More stories

  • in

    Seasonal modulation of phytoplankton biomass in the Southern Ocean

    1.
    Parekh, P., Dutkiewicz, S., Follows, M. J. & Ito, T. Atmospheric carbon dioxide in a less dusty world. Geophys. Res. Lett. 33, L03610 (2006).
    2.
    Longhurst, A. R. In Ecological Geography of the Sea (Second Edition) (ed Longhurst, A. R.) 19– 34 (Academic Press, Burlington, 2007).

    3.
    Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. J. du Cons. Int. pour l’ Exploration de. la Mer. 18, 287–295 (1953).
    Article  Google Scholar 

    4.
    Gran, H. H. & Braarud, T. A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine (including observations on hydrography, chemistry and turbidity). J. Biol. Board Can. 1, 279–467 (1935).
    CAS  Article  Google Scholar 

    5.
    Gran, H. H. Phytoplankton. methods and problems. J. du Cons. Int. Pour l’Exoploration de. la Mer. 7, 343–358 (1932).
    Article  Google Scholar 

    6.
    Atkins, W. R. G. The chemistry of sea-water in relation to the productivity of the sea. Sci. Prog. 7, 298–312 (1932).
    Google Scholar 

    7.
    Uchida, T. et al. Southern Ocean phytoplankton blooms observed by biogeochemical floats. J. Geophys. Res.: Oceans 124 (2019).

    8.
    Banse, K. In Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G., Woodhead, A. & Vivirito, K.) vol. 43, 409–440 (Springer US, Boston, MA, 1992).

    9.
    Evans, G. T. & Parslow, J. S. A model of annual plankton cycles. Biol. Oceanogr. 3, 327–347 (1985).
    Google Scholar 

    10.
    Behrenfeld, M. J. & Boss, E. S. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob. Change Biol. 24, 55–77 (2018).
    ADS  Article  Google Scholar 

    11.
    Behrenfeld, M. J. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91, 977–989 (2010).
    PubMed  Article  Google Scholar 

    12.
    Boss, E. & Behrenfeld, M. In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys. Res. Lett. https://doi.org/10.1029/2010GL044174. L18603 (2010).

    13.
    Mignot, A., Ferrari, R. & Claustre, H. Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom. Nat. Commun. 9, 190 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Westberry, T. K. et al. Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean. Glob. Biogeochem. Cycles 30, 175–190 (2016).
    ADS  CAS  Article  Google Scholar 

    15.
    Behrenfeld, M. J. et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 10, 118–122 (2017).
    ADS  CAS  Article  Google Scholar 

    16.
    Arrigo, K. R., van Dijken, G. L. & Bushinsky, S. Primary production in the Southern Ocean, 1997-2006. J. Geophys. Res.: Oceans https://doi.org/10.1029/2007JC004551. C08004 (2008).

    17.
    Buitenhuis, E. T., Hashioka, T. & Quéré, C. L. Combined constraints on global ocean primary production using observations and models. Glob. Biogeochem. Cycles 27, 847–858 (2013).
    ADS  CAS  Article  Google Scholar 

    18.
    Behrenfeld, M. J. Climate-mediated dance of the plankton. Nat. Clim. Change 4, 880–887 (2014).
    ADS  Article  Google Scholar 

    19.
    Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).
    Article  Google Scholar 

    20.
    Banse, K. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanography 7, 13–20 (1994).
    Article  Google Scholar 

    21.
    Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Annual cycles of ecological disturbance and recovery underlying the subarctic atlantic spring plankton bloom. Glob. Biogeochem. Cycles 27, 526–540 (2013).
    ADS  CAS  Article  Google Scholar 

    22.
    Zehr, J. P. & Ward, B. B. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl. Environ. Microbiol. 68, 1015–1024 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. http://www.nature.com/doifinder/10.1038/ngeo1765 (2013).

    24.
    Wong, A. P. S. & Riser, S. C. Profiling float observations of the upper ocean under sea ice off the wilkes land coast of Antarctica. J. Phys. Oceanogr. 41, 1102–1115 (2011).
    ADS  Article  Google Scholar 

    25.
    Johnson, K. S. et al. Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res.: Oceans 122, 6416–6436 (2017).
    ADS  Article  Google Scholar 

    26.
    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Arrigo, K. R. et al. Early spring phytoplankton dynamics in the western Antarctic Peninsula. J. Geophys. Res.: Oceans 122, 9350–9369 (2017).
    ADS  Article  Google Scholar 

    28.
    Geider, R. J., Platt, T. & Raven, J. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar. Ecol. Prog. Ser. 30, 93–104 (1986).
    ADS  CAS  Article  Google Scholar 

    29.
    Martin, J., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156–158 (1990).

    30.
    Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science 315, 612–617 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, GB3003 (2004).
    ADS  Article  CAS  Google Scholar 

    32.
    Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    33.
    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).
    ADS  Article  Google Scholar 

    34.
    Smith, M. J., Tittensor, D. P., Lyutsarev, V. & Murphy, E. Inferred support for disturbance-recovery hypothesis of north atlantic phytoplankton blooms. J. Geophys. Res.: Oceans 120, 7067–7090 (2015).
    ADS  Article  Google Scholar 

    35.
    Yang, B. et al. Phytoplankton phenology in the North Atlantic: insights from profiling float measurements. Front. Mar. Sci. 7, 139 (2020).
    ADS  Article  Google Scholar 

    36.
    Gruber, N. et al. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23 (2009).

    37.
    Gruber, N., Landschützer, P. & Lovenduski, N. S. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11, 159–186 (2019).
    ADS  Article  Google Scholar 

    38.
    Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Pahlow, M. & Prowe, F. Model of optimal current feeding in zooplankton. Mar. Ecol. Prog. Ser. 403, 129–144 (2010).
    ADS  Article  Google Scholar 

    40.
    Johnson, K. S. et al. SOCCOM float data — Snapshot 2019-03-12. In Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Float Data Archive (UC San Diego Library Digital Collections, 2019).

    41.
    Haëntjens, N., Boss, E. & Talley, L. D. Revisiting ocean color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res.: Oceans https://doi.org/10.1002/2017JC012844 (2017).

    42.
    Graff, J. R. et al. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep Sea Res. Part I: Oceanographic Res. Pap. 102, 16–25 (2015).
    CAS  Article  Google Scholar 

    43.
    Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Reply to a comment by Stephen M. Chiswell on: Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom- by M. J. Behrenfeld et al. (2013). Glob. Biogeochemical Cycles 27, 1294–1296 (2013).
    ADS  CAS  Article  Google Scholar 

    44.
    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res.: Oceans https://doi.org/10.1029/2004JC002378. C12003 (2004).

    45.
    Tagliabue, A. et al. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences 9, 2333–2349 (2012).
    ADS  CAS  Article  Google Scholar 

    46.
    Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochemical Cycles 22, GB2024 (2008).
    ADS  Google Scholar 

    47.
    Ricchiazzi, P., Yang, S., Gautier, C. & Sowle, D. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorological Soc. 79, 2101–2114 (1998).
    ADS  Article  Google Scholar 

    48.
    Banse, K. Rates of phytoplankton cell division in the field and in iron enrichment experiments. Limnol. Oceanogr. 36, 1886–1898 (1991).
    ADS  CAS  Article  Google Scholar 

    49.
    Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19, GB1006 (2005).
    ADS  Article  CAS  Google Scholar 

    50.
    Geider, R. J. Light and temperature dependence of the carbon to chlorophyll ratio in microalgae an cyanobacteria: Implications for physiology and growth of phytoplankton. N. Phytologist 106, 1–34 (1987).
    CAS  Article  Google Scholar 

    51.
    Arteaga, L., Pahlow, M. & Oschlies, A. Global patterns of phytoplankton nutrient and light colimitation inferred from an optimality-based model. Glob. Biogeochem. Cycles 28, 648–661 (2014).
    ADS  CAS  Article  Google Scholar 

    52.
    Geider, R. J. & LaRoche, J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Res. 39, 275–301 (1994).
    CAS  Article  Google Scholar 

    53.
    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I: Oceanographic Res. Pap. 42, 641–673 (1995).
    ADS  Article  Google Scholar 

    54.
    Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the argo program. Prog. Oceanogr. 82, 81–100 (2009).
    ADS  Article  Google Scholar 

    55.
    Bushinsky, S. M., Gray, A. R., Johnson, K. S. & Sarmiento, J. L. Oxygen in the Southern Ocean from argo floats: determination of processes driving air-sea fluxes. J. Geophys. Res.: Oceans 122, 8661–8682 (2017).
    ADS  CAS  Article  Google Scholar 

    56.
    Arteaga, L. A., Pahlow, M., Bushinsky, S. M. & Sarmiento, J. L. Nutrient controls on export production in the Southern Ocean. Glob. Biogeochem. Cycles https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GB006236 (2019), More

  • in

    Carbon isotope evidence for large methane emissions to the Proterozoic atmosphere

    1.
    Kasting, J. What caused the rise of atmospheric O2?. Chem. Geol. 362, 13–25 (2013).
    ADS  CAS  Article  Google Scholar 
    2.
    Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Org. Geochem. 27(5–6), 185–193 (1997).
    CAS  Article  Google Scholar 

    3.
    Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24(10), 867–870 (1996).
    ADS  CAS  Article  Google Scholar 

    4.
    Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106(1–2), 117–134 (2001).
    ADS  CAS  Article  Google Scholar 

    5.
    Aharon, P. Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidation events. Precambrian Res. 137, 207–222 (2005).
    CAS  Google Scholar 

    6.
    Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315(4), 275–316 (2015).
    ADS  CAS  Article  Google Scholar 

    7.
    Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event). Earth Sci. Rev. 127, 242–261 (2013).
    ADS  CAS  Article  Google Scholar 

    8.
    Bekker, A. et al. Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet. Sci. Lett. 271(1–4), 278–291 (2008).
    ADS  CAS  Article  Google Scholar 

    9.
    Maheshwari, A. et al. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay. Precambrian Res. 182(4), 274–299 (2010).
    ADS  CAS  Article  Google Scholar 

    10.
    Melezhik, V. A., Huhma, H., Condon, D. J., Fallick, A. E. & Whitehouse, M. J. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35(7), 655–658 (2007).
    ADS  CAS  Article  Google Scholar 

    11.
    Frauenstein, F., Veizer, J., Beukes, N., Van Niekerk, H. S. & Coetzee, L. L. Transvaal supergroup carbonates: implications for paleoproterozoic δ18O and δ13C records. Precambr. Res. 175, 149–160 (2009).
    ADS  CAS  Article  Google Scholar 

    12.
    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361, 931–950 (2006).
    CAS  Article  Google Scholar 

    13.
    Frimmel, H. E. On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation. Precambrian Res. 182, 239–253 (2010).
    ADS  CAS  Article  Google Scholar 

    14.
    Shields, G. A., Brasier, M. D., Stille, P. & Dorjnamjaa, D. I. Factors contributing to high δ13C values in Cryogenian limestones of western Mongolia. Earth Planet. Sci. Lett. 196(3–4), 99–111 (2002).
    ADS  CAS  Article  Google Scholar 

    15.
    De PaulaSantos, G. M., Caetano-filho, S., Babinski, M. & Enzweiler, J. Rare elements of carbonate rocks from the Bambui Group, southern Sao Francisco Basin, Brasil, and their significance as paleoenvironmental proxies. Precambrian Res. 305, 327–340 (2017).
    Article  CAS  Google Scholar 

    16.
    Klaebe, R. M., Kennedy, M. J., Jarrett, A. J. M. & Brocks, J. J. Local paleoenvironmental controls on the carbon-isotope record defining the Bitter Springs Anomaly. Geobiology 15(1), 65–80 (2017).
    CAS  PubMed  Article  Google Scholar 

    17.
    Melezhik, V. A., Fallick, A. E., Medvedev, P. V. & Makarikhin, V. V. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Sci. Rev. 48(1–2), 71–120 (1999).
    ADS  CAS  Article  Google Scholar 

    18.
    Blättler, C. L. et al. Two-billion-year-old evaporites capture Earth’s great oxidation. Science 360(6386), 320–323 (2018).
    PubMed  Article  CAS  Google Scholar 

    19.
    Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s Great Oxidation. Proc. Natl. Acad. Sci. 116(35), 17207–17212 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Partin, C. A. et al. Uranium in iron formations and the rise of atmospheric oxygen. Chem. Geol. 362, 82–90 (2013).
    ADS  CAS  Article  Google Scholar 

    21.
    Kanzaki, Y. & Murakami, T. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 174, 263–290 (2016).
    ADS  CAS  Article  Google Scholar 

    22.
    Sheen, A. I. et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227, 75–95 (2018).
    ADS  CAS  Article  Google Scholar 

    23.
    Galili, N. et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365(6452), 469–473 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Knauth, L. P. Temperature and salinity of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005).
    Article  Google Scholar 

    25.
    Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F. & Robert, F. Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem. Perspect. Lett. 3, 55–65 (2017).
    Article  Google Scholar 

    26.
    Kasting, J. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005).
    ADS  CAS  Article  Google Scholar 

    27.
    Kasting, J. Early Earth: faint young Sun redux. Nature 464(7289), 687 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Zinke, J., Reijmer, J. J. & Thomassin, B. Systems tracts sedimentology in the lagoon of Mayotte associated with the Holocene transgression. Sed. Geol. 160, 57–79 (2003).
    CAS  Article  Google Scholar 

    29.
    Feuillet, N. MAYOBS1 Cruise, RV Marion Dufresne (Institut de Physique du Globe de Paris, 2019), https://doi.org/https://doi.org/10.17600/18001217

    30.
    Leboulanger, C. et al. Microbial diversity and cyanobacterial production in Dziani Dzaha crater lake, a unique tropical thalassohaline environment. PLoS ONE 12, e0168879 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Milesi, V. et al. Formation of Mg-smectite during lacustrine carbonates early diagenesis: study case of the volcanic crater lake Dziani Dzaha (Mayotte – Indian Ocean). Sedimentology (2018).

    32.
    Gérard, E. et al. Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front. Microbiol. 9, 1–20 (2018).
    Article  Google Scholar 

    33.
    Cellamare, M. et al. Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). FEMS Microbiol. Ecol. 94(8), 1–25 (2018).
    Article  CAS  Google Scholar 

    34.
    Hugoni, M. et al. Spatiotemporal variations in microbial diversity across the three domains of life in a tropical thalassohaline lake (Dziani Dzaha, Mayotte Island). Molecular Ecology (2018).

    35.
    Marty, B., Avice, G., Bekaert, D. V. & Broadley, M. W. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. Compte Rendus Geosci. 350(4), 154–163 (2018).
    ADS  Article  Google Scholar 

    36.
    Hay, W. W. et al. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate ocean circulation and life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240(1–2), 3–46 (2006).
    Article  Google Scholar 

    37.
    Marin-Carbonne, J., Chaussidon, M. & Robert, F. Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochim. Cosmochim. Acta 92, 129–147 (2012).
    ADS  CAS  Article  Google Scholar 

    38.
    Marin-Carbonne, J., Robert, F. & Chaussidon, M. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures?. Precambr. Res. 247, 223–234 (2014).
    ADS  CAS  Article  Google Scholar 

    39.
    Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560(7719), 471–475 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    41.
    Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl. Acad. Sci. 115(16), 4105–4110 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Stüeken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015).
    ADS  Article  CAS  Google Scholar 

    43.
    Bartley, J. K. & Kah, L. C. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32(2), 129–132 (2004).
    ADS  CAS  Article  Google Scholar 

    44.
    Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10(2), 135–139 (2017).
    ADS  CAS  Article  Google Scholar 

    45.
    Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A. & Katsev, S. Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nat. Geosci. 12(5), 375–380 (2019).
    ADS  CAS  Article  Google Scholar 

    46.
    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7(2), 107–112 (2011).
    CAS  Article  Google Scholar 

    47.
    Reinhard, C. T., Lalonde, S. V. & Lyons, T. W. Oxidative sulfide dissolution on the early Earth. Chem. Geol. 362, 44–55 (2013).
    ADS  CAS  Article  Google Scholar 

    48.
    Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110(1–4), 25–57 (2012).
    ADS  Google Scholar 

    49.
    Planavsky, N. J., Bekker, A., Hofmann, A., Owens, J. D. & Lyons, T. W. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl. Acad. Sci. 109(45), 18300–18305 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Knoll, A. H., Bergmann, K. D. & Strauss, J. V. Life: the first two billion years. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–13 (2016).
    Article  Google Scholar 

    51.
    Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2014).
    Article  Google Scholar 

    52.
    Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7(1), 1–7 (2009).
    MathSciNet  CAS  PubMed  Article  Google Scholar 

    53.
    Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7(4), 257 (2014).
    ADS  CAS  Article  Google Scholar 

    54.
    Peters, S. E., Husson, J. M. & Wilcots, J. The rise and fall of stromatolites in shallow marine environments. Geology 45(6), 487–490 (2017).
    ADS  Article  Google Scholar 

    55.
    Gu, B., Schelske, C. L. & Hodell, D. A. Extreme 13C enrichments in a shallow hypereutrophic lake: implications for carbon cycling. Limnol. Oceanogr. 49, 1152–1159 (2004).
    ADS  CAS  Article  Google Scholar 

    56.
    Zhu, Z., Chen, J. A. & Zeng, Y. Abnormal positive δ13C values of carbonates in lake Caohai, southwest China, and their possible relation to lower temperature. Quatern. Int. 288, 85–93 (2013).
    Article  Google Scholar 

    57.
    Birgel, D. et al. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo- /Neoproterozoic stromatolites?. Geobiology 13, 245–266 (2015).
    CAS  PubMed  Article  Google Scholar 

    58.
    Valero-Garcés, B. L., Delgado-Huertas, A., Ratto, N. & Navas, A. Large 13C enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina. Earth Planet. Sci. Lett. 171(2), 253–266 (1999).
    ADS  Article  Google Scholar 

    59.
    Anoop, A. et al. Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India. J. Quat. Sci. 28(4), 349–359 (2013).
    Article  Google Scholar 

    60.
    Talbot, M. R. & Kelts, K. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14(11), 912–916 (1996).
    ADS  Article  Google Scholar 

    61.
    Saba, V. S., Friedrichs, M. A., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. & Ishizaka, J. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences. 2011, 489-503

    62.
    Lambrecht, N. et al. Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. Geobiology 18(1), 54–69 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18(4), (2004)

    64.
    Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6(3), eaax5343 (2020).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Caetano-Filho, S., Sansjofre, P., Ader, M., Paula-Santos, G.M., Guacaneme, C., Babinski, M., Bedoya-Rueda, C., Kuchenbecker, M., Reis, H. L. & Trindade R. I. A large epeiric methanogenic Bambuì sea in the core of Gondwana supercontinent? Geosci. Front. (2020)

    66.
    Karl, D. M. & Knauer, G. A. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep Sea Res. Part A Oceanogr. Res. Papers 38, S921–S942 (1991).
    ADS  Article  Google Scholar 

    67.
    Katsev, S. & Crowe, S. A. Organic carbon burial efficiencies in sediments: the power law of mineralization revisited. Geology 43(7), 607–610 (2015).
    ADS  CAS  Article  Google Scholar 

    68.
    Cowie, G. L., Hedges, J. I., Prahl, F. G. & De Lange, G. J. Elemental and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect. Geochim. Cosmochim. Acta 59(1), 33–46 (1995).
    ADS  CAS  Article  Google Scholar 

    69.
    Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376(6535), 53–56 (1995).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Kuntz, L. B., Laakso, T. A., Schrag, D. P. & Crowe, S. A. Modeling the carbon cycle in Lake Matano. Geobiology 13(5), 454–461 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Laakso, T. A. & Schrag, D. P. Methane in the Precambrian atmosphere. Earth Planet. Sci. Lett. 522, 48–54 (2019).
    ADS  CAS  Article  Google Scholar 

    72.
    Lambert, M. & Fréchette, J. L. Analytical techniques for measuring fluxes of CO2 and CH4 from hydroelectric reservoirs and natural water bodies. In Greenhouse Gas Emissions—Fluxes and Processes, Springer, Berlin, Heidelberg, 37–60 (2005).

    73.
    Abril, G. et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem. Cycles 19(4), 1–16 (2005).
    Article  CAS  Google Scholar 

    74.
    Assayag, N., Rivé, K., Ader, M., Jézéquel, D. & Agrinier, P. Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples. Rapid Commun. Mass Spectrom. 20(15), 2243–2251 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Lebeau, O., Busigny, V., Chaduteau, C. & Ader, M. Organic matter removal for the analysis of carbon and oxygen isotope compositions of siderite. Chem. Geol. 372, 54–61 (2014).
    ADS  CAS  Article  Google Scholar 

    76.
    Galès, A., Triplet, S., Geoffroy, T., Roques, C., Carré, C., Le Floc’h, E., Lanfranchi, M., Simier, M., d’Orbcastel, E. R., Przybyla, C. & Fouilland, E. Control of the pH for marine microalgae polycultures: A key point of CO2 fixation improvement in intensive cultures. J. CO2 Util. 38, 187–193 (2020)

    77.
    Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis (Blackwell Science, Oxford, 1997).
    Google Scholar 

    78.
    Silsbe, G. M. & Malkin, S. Y. Package “phytotools”: Phytoplankton Production Tools. CRAN library repository. https://cran.r-project.org/package=phytotools (2015).

    79.
    Eilers, P. H. C. & Peeters, J. C. H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42(3–4), 199–215 (1988).
    Article  Google Scholar 

    80.
    Kirk, J. T. O. Light and Photosynthesis in Aquatic Environments 3rd edn. (Cambridge University Press, UK, 2010).
    Google Scholar 

    81.
    Berner, R. A. Early Diagenesis: A Theoretical Approach (Princeton University Press, Princeton, 1980).
    Google Scholar 

    82.
    Milesi, V. P. et al. Early diagenesis of lacustrine carbonates in volcanic settings: the role of magmatic CO2 (Lake Dziani Dzaha, Mayotte, Indian Ocean). ACS Earth Space Chem. 4(3), 363–378 (2020).
    CAS  Article  Google Scholar  More

  • in

    Correction: NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton

    Affiliations

    Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
    Hugo Berthelot, Stéphane L’Helguen, Jean-Francois Maguer & Nicolas Cassar

    Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY, 10964, USA
    Solange Duhamel

    Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
    Seaver Wang & Nicolas Cassar

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Code 616, Greenbelt, MD, USA
    Ivona Cetinić

    GESTAR/Universities Space Research Association, Columbia, MD, USA
    Ivona Cetinić

    Authors
    Hugo Berthelot

    Solange Duhamel

    Stéphane L’Helguen

    Jean-Francois Maguer

    Seaver Wang

    Ivona Cetinić

    Nicolas Cassar

    Corresponding authors
    Correspondence to Hugo Berthelot or Nicolas Cassar. More

  • in

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization

    1.
    Paustian, K. et al. Perspective climate-smart soils. Nature 532, 49–57 (2016).
    CAS  Article  Google Scholar 
    2.
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
    Article  Google Scholar 

    3.
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).
    CAS  Article  Google Scholar 

    4.
    Miltner, A., Bombach, P., Schmidt-Brucken, B. & Kastner, M. SOM genesis: Microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).
    CAS  Article  Google Scholar 

    5.
    Solomon, D. et al. Micro- and nano-environments of carbon sequestration: multi-element STXM–NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations. Chem. Geol. 329, 53–73 (2012).
    CAS  Article  Google Scholar 

    6.
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).
    CAS  Article  Google Scholar 

    7.
    Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75–75 (2011).
    CAS  Article  Google Scholar 

    8.
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).
    Article  Google Scholar 

    9.
    Bradford, M. A., Keiser, A. D., Davies, C. A., Mersmann, C. A. & Strickland, M. S. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry 113, 271–281 (2013).
    CAS  Article  Google Scholar 

    10.
    Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).
    CAS  Article  Google Scholar 

    11.
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).
    CAS  Article  Google Scholar 

    12.
    Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E. & Stuart Grandy, A. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019).
    Article  Google Scholar 

    13.
    Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biol. Biochem. 75, 54–63 (2014).
    CAS  Article  Google Scholar 

    14.
    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 10, 2593–2604 (2016).
    CAS  Article  Google Scholar 

    15.
    Griffiths, R. I. et al. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654 (2011).
    Article  Google Scholar 

    16.
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. 109, 21390–21395 (2012).
    CAS  Article  Google Scholar 

    17.
    Whitaker, J. et al. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru. Front. Microbiol. 5, 720 (2014).
    Article  Google Scholar 

    18.
    Zheng, Q. et al. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biol. Biochem. 128, 45–55 (2019).
    CAS  Article  Google Scholar 

    19.
    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).
    Article  Google Scholar 

    20.
    Hagerty, S. B., Allison, S. D. & Schimel, J. P. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry 140, 269–283 (2018).
    CAS  Article  Google Scholar 

    21.
    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).
    Article  Google Scholar 

    22.
    Ward, S. E. et al. Legacy effects of grassland management on soil carbon to depth. Glob. Change Biol. 22, 2929–2938 (2016).
    Article  Google Scholar 

    23.
    Kramer, M. G., Lajtha, K. & Aufdenkampe, A. K. Depth trends of soil organic matter C:N and 15N natural abundance controlled by association with minerals. Biogeochemistry 136, 237–248 (2017).
    CAS  Article  Google Scholar 

    24.
    Naveed, M. et al. Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur. J. Soil Sci. 68, 806–816 (2017).
    CAS  Article  Google Scholar 

    25.
    Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).
    Article  CAS  Google Scholar 

    26.
    Kleber, M., Sollins, P. & Sutton, R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85, 9–24 (2007).
    Article  Google Scholar 

    27.
    Kopittke, P. M. et al. Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Glob. Change Biol. 12, 3218–3221 (2017).
    Google Scholar 

    28.
    Sauvadet, M., Lashermes, G., Alavoine, G. & Recous, S. High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biol. Biochem. 123, 64–73 (2018).
    CAS  Article  Google Scholar 

    29.
    Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).
    Article  CAS  Google Scholar 

    30.
    Averill, C., Waring, B. G. & Hawkes, C. V. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture. Glob. Change Biol. 22, 1957–1964 (2016).
    Article  Google Scholar 

    31.
    Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. 114, 6322–6327 (2017).
    CAS  Article  Google Scholar 

    32.
    Liu, Z. et al. Precipitation thresholds regulate net carbon exchange at the continental scale. Nat. Commun. 9, 3596 (2018).
    Article  CAS  Google Scholar 

    33.
    Roller, B. R. & Schmidt, T. M. The physiology and ecological implications of efficient growth. ISME J. 9, 1481–1487 (2015).
    Article  Google Scholar 

    34.
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).
    Article  Google Scholar 

    35.
    Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).
    CAS  Article  Google Scholar 

    36.
    Manzoni, S. et al. Reviews and syntheses: carbon use efficiency from organisms to ecosystems—definitions, theories, and empirical evidence. Biogeosciences 15, 5929–5949 (2018).
    CAS  Article  Google Scholar 

    37.
    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323–aac9323 (2015).
    Article  CAS  Google Scholar 

    38.
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29, 111–129 (1999).
    CAS  Article  Google Scholar 

    39.
    Apostel, C. et al. Food for microorganisms: position-specific 13C labeling and 13C-PLFA analysis reveals preferences for sorbed or necromass C. Geoderma 312, 86–94 (2018).
    CAS  Article  Google Scholar 

    40.
    Cáceres, M. DE & Legendre, P. Associations between species and groups of sites:nindices and statistical inference. Ecology 90, 3566–3574 (2009).
    Article  Google Scholar 

    41.
    Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).
    CAS  Article  Google Scholar 

    42.
    Agricultural Budgeting & Costing Book, 81st edn. (Agro Business Consultants Ltd, 2015) https://abcbooks.co.uk/product/abc-budgeting-costing-book-2/.

    43.
    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).
    CAS  Article  Google Scholar 

    44.
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).
    Article  Google Scholar 

    45.
    Throckmorton, H. M., Bird, J. A., Dane, L., Firestone, M. K. & Horwath, W. R. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol. Lett. 15, 1257–1265 (2012).
    Article  Google Scholar 

    46.
    Elias, D. M. O. et al. Functional differences in the microbial processing of recent assimilates under two contrasting perennial bioenergy plantations. Soil Biol. Biochem. 114, 248–262 (2017).
    CAS  Article  Google Scholar 

    47.
    Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Chang. Biol. 9, 1322–1332 (2003).
    Article  Google Scholar 

    48.
    Emmett, B. A. et al. Countryside Survey. Soils Manual. NERC/Centre for Ecology & Hydrology. 180pp. (CS Technical Report No.3/07 CEH Project Number: C03259) (2008) http://www.countrysidesurvey.org.uk/sites/default/files/CS_UK_2007_TR3%20-%20Soils%20Manual.pdf.

    49.
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
    CAS  Article  Google Scholar 

    50.
    Muyzer, G., Muyzer, G., Smalla, K. & Smalla, K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Int. J. Gen. Mol. Microbiol. 73, 127–141 (1998).
    CAS  Google Scholar 

    51.
    Yu, Y., Lee, C., Kim, J. & Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89, 670–679 (2005).
    CAS  Article  Google Scholar 

    52.
    Ihrmark, K. et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).
    CAS  Article  Google Scholar 

    53.
    Gweon, H. S. et al. PIPITS: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).
    Article  Google Scholar 

    54.
    Crossman, Z. M., Abraham, F. & Evershed, R. P. Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environ. Sci. Technol. 38, 1359–1367 (2004).
    CAS  Article  Google Scholar  More

  • in

    Characterization of bacterial communities associated with the exotic and heavy metal tolerant wetland plant Spartina alterniflora

    1.
    Williams, S. L. & Grosholz, E. D. The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuar. Coasts 31, 3–20 (2008).
    Article  Google Scholar 
    2.
    Blumenthal, D., Mitchell, C. E., Pysek, P. & Jarosik, V. Synergy between pathogen release and resource availability in plant invasion. Proc. Natl. Acad. Sci. U.S.A. 106, 7899–7904 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Jemaneh, Z. et al. Effects of Spartinaalterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front. Microbiol. 4, 243 (2013).
    Google Scholar 

    4.
    Miché, L., Battistoni, F., Gemmer, S., Belghazi, M. & Reinhold-Hurek, B. Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol. Plant Microbe Interact. 19, 502–511 (2006).
    PubMed  Article  CAS  Google Scholar 

    5.
    Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).
    CAS  Article  Google Scholar 

    6.
    Sobariu, D. L. et al. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. Nat. Biotechnol. 39, 125–134 (2016).
    Google Scholar 

    7.
    Förstner, U. & Wittmann, G. T. W. Metal Pollution in the Aquatic Environment (Springer, Berlin, 1983).
    Google Scholar 

    8.
    Watling, R. J. & Watling, H. R. Metal surveys in South African estuaries. I. Swartkops River. Water S A. 8, 26–35 (1982).
    CAS  Google Scholar 

    9.
    Singh, J. & Kalamdhad, A. S. Chemical speciation of heavy metals in compost and compost amended soil—a review. Int. J. Environ. Eng. Res. 2, 27–37 (2013).
    Google Scholar 

    10.
    Sun, Q., Ye, Z. H., Wang, X. R. & Wong, M. H. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J. Plant Physiol. 164, 1489–1498 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Phillips, D. P., Human, L. R. D. & Adams, J. B. Wetland plants as indicators of heavy metal contamination. Mar. Pollut. Bull. 92, 227–232 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Kloepper, J. W., Leong, J., Teintze, M. & Schroth, M. N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886 (1980).
    ADS  CAS  Article  Google Scholar 

    13.
    Ma, Y., Prasad, M. N. V., Rajkumar, M. & Freitas, H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29, 248–258 (2011).
    CAS  PubMed  Article  Google Scholar 

    14.
    Wan, S., Pei, Q., Liu, J. & Zhou, H. X. The positive and negative effects of exotic Spartina alterniflora in China. Ecol. Eng. 35, 444–452 (2009).
    Article  Google Scholar 

    15.
    Zhang, Y., Huang, G., Wang, W., Chen, L. & Lin, G. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 93, 588–597 (2012).
    PubMed  Article  Google Scholar 

    16.
    Zhang, Q. et al. Abundance and composition of denitrifiers in response to Spartina alterniflora invasion in estuarine sediment. Can. J. Microbiol. 59, 825–836 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Zhao, C., Liu, X., Bai, J., Fengchun, L. & Li, J. Impact of Spartina alterniflora on benthic macro-invertebrates communities on mangrove wetland in Xicungang Estuary, Guangxi. Biodivers. Sci. 22, 630–639 (2014).
    Article  Google Scholar 

    18.
    Youwei, H., Dan, L., Anyi, H., Han, W. & Jinsheng, C. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Can. J. Microbiol. 61, 723–733 (2015).
    Article  CAS  Google Scholar 

    19.
    Yu, R. L. & Hu, G. R. Speciation and ecological risk of heavy metals in sediments from Quanzhou bay. J. Huaqiao Univ. 29, 419–423 (2008).
    Google Scholar 

    20.
    Hu, G., Yu, R., Zhao, J. & Chen, L. Distribution and enrichment of acid-leachable heavy metals in the intertidal sediments from Quanzhou Bay, southeast coast of China. Environ. Monit. Assess. 173, 107–116 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Wu, Y. & Liu, R. The Plants’ Adaptability to Environment of Quanzhou Bay Estuary Wetland (Science Press, Beijing, 2011).
    Google Scholar 

    22.
    Lv, X. et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci. World J. 2014, 437684 (2014).
    Google Scholar 

    23.
    Zhu, J. et al. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar. Pollut. Bull. 70, 134–139 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Wilhelm, R. C., Niederberger, T. D., Greer, C. & Whyte, L. G. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can. J. Microbiol. 57, 303–315 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Sorokin, D. Y. et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Björnsson, L., Hugenholtz, P., Tyson, G. W. & Blackall, L. L. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 148, 2309–2318 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C. & Banfield, J. F. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 1–17 (2013).
    Article  Google Scholar 

    29.
    Krzmarzick, M. J. et al. Natural niche for organohalide-respiring Chloroflexi. Appl. Environ. Microbiol. 78, 393–401 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Watts, J. E., Fagervold, S. K., May, H. D. & Sowers, K. R. A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology 151, 2039–2046 (2005).
    CAS  PubMed  Article  Google Scholar 

    31.
    Jiang, X. T. et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66, 96–104 (2013).
    PubMed  Article  Google Scholar 

    32.
    Yin, H. et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci. Rep. 5, 14266 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Li, Y. H., Zhu, J. N., Zhai, Z. H. & Zhang, Q. Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol. Lett. 309, 84–93 (2010).
    CAS  PubMed  Google Scholar 

    34.
    Wang, M., Chen, J. K. & Bo, L. I. Characterization of bacterial community structure and diversity in rhizosphere soils of three plants in rapidly changing salt marshes using 16S rDNA. Pedosphere 17, 545–556 (2007).
    CAS  Article  Google Scholar 

    35.
    Zhang, Q. et al. Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Sci. Rep. 9, 4950 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Nie, M., Wang, M. & Bo, L. Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China. Ecol. Eng. 35, 1804–1808 (2009).
    Article  Google Scholar 

    37.
    Muyzer, G. & Stams, A. J. M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6, 441–454 (2008).
    CAS  PubMed  Article  Google Scholar 

    38.
    Vladár, P., Rusznyák, A., Márialigeti, K. & Andrea, K. B. Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. Microb. Ecol. 56, 64–75 (2008).
    PubMed  Article  CAS  Google Scholar 

    39.
    Zhou, H. W. et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 5, 741–749 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Halkjær, N. P., Caroline, K., Seviour, R. J. & Lund, N. J. Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33, 6 (2009).
    Google Scholar 

    41.
    Ma, Y., Rajkumar, M. & Freitas, H. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard. Mater. 166, 1154–1161 (2009).
    CAS  PubMed  Article  Google Scholar 

    42.
    Ma, Y., Rajkumar, M. & Freitas, H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75, 719–725 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    He, M. et al. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillusfusiformis ZC1. J. Hazard. Mater. 185, 682–688 (2011).
    CAS  PubMed  Article  Google Scholar 

    44.
    Raja, C. E. & Omine, K. Characterization of boron resistant and accumulating bacteria Lysinibacillusfusiformis M1, Bacilluscereus M2, Bacilluscereus M3, Bacilluspumilus M4 isolated from former mining site, Hokkaido, Japan. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 47, 1341–1349 (2012).
    CAS  Article  Google Scholar 

    45.
    Vendan, R. T., Yu, Y. J., Sun, H. L. & Rhee, Y. H. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48, 559–565 (2010).
    CAS  PubMed  Article  Google Scholar 

    46.
    Gantar, M., Rowell, P., Kerby, N. W. & Sutherland, I. W. Role of extracellular polysaccharide in the colonization of wheat (Triticumvulgare L.) roots by N2-fixing cyanobacteria. Biol. Fertil. Soils 19, 41–48 (1995).
    CAS  Article  Google Scholar 

    47.
    Barraquio, W. L., Revilla, L. & Ladha, J. K. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil. 194, 15–24 (1997).
    CAS  Article  Google Scholar 

    48.
    Ladha, J. K., Barraquio, W. L. & Watanabe, I. Isolation and identification of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can. J. Microbiol. 29, 1301–1308 (1983).
    Article  Google Scholar 

    49.
    Reinhold-Hurek, B. et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloafusca (L.) Kunth), and description of two species, Azoarcusindigens sp. nov. and Azoarcuscommunis sp. nov.. Int. J. Syst. Bacteriol. 43, 574–584 (1993).
    Article  Google Scholar 

    50.
    Iniguez, A., Dong, Y. & Triplett, E. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant Microbe Interact. 17, 1078–1085 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Reiter, B., Bürgmann, H., Burg, K. & Sessitsch, A. Endophytic nifH gene diversity in African sweet potato. Can. J. Microbiol. 49, 549–555 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Ryan, R. P., Kieran, G., Ashley, F., Ryan, D. J. & Dowling, D. N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Lee, S. et al. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J. Bacteriol. 186, 5384–5391 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Subhash, C. V., Jagdish, K. L. & Anil, K. T. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91, 127–141 (2001).
    Article  Google Scholar 

    55.
    Wakelin, S., Warren, R., Harvey, P. & Ryder, M. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fertil. Soils 40, 36–43 (2004).
    CAS  Article  Google Scholar 

    56.
    Compant, S. et al. Endophytic colonization of Vitisvinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71, 1685–1693 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Wang, Y., Brown, H. N., Crowley, D. E. & Szaniszlo, P. J. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ. 16, 579–585 (1993).
    CAS  Article  Google Scholar 

    58.
    Cindy, L., Jaco, V., Fiona, P., Edward, R. B. & Moore, S. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002).
    Article  Google Scholar 

    59.
    Puente, M. E., Li, C. Y. & Bashan, Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ. Exp. Bot. 66, 402–408 (2009).
    CAS  Article  Google Scholar 

    60.
    Grichko, V. P., Filby, B. & Glick, B. R. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81, 45–53 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Grichko, V. P. & Glick, B. R. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39, 11–17 (2001).
    CAS  Article  Google Scholar 

    62.
    Liao, C. et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10, 1351–1361 (2007).
    CAS  Article  Google Scholar 

    63.
    Thomas, F., Giblin, A. E., Cardon, Z. G. & Sievert, S. M. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front. Microbiol. 5, 309 (2014).
    PubMed  PubMed Central  Google Scholar 

    64.
    Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W. & Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Wang, F., Men, X., Zhang, G., Liang, K. & Wu, L. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express. 8, 182 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 

    68.
    Menhinick, E. F. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 45, 859–861 (1964).
    Article  Google Scholar 

    69.
    Pielou, E. C. An Introduction to Mathematical Ecology (Wiley, New York, 1969).
    Google Scholar 

    70.
    Gordon, S. A. & Weber, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26, 192–195 (1951).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118, 10–15 (2010).
    Article  Google Scholar 

    72.
    Payne, S. M. Detection, isolation, and characterization of siderophores. Method Enzymol. 235, 329–344 (1994).
    CAS  Article  Google Scholar 

    73.
    Liang, S. X., Wang, X., Wu, H. & Sun, H. W. Determination of 9 heavy metal elements in sediment by ICP-MS using microwave digestion for sample preparation. Spectrosc. Spectr. Anal. 32, 809–812 (2012).
    CAS  Google Scholar  More

  • in

    The fast-acting “pulse” of Heinrich Stadial 3 in a mid-latitude boreal ecosystem

    1.
    Goñi, M. F. S. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).
    ADS  Article  Google Scholar 
    2.
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
    ADS  Article  Google Scholar 

    3.
    McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Jouzel, J. et al. Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).
    ADS  CAS  Article  Google Scholar 

    5.
    Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).
    ADS  Article  Google Scholar 

    6.
    Cvijanovic, I. & Chiang, J. C. H. Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Clim. Dyn. 40, 1435–1452 (2013).
    Article  Google Scholar 

    7.
    Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard-Oeschger events. Nat. Geosci. 10, 36–40 (2017).
    ADS  CAS  Article  Google Scholar 

    8.
    Fischer, H., Siggaard-Andersen, M.-L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition. Rev. Geophys. 45, 1–26 (2007).

    9.
    Biscaye, P. E. et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res. Ocean. 102, 26765–26781 (1997).
    ADS  CAS  Article  Google Scholar 

    10.
    Bory, A. J.-M., Biscaye, P. E. & Grousset, F. E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 30, 1167 (2003).

    11.
    Han, C. et al. High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Sci. Rep. 8, 1–9 (2018).
    ADS  Article  CAS  Google Scholar 

    12.
    Murphy, L. N. et al. Simulated changes in atmospheric dust in response to a Heinrich stadial. Paleoceanography 29, 30–43 (2014).
    ADS  Article  Google Scholar 

    13.
    Zhang, X. Y., Arimoto, R. & An, Z. S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. Atmos. 102, 28041–28047 (1997).
    ADS  CAS  Article  Google Scholar 

    14.
    Hughen, K., Southon, J., Lehman, S., Bertrand, C. & Turnbull, J. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quat. Sci. Rev. 25, 3216–3227 (2006).
    ADS  Article  Google Scholar 

    15.
    Goñi, M. F. S. et al. Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151 (2008).
    ADS  Article  Google Scholar 

    16.
    Naughton, F. et al. Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth Planet. Sci. Lett. 284, 329–342 (2009).
    ADS  CAS  Article  Google Scholar 

    17.
    Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, 1–5 (2009).
    Article  CAS  Google Scholar 

    18.
    Moseley, G. E. et al. NALPS19: Sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period. Clim. Past 16, 29–50 (2020).
    Article  Google Scholar 

    19.
    Moseley, G. E. et al. Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during marine isotope stage 3. Geology 42, 1043–1046 (2014).
    ADS  Article  Google Scholar 

    20.
    Cheng, H. et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362, 1293–1297 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).
    ADS  Article  Google Scholar 

    22.
    Tzedakis, P. C. et al. Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period. Geology 32, 109–112 (2004).
    ADS  Article  Google Scholar 

    23.
    Duprat-Oualid, F. et al. Vegetation response to abrupt climate changes in Western Europe from 45 to 14.7 k cal a BP: The Bergsee lacustrine record (Black Forest, Germany). J. Quat. Sci. 32, 1008–1021 (2017).
    Article  Google Scholar 

    24.
    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. USA 114, E10632–E10638 (2017).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Stager, J. C., Ryves, D. B., Chase, B. M. & Pausata, F. S. R. Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science 331, 1299–1302 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Jullien, E. et al. Low-latitude ‘dusty events’ vs. high-latitude ‘icy Heinrich events’. Quat. Res. 68, 379–386 (2007).
    Article  Google Scholar 

    27.
    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).
    ADS  CAS  Article  Google Scholar 

    28.
    Grimm, E. C., Jacobson, G. L. Jr, Watts, W. A., Hansen, B. C. S. & Maasch, K. A. A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich Events. Science 261, 198–200 (1993).  

    29.
    De Abreu, L., Shackleton, N. J., Schönfeld, J., Hall, M. & Chapman, M. Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Mar. Geol. 196, 1–20 (2003).
    ADS  Article  Google Scholar 

    30.
    Lynch-Stieglitz, J. et al. Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nat. Geosci. 7, 144–150 (2014).
    ADS  CAS  Article  Google Scholar 

    31.
    Lowe, D. J. Tephrochronology and its application: A review. Quat. Geochronol. 6, 107–153 (2011).
    Article  Google Scholar 

    32.
    Luetscher, M. et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 27–32 (2015).
    Article  CAS  Google Scholar 

    33.
    Columbu, A. et al. Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy. Nat. Ecol. Evol. 4, 1188–1195 (2020).  

    34.
    McDermott, F., Schwarcz, H. & Rowe, P. J. Isotopes in speleothems in Isotopes in Palaeoenvironmental Research (ed. Leng, M.) 185–225 (Kluwer Academic Publishers, 2006).  

    35.
    Fairchild, I. J. & Treble, P. C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28, 449–468 (2009).
    ADS  Article  Google Scholar 

    36.
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the late-glacial interstadial (GI-1) at gerzensee (switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).
    Article  Google Scholar 

    37.
    Lydersen, J. M., Collins, B. M., Miller, J. D., Fry, D. L. & Stephens, S. L. Relating fire-caused change in forest structure to remotely sensed estimates of fire severity. Fire Ecol. 12, 99–116 (2016).
    Article  Google Scholar 

    38.
    Darfeuil, S. et al. Sea surface temperature reconstructions over the last 70 k year off Portugal: Biomarker data and regional modeling. Paleoceanography 31, 40–65 (2016).
    ADS  Article  Google Scholar 

    39.
    Waelbroeck, C. et al. Consistently dated Atlantic sediment cores over the last 40 thousand years. Sci. Data 6, 165 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Hemming, S. R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    41.
    Turney, C. S. M. et al. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quat. Sci. Rev. 137, 126–134 (2016).
    ADS  Article  Google Scholar 

    42.
    Turney, C. S. M. et al. Rapid global ocean–atmosphere response to Southern Ocean freshening during the last glacial. Nat. Commun. 8, 1–9 (2017).
    CAS  Article  Google Scholar 

    43.
    Monegato, G., Scardia, G., Hajdas, I., Rizzini, F. & Piccin, A. The Alpine LGM in the boreal ice-sheets game. Sci. Rep. 7, 1–8 (2017).
    CAS  Article  Google Scholar 

    44.
    Makos, M. et al. Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains—Revised deglaciation chronology based on the 10Be exposure age dating. Quat. Sci. Rev. 187, 130–156 (2018).
    ADS  Article  Google Scholar 

    45.
    Oliva, M. et al. Late Quaternary glacial phases in the Iberian Peninsula. Earth Sci. Rev. 192, 564–600 (2019).
    ADS  Article  Google Scholar 

    46.
    Bradwell, T. et al. Pattern, style and timing of British–Irish Ice Sheet retreat: Shetland and northern North Sea sector. J. Quat. Sci. 1–42 (2019).

    47.
    Pini, R., Ravazzi, C. & Reimer, P. J. The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy). Quat. Sci. Rev. 29, 3115–3137 (2010).
    ADS  Article  Google Scholar 

    48.
    Monegato, G., Pini, R., Ravazzi, C., Reimer, P. J. & Wick, L. Correlating Alpine glaciation with Adriatic sea-level changes through lake and alluvial stratigraphy. J. Quat. Sci. 26, 791–804 (2011).
    Article  Google Scholar 

    49.
    Moss, E. H. Forest communities in northwestern Alberta. Can. J. Bot. 31, 212–252 (1953).
    Article  Google Scholar 

    50.
    Ruuhijärvi, R. The Finnish mire types and their regional distribution. In Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World 4B (ed. Gore, A. J. P.) 47–67 (Elsevier, New York, 1983).
    Google Scholar 

    51.
    Allen, J. R. M. & Huntley, B. Weichselian palynological records from southern Europe: Correlation and chronology. Quat. Int. 73–74, 111–125 (2000).
    Article  Google Scholar 

    52.
    Margari, V., Gibbard, P. L., Bryant, C. L. & Tzedakis, P. C. Character of vegetational and environmental changes in southern Europe during the last glacial period; evidence from Lesvos Island, Greece. Quat. Sci. Rev. 28, 1317–1339 (2009).
    ADS  Article  Google Scholar 

    53.
    Pross, J. et al. The 1.35-Ma-long terrestrial climate archive of Tenaghi Philippon, northeastern Greece: Evolution, exploration, and perspectives for future research. Newslett. Stratigr. 48, 253–276 (2015).
    Article  Google Scholar 

    54.
    Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).
    ADS  CAS  Article  Google Scholar 

    55.
    Wulf, S. et al. The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece: Towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region. Quat. Sci. Rev. 186, 236–262 (2018).
    ADS  Article  Google Scholar 

    56.
    Benjamin, J. et al. Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Quat. Int. 449, 29–57 (2017).
    Article  Google Scholar 

    57.
    Rossato, S., Carraro, A., Monegato, G., Mozzi, P. & Tateo, F. Glacial dynamics in pre-Alpine narrow valleys during the Last Glacial Maximum inferred by lowland fluvial records (northeast Italy). Earth Surf. Dynam 6, 809–828 (2018).
    ADS  Article  Google Scholar 

    58.
    Ravazzi, C., Badino, F., Marsetti, D., Patera, G. & Reimer, P. J. Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 15 ka cal BP. Quat. Sci. Rev. 58, 146–161 (2012).
    ADS  Article  Google Scholar 

    59.
    Gianotti, F. et al. Stratigraphy of the Ivrea morainic amphitheatre (NW Italy); an updated synthesis. Alp. Mediterr. Quat. 28, 29–58 (2015).
    Google Scholar 

    60.
    Braakhekke, J. et al. Timing and flow pattern of the Orta Glacier (European Alps) during the Last Glacial Maximum. Boreas 49, 315–332 (2020).
    Article  Google Scholar 

    61.
    Ivy-Ochs, S. et al. New geomorphological and chronological constraints for glacial deposits in the Rivoli-Avigliana end-moraine system and the lower Susa Valley (Western Alps, NW Italy). J. Quat. Sci. 33, 550–562 (2018).
    Article  Google Scholar 

    62.
    Miko, S. et al. Submerged karst landscapes of the Eastern Adriatic. in 5th Regional Scientific Meeting on Quaternary Geology Dedicated to Geohazards and Final conference of the LoLADRIA project “Submerged Pleistocene landscapes of the Adriatic Sea/Marjanac, Lj.—Zagreb : Hrvatska akademija znanosti i umjetnosti 53–54 (2017).

    63.
    Maselli, V. et al. Delta growth and river valleys: The influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea). Quat. Sci. Rev. 99, 146–163 (2014).
    ADS  Article  Google Scholar 

    64.
    Bigi, G. et al. Structural Model of Italy, Sheets 1 (CNR S.EL.CA, Firenze, 1990).
    Google Scholar 

    65.
    Bartolomei, G. et al. Note illustrative della carta geologica d’Italia alla scala 1:100,000, foglio 021-Trento, Poligrafica e Cartevalori, Ercolano. (1969).

    66.
    Dal Piaz, G., Fabiani, R., Trevisan, L. & Venzo, S. Carta geologica delle tre Venezie al 100.000, foglio 37-Bassano del Grappa, Ufficio Idrografico Magistrato delle Acque, Venezia. (1946).

    67.
    Barbieri, G. & Grandesso, P. Note illustrative della Carta Geologica d’Italia alla scala 1:50,000, foglio 082-Asiago, APAT, S.EL.CA., Firenze, 135. (2007).

    68.
    Avanzini, M., Bargossi, G. M., Borsato, A. & Selli, L. Note Illustrative della Carta Geologica d’Italia alla scala 1:50,000, foglio 060-Trento, ISPRA-Servizio Geologico d’Italia, Trento. (2010).

    69.
    Rossato, S. et al. Late Quaternary glaciations and connections to the piedmont plain in the prealpine environment: The middle and lower Astico Valley (NE Italy). Quat. Int. 288, 8–24 (2013).
    Article  Google Scholar 

    70.
    Bosellini, A. et al. Note illustrative della Carta Geologica d’Italia, Foglio 49 Verona, Servizio Geologico d’Italia. (1967).

    71.
    Antonelli, R. & Fabbri, P. Analysis and comparison of some values of transmissivity, permeability and storage from the Euganean Thermal Basin. IAHS-AISH Publ. 176, 707–718 (1988).
    Google Scholar 

    72.
    Bassi, D., Nebelsick, J. H., Puga-Bernabéu, Á. & Luciani, V. Middle Eocene Nummulites and their offshore re-deposition: A case study from the Middle Eocene of the Venetian area, northeastern Italy. Sediment. Geol. 297, 1–15 (2013).
    ADS  Article  Google Scholar 

    73.
    Pola, M., Ricciato, A., Fantoni, R., Fabbri, P. & Zampieri, D. Architecture of the western margin of the North Adriatic foreland: The Schio-Vicenza fault system. Ital. J. Geosci. 133, 223–234 (2014).
    Article  Google Scholar 

    74.
    Fontana, A., Mozzi, P. & Marchetti, M. Alluvial fans and megafans along the southern side of the Alps. Sed. Geol. 301, 150–171 (2014).
    Article  Google Scholar 

    75.
    Walter, H., Breckle, S.-W., Walter, H. & Breckle, S.-W. The Zonoecotones in Ecological Systems of the Geobiosphere 104–107 (Springer Berlin Heidelberg, 1986).  

    76.
    Archibold, O. W. Temperate forest ecosystems in Ecology of World Vegetation 165–203 (Springer, Dordrecht, 1995).  

    77.
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    Article  Google Scholar 

    78.
    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon, 62(4), 725–757 (2020).

    79.
    Oksanen, J. et al. Package ‘vegan’. R Packag. version 3.4.0 (2019).

    80.
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ (2019).

    81.
    Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr. 79, 201–219 (2009).
    Article  Google Scholar 

    82.
    Lofverstrom, M. A dynamic link between high-intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth Planet. Sci. Lett. 534, 116081 (2020).
    CAS  Article  Google Scholar 

    83.
    Goñi, M. S. et al. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Clim. Dyn. 19, 95–105 (2002).
    Article  Google Scholar 

    84.
    Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M. & Preece, R. C. Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science 297, 2044–2047 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Ravazzi, C. et al. Birch-sedge communities, forest withdrawal and flooding at the beginning of Heinrich Stadial 3 at the southern Alpine foreland. Rev. Palaeobot. Palynol. 280, 104276 (2020).
    Article  Google Scholar 

    86.
    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Holtmeier, F. Mountain Timberlines Mountain Timberlines (Springer, Dordrecht, 2009).
    Google Scholar 

    88.
    Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia?. Quat. Sci. Rev. 95, 60–79 (2014).
    ADS  Article  Google Scholar 

    89.
    Chytrý, M. et al. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecol. 196, 61–83 (2008).
    Article  Google Scholar 

    90.
    Makunina, N. I. Botanical and geographical characteristics of forest steppe of the Altai-Sayan mountain region. Contemp. Probl. Ecol. 9, 342–348 (2016).
    Article  Google Scholar 

    91.
    Gunin, P. D., Vostokova, E. A., Dorofeyuk, N. I., Tarasov, P. E. & Black, C. C. Vegetation dynamics of Mongolia Vol. 26 (Springer Science & Business Media, New York, 2013).
    Google Scholar 

    92.
    Zhambazhamts, B. & Bat, B. The Atlas of the Climate and Ground Water Resources in the Mongolian People’s Republic (Goskomgidromet SSSR GUGMS MNR GUGK SSSR, Ulaanbaatar, 1985).
    Google Scholar 

    93.
    Klinge, M. & Sauer, D. Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia—A critical review and synthesis. Quat. Sci. Rev. 210, 26–50 (2019).
    ADS  Article  Google Scholar 

    94.
    Guiot, J., Reille, M., de Beaulieu, J. L. & Pons, A. Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Clim. Dyn. 6, 259–264 (1992).
    Article  Google Scholar 

    95.
    Seret, G., Guiot, J., Wansard, G., de Beaulieu, J. L. & Reille, M. Tentative palaeoclimatic reconstruction linking pollen and sedimentology in La Grande Pile (Vosges, France). Quat. Sci. Rev. 11, 425–430 (1992).
    ADS  Article  Google Scholar 

    96.
    Wohlfarth, B. et al. Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40–16 ka. Geology 36, 407–410 (2008).
    ADS  CAS  Article  Google Scholar 

    97.
    Tzedakis, P. C. The last climatic cycle at Kopais, central Greece. J. Geol. Soc. London. 156, 425–434 (1999).
    Article  Google Scholar 

    98.
    Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: Revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev. 25, 3416–3430 (2006).
    ADS  Article  Google Scholar 

    99.
    Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).
    ADS  Article  Google Scholar 

    100.
    Ohlson, M., Korbøl, A. & Økland, R. H. The macroscopic charcoal record in forested boreal peatlands in southeast Norway. Holocene 16, 731–741 (2006).
    ADS  Article  Google Scholar 

    101.
    Hörnberg, G., Ohlson, M. & Zackrisson, O. Stand dynamics, regeneration patterns and long-term continuity in boreal old-growth Picea abies swamp-forests. J. Veg. Sci. 6, 291–298 (1995).
    Article  Google Scholar 

    102.
    Tryterud, E. Forest fire history in Norway: From fire-disturbed pine forests to fire-free spruce forests. Ecography (Cop.) 26, 161–170 (2003).
    Article  Google Scholar 

    103.
    Yefremova, T. T. & Yefremov, S. P. Ecological Effects of Peat Fire on Forested Bog Ecosystems in Fire in ecosystems of boreal Eurasia (ed Goldammer, JG., Furyaev, VV.) 350–357 (Kluwer, The Netherlands, 1996).  

    104.
    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
    ADS  Google Scholar 

    105.
    Flanningan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 15, 549–560 (2009).
    ADS  Article  Google Scholar 

    106.
    Camill, P. et al. Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada. J. Geophys. Res. Biogeosci. 114, 1–10 (2009).
    Article  CAS  Google Scholar 

    107.
    Sofronov, M., Volokitina, A., Shvidenko, A. Wildland fires in the north of Central Siberia. Commonwealth Forestry Rev. 77, 124–127 (1998).  

    108.
    Kobayashi, M. et al. Regeneration after forest fires in mixed conifer broad-leaved forests of the Amur Region in Far Eastern Russia: The relationship between species specific traits against fire and recent fire regimes. Eurasian J. For. Res. 10, 51–58 (2007).
    Google Scholar 

    109.
    Berg, E. E. & Chapin, F. S. III. Needle loss as a mechanism of winter drought avoidance in boreal conifers. Can. J. For. Res. 24, 1144–1148 (1994).
    Article  Google Scholar 

    110.
    Gower, S. T. & Richards, J. H. Larches: Deciduous conifers in an evergreen world. Bioscience 40, 818–826 (1990).
    Article  Google Scholar 

    111.
    Schulze, E.-D. et al. Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can. J. For. Res. 25, 943–960 (1995).
    Article  Google Scholar 

    112.
    Sakai, A. & Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress Vol. 62 (Springer Science & Business Media, New York, 2012).
    Google Scholar 

    113.
    Bourgeau-Chavez, L. L. et al. Assessing boreal peat fire severity and vulnerability of peatlands to early season wildland fire. Front. Genet. 3, 1–13 (2020).
    Google Scholar 

    114.
    Vachula, R. S., Russell, J. M., Huang, Y. & Richter, N. Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 508, 166–175 (2018).
    Article  Google Scholar 

    115.
    Turetsky, M. R., Amiro, B. D., Bosch, E. & Bhatti, J. S. Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Glob. Biogeochem. Cycles 18, 4014 (2004).

    116.
    Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, FFR 5-1 (2002).
    Google Scholar 

    117.
    Wang, Y. J. et al. A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    118.
    Guillevic, M. et al. Evidence for a three-phase sequence during heinrich stadial 4 using a multiproxy approach based on Greenland ice core records. Clim. Past 10, 2115–2133 (2014).
    Article  Google Scholar 

    119.
    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl. Acad. Sci. USA 108, 13415–13419 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. SEPM J. Sediment. Res. 44, 242–248 (1974).
    CAS  Google Scholar 

    122.
    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615–621 (1971).  

    123.
    Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen Analysis (Blackwell Scientific Publications, Oxford University Press, Oxford, 1991).
    Google Scholar 

    124.
    Reille, M. Pollen et spores d’Europe et d’Afrique du Nord–Supplément II. (1998).

    125.
    Beug, H. J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil. (2004).

    126.
    Reille, M. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie. (1992).

    127.
    Grimm, E. T. TGView 19 Version 2.0. 41. Software (Illinois State Museum, Research and Collection Center, Springfield, 2015).
    Google Scholar 

    128.
    Grimm, E. C. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35 (1987).
    ADS  Article  Google Scholar 

    129.
    Clark, J. S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat. Res. 30, 67–80 (1988).
    ADS  Article  Google Scholar 

    130.
    Whitlock, C. & Larsen, C. Charcoal as a fire proxy. Track. Environ. Change Lake Sediments 3, 75–97 (2002).
    Article  Google Scholar 

    131.
    Higuera, P. E., Whitlock, C. & Gage, J. A. Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of yellowstone National Park, USA. Holocene 21, 327–341 (2011).
    ADS  Article  Google Scholar 

    132.
    Higuera, P. E., Peters, M. E., Brubaker, L. B. & Gavin, D. G. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).
    ADS  Article  Google Scholar 

    133.
    Kelly, R. F., Higuera, P. E., Barrett, C. M. & Sheng Hu, F. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quat. Res., 75(1), 11–17 (2011).   More

  • in

    Causes of Variations in Sediment Yield in the Jinghe River Basin, China

    Sediment reduction analysis method
    This section presents the methods used to calculate sediment reduction caused by the major contributors, i.e., reservoir works, water diversion works, soil and water conservation works, and rainfall.
    Sediment reduction by reservoir works
    Reservoir works reduce sediment by impounding and retaining the sediment. Recent variations in sediment reduction due to reservoir works were analysed according to the variations in the average annual sediment deposition in the reservoirs of the basin during different periods.
    The average annual sediment reduction by various reservoirs can be calculated by dividing the accumulated sediment in each reservoir during a certain period by the number of years:

    $$ WS_{r} = sumlimits_{1}^{n} {D_{i} /N} , $$
    (1)

    where (D_{i}) is the accumulated sediment (100,000,000 t) in a reservoir during a certain period, N is the number of years in the period, and WSr is the average annual sediment reduction (100,000,000 t) in the period by all reservoirs in the basin.
    The Hydrological Bureau under the Yellow River Water Conservancy Commission annually measures and calculates the deposition of sediment in all reservoirs in the Yellow River Basin. Two methods can be used, namely, the topographic method and the section method. In the topographic method, the area enclosed by contour lines on the topographic map of the reservoir area is measured to calculate the reservoir volume. The cumulative deposition of sediment during a specific period is the difference between the current and the previous reservoir volume. The topographic method requires closed contour lines on the map. In reality, however, the contour lines cannot be closed due to the presence of farmland, houses, and other artificial structures in the reservoir area, resulting in measurement errors. Therefore, the section method is mainly used at present. Here, M test sections were deployed in the reservoir area, and the test section data were used to calculate the total storage capacity of the reservoir in sections by period, as follows:

    $$ V_{i} = sumlimits_{m = 1}^{M – 1} {V_{i,m} } . $$
    (2)

    The difference in the storage capacity measured twice is the cumulative deposition of sediment in reservoir (D_{i}):

    $$ D_{i} = V_{i – 1} – V_{i} , $$
    (3)

    where Vi is the storage capacity measured at the end of period i and Vi,m is the storage capacity measured in section m – 1.
    Sediment reduction by water diversion works
    During water diversion, a certain amount of sediment is diverted, along with water, and is deposited in irrigation areas, resulting in a decrease in the volume of the sediment in the river channel. The average annual sediment reduction by water diversion works can be calculated by multiplying the average annual water diversion in different periods in the Jinghe River Basin by the average annual sediment concentration in the water diversion period, as follows:

    $$ WS_{d} = sumlimits_{1}^{n} {W_{di} /N times overline{S}} /{1}000, $$
    (4)

    where (W_{di}) is the cumulative water diversion (100,000,000 m3) in the basin in the water diversion period, N is the number of years in the period, (overline{S}) is the average annual sediment concentration in the period (kg/m3), and (WS_{d}) is the average annual sediment reduction (100,000,000 t) in the basin during the period. Recent variations in sediment discharge caused by water diversion works were analysed according to the variations in the average annual water diversion in the basin in different periods.
    Sediment reduction by soil and water conservation works
    A commonly used method to compute the sediment reduction by soil and water conservation works is to multiply the area subject to the soil and water conservation works, such as terracing, forestation, grassing, creating enclosures, and constructing silt-arrester dams, by the sediment reduction by each measure per unit area, followed by their summation, as follows:

    $$ WS_{SC} = sumlimits_{1}^{n} {F_{i} times S_{j} /10^{8} ,} $$
    (5)

    where Sj is the sediment reduction due to each soil and water conservation measure (t/hm2), published by the soil and water conservation monitoring institutions in each basin based on the analysis of the long-term observation data, Fi is the area subjected to each measure (hm2), and WSSC is the comprehensive sediment concentration for each measure (100,000,000 t). The variations in sediment reduction by soil and water conservation works were analysed based on the variations in the soil and water conservation areas in the basin during different periods.
    Analysis of rainfall-induced sediment yield
    The deduction method was adopted to analyse the rainfall-induced variations in the sediment yield. Recent variations in sediment reduction attributable to reservoirs, water diversion, and soil and water conservation works were computed and deducted from the measured sediment reduction in recent years (2000–2015):

    $$ Delta WS_{p} = Delta WS_{t} – Delta WS_{r} – Delta WS_{d} – Delta WS_{sc} , $$
    (6)

    where (Delta WS_{t}) is the recently measured sediment reduction (100,000,000 t), (Delta WS_{r}) is the recent variation in the sediment reduction (100,000,000 t) caused by variations in the sediment retention due to reservoir works, (Delta WS_{d}) is the recent variation in sediment reduction (100,000,000 t) caused by variations in water diversion, (Delta {text{WS}}_{{{text{SC}}}}) is the recent variation in sediment reduction (100,000,000 t) caused by variations in the soil and water conservation area, and (Delta WS_{p}) is the recent variation in the rainfall-induced sediment yield caused by variations in rainfall.
    Sediment yield calculation method
    Figure 6 depicts the computational process for the sediment calculation. First, a reduction calculation of the natural runoff was performed as follows:

    $$ W_{0} = W_{m} + W_{cum} + W_{s} + W_{e} + W_{SC} , $$
    (7)

    where W0 is the natural runoff, Wm is the measured runoff, Wcuw is the industrial water consumption in the basin, Ws is the water retention by reservoirs, We is the water evaporation and seepage losses, Wsc is the water reduction by soil and water conservation, and W0 is the natural water volume in the basin. All these terms are in 100,000,000 m3.
    Second, the runoff-sediment relationship in the natural state was established based on the measured runoff and sediment data in periods with negligible human activity, as well as when the underlying surface was in a nearly natural state. Natural sediment discharge was calculated using the relationship between runoff and sediment discharge. According to the observation data from the basin for the past 35 years, runoff was closely related to sediment discharge. Given China’s climatic conditions and economic growth, the basin was nearly in a natural state up to 1960 because human activity had a minor impact on runoff and sediment discharge. Based on the runoff and sediment discharge measurements at Zhangjiashan Station from 1932 to 1960, the relationship between the natural runoff and sediment discharge was established as WS0 = f(W0). Natural sediment discharge in the basin was calculated considering the restored natural runoff.
    Third, the natural sediment discharge was calculated using the natural runoff results and the runoff-sediment relationship. Based on the major contributors to sediment reduction in the basin, the future sustainable sediment reduction was calculated as the sum of sediment reduction due to reservoirs, water diversion, and soil and water conservation measures. Sediment reduction caused by variations in rainfall was limited to certain periods. For example, recent reduced heavy rainfall has led to a decreased rainfall-induced sediment yield and consequently a decreased sediment discharge. However, according to forecasts by the Intergovernmental Panel on Climate Change (2014)50, extreme weather and heavy rainfall events are likely to increase in the future. The reduction in sediment due to variations in rainfall was calculated as follows:

    $$ WS_{d} = WS_{r} + WS_{d} + W_{SC} , $$
    (8)

    where WSr is the future sediment reduction caused by reservoir works, i.e., the sum of the sediment retention potential of the remaining capacity of the existing reservoirs and that of planned future reservoirs; WSd is the sediment reduction caused by future water diversion works, which can be obtained by multiplying the water diversion in the basin forecasted according to the social and economic development by the average sediment concentration in the water diversion period; WSsc is the future sediment reduction caused by soil and water conservation, obtained from areas subject to existing and planned soil and water conservation works and the corresponding sediment reduction rates; and WSd is the forecasted value of sediment reduction in the basin. All these terms are in 100,000,000 t.
    Fourth, the sustainable sediment reduction in the basin was calculated considering variations in the contributions to sediment reduction in a future period and their effect. Future sediment discharge in the basin is the difference between the natural and future sediment reduction, as follows:

    $$ WS_{f} = WS_{0} – WS_{d} , $$
    (9)

    where WS0 is the natural sediment discharge in the basin, WSd is the forecasted sediment reduction in the basin, and WSf is the forecasted sediment discharge in the basin. All these terms are in 100,000,000 t.
    Finally, future river sediment discharge was obtained by subtracting the future sustainable sediment reduction from the natural sediment discharge.
    Data acquisition
    Hydrological data
    A total of 28 hydrometric stations and 190 rainfall stations are located along the main stream and tributaries of the Jinghe River to effectively monitor rainfall, runoff, and sediment in the basin.
    Zhangjiashan Station, located at the outlet of the Jinghe River Basin, has a catchment area of 432,160,000 km2, covering 95% of the total area of the basin. Few hydrometric and rainfall stations were operational in this basin before 1956, and hence incomplete data were collected. Analyses in this study were based on data from the Zhangjiashan Station from 1956–2015. At this station, the cross-sections in the main stream and Jinghui Canal (a water diversion canal) were hydrologically measured to determine the discharge, sediment transport rate, and sediment concentration.
    Engineering data
    Data on sediment reduction due to reservoir works and terraces, forests, grasslands, enclosures, and dams in the basin were based on the results of the National Water Resources Census and official data collated by the Upper and Middle Yellow River Bureau of the Yellow River Conservancy Commission. These data are thus accurate and reliable.
    For data collection and erosion–deposition calculations, DL/T 5089–1999 “Specification for Sediment Design of Hydropower and Water Conservancy Projects” provided that “The calculated results of erosion and deposition should be compared with the measured data for several years of operation. If the amount and location of sedimentation are 70% consistent, and the elevation of sedimentation in the reservoir differs by 1 to 2 m, then the calculated results are deemed reliable. For erosion–deposition calculation results, only reliability is considered”.
    Relevant data from the stations were systematically verified and collated by the Hydrological Bureau of the Yellow River Conservancy Commission and are therefore accurate and reliable. More

  • in

    Survive or swim: different relationships between migration potential and larval size in three sympatric Mediterranean octocorals

    1.
    Grinnell, I. Geography and evolution. Ecology 5, 225–229 (1924).
    Article  Google Scholar 
    2.
    Elton, C. Animal Ecology. 204 p. (Sidgewick & Jackson , 1927)

    3.
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).
    Article  Google Scholar 

    4.
    Fordham, D. A. et al. How complex should models be? Comparing correlative and mechanistic range dynamics models. Glob. Change Biol. 24, 1357–1370 (2018).
    ADS  Article  Google Scholar 

    5.
    Pagel, J. & Schurr, F. M. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Glob. Ecol. Biogeogr. 21, 293–304. https://doi.org/10.1111/j.1466-8238.2011.00663.x (2012).
    Article  Google Scholar 

    6.
    Hanski, I. Metapopulation dynamics: does it help to have more of the same?. TREE 4, 113–114 (1989).
    CAS  PubMed  Google Scholar 

    7.
    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613 (2004).
    Article  Google Scholar 

    8.
    Urban, M. C. et al. Improving the forecast of biodiversity under climate change. Science 353(6304), 8466 (2016).
    Article  CAS  Google Scholar 

    9.
    Thomson, F. J. et al. Chasing the unknown: predicting seed dispersal mechanisms from plant traits. J. Ecol. 98, 1310–1318 (2010).
    Article  Google Scholar 

    10.
    Scheltema, R. S. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of the problem. Bull. Mar. Sci. 39(2), 290–322 (1986).
    Google Scholar 

    11.
    Levinton, J.S. Marine biology: function, biodiversity, ecology. 420 p. (Oxford University Press, 1995)

    12.
    Szmant, A. M. Reproductive ecology of Caribbean reef corals. Coral Reefs 5, 43–53. https://doi.org/10.1007/BF00302170 (1986).
    ADS  Article  Google Scholar 

    13.
    Harrison, P. L., & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals in Coral reef ecosystems (ed Dubinsky, Z. . 133–207 (Elsevier, 1990)

    14.
    Chia, F. S., Buckland-Nicks, J. & Young, C. M. Locomotion of marine invertebrates larvae: a review. Can. J. Zool. 62, 1205–1222 (1984).
    Article  Google Scholar 

    15.
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
    Article  Google Scholar 

    16.
    Botsford, L. W. et al. Connectivity, sustainanility, and yield: bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fisheries 19, 69–95 (2009).
    Article  Google Scholar 

    17.
    Siegel, D. A., Kinlan, B. P., Gaylord, B. & Gaines, S. D. Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 260, 83–96 (2003).
    ADS  Article  Google Scholar 

    18.
    Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74(1), 21–45 (1999).
    CAS  PubMed  Article  Google Scholar 

    19.
    Fitzpatrick, M. C. & Hargrove, W. W. The projection of species distribution models and the problem of non-analog climate. Biodiversity Conserv. 18, 2255–2261 (2009).
    Article  Google Scholar 

    20.
    Guizien, K., Brochier, T., Duchêne, J. C., Koh, B. S. & Marsaleix, P. Dispersal of Owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three-dimensional stochastic model. Mar. Ecol. Prog. Ser. 311, 47–66 (2006).
    ADS  Article  Google Scholar 

    21.
    Guizien, K., Belharet, M., Marsaleix, P. & Guarini, J. M. Using larval dispersal simulations for marine protected area design: application to the Gulf of Lions (NW Mediterranean). Limnol. Oceanogr. 57(4), 1099–1112. https://doi.org/10.4319/lo.2012.57.4.1099 (2012).
    ADS  Article  Google Scholar 

    22.
    Weinberg, S. & Weinberg, F. The life cycle of a gorgonian: Eunicella singularis (Esper, 1794). Bijdr Dierkd 48, 127–140 (1979).
    Article  Google Scholar 

    23.
    Weinberg, S. Revision of the common Octocorallia of the Mediterranean circalittoral I. Gorgonacea. Beaufortia 24, 63–104 (1976).
    Google Scholar 

    24.
    Gori, A. et al. Spatial distribution patterns of the gorgonians Eunicella singularis, Paramuricea clavata and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar. Biol. 158, 143–158 (2011).
    Article  Google Scholar 

    25.
    Theodor, J. Contribution à l’étude des gorgones (VII): écologie et comportement de la planula. Vie et Milieu 18(2A), 291–301 (1967).
    Google Scholar 

    26.
    Ribes, M., Coma, R., Rossi, S. & Michelli, M. The cycle of gonadal development of Eunicella singularis (Cnidaria: Octocorallia). Invertebr. Biol. 126, 307–317 (2007).
    Article  Google Scholar 

    27.
    Santangelo, G. & Abbiati, M. Red coral: conservation and management of an over-exploited Mediterranean species. Aquat. Conserv. Mar. Freshw. Ecosys. 259, 253–259 (2001).
    Article  Google Scholar 

    28.
    Costantini, F. et al. Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation. Mar. Ecol. 31, 261–269 (2010).
    ADS  Article  Google Scholar 

    29.
    Santangelo, G., Carletti, E., Maggi, E. & Bramanti, L. Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar. Ecol. Prog. Ser. 248, 99–108. https://doi.org/10.3354/meps248099 (2003).
    ADS  Article  Google Scholar 

    30.
    Lacaze-Duthiers, H. Histoire Naturelle du Corail, 371 p (J.B, Baillière et Fils, 1864).
    Google Scholar 

    31.
    Martinez-Quintana, A., Bramanti, L., Viladrich, N., Rossi, S. & Guizien, K. Quantification of Corallium rubrum larvae motility behavior: implications for population connectivity. Mar. Biol. 162, 309–318 (2015).
    Article  Google Scholar 

    32.
    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Growth in a modular colonial marine invertebrate. Estuar. Coast Shelf Sci. 47, 459–470 (1998).
    ADS  Article  Google Scholar 

    33.
    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 117, 173–183 (1995).
    ADS  Article  Google Scholar 

    34.
    Linares, C. et al. Early life history of the Mediterranean gorgonian Paramuricea clavata: implications for population dynamics. Invertebr. Biol. 127(1), 1–11 (2008).
    Article  Google Scholar 

    35.
    Muscatine, L. Glycerol excretion by symbiotic algae from corals and Tridacna and tts control by the host. Science 156(3774), 516–519. https://doi.org/10.1126/science.156.3774.516 (1967).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Pennington, J. T. & Emlet, R. B. Ontogenic and diel vertical migration of a planktonic echinoid larva, Dendraste rexcentricus (Eschscholtz): occurrence, causes, and probable consequences. J. Exp. Mar. Biol. and Ecol. 104, 69–95 (1986).
    Article  Google Scholar 

    37.
    Vogel, S. Life in a moving fluid: the physical biology of flow. 488 p. (Princeton University Press, 1994)

    38.
    Ben-David-Zaslow, R. & Benayahu, Y. Competence and longevity in planulae of several species of soft corals. Mar. Ecol. Prog. Ser. 163, 235–243 (1998).
    ADS  Article  Google Scholar 

    39.
    Maldonado, M. The ecology of sponge larvae. Can. J. Zool. 84(2), 175–194 (2006).
    Article  Google Scholar 

    40.
    Nishikawa, A., Masaya, K. & Sakai, K. Larval settlement rates and gene flow of broadcast-spawning (Acropora Tenuis) and Planula-Brooding (Stylophora Pistillata) corals. Mar. Ecol. Prog. Ser. 256, 87–97. https://doi.org/10.3354/meps256087 (2003).
    ADS  CAS  Article  Google Scholar 

    41.
    Keough, M. J. & Chernoff, H. Dispersal and population variation in the bryozoan Bugula neritina. Ecology 68, 199–210 (1987).
    Article  Google Scholar 

    42.
    Mc Edward, L. R. Ecology of marine invertebrate larvae. 464 p. (CRC Press, 1995)

    43.
    Zelli, E. et al. Settlement dynamics and recruitment responses of Mediterranean gorgonians larvae to different crustose coralline algae species. J. Exp. Mar. Biol. Ecol. 1, 530–531. https://doi.org/10.1016/j.jembe.2020.151427 (2020).
    Article  Google Scholar 

    44.
    Knight-Jones, E. W. Gregariousness and some other aspects of the settling behaviour of Spirorbis. J. Mar. Biol. Assoc. UK 30, 201–222 (1951)

    45.
    Wilson, D. P. The settlement of Ophelia bicornis Savigny larvae. J. Mar. Biol. Assoc. UK 32, 209–233 (1953).
    Article  Google Scholar 

    46.
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed?. Science 287, 857–859 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Stearns, S. C. The Evolution of Life Histories. 249 p. (Oxford University Press 1992)

    48.
    Viladrich, N. et al. Variations of lipid and free fatty acid contents during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35(3), 1033–1045. https://doi.org/10.1007/s00338-016-1440-1 (2016).
    ADS  Article  Google Scholar 

    49.
    Viladrich, N. et al. Variation of lipid and free fatty acid contents during larval release in two temperate octocorals according to their trophic strategy. Mar. Ecol. Prog. Ser. 573, 117–128. https://doi.org/10.3354/meps12141 (2017).
    ADS  CAS  Article  Google Scholar 

    50.
    Santangelo, G., Bramanti, L. & Iannelli, M. Population dynamics and conservation biology of the overexploited Mediterranean Red coral. J. Theor. Biol. 244, 416–423 (2007).
    PubMed  Article  Google Scholar 

    51.
    Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycles of the gorgonians Paramuricea clavata and Eunicella singularis in the western Mediterranean. Mar. Biol. 151, 1571–1584 (2007).
    Article  Google Scholar 

    52.
    Caldwell, R. L. & Edmonds, D. A. The effects of sediment properties ondeltaic processes and morphologies: a numerical modeling study. J. Geophys. Res. Earth Surf. 119, 961–982. https://doi.org/10.1002/2013JF002965 (2014).
    ADS  Article  Google Scholar 

    53.
    Richmond, R. H. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93(4), 527–533 (1987).
    Article  Google Scholar 

    54.
    Huhn, K., Paul, A. & Seyferth, M. Modeling sediment transport patterns during an upwelling event. J. Geophys. Res. 112(C10003), 1. https://doi.org/10.1029/2005JC003107 (2007).
    Article  Google Scholar 

    55.
    Bakun, A. & Agostini, V. N. Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea. Sci. Mar. 65(3), 243–257 (2001).
    Article  Google Scholar 

    56.
    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).
    PubMed  Article  Google Scholar 

    57.
    Mokhtar-Jamaï, K. et al. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata. Ecol. Evol. 3(6), 1765–1779. https://doi.org/10.1002/ece3.588 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Pilczynska, J., Cocito, S., Boavida, J., Serrão, E. & Queiroga, H. Genetic diversity and local connectivity in the Mediterranean red gorgonian coral after mass mortality events. PLoS ONE 11(3), e0150590. https://doi.org/10.1371/journal.pone.0150590 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Padron, M., Costantini, F., Bramanti, L., Guizien, K. & Abbiati, M. Genetic connectivity fosters recovery of gorgonian populations impacted by climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 779–787. https://doi.org/10.1002/aqc.2912 (2018).
    Article  Google Scholar 

    60.
    Ledoux, J.-B. et al. Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus,1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol. Ecol. 19, 675–690 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Padron, M., Costantini, F., Baksay, S., Bramanti, L. & Guizien, K. Passive larval transport explains recent gene flow in a Mediterranean gorgonian. Coral Reefs 37, 495–506. https://doi.org/10.1007/s00338-018-1674-1 (2018).
    ADS  Article  Google Scholar 

    62.
    Selkoe, K. A. et al. A decade of seascape genetics: contributions tobasic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).
    ADS  Article  Google Scholar 

    63.
    Isomura, N. & Nishihira, M. Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20, 309–315 (2001).
    Article  Google Scholar 

    64.
    Hoegh-Guldberg, O. & Jones, R. J. Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar. Ecol. Prog. Ser. 183, 73–86 (1999).
    ADS  Article  Google Scholar 

    65.
    Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).
    Article  Google Scholar 

    66.
    Frost, B. W. Feeding processes at lower trophic levels in pelagic communities in The Biology of the Oceanic Pacific. 59–77 (Oregon State University Press 1974)

    67.
    Williamson, C. E. & Stoeckel, M. E. Estimating predation risk in zooplankton communities: the importance of vertical overlap. Hydrobiologia 198, 125–131 (1990).
    Article  Google Scholar 

    68.
    Almeda, R., van Someren Greve, H. & Kiørboe, T. Behavior is a major determinant of predation risk inzooplankton. Ecosphere 8(2), 1668. https://doi.org/10.1002/ecs2.1668 (2017).
    Article  Google Scholar 

    69.
    Moran, A. L. & Emlet, R. B. Offspring size and performance in variable environments: field studies on a marine snail. Ecology 82, 1597–1612 (2001).
    Article  Google Scholar  More