. 23, 311–322 (2014).
Google Scholar
41.
Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).
Google Scholar
42.
Schuldt, A. et al. Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytol. 202, 864–873 (2014).
PubMed PubMed Central Google Scholar
43.
Álvarex-Yépiz, J. C. & Dovĉiak, M. Enhancing ecosystem function through conservation: threatened plants increase local carbon storage in tropical dry forests. Trop. Conserv. Sci. 8, 999–1008 (2015).
Google Scholar
44.
Debouk, H., de Bello, F. & Sebastià, M.-T. Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming. PLoS ONE 10, e0141899 (2015).
PubMed PubMed Central Google Scholar
45.
Deraison, H., Badenhausser, I., Loeuille, N., Scherber, C. & Gross, N. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass. Ecol. Lett. 18, 1346–1355 (2015).
PubMed Google Scholar
46.
Frainer, A., Moretti, M. S., Xu, W. & Gessner, M. O. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96, 550–561 (2015).
PubMed Google Scholar
47.
Haase, J. et al. Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos 124, 1674–1685 (2015).
Google Scholar
48.
Kröber, W. et al. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecol. Evol. 5, 3541–3556 (2015).
PubMed PubMed Central Google Scholar
49.
Lohbeck, M., Poorter, L., Martínez-Ramos, M. & Bongers, F. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252 (2015).
PubMed Google Scholar
50.
Paquette, A., Joly, S. & Messier, C. Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale? Ecol. Evol. 5, 1774–1783 (2015).
PubMed PubMed Central Google Scholar
51.
Rivest, D., Paquette, A., Shipley, B., Reich, P. B. & Messier, C. Tree communities rapidly alter soil microbial resistance and resilience to drought. Funct. Ecol. 29, 570–578 (2015).
Google Scholar
52.
Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).
Google Scholar
53.
Schwarz, B. et al. Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Eur. J. Soil Biol. 67, 17–26 (2015).
Google Scholar
54.
Tardif, A. & Shipley, B. The relationship between functional dispersion of mixed-leaf litter mixtures and species’ interactions during decomposition. Oikos 124, 1050–1057 (2015).
Google Scholar
55.
Valencia, E. et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol. 206, 660–671 (2015).
PubMed Google Scholar
56.
Van Rooijen, N. M. et al. Plant species diversity mediates ecosystem stability of natural dune grasslands in response to drought. Ecosystems 18, 1383–1394 (2015).
Google Scholar
57.
Zhang, Y., Wang, R., Kaplan, D. & Liu, J. Which components of plant diversity are most correlated with ecosystem properties? A case study in a restored wetland in northern China. Ecol. Indic. 49, 228–236 (2015).
Google Scholar
58.
Barkaoui, K., Roumet, C. & Volaire, F. Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agric. Ecosyst. Environ. 231, 122–132 (2016).
Google Scholar
59.
Chiang, J.-M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).
PubMed Google Scholar
60.
De Vries, F. T. & Bardgett, R. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).
PubMed PubMed Central Google Scholar
61.
Jewell, M. D. et al. Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos 126, 959–971 (2016).
Google Scholar
62.
Lin, D. et al. Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409, 435–446 (2016).
CAS Google Scholar
63.
Mason, N. W. H. et al. Leaf economics spectrum-productivity relationships in intensively grazed pastures depend on dominant species identity. Ecol. Evol. 6, 3079–3091 (2016).
PubMed PubMed Central Google Scholar
64.
Mensah, S., Veldtman, R., Assogbadjo, A. E., Kakaï, R. G. & Seifert, T. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 6, 7546–7557 (2016).
PubMed PubMed Central Google Scholar
65.
Milcu, A. et al. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modelling approach. Ecology 97, 2044–2054 (2016).
PubMed Google Scholar
66.
Na, Z., Zhengwen, W., Xinqing, S. & Kun, W. Diversity components and assembly patterns of plant functional traits determine community spatial stability under resource gradients in a desert steppe. Rangel. J. 38, 511–521 (2016).
Google Scholar
67.
Ouyang, S. et al. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. For. Ecol. Manage. 372, 291–302 (2016).
Google Scholar
68.
Prado-Junior, J. A. et al. Conservative species drive biomass productivity in tropical dry forests. J. Ecol. 104, 817–827 (2016).
Google Scholar
69.
Ratcliffe, S. et al. Modes of functional biodiversity control on tree productivity across the European continent. Glob. Ecol. Biogeogr. 25, 251–262 (2016).
Google Scholar
70.
Roscher, C. et al. Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. Perspect. Plant Ecol. Evol. Syst. 20, 32–45 (2016).
Google Scholar
71.
Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).
Google Scholar
72.
Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).
PubMed Google Scholar
73.
Wu, J., Wurst, S. & Zhang, X. Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands. Sci. Rep. 6, 35649 (2016).
CAS PubMed PubMed Central Google Scholar
74.
Zhu, J., Jiang, L. & Zhang, Y. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci. Rep. 6, 34105 (2016).
CAS PubMed PubMed Central Google Scholar
75.
Zuo, X. et al. Testing associations of plant functional diversity with carbon and nitrogen storage along a restoration gradient of sandy grassland. Front. Plant Sci. 7, 189 (2016).
PubMed PubMed Central Google Scholar
76.
Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).
Google Scholar
77.
Ali, A. & Yan, E.-R. Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest. Ecol. Indic. 83, 158–168 (2017).
Google Scholar
78.
Ali, H. E., Reineking, B. & Münkemüller, T. Effects of plant functional traits on soil stability: intraspecific variability matters. Plant Soil 411, 359–375 (2017).
CAS Google Scholar
79.
Barbe, L. et al. Functionally dissimilar neighbors accelerate litter decomposition in two grass species. New Phytol. 214, 1092–1102 (2017).
PubMed Google Scholar
80.
Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).
PubMed Google Scholar
81.
Chillo, V., Ojeda, R. A., Capmourteres, V. & Anand, M. Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa. J. Appl. Ecol. 54, 986–996 (2017).
Google Scholar
82.
Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).
Google Scholar
83.
Fornoff, F. et al. Functional flower traits and their diversity drive pollinator visitation. Oikos 126, 1020–1030 (2017).
CAS Google Scholar
84.
Fujii, S. et al. Disentangling relationships between plant diversity and decomposition processes under forest restoration. J. Appl. Ecol. 54, 80–90 (2017).
Google Scholar
85.
Grace, J. B., Harrison, S. & Cornell, H. Is biotic resistance enhanced by natural variation in diversity? Oikos 126, 1484–1492 (2017).
Google Scholar
86.
Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).
PubMed PubMed Central Google Scholar
87.
Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).
PubMed Google Scholar
88.
Henneron, L. et al. Plant interactions as biotic drivers of plasticity in leaf litter traits and decomposability of Quercus petraea. Ecol. Monogr. 87, 321–340 (2017).
Google Scholar
89.
Hertzog, L. R., Ebeling, A., Weisser, W. W. & Meyer, S. T. Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere 8, e01990 (2017).
Google Scholar
90.
Khlifa, R., Paquette, A., Messier, C., Reich, P. B. & Munson, A. D. Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecol. Evol. 7, 7965–7974 (2017).
PubMed PubMed Central Google Scholar
91.
Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).
CAS PubMed Google Scholar
92.
Laird-Hopkins, B. C., Bréchet, L. M., Trujillo, B. C. & Sayer, E. J. Tree functional diversity affects litter decomposition and arthropod community composition in a tropical forest. Biotropica 49, 903–911 (2017).
Google Scholar
93.
Li, W. et al. Community-level trait responses and intra-specific trait variability play important roles in driving community productivity in an alpine meadow on the Tibetan Plateau. J. Plant Ecol. 10, 592–600 (2017).
Google Scholar
94.
Mao, W., Felton, A. J. & Zhang, T. Linking changes to intraspecific trait diversity to community functional diversity and biomass in response to snow and nitrogen addition within an Inner Mongolian grassland. Front. Plant Sci. 8, 339 (2017).
PubMed PubMed Central Google Scholar
95.
Meyer, S. T. et al. Consistent increase in herbivory along two experimental plant diversity gradients over multiple years. Ecosphere 8, e01876 (2017).
Google Scholar
96.
Mori, A. S., Osono, T., Cornelissen, J. H. C., Craine, J. & Uchida, M. Biodiversity ecosystem function relationships change through primary succession. Oikos 126, 1637–1649 (2017).
Google Scholar
97.
Pan, Y. et al. Climatic and geographic factors affect ecosystem multifunctionality through biodiversity in the Tibetan alpine grasslands. J. Mt. Sci. 14, 1604–1614 (2017).
Google Scholar
98.
Peco, B., Navarro, E., Carmona, C. P., Medina, N. G. & Marques, M. J. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agric. Ecosyst. Environ. 249, 215–225 (2017).
Google Scholar
99.
Pérez-Ramos, I. M. et al. Climate variability and community stability in Mediterranean shrublands: the role of functional diversity and soil environment. J. Ecol. 105, 1335–1346 (2017).
Google Scholar
100.
Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017).
Google Scholar
101.
Refsland, T. K. & Fraterrigo, J. M. Both canopy and understory traits act as response–effect traits in fire-managed forests. Ecosphere 8, e02036 (2017).
Google Scholar
102.
Sasaki, T. et al. Differential responses and mechanisms of productivity following experimental species loss scenarios. Oecologia 183, 785–795 (2017).
PubMed Google Scholar
103.
Shihan, A. et al. Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biol. Fertil. Soils 53, 171–185 (2017).
Google Scholar
104.
Steinauer, K., Fischer, F. M., Roscher, C., Scheu, S. & Eisenhauer, N. Spatial plant resource acquisition traits explain plant community effects on soil microbial communities. Pedobiologia (Jena) 65, 50–57 (2017).
Google Scholar
105.
Sun, Z. et al. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J. Plant Ecol. 10, 146–157 (2017).
Google Scholar
106.
van der Sande, M. T. et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 105, 1223–1234 (2017).
Google Scholar
107.
Wei, X., Reich, P. B., Hobbie, S. E. & Kazanski, C. E. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Glob. Change Biol. 23, 4717–4727 (2017).
Google Scholar
108.
Zhang, Q. et al. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol. Evol. 7, 1605–1615 (2017).
PubMed PubMed Central Google Scholar
109.
Zirbel, C. R., Bassett, T., Grman, E. & Brudvig, L. A. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. J. Appl. Ecol. 54, 1070–1079 (2017).
Google Scholar
110.
Blesh, J. Functional traits in cover crop mixtures: biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 55, 38–48 (2018).
Google Scholar
111.
Chillo, V., Vázquez, D. P., Amoroso, M. M. & Bennett, E. M. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Funct. Ecol. 32, 1390–1399 (2018).
Google Scholar
112.
Fu, H. et al. Hydrological gradients and functional diversity of plants drive ecosystem processes on Poyang Lake wetland. Ecohydrology 11, e1950 (2018).
Google Scholar
113.
Hao, M., Zhang, C., Zhao, X. & von Gadow, K. Functional and phylogenetic diversity determine wood productivity in temperate forest. Ecol. Evol. 8, 2395–2406 (2018).
PubMed PubMed Central Google Scholar
114.
Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).
Google Scholar
115.
Navarro-Cano, J. A., Verdú, M. & Goberna, M. Trait-based selection of nurse plants to restore ecosystem functions in mine tailings. J. Appl. Ecol. 55, 1195–1206 (2018).
Google Scholar
116.
Orwin, K. H. et al. Season and dominant species effects on plant trait–ecosystem function relationships in intensively grazed grassland. J. Appl. Ecol. 55, 236–245 (2018).
Google Scholar
117.
Roscher, C. et al. Origin context of trait data matters for predictions of community performance of a grassland biodiversity experiment. Ecology 99, 1214–1226 (2018).
PubMed Google Scholar
118.
Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).
Google Scholar
119.
Xie, G., Lundholm, J. T. & MacIvor, J. S. Phylogenetic diversity and plant trait composition predict multiple ecosystem functions in green roofs. J. Total Environ. 628–629, 1017–1026 (2018).
Google Scholar
120.
Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).
CAS PubMed Google Scholar
121.
Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).
Google Scholar
122.
Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).
Google Scholar
123.
Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
Google Scholar
124.
Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).
Google Scholar
125.
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Google Scholar
126.
van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
PubMed Google Scholar
127.
Sørenson, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K. Dan. Vid. Selsk. 5, 1–34 (1948).
Google Scholar
128.
Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–191 (2007).
CAS PubMed Google Scholar
129.
Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).
PubMed Google Scholar
130.
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2017).
PubMed Google Scholar
131.
Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol. Rev. 94, 648–661 (2019).
PubMed Google Scholar
132.
Roscher, C. et al. Interspecific trait differences rather than intraspecific trait variation increase the extent and filling of plant community space with increasing plant diversity in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 33, 42–50 (2018).
Google Scholar
133.
Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).
PubMed Google Scholar
134.
Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Global quantitative synthesis of ecosystem functioning across climatic zones and ecosystem types. Glob. Ecol. Biogeogr. 29, 1139–1176 (2020).
135.
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
136.
Reich, P. B. et al. Relationship of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114, 471–482 (1998).
PubMed Google Scholar
137.
Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).
Google Scholar
138.
Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
PubMed Google Scholar
139.
Millenium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis (Island Press, 2005).
140.
Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
141.
Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. J. Ecol. 105, 298–309 (2016).
Google Scholar
142.
Ellenberg, H. Vegetation Mitteleuropas mit den Alpen. In ökologischer, dynamischer und historischer Sicht 5th edn (Ulmer, 1996).
143.
Jochum, M. et al. The results of biodiversity-ecosystem functioning experiments are realistic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1280-9 (2020).
144.
de Groot, R., Wilson, M. & Boumans, R. A typology for the classification description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408 (2002).
Google Scholar
145.
Gotschall, F. et al. Tree species identity determines wood decomposition via microclimatic effects. Ecol. Evol. 9, 12113–12127 (2019).
Google Scholar
146.
Salamanca, F., Kaneko, N. & Katagiri, S. Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Appl. Soil Ecol. 22, 271–281 (2003).
Google Scholar
147.
Hu, W. et al. Nitrogen along the hydrological gradient of marsh sediments in a subtropical estuary: pools, processes and fluxes. Int. J. Environ. Res. Public Health 16, 2043 (2019).
CAS PubMed Central Google Scholar
148.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
149.
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
150.
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Google Scholar
151.
Bartón, K. Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.0.2. (2018); https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf
152.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Google Scholar More