Soil-microorganism-mediated invasional meltdown in plants
1.
van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).
Article Google Scholar
2.
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
CAS PubMed PubMed Central Article Google Scholar
3.
Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).
PubMed Article Google Scholar
4.
Elton, C. S. The Ecology of Invasion by Animals and Plants (Univ. of Chicago Press, 1958).
5.
Kuebbing, S. E. & Nunez, M. A. Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nat. Plants 2, 16134 (2016).
PubMed Article Google Scholar
6.
Golivets, M. & Wallin, K. F. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. Ecol. Lett. 21, 745–759 (2018).
PubMed Article Google Scholar
7.
Zhang, Z. & van Kleunen, M. Common alien plants are more competitive than rare natives but not than common natives. Ecol. Lett. 22, 1378–1386 (2019).
PubMed Article Google Scholar
8.
White, E. M., Wilson, J. C. & Clarke, A. R. Biotic indirect effects: a neglected concept in invasion biology. Divers. Distrib. 12, 443–455 (2006).
Article Google Scholar
9.
Sotomayor, D. A. & Lortie, C. J. Indirect interactions in terrestrial plant communities: emerging patterns and research gaps. Ecosphere 6, art103 (2015).
Article Google Scholar
10.
Aschehoug, E. T. & Callaway, R. M. Diversity increases indirect interactions, attenuates the intensity of competition, and promotes coexistence. Am. Nat. 186, 452–459 (2015).
PubMed Article Google Scholar
11.
Feng, Y. & van Kleunen, M. Phylogenetic and functional mechanisms of direct and indirect interactions among alien and native plants. J. Ecol. 104, 1136–1148 (2016).
Article Google Scholar
12.
Stotz, G. C. et al. Not a melting pot: plant species aggregate in their non‐native range. Glob. Ecol. Biogeogr. 29, 482–490 (2019).
Article Google Scholar
13.
Wardle, D. A. & Peltzer, D. A. Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biol. Invasions 19, 3301–3316 (2017).
Article Google Scholar
14.
Kulmatiski, A., Beard, K. H. & Stark, J. M. Soil history as a primary control on plant invasion in abandoned agricultural fields. J. Appl. Ecol. 43, 868–876 (2006).
Article Google Scholar
15.
Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).
Article Google Scholar
16.
Simberloff, D. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol. Lett. 9, 912–919 (2006).
PubMed Article Google Scholar
17.
Braga, R. R., Gómez-Aparicio, L., Heger, T., Vitule, J. R. S. & Jeschke, J. M. Structuring evidence for invasional meltdown: broad support but with biases and gaps. Biol. Invasions 20, 923–936 (2018).
Article Google Scholar
18.
Maynard, D. S., Miller, Z. R. & Allesina, S. Predicting coexistence in experimental ecological communities. Nat. Ecol. Evol. 4, 91–100 (2020).
PubMed Article Google Scholar
19.
May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).
CAS PubMed Article PubMed Central Google Scholar
20.
Godoy, O., Stouffer, D. B., Kraft, N. J. B. & Levine, J. M. Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. Ecology 98, 1193–1200 (2017).
PubMed Article Google Scholar
21.
Vandermeer, J. H. The competitive structure of communities: an experimental approach with protozoa. Ecology 50, 362–371 (1969).
Article Google Scholar
22.
Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
Article Google Scholar
23.
Case, T. J. & Bender, E. A. Testing for higher order interactions. Am. Nat. 118, 920–929 (1981).
Article Google Scholar
24.
Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).
CAS PubMed Article Google Scholar
25.
Prince, E. K., Myers, T. L., Naar, J. & Kubanek, J. Competing phytoplankton undermines allelopathy of a bloom-forming dinoflagellate. Proc. R. Soc. B 275, 2733–2741 (2008).
PubMed Article Google Scholar
26.
Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).
27.
Dawson, W., Fischer, M. & van Kleunen, M. Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. Ecol. Lett. 15, 873–880 (2012).
PubMed Article Google Scholar
28.
Godoy, O., Valladares, F. & Castro-Díez, P. Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct. Ecol. 25, 1248–1259 (2011).
Article Google Scholar
29.
Liu, Y. J. & van Kleunen, M. Nitrogen acquisition of Central European herbaceous plants that differ in their global naturalization success. Funct. Ecol. 33, 566–575 (2019).
Article Google Scholar
30.
Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).
CAS PubMed Article Google Scholar
31.
Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85, 561–573 (1997).
Article Google Scholar
32.
Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).
PubMed Article Google Scholar
33.
Lekberg, Y. et al. Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).
PubMed Article Google Scholar
34.
Latz, E. et al. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J. Ecol. 100, 597–604 (2012).
Article Google Scholar
35.
Kardol, P., Cornips, N. J., van Kempen, M. M. L., Bakx-Schotman, J. M. T. & van der Putten, W. H. Microbe-mediated plant–soil feedback causes historical contingency effects in plant community assembly. Ecol. Monogr. 77, 147–162 (2007).
Article Google Scholar
36.
Dawson, W., Schrama, M. & Austin, A. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).
Article Google Scholar
37.
Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).
38.
Ke, P. J. & Wan, J. Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecol. Monogr. 90, e01391 (2020).
Article Google Scholar
39.
Kuebbing, S. E., Classen, A. T., Call, J. J., Henning, J. A. & Simberloff, D. Plant–soil interactions promote co-occurrence of three nonnative woody shrubs. Ecology 96, 2289–2299 (2015).
PubMed Article PubMed Central Google Scholar
40.
Callaway, R. M. et al. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89, 1043–1055 (2008).
PubMed Article Google Scholar
41.
Darwin, C. On the Origin of Species (J. Murray, 1859).
42.
Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).
Article Google Scholar
43.
Mangla, S. & Callaway, R. M. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol. 96, 58–67 (2008).
Google Scholar
44.
Saul, W. C. & Jeschke, J. M. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18, 236–245 (2015).
PubMed Article Google Scholar
45.
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).
PubMed Article CAS Google Scholar
46.
Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).
Article Google Scholar
47.
Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS 11, plz051 (2019).
PubMed PubMed Central Article Google Scholar
48.
Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).
CAS PubMed Article Google Scholar
49.
Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).
PubMed Article Google Scholar
50.
Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).
CAS PubMed Article Google Scholar
51.
Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).
PubMed Article Google Scholar
52.
Reinhart, K. O., Packer, A., Van der Putten, W. H. & Clay, K. Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol. Lett. 6, 1046–1050 (2003).
Article Google Scholar
53.
Liu, H. & Stiling, P. Testing the enemy release hypothesis: a review and meta-analysis. Biol. Invasions 8, 1535–1545 (2006).
Article Google Scholar
54.
Zhang, Z. et al. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology 99, 866–875 (2018).
PubMed Article Google Scholar
55.
Chun, Y. J., van Kleunen, M. & Dawson, W. The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol. Lett. 13, 937–946 (2010).
PubMed Google Scholar
56.
Dickie, I. A. et al. The emerging science of linked plant–fungal invasions. New Phytol. 215, 1314–1332 (2017).
CAS PubMed Article Google Scholar
57.
Shipunov, A., Newcombe, G., Raghavendra, A. K. H. & Anderson, C. L. Hidden diversity of endophytic fungi in an invasive plant. Am. J. Bot. 95, 1096–1108 (2008).
PubMed Article Google Scholar
58.
Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).
PubMed PubMed Central Article Google Scholar
59.
Busby, P. E., Peay, K. G. & Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 209, 1681–1692 (2016).
CAS PubMed Article Google Scholar
60.
Großkopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).
PubMed PubMed Central Article CAS Google Scholar
61.
Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).
PubMed PubMed Central Article CAS Google Scholar
62.
Feng, Y., Fouqueray, T. D., van Kleunen, M. & Cornelissen, H. Linking Darwin’s naturalisation hypothesis and Elton’s diversity–invasibility hypothesis in experimental grassland communities. J. Ecol. 107, 794–805 (2019).
Article Google Scholar
63.
Li, S. P. et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).
PubMed Article Google Scholar
64.
van Kleunen, M., Dawson, W., Bossdorf, O. & Fischer, M. The more the merrier: multi-species experiments in ecology. Basic Appl. Ecol. 15, 1–9 (2014).
Article Google Scholar
65.
FloraWeb (Bundesamt für Naturschutz, 2003); http://www.floraweb.de/
66.
Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
Article Google Scholar
67.
Brinkman, E. P., Van der Putten, W. H., Bakker, E.-J. & Verhoeven, K. J. F. Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 98, 1063–1073 (2010).
Article Google Scholar
68.
Rinella, M. J. & Reinhart, K. O. Toward more robust plant–soil feedback research. Ecology 99, 550–556 (2018).
PubMed Article Google Scholar
69.
Zhang, Z., Liu, Y., Brunel, C. & van Kleunen, M. Evidence for Elton’s diversity–invasibility hypothesis from belowground. Ecology https://doi.org/10.1002/ecy.3187 (accepted).
70.
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
CAS PubMed Article Google Scholar
71.
Orgiazzi, A. et al. Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7, e34847 (2012).
CAS PubMed PubMed Central Article Google Scholar
72.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–13 (2011).
Article Google Scholar
73.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
CAS PubMed PubMed Central Article Google Scholar
74.
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).
PubMed Central Article CAS PubMed Google Scholar
75.
Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
Article Google Scholar
76.
R: A language and environment for statistical computing v.3.6.1 (R Foundation for Statistical Computing, 2019); http://www.R-project.org/
77.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effect s models. R package version 3.1-140 (2019).
78.
Gibson, D., Connolly, J., Hartnett, D. & Weidenhamer, J. Designs for greenhouse studies of interactions between plants. J. Ecol. 87, 1–16 (1999).
Article Google Scholar
79.
Aschehoug, E. T., Brooker, R., Atwater, D. Z., Maron, J. L. & Callaway, R. M. The mechanisms and consequences of interspecific competition among plants. Annu. Rev. Ecol. Syst. 47, 263–281 (2016).
Article Google Scholar
80.
Hart, S. P., Burgin, J. R. & Marshall, D. J. Revisiting competition in a classic model system using formal links between theory and data. Ecology 93, 2015–2022 (2012).
PubMed Article Google Scholar
81.
Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
82.
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Article Google Scholar
83.
Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol. 222, 91–96 (2019).
PubMed Article Google Scholar
84.
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6 (2019).
85.
Wei, T. & Simko, V. corrplot: Visualization of a correlation matrix. R package version 0.84 (2017). More