More stories

  • in

    Trophic downgrading reduces spatial variability on rocky reefs

    1.
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Hamilton, S. L. & Caselle, J. E. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests. Proc. R. Soc. B Biol. Sci. 282, 20141817 (2015).
    Article  Google Scholar 

    4.
    Power, M. E. Effects of fish in river food webs. Science 250, 811–814 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Saleem, M. Loss of microbiome ecological niches and diversity by global change and trophic downgrading. Microbiome Commun. Ecol. 20, 89–113 (2015).
    Google Scholar 

    6.
    Risch, A. C. et al. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nat. Commun. 9, 1–11 (2018).
    CAS  Article  Google Scholar 

    7.
    Eisaguirre, J. H. et al. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 101, e02993 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Stromayer, K. A. & Warren, R. J. Are overabundant deer herds in the eastern United States creating alternate stable states in forest plant communities?. Wildl. Soc. Bul. 25, 227–234 (1997).
    Google Scholar 

    9.
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Cons. 29, 436–459 (2002).
    Article  Google Scholar 

    10.
    Strickland, M. S., Hawlena, D., Reese, A., Bradford, M. A. & Schmitz, O. J. Trophic cascade alters ecosystem carbon exchange. Proc. Natl. Acad. Sci. 110, 11035–11038 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Atwood, T. B. et al. Predator-induced reduction of freshwater carbon dioxide emissions. Nat. Geosci. 6, 191–194 (2013).
    ADS  CAS  Article  Google Scholar 

    12.
    Edwards, M. S. et al. Marine deforestation leads to widespread loss of ecosystem function. PLoS One https://doi.org/10.1371/journal.pone.0226173 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Ripple, W. J. & Becshta, R. L. Hardwood tree decline following large carnivore loss on the Great Plains, USA. Front. Ecol. Environ. 5, 241–246 (2004).
    Article  Google Scholar 

    14.
    Ripple, W. J. Wolves and the ecology of fear: Can predation risk structure ecosystems. Bioscience 54, 55–766 (2004).
    Article  Google Scholar 

    15.
    Beschta, R. L. & Ripple, W. J. Recovering riparian plant communities with wolves in northern Yellowstone, USA. Rest. Ecol. 18, 380–389 (2010).
    Article  Google Scholar 

    16.
    Metzger, J. R., Konar, B. & Edwards, M. S. Assessing a macroalgal foundation species: Community variation with shifting algal assemblages. Mar. Biol. 166, 156 (2019).
    Article  Google Scholar 

    17.
    Gabara, S, Konar, B. & Edwards, M. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere. (in press).

    18.
    Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proc. Natl. Acad. Sci. 107, 18272–18277 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14894–14899 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).
    PubMed  Article  Google Scholar 

    21.
    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).
    Article  Google Scholar 

    22.
    Bengtsson, J., Baillie, S. R. & Lawton, J. Community variability increases with time. Oikos 78, 249–256 (1997).
    Article  Google Scholar 

    23.
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
    Article  Google Scholar 

    24.
    Deutschman, D. H., Levin, S. A., Devine, C. & Buttel, L. A. Scaling from trees to forests: Analysis of a complex simulation model. Science 277, 1688 (1997).
    Article  Google Scholar 

    25.
    Brown, B. L. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol. Lett. 6, 316–325 (2003).
    Article  Google Scholar 

    26.
    Hughes, T. P. et al. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63 (1999).
    ADS  CAS  Article  Google Scholar 

    27.
    Edwards, M. S. & Estes, J. A. Catastrophe, recovery, and range limitation in NE Pacific kelp forests: A large-scale perspective. Mar. Ecol. Prog. Ser. 320, 79–87 (2006).
    ADS  Article  Google Scholar 

    28.
    Parepa, M., Fischer, M. & Bossdorf, O. Environmental variability priomotes plant invasion. Nat. Commun. 4, 1604 (2013).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    29.
    Dunstan, P. K. & Johnson, C. R. Linking richness, community variability, and invasion resisteance with patch size. Ecology 87, 2842–2850 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Prevéy, J. S., Germino, M. J., Huntly, N. J. & Inouye, R. S. Exotic plants increase and native plants decrease with loss of foundation species in sagebrush steppe. Plant Ecol. 207, 39–51 (2010).
    Article  Google Scholar 

    31.
    Marks, L. M., Reed, D. C. & Obaza, A. K. Assessment of control methods for the invasive seaweed Sargassum horneri in California, USA. Manag. Biol. Invasions 8, 205–213 (2017).
    Article  Google Scholar 

    32.
    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
    Article  Google Scholar 

    33.
    Edwards, M. S. Estimating scale-dependency in disturbance impacts: El Niños and giant kelp forests in the northeast Pacific. Oecologia 138, 436–447 (2004).
    ADS  PubMed  Article  Google Scholar 

    34.
    Dayton, P. K. & Tegner, M. J. The importance of scale in community ecology: A kelp forest example with terrestrial analogs. In A New Ecology: Novel Approaches To Interactive Systems (eds Price, P. W. et al.) (Wiley, New York, 1984).
    Google Scholar 

    35.
    Jenkinson, R. S., Hovel, K. A., Dunn, R. P. & Edwards, M. S. Biogeographical variation in the distribution, abundance, and interactions among key species on rocky reefs of the northeast Pacific. Mar. Ecol. Prog. Ser. 648, 51–65 (2020).
    ADS  Article  Google Scholar 

    36.
    Mann, K. H. Seaweeds: Their productivity and strategy for growth: The role of large marine algae in coastal productivity is far more important than has been suspected. Science 182, 975–981 (1973).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Leith, H. & Whittaker, R. H. Primary Productivity of the Biosphere (Springer, Berin, 1975).
    Google Scholar 

    38.
    Reed, D. C. & Brzezinski, M. A. Kelp forests. In The Management of Natural Coastal Carbon Sinks (eds Laffoley, D. & Grimsditch, G.) 31 (Springer, Gland, 2009).
    Google Scholar 

    39.
    Spector, M. & Edwards, M. S. Modelling the impacts of kelp deforestation on benthic primary production on temperate rocky reefs. Algae 35, 1–16 (2020).
    Article  Google Scholar 

    40.
    Dayton, P. K. Ecology of kelp communities. Ann. Rev. Ecol. Syst. 16, 215–245 (1985).
    Article  Google Scholar 

    41.
    Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).
    ADS  Article  Google Scholar 

    42.
    Estes, J. A. et al. Complex trophic interactions in kelp forest ecosystems. Bull. Mar. Sci. 74, 621–638 (2004).
    ADS  Google Scholar 

    43.
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).
    CAS  PubMed  Article  Google Scholar 

    44.
    Kriegisch, N., Reeves, S. E., Johnson, C. R. & Ling, S. D. Top-down sea urchin overgrazing overwhelms bottom-up stimulation of kelp beds despite sediment enhanncement. J. Exp. Mar. Biol. Ecol. 514(515), 48–58 (2019).
    Article  Google Scholar 

    45.
    Schiebling, R. E., Hennigar, A. W. & Balch, T. Destructive grazing, epiphytism, and disease: The dynamics of sea urchin—kelp interactions in Nova Scotia. Can. J. Fish. Sci. Aquat. 56, 2300–2314 (1999).
    Article  Google Scholar 

    46.
    Fagerli, C. W., Norderhaug, K. M. & Christie, H. C. Lack of sea urchin settlement may explain kelp forest recovery in overgrazed areas in Norway. Mar. Ecol. Prog. Ser. 488, 119–132 (2012).
    ADS  Article  Google Scholar 

    47.
    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).
    ADS  Article  Google Scholar 

    48.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-drivebn catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Simenstad, C. A., Estes, J. A. & Kenyon, K. W. Aleuts, sea otters, and alternate stable state communities. Science 200, 403–411 (1978).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Christie, H., Norderhaug, K. M. & Fredriksen, S. Macrophytes as habitat for fauna. Mar. Ecol. Prog. Ser. 396, 221–233 (2009).
    ADS  Article  Google Scholar 

    51.
    Greig-Smith, P. Pattern in vegetation. J. Ecol. 67, 755–779 (1979).
    Article  Google Scholar 

    52.
    Clark, W. C. Scales of climate impacts. Clim. Change 7, 5–27 (1985).
    ADS  Article  Google Scholar 

    53.
    Woodward, F. I. Climate and Plant Distribution (Cambridge University Press, Cambridge, 1987).
    Google Scholar 

    54.
    Levin, S. A. Multiple scales and the maintenance of biodiversity. Ecosystems 3, 498–506 (2000).
    Article  Google Scholar 

    55.
    Edwards, M.S. Scale-dependent patterns of community regulation in giant kelp forests. Ph.D. dissertation, University of California Santa Cruz (2001).

    56.
    Estes, J. A. Serendipity: An Ecologists Quest to understand Nature (University of California Press, California, 2016) ((ISBN-13:978-0520285033)).
    Google Scholar 

    57.
    Doroff, A. M. et al. Sea otter population declines in the Aleutian archipelago. J. Mammal. 84, 55–64 (2003).
    Article  Google Scholar 

    58.
    Konar, B. K., Edwards, M. S. & Estes, J. A. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiol. 724, 91–107 (2014).
    Article  Google Scholar 

    59.
    Graham, M. H. & Edwards, M. S. Statistical significance versus factor fit: Estimating the importance of individual factor in ecological analysis of variance. Oikos 93, 505–513 (2001).
    Article  Google Scholar 

    60.
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (K PRIMER-E, Plymouth, 2006).
    Google Scholar 

    61.
    Estes, J. A. & Duggins, D. O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995).
    Article  Google Scholar 

    62.
    Levin, S. A. Challenges in the development of a theory of ecosystem structure and function. In Perspectives in Ecological Theory (eds Roughgarden, J. et al.) 242–255 (Princeton, Princeton University Press, 1989).
    Google Scholar 

    63.
    Tegner, M. J., Dayton, P. K., Edwards, P. B. & Riser, K. L. Large-scale, low-frequency oceanographic effects on kelp forest successions: A tale of two cohorts. Mar. Ecol. Prog. Ser. 146, 17–134 (1997).
    Article  Google Scholar 

    64.
    Karlson, R. H. & Cornell, H. V. Scale-dependent variation in local vs regional effects on coral species richness. Ecol. Monogr. 68, 259–274 (1998).
    Article  Google Scholar 

    65.
    Reed, R. K. & Stabeno, P. J. The recent return of the Alaskan Stream to Near Strait. J. Mar. Res. 51, 515–527 (1993).
    Article  Google Scholar 

    66.
    Ladd, C., Hunt, G. L., Mordy, C. W., Salo, S. A. & Stabeno, P. J. Marine environment of the eastern and central Aleutian Islands. Fish. Oceanogr. 14, 22–38 (2005).
    Article  Google Scholar 

    67.
    Reed, R. K. & Stabeno, P. J. The Aleutian North slope current. In Dynamics of the Bering Sea 177–191 (University of Alaska Sea Grant, Alaska, 1999).
    Google Scholar 

    68.
    Stabeno, P. J. & Reed, R. K. A major circulation anomaly in the western Bering Sea. Geophys. Res. Let. 19, 1671–1674 (1992).
    ADS  Article  Google Scholar 

    69.
    Hunt, G. L. & Stabeno, P. J. Oceanography and ecology of the Aleutian Archipelago: Spatial and temporal variation. Fish. Oceanogr. 14, 292–306 (2005).
    Article  Google Scholar 

    70.
    Konar, et al. A swath across the great divide: Kelp forests across the Samalga Pass biogeographic break. Cont. Shelf Res. 143, 78–88 (2017).
    ADS  Article  Google Scholar 

    71.
    Wilkinson, C. R. & Cheshire, A. C. Patterns in the distribution of sponge populations across the central Great Barrier Reef. Coral Reefs 8, 127–134 (1989).
    ADS  Article  Google Scholar 

    72.
    Wilkinson, C. R. & Cheshire, A. C. Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: Evidence for higher productivity in the Caribbean. Mar. Ecol. Prog. Ser. 67, 285–294 (1990).
    ADS  Article  Google Scholar 

    73.
    Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. Temporal and spatial scales of kelp demography: The role of oceanographic climate. Ecol. Monogr. 69, 219–250 (1999).
    Article  Google Scholar 

    74.
    Konar, B., Edwards, M. & Efird, T. Local habitat and regional oceanographic influence on fish distribution patterns in the diminishing kelp forests across the Aleutian Archipelago. Environ. Biol. Fish. 98, 1935–1951 (2015).
    Article  Google Scholar 

    75.
    Blanchette, C. A., Broitman, B. R. & Gaines, S. D. Intertidal community structure and oceanographic patterns around Santa Cruz Island, CA, USA. Mar. Biol. 149, 689–701 (2006).
    Article  Google Scholar 

    76.
    García-Charton, J. A. et al. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Mar. Biol. 144, 161–182 (2004).
    Article  Google Scholar 

    77.
    Hewitt, J. E., Thrush, S. F. & Dayton, P. D. Habitat variation, species diversity and ecological functioning in a marine system. J. Exp. Mar. Biol. Ecol. 366, 116–122 (2008).
    Article  Google Scholar 

    78.
    Bland, A., Konar, B. & Edwards, M. Spatial trends and environmental drivers of epibenthic shelf community structure across the Aleutian Islands. Cont. Shelf Res. 175, 12–29 (2019).
    ADS  Article  Google Scholar 

    79.
    Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).
    Article  Google Scholar 

    80.
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Cons. Biol. 21, 1301–1315 (2007).
    Article  Google Scholar 

    81.
    Hoffman, G. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS One 20, 20 (2011).
    Google Scholar 

    82.
    Svenning, J. C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    83.
    Stewart, N. & Konar, B. Kelp forests versus urchin barrens: Alternate stable states and their effect on sea otter prey quality in the Aleutian Islands. J. Mar. Sci. https://doi.org/10.1155/2012/492308 (2012).
    Article  Google Scholar 

    84.
    Rogachev, K. A. & Shlyk, N. V. The role of the Aleutian eddies in the Kamchatka current warming. Russ. Meteorol. Hydrol. 43, 43–48 (2018).
    Article  Google Scholar 

    85.
    Scheibling, R. E. & Hennigar, A. W. Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: Evidence for a link with large-scale meterologic and oceanographic events. Mar. Ecol. Prog. Ser. 152, 155–165 (1997).
    ADS  Article  Google Scholar 

    86.
    Girard, D., Clemente, S., Toledo-Guedes, K., Brito, A. & Hernández, J. C. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Ecol. 33, 377–385 (2012).
    ADS  Article  Google Scholar 

    87.
    Feehan, C. J. & Scheibling, R. E. Disease as a control of sea urchin populations in Nova Scotian kelp beds. Mar. Ecol. Prog. Ser. 500, 149–158 (2014).
    ADS  Article  Google Scholar 

    88.
    Hagen, N. T. Sea urchin outbreaks and nematode epizootics in Vestfjorden, northern Norway. Sarsia 72, 213–229 (1987).
    Article  Google Scholar 

    89.
    Shimizu, M. & Nagakura, K. Acid phosphatase activity in the body wall of the sea urchin, Strongylocentrotus intermedius, cultured at varying water temperatures. Comp. Biochem. Physiol. 106B, 303–307 (1993).
    CAS  Google Scholar 

    90.
    Wang, Y. et al. Isolation and characterization of bacteria associated with a syndrome disease of sea urchin Strongylocentrotus intermedius in North China. Aquacult. Res. 44, 691–700 (2013).
    CAS  Article  Google Scholar 

    91.
    Behrens, M. D. & Lafferty, K. D. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).
    ADS  Article  Google Scholar 

    92.
    Feehan, C. J. & Scheibling, R. E. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Biol. 161, 1467–1485 (2014).
    CAS  Article  Google Scholar 

    93.
    Stabeno, P. J., Kachel, D. G., Kachel, N. B. & Sullivan, M. E. Observations from moorings in the Aleutian Passes: Temperature, salinity and transport. Fish. Oceanogr. 14, 39–54 (2005).
    Article  Google Scholar 

    94.
    Favorite, F. Flow into the Bering Sea through the Aleutian Passes. In Oceanography of the Bering Sea with Emphasis on Renewable Resources (eds Hood, D. W. & Kelly, E. J.) 3–37 (Institute of Marine Science University of Alaska, Fairbanks, 1974).
    Google Scholar  More

  • in

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach

    1.
    Boskey, A. L., Wright, T. M. & Blank, R. D. Collagen and bone strength. J. Bone Miner. Res. 14, 330–335. https://doi.org/10.1359/jbmr.1999.14.3.330 (1999).
    CAS  Article  PubMed  Google Scholar 
    2.
    Fratzl, P. In Collagen (ed Fratzl, P.) 1–13 (Springer, Berlin, 2008).

    3.
    Dehring, K. A., Smukler, A. R., Roessler, B. J. & Morris, M. D. correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl. Spectrosc. 60, 366–372 (2006).
    ADS  CAS  Article  Google Scholar 

    4.
    Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Mostaço-Guidolin, L. B. et al. Collagen morphology and texture analysis: From statistics to classification. Sci. Rep. 3, 2190. https://doi.org/10.1038/srep02190 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Schrof, S., Varga, P., Galvis, L., Raum, K. & Masic, A. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. J. Struct. Biol. 187, 266–275. https://doi.org/10.1016/j.jsb.2014.07.001 (2014).
    CAS  Article  PubMed  Google Scholar 

    7.
    Viguet-Carrin, S., Garnero, P. & Delmas, P. D. The role of collagen in bone strength. Osteoporos. Int. 17, 319–336. https://doi.org/10.1007/s00198-005-2035-9 (2006).
    CAS  Article  PubMed  Google Scholar 

    8.
    West, P., Torzilli, P., Chen, C., Lin, P. & Camacho, N. Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J. Biomed. Opt. 10, 014015 (2005).
    ADS  CAS  Article  Google Scholar 

    9.
    Wang, X., Zhai, M., Zhao, Y. & Yin, J. A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann. Joint 3, 1–9 (2018).
    Article  Google Scholar 

    10.
    Lee, Y.-C. et al. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nat. Commun. 8, 14220. https://doi.org/10.1038/ncomms14220 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
    ADS  CAS  Article  Google Scholar 

    12.
    Ambrose, S. H. & Krigbaum, J. Bone chemistry and bioarchaeology. J. Anthropol. Archaeol. 22, 193–199. https://doi.org/10.1016/S0278-4165(03)00033-3 (2003).
    Article  Google Scholar 

    13.
    13Katzenberg, M. A. In Biological Anthropology of the Human Skeleton (eds M. Katzenberg, A. & Saunders, S. R.) 413–441 (Wiley-Liss, Hoboken, 2000).

    14.
    Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 5342. https://doi.org/10.1038/s41598-019-41557-8 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Pothier Bouchard, G. et al. Portable FTIR for on-site screening of archaeological bone intended for ZooMS collagen fingerprint analysis. J. Archaeol. Sci. Rep. 26, 101862. https://doi.org/10.1016/j.jasrep.2019.05.027 (2019).
    Article  Google Scholar 

    16.
    Kaal, J., López-Costas, O. & Martínez, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10. https://doi.org/10.1016/j.jas.2015.11.001 (2016).
    CAS  Article  Google Scholar 

    17.
    Van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).
    Article  Google Scholar 

    18.
    Dobberstein, R. C. et al. Archaeological collagen: Why worry about collagen diagenesis?. Archaeol. Anthropol. Sci. 1, 31–42. https://doi.org/10.1007/s12520-009-0002-7 (2009).
    Article  Google Scholar 

    19.
    Harbeck, M. & Grupe, G. Experimental chemical degradation compared to natural diagenetic alteration of collagen: Implications for collagen quality indicators for stable isotope analysis. Archaeol. Anthropol. Sci. 1, 43–57. https://doi.org/10.1007/s12520-009-0004-5 (2009).
    Article  Google Scholar 

    20.
    Collins, M. J., Riley, M. S., Child, A. M. & Turner-Walker, G. A basic mathematical simulation of the chemical degradation of ancient collagen. J. Archaeol. Sci. 22, 175–183. https://doi.org/10.1006/jasc.1995.0019 (1995).
    Article  Google Scholar 

    21.
    France, C. A. M., Thomas, D. B., Doney, C. R. & Madden, O. FT-Raman spectroscopy as a method for screening collagen diagenesis in bone. J. Archaeol. Sci. 42, 346–355. https://doi.org/10.1016/j.jas.2013.11.020 (2014).
    CAS  Article  Google Scholar 

    22.
    Chadefaux, C., Le Hô, A.-S., Bellot-Gurlet, L. & Reiche, I. Curve-fitting Micro-ATR-FTIR studies of the amide I and II bands of type I collagen in archaeological bone materials. E-Preserv. Sci. Morana RTD 6, 129–137 (2009).
    CAS  Google Scholar 

    23.
    Sponheimer, M. et al. Saving old bones: A non-destructive method for bone collagen prescreening. Sci. Rep. 9, 13928. https://doi.org/10.1038/s41598-019-50443-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Goldenberg, L., Regev, L., Mintz, E. & Boaretto, E. Dating reassembled collagen from fossil bones. Radiocarbon 59, 1487–1496. https://doi.org/10.1017/rdc.2017.69 (2017).
    CAS  Article  Google Scholar 

    25.
    Yizhaq, M. et al. Quality controlled radiocarbon dating of bones and charcoal from the early pre-pottery neolithic B (PPNB) of Motza (Israel). Radiocarbon 47, 193–206. https://doi.org/10.1017/s003382220001969x (2005).
    CAS  Article  Google Scholar 

    26.
    Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791. https://doi.org/10.1038/nprot.2014.110 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Belbachir, K., Noreen, R., Gouspillou, G. & Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 395, 829–837. https://doi.org/10.1007/s00216-009-3019-y (2009).
    CAS  Article  PubMed  Google Scholar 

    28.
    de Campos Vidal, B. & Mello, M. L. S. Collagen type I amide I band infrared spectroscopy. Micron 42, 283–289. https://doi.org/10.1016/j.micron.2010.09.010 (2011).
    CAS  Article  Google Scholar 

    29.
    Figueiredo, M., Gamelas, J. & Martins, A. In Infrared Spectroscopy-Life and Biomedical Sciences (ed Theophile, T.) (InTech, 2012).

    30.
    Hanifi, A., McCarthy, H., Roberts, S. & Pleshko, N. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS ONE 8, e64822. https://doi.org/10.1371/journal.pone.0064822 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 39, 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x (2007).
    CAS  Article  PubMed  Google Scholar 

    32.
    Stani, C., Vaccari, L., Mitri, E. & Birarda, G. FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 229, 118006. https://doi.org/10.1016/j.saa.2019.118006 (2020).
    CAS  Article  Google Scholar 

    33.
    Ramachandran, G. & Kartha, G. Structure of collagen. Nature 174, 269–270 (1954).
    ADS  CAS  Article  Google Scholar 

    34.
    Ramachandran, G. & Kartha, G. Structure of collagen. Nature 176, 593–595 (1955).
    ADS  CAS  Article  Google Scholar 

    35.
    Rich, A. & Crick, F. The molecular structure of collagen. J. Mol. Biol. 3, 483–484 (1961).
    CAS  Article  Google Scholar 

    36.
    Egli, J., Schnitzer, T., Dietschreit, J. C., Ochsenfeld, C. & Wennemers, H. Why proline? Influence of ring-size on the collagen triple helix. Org. Lett. 22, 348–351 (2019).
    Article  Google Scholar 

    37.
    Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenergetics 1767, 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004 (2007).
    CAS  Article  Google Scholar 

    38.
    Surovell, T. A. & Stiner, M. C. Standardizing infra-red measures of bone mineral crystallinity: An experimental approach. J. Archaeol. Sci. 28, 633–642. https://doi.org/10.1006/jasc.2000.0633 (2001).
    Article  Google Scholar 

    39.
    Garvie-Lok, S. J., Varney, T. L. & Katzenberg, M. A. Preparation of bone carbonate for stable isotope analysis: The effects of treatment time and acid concentration. J. Archaeol. Sci. 31, 763–776. https://doi.org/10.1016/j.jas.2003.10.014 (2004).
    Article  Google Scholar 

    40.
    Hollund, H. I., Ariese, F., Fernandes, R., Jans, M. M. E. & Kars, H. Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry 55, 507–532. https://doi.org/10.1111/j.1475-4754.2012.00695.x (2013).
    CAS  Article  Google Scholar 

    41.
    Berna, F., Matthews, A. & Weiner, S. Solubilities of bone mineral from archaeological sites: The recrystallization window. J. Archaeol. Sci. 31, 867–882. https://doi.org/10.1016/j.jas.2003.12.003 (2004).
    Article  Google Scholar 

    42.
    Lebon, M., Reiche, I., Frohlich, F., Bahain, J. J. & Falgueres, C. Characterization of archaeological burnt bones: Contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the nu1nu3 PO4 domain. Anal. Bioanal. Chem. 392, 1479–1488 (2008).
    CAS  Article  Google Scholar 

    43.
    Thompson, T. J. U., Gauthier, M. & Islam, M. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone. J. Archaeol. Sci. 36, 910–914. https://doi.org/10.1016/j.jas.2008.11.013 (2009).
    Article  Google Scholar 

    44.
    Lebon, M. et al. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J. Archaeol. Sci. 37, 2265–2276. https://doi.org/10.1016/j.jas.2010.03.024 (2010).
    Article  Google Scholar 

    45.
    Dal Sasso, G. et al. Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 463, 168–179. https://doi.org/10.1016/j.palaeo.2016.10.005 (2016).
    Article  Google Scholar 

    46.
    Toffolo, M. B., Brink, J. S. & Berna, F. Bone diagenesis at the Florisbad spring site, Free State Province (South Africa): Implications for the taphonomy of the Middle and Late Pleistocene faunal assemblages. J. Archaeol. Sci. Rep. 4, 152–163. https://doi.org/10.1016/j.jasrep.2015.09.001 (2015).
    Article  Google Scholar 

    47.
    Lebon, M., Reiche, I., Gallet, X., Bellot-Gurlet, L. & Zazzo, A. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58, 131–145. https://doi.org/10.1017/rdc.2015.11 (2016).
    CAS  Article  Google Scholar 

    48.
    Pestle, W. J. et al. Hand-held Raman spectroscopy as a pre-screening tool for archaeological bone. J. Archaeol. Sci. 58, 113–120. https://doi.org/10.1016/j.jas.2015.03.027 (2015).
    CAS  Article  Google Scholar 

    49.
    Madden, O., Chan, D. M. W., Dundon, M. & France, C. A. M. Quantifying collagen quality in archaeological bone: Improving data accuracy with benchtop and handheld Raman spectrometers. J. Archaeol. Sci. Rep. 18, 596–605. https://doi.org/10.1016/j.jasrep.2017.11.034 (2018).
    Article  Google Scholar 

    50.
    Dal Sasso, G., Angelini, I., Maritan, L. & Artioli, G. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones. Talanta 179, 167–176. https://doi.org/10.1016/j.talanta.2017.10.059 (2018).
    CAS  Article  Google Scholar 

    51.
    López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154. https://doi.org/10.1002/ajpa.23016 (2016).
    Article  PubMed  Google Scholar 

    52.
    López-Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romano y medieval gallega. Doctoral thesis, University of Granada, (2012).

    53.
    Petibois, C., Gouspillou, G., Wehbe, K., Delage, J.-P. & Déléris, G. Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal. Bioanal. Chem. 386, 1961–1966. https://doi.org/10.1007/s00216-006-0828-0 (2006).
    CAS  Article  PubMed  Google Scholar 

    54.
    Haris, P. I. & Severcan, F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B Enzym. 7, 207–221. https://doi.org/10.1016/S1381-1177(99)00030-2 (1999).
    CAS  Article  Google Scholar 

    55.
    Goormaghtigh, E., Ruysschaert, J.-M. & Raussens, V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys. J . 90, 2946–2957. https://doi.org/10.1529/biophysj.105.072017 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Paschalis, E. P. et al. Spectroscopic characterization of collagen cross-links in bone. J. Bone Miner. Res. 16, 1821–1828. https://doi.org/10.1359/jbmr.2001.16.10.1821 (2001).
    CAS  Article  PubMed  Google Scholar 

    57.
    D’Elia, M. et al. Evaluation of possible contamination sources in the 14C analysis of bone samples by FTIR spectroscopy. Radiocarbon 49, 201–210. https://doi.org/10.1017/s0033822200042120 (2007).
    CAS  Article  Google Scholar 

    58.
    Karkanas, P., Bar-Yosef, O., Goldberg, P. & Weiner, S. Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. J. Archaeol. Sci. 27, 915–929. https://doi.org/10.1006/jasc.1999.0506 (2000).
    Article  Google Scholar 

    59.
    López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51. https://doi.org/10.1016/j.jas.2016.02.001 (2016).
    CAS  Article  Google Scholar 

    60.
    Trueman, C. N., Privat, K. & Field, J. Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 160–167. https://doi.org/10.1016/j.palaeo.2008.03.038 (2008).
    Article  Google Scholar 

    61.
    Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N. & Weiner, S. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. J. Archaeol. Sci. 31, 721–739. https://doi.org/10.1016/j.jas.2003.11.003 (2004).
    Article  Google Scholar 

    62.
    Salesse, K. et al. Variability of bone preservation in a confined environment: The case of the catacomb of Sts Peter and Marcellinus (Rome, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 43–54. https://doi.org/10.1016/j.palaeo.2014.07.021 (2014).
    Article  Google Scholar 

    63.
    Weiner, S. Microarchaeology: Beyond the Visible Archaeological Record (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    64.
    Pate, F. D., Hutton, J. T. & Norrish, K. Ionic exchange between soil solution and bone: Toward a predictive model. Appl. Geochem. 4, 303–316. https://doi.org/10.1016/0883-2927(89)90034-6 (1989).
    CAS  Article  Google Scholar 

    65.
    Nielsen-Marsh, C. M. & Hedges, R. E. M. Patterns of diagenesis in bone I: The effects of site environments. J. Archaeol. Sci. 27, 1139–1150. https://doi.org/10.1006/jasc.1999.0537 (2000).
    Article  Google Scholar 

    66.
    Weiner, S. & Bar-Yosef, O. States of preservation of bones from prehistoric sites in the Near East: A survey. J. Archaeol. Sci. 17, 187–196. https://doi.org/10.1016/0305-4403(90)90058-D (1990).
    Article  Google Scholar 

    67.
    Weiner, S., Goldberg, P. & Bar-Yosef, O. Bone preservation in Kebara cave, Israel using on-site Fourier transform infrared spectrometry. J. Archaeol. Sci. 20, 613–627. https://doi.org/10.1006/jasc.1993.1037 (1993).
    Article  Google Scholar 

    68.
    Weiner, S., Goldberg, P. & Bar-Yosef, O. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications. J. Archaeol. Sci. 29, 1289–1308. https://doi.org/10.1006/jasc.2001.0790 (2002).
    Article  Google Scholar 

    69.
    Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J. & Kars, H. Characterisation of microbial attack on archaeological bone. J. Archaeol. Sci. 31, 87–95. https://doi.org/10.1016/j.jas.2003.07.007 (2004).
    Article  Google Scholar 

    70.
    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451. https://doi.org/10.1016/0305-4403(90)90007-r (1990).
    Article  Google Scholar 

    71.
    López-Costas, O., Müldner, G. & Martínez Cortizas, A. Diet and lifestyle in Bronze Age Northwest Spain: The collective burial of Cova do Santo. J. Archaeol. Sci. 55, 209–218. https://doi.org/10.1016/j.jas.2015.01.009 (2015).
    Article  Google Scholar 

    72.
    Lopez-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário, APEQ 12, 55–67 (2015).
    Article  Google Scholar 

    73.
    Collins, M. J. & Galley, P. Towards an optimal method of archaeological collagen extraction: The influence of pH and grinding. Ancient Biomolecules 2, 209–222 (1998).
    CAS  Google Scholar 

    74.
    Boskey, A. & Camacho, N. P. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28, 2465–2478. https://doi.org/10.1016/j.biomaterials.2006.11.043 (2007).
    CAS  Article  PubMed  Google Scholar 

    75.
    Kim, M., Bi, X., Horton, W., Spencer, R. & Camacho, N. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: Histologic and biochemical correlations. J. Biomed. Opt. 10, 031105 (2005).
    ADS  Article  Google Scholar 

    76.
    Heinly, J. H., Guerin, H. L., Auerbach, J. D., Siskey, R. L. & Villarraga, M. L. In 56th Annual Meeting of the Orthopaedic Research Society Poster No. 1466 (2010.).

    77.
    Mark, H. & Workman, J. Jr. Chemometrics: Derivatives in spectroscopy, Part I-the behavior of the derivative. Spectrosc. Eugene 18, 32–37 (2003).
    CAS  Google Scholar 

    78.
    Rieppo, L. et al. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr. Cartil. 20, 451–459. https://doi.org/10.1016/j.joca.2012.01.010 (2012).
    CAS  Article  Google Scholar 

    79.
    Ami, D., Mereghetti, P. & Doglia, S. M. In Multivariate Analysis in Management, Engineering and the Sciences (eds de Freitas, L. V. & de Freitas, A. P. B. R.) https://www.intechopen.com/books/multivariate-analysis-in-management-engineering-and-the-sciences/multivariate-analysis-for-fourier-transform-infrared-spectra-of-complex-biological-systems-and-proce (Intech Open, 2013).

    80.
    Saarakkala, S., Rieppo, L., Rieppo, J. & Jurvelin, J. In Microscopy: Science, Technology, Applications and Education Vol. 1 (eds Méndez-Vilas, A. & Díaz, J.) 403–414 (Formatex, 2010).

    81.
    Smith, B. C. (CRC Press, Boca Raton, 2011).

    82.
    Eriksson, L., Johansson, E., Kettaneh-Wold, N. & Wold, S. Introduction to Multi- and Megavariate Data Analysis using Projection Methods (PCA & PLS) (Umetrics AB, Umeå, 1999).
    Google Scholar 

    83.
    Garson, G. D. In Blue Book Series (Statistical Associates Publishers, Asheboro, 2016).

    84.
    SmartPLS 3 (SmartPLS GmbH, Boenningstedt, 2015). More

  • in

    Long-term surveys of age structure in 13 ungulate and one ostrich species in the Serengeti, 1926–2018

    There were three methods of sampling the populations. For Methods 1 and 2, records were obtained by driving along the road transects, and stopping to score the age groups in herds within some 100 m of the road. There were three road transects, entirely in the administrative boundaries of Serengeti National Park and consistent every year (1962–2018), with records summed over the three for each data entry. Transect 1 was from Seronera (34.823°E, 2.428°S) west to Kirawira (34.208°E, 2.151°S; 120 km), Transect 2 from Seronera to Bologonja (35.173°E, 1.757°S; 115 km), and Transect 3 from Seronera to Olduvai Gorge (35.35°E, 2.993°S; 75 km) (Fig. 1). The first two transects were in similar savanna ecosystems, and comparison of samples from these two showed close similarity.
    Fig. 1

    Ungulate and ostrich sampling transects in the Serengeti ecosystem.

    Full size image

    The criteria for age classes in each species are given in Online-only Table 1. The sample was the herd within view (such as a group of impalas (Ae. melampus) or hartebeests (Al. buselaphus), which occur in discrete groups), or a subset of it if the herd was very large. One observer, using 8–10 x magnification binoculars, called out the age category while a recorder entered the records on data sheets. These were later entered digitally.
    Two exceptions to this were the immense herds of migrant wildebeest (C. taurinus) and zebra (Eq. quagga). Because they were numerous and extensive, herds had to be sampled in a systematic way. A vehicle drove through the herds, stopping every half kilometer, where a 180 degree scan out to 100 m was conducted to count the sample within view. The transects were from the start to the end of the herd, with some being 30 km long through a single, continuous herd. Method 3 used aerial pictures of the herds to score age groups. Although the sampling protocol was different in the three methods (due to different distributions of each species) the same criteria for identifying age classes was used in all methods. All methods used either systematic or random sampling of the populations.
    All species were either migrants, if the species shows seasonal variation in habitat, or residents, if the species remains in the same area of the park year-round. A notable exception to this is the wildebeest (C. taurinus). In fact, there were two populations of wildebeest, a large migrant herd and a small resident herd at the far western end of the ecosystem. These two were sampled separately and scored as either migrant or resident.
    Method 1
    This method was used in all sampling years for impala (Ae. melampus), Coke’s kongoni (Al. buselaphus), topi (D. lunatus), warthog (P. africanus), Defassa waterbuck (K. defassa), and zebra (Eq. quagga). Sampling years 1984–1994 for African buffalo (Sy. caffer), 1965–2012 for giraffe (G. camelopardalus), and 1964–2016 for wildebeest (C. taurinus).
    Populations were sampled once or twice a year at specific times, depending on the availability of different age classes in the areas near transects. Because ungulates had different birth seasons samples were collected at two time periods, once in mid-year and once at year-end. Only one time period per year was used for each species. The early age group, “infants”, was sampled usually near the end of the rainy season (March–June) since many species give birth during the rainy season. For some species, there was a second sampling period (August-December) at the end of the dry season, to measure the survival of juveniles during this period of ecological stress. There are a few cases where more than two samples were obtained in a single year, so as to track the survival of the whole cohort throughout a year.
    Method 2
    This method was used in all sampling years for eland (T. oryx), elephant (L. africana), Grant’s gazelle (N. granti), ostrich (S. camelus), and waterbuck (K. defassa).
    These species were sufficiently scarce that an adequate sample could not be obtained at specific times. For these, records were scored whenever the species was seen in a sampling period, and then records for all sampling periods of a single given year were summed. A special case was Thomson’s gazelle (Eu. thomsonii), which, although numerous, was scored only during one short time period (1992–1994) for the months of August and September.
    Method 3
    This method was used in sample years 1965–1973 for African buffalo (Sy. caffer), and 1926–1933 for giraffe (G. camelopardalus tippelskirchi), wildebeest (C. taurinus), and zebra (Eq. quagga). The area covered was in all cases within the Serengeti ecosystem. Buffalo and giraffe were only found in the savanna, while wildebeest were sampled when they were on the plains. Flights were made systematically over the area, wildebeest was sampled using photographs at regular intervals, buffalo and giraffe were sampled when they were encountered.
    The third method, applied only in the very early years, used aerial photographs to identify age classes and females. The same criteria for identifying age classes was used as those for Methods 1 and 2 (Online-only Table 1), with an emphasis on the shape and size of horns for the wildebeest and African buffalo2, and of the relative sizes of young giraffe. The early samples in 1926–1933, were obtained from photographs taken by Martin Johnson. These photos reside in the Martin and Osa Johnson Safari Museum, Chanute, Kansas. Unfortunately, the 1965–1973 photographs of buffalo herds have now all been lost or destroyed. More

  • in

    Long-term capture and handling effects on body condition, reproduction and survival in a semi-aquatic mammal

    1.
    Jobling, M. Are compensatory growth and catch-up growth two sides of the same coin?. Aquacult. Int. 18, 501–510. https://doi.org/10.1007/s10499-009-9260-8 (2010).
    Article  Google Scholar 
    2.
    Rebke, M., Coulson, T., Becker, P. H. & Vaupel, J. W. Reproductive improvement and senescence in a long-lived bird. Proc. Natl. Acad. Sci. 107, 7841–7846. https://doi.org/10.1073/pnas.1002645107 (2010).
    ADS  Article  PubMed  Google Scholar 

    3.
    Farias, V., Fuller, T. K., Wayne, R. K. & Sauvajot, R. M. Survival and cause-specific mortality of gray foxes (Urocyon cinereoargenteus) in southern California. J. Zool. 266, 249–254. https://doi.org/10.1017/S0952836905006850 (2005).
    Article  Google Scholar 

    4.
    Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573. https://doi.org/10.1016/j.tree.2010.08.002 (2010).
    Article  PubMed  Google Scholar 

    5.
    Arnemo, J. M. et al. Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildl. Biol. 12, 109–113. https://doi.org/10.1017/S0952836901000309 (2006).
    Article  Google Scholar 

    6.
    Harcourt, R. G., Turner, E., Hall, A., Waas, J. R. & Hindell, M. Effects of capture stress on free-ranging, reproductively active male Weddell seals. J. Comp. Physiol. A. 196, 147–154. https://doi.org/10.1007/s00359-009-0501-0 (2010).
    Article  Google Scholar 

    7.
    Pelletier, F., Hogg, J. T. & Festa-Bianchet, M. Effect of chemical immobilization on social status of bighorn rams. Anim. Behav. 67, 1163–1165. https://doi.org/10.1016/j.anbehav.2003.07.009 (2004).
    Article  Google Scholar 

    8.
    Brivio, F., Grignolio, S., Sica, N., Cerise, S. & Bassano, B. Assessing the impact of capture on wild animals: the case study of chemical immobilisation on alpine ibex. PLoS ONE 10, e0130957. https://doi.org/10.1371/journal.pone.0130957 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: implications for wildlife welfare and research. J. Mammal. 89, 973–990. https://doi.org/10.1644/08-MAMM-A-095.1 (2008).
    Article  Google Scholar 

    10.
    Holt, R. D. et al. Estimating duration of short-term acute effects of capture handling and radiomarking. J. Wildl. Manag. 73, 989–995. https://doi.org/10.2193/2008-073 (2009).
    Article  Google Scholar 

    11.
    Jordan, B. Science-based assessment of animal welfare: wild and captive animals. Revue Sci. Tech. Office Int. Des. Epizooties 24, 515. https://doi.org/10.20506/rst.24.2.1588 (2005).
    CAS  Article  Google Scholar 

    12.
    Jewell, Z. Effect of monitoring technique on quality of conservation science. Conserv Biol 27, 501–508. https://doi.org/10.1111/cobi.12066 (2013).
    Article  PubMed  Google Scholar 

    13.
    Wilson, R. P. & McMahon, C. R. Measuring devices on wild animals: what constitutes acceptable practice?. Front Ecol. Environ. 4, 147–154 (2006).
    Article  Google Scholar 

    14.
    Bourbonnais, M. L. et al. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear. Conserv. Physiol. 2, 1. https://doi.org/10.1093/conphys/cou043 (2014).
    CAS  Article  Google Scholar 

    15.
    Pearson, E., Ortega, Y. K. & Ruggiero, L. F. Trap-induced mass declines in small mammals: mass as a population index. J. Wildl. Manag. 1, 684–691. https://doi.org/10.2307/3802675 (2003).
    Article  Google Scholar 

    16.
    Smith, J. B., Windels, S. K., Wolf, T., Klaver, R. W. & Belant, J. L. Do transmitters affect survival and body condition of American beavers Castor canadensis?. Wildl. Biol 22, 117–123. https://doi.org/10.2981/wlb.00160 (2016).
    Article  Google Scholar 

    17.
    Alibhai, S. K., Jewell, Z. C. & Towindo, S. S. Effects of immobilization on fertility in female black rhino (Diceros bicornis). J. Zool. 253, 333–345 (2001).
    Article  Google Scholar 

    18.
    Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: a review. N. Z. J. Zool. 36, 367–377. https://doi.org/10.1080/03014220909510161 (2009).
    Article  Google Scholar 

    19.
    Côté, S. D., Festa-Bianchet, M. & Fournier, F. Life-history effects of chemical immobilization and radiocollars on mountain goats. J. Wildl. Manag. 1, 745–752. https://doi.org/10.2307/3802351 (1998).
    Article  Google Scholar 

    20.
    Omsjoe, E. H. et al. Evaluating capture stress and its effects on reproductive success in Svalbard reindeer. Can. J. Zool. 87, 73–85. https://doi.org/10.1139/Z08-139 (2009).
    Article  Google Scholar 

    21.
    Sharpe, F., Bolton, M., Sheldon, R. & Ratcliffe, N. Effects of color banding, radio tagging, and repeated handling on the condition and survival of Lapwing chicks and consequences for estimates of breeding productivity. J. Field Ornithol. 80, 101–110. https://doi.org/10.1111/j.1557-9263.2009.00211.x (2009).
    Article  Google Scholar 

    22.
    Igual, J. M. et al. Short-term effects of data-loggers on Cory’s shearwater (Calonectris diomedea). Mar. Biol. 146, 619–624 (2005).
    Article  Google Scholar 

    23.
    Casas, F. et al. Assessing the short-term effects of capture, handling and tagging of sandgrouse. Ibis 157, 115–124. https://doi.org/10.1111/ibi.12222 (2015).
    Article  Google Scholar 

    24.
    Clinchy, M., Krebs, C. J. & Jarman, P. J. Dispersal sinks and handling effects: interpreting the role of immigration in common brushtail possum populations. J. Anim. Ecol. 70, 515–526. https://doi.org/10.1046/j.1365-2656.2001.00510.x (2001).
    Article  Google Scholar 

    25.
    Dugger, K. M., Ballard, G., Ainley, D. G. & Barton, K. J. Effects of flipper bands on foraging behavior and survival of Adélie penguins (Pygoscelis adeliae). Auk 123, 858–869. https://doi.org/10.1093/auk/123.3.858 (2006).
    Article  Google Scholar 

    26.
    Esler, D., Mulcahy, D. M. & Jarvis, R. L. Testing assumptions for unbiased estimation of survival of radiomarked harlequin ducks. J. Wildl. Manag. 1, 591–598. https://doi.org/10.2307/3803257 (2000).
    Article  Google Scholar 

    27.
    Gibson, D. et al. Effects of radio collars on survival and lekking behavior of male greater sage-grouse. The Condor 115, 769–776. https://doi.org/10.1525/cond.2013.120176 (2013).
    Article  Google Scholar 

    28.
    Ginsberg, J. R. et al. Handling and survivorship of African wild dog (Lycaon pictus) in five ecosystems. Conserv. Biol. 9, 665–674. https://doi.org/10.1046/j.1523-1739.1995.09030665.x (1995).
    Article  Google Scholar 

    29.
    Ponjoan, A. et al. Adverse effects of capture and handling little bustard. J. Wildl. Manag. 72, 315–319. https://doi.org/10.2193/2006-443 (2008).
    Article  Google Scholar 

    30.
    Kukalová, M., Gazárková, A. & Adamík, P. Should I stay or should I go? The influence of handling by researchers on den use in an arboreal nocturnal rodent. Ethology 119, 848–859. https://doi.org/10.1111/eth.12126 (2013).
    Article  Google Scholar 

    31.
    Wingfield, J. C. & Sapolsky, R. M. Reproduction and resistance to stress: when and how. J. Neuroendocrinol. 15, 711–724. https://doi.org/10.1046/j.1365-2826.2003.01033.x (2003).
    CAS  Article  PubMed  Google Scholar 

    32.
    Grissom, N. & Bhatnagar, S. Habituation to repeated stress: get used to it. Neurobiol. Learn. Mem. 92, 215–224. https://doi.org/10.1016/j.nlm.2008.07.001 (2009).
    Article  PubMed  Google Scholar 

    33.
    Lindenmayer, D. B. et al. Value of long-term ecological studies. Austral. Ecol. 37, 745–757. https://doi.org/10.1111/j.1442-9993.2011.02351.x (2012).
    Article  Google Scholar 

    34.
    Schell, C. J., Young, J. K., Lonsdorf, E. V., Santymire, R. M. & Mateo, J. M. Parental habituation to human disturbance over time reduces fear of humans in coyote offspring. Ecol. Evol. 8, 12965–12980. https://doi.org/10.1002/ece3.4741 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    35.
    Campbell, R. D., Newman, C., Macdonald, D. W. & Rosell, F. Proximate weather patterns and spring green-up phenology effect Eurasian beaver (Castor fiber) body mass and reproductive success: the implications of climate change and topography. Global Change Biol. 19, 1311–1324. https://doi.org/10.1111/gcb.12114 (2013).
    ADS  Article  Google Scholar 

    36.
    Campbell, R. D., Rosell, F., Newman, C. & Macdonald, D. W. Age-related changes in somatic condition and reproduction in the Eurasian beaver: resource history influences onset of reproductive senescence. PLoS ONE 12, e0187484. https://doi.org/10.1371/journal.pone.0187484 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Parker, H., Zedrosser, A. & Rosell, F. Age-specific reproduction in relation to body size and condition in female Eurasian beavers. J. Zool. 302, 236–243. https://doi.org/10.1111/jzo.12458 (2017).
    Article  Google Scholar 

    38.
    Sun, L. X. & Muller-Schwarze, D. Anal gland secretion codes for relatedness in the beaver Castor canadensis. Ethology 104, 917–927. https://doi.org/10.1111/j.1439-0310.1998.tb00041.x (1998).
    Article  Google Scholar 

    39.
    Rosell, F., Bergan, P. & Parker, H. Scent-marking in the Eurasian beaver (Castor fiber) as a means of territory defense. J. Chem. Ecol. 24, 207–219. https://doi.org/10.1023/A:1022524223435 (1998).
    CAS  Article  Google Scholar 

    40.
    Mayer, M., Frank, S. C., Zedrosser, A. & Rosell, F. Causes and consequences of inverse density-dependent territorial behaviour and aggression in a monogamous mammal. J. Anim. Ecol. 89, 577–588. https://doi.org/10.1111/1365-2656.13100 (2019).
    Article  PubMed  Google Scholar 

    41.
    Hohwieler, K., Rosell, F. & Mayer, M. Scent-marking behavior by subordinate Eurasian beavers. Ethology 124, 591–599. https://doi.org/10.1111/eth.12762 (2018).
    Article  Google Scholar 

    42.
    Steyaert, S. M. J. G., Zedrosser, A. & Rosell, F. Socio-ecological features other than sex affect habitat selection in the socially obligate monogamous Eurasian beaver. Oecologia 179, 1023–1032. https://doi.org/10.1007/s00442-015-3388-1 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Gallant, D., Bérubé, C. H., Tremblay, E. & Vasseur, L. An extensive study of the foraging ecology of beavers (Castor canadensis) in relation to habitat quality. Can. J. Zool. 82, 922–933. https://doi.org/10.1139/z04-067 (2004).
    Article  Google Scholar 

    44.
    Haarberg, O. & Rosell, F. Selective foraging on woody plant species by the Eurasian beaver (Castor fiber) in Telemark Norway. J. Zool. 270, 201–208. https://doi.org/10.1111/j.1469-7998.2006.00142.x (2006).
    Article  Google Scholar 

    45.
    Pinto, B., Santos, M. J. & Rosell, F. Habitat selection of the Eurasian beaver (Castor fiber) near its carrying capacity: an example from Norway. Can. J. Zool. 87, 317–325. https://doi.org/10.1139/Z09-015 (2009).
    Article  Google Scholar 

    46.
    Sharpe, F. & Rosell, F. Time budgets and sex differences in the Eurasian beaver. Anim. Behav. 66, 1059–1067. https://doi.org/10.1006/anbe.2003.2274 (2003).
    Article  Google Scholar 

    47.
    Graf, P. M., Mayer, M., Zedrosser, A., Hacklander, K. & Rosell, F. Territory size and age explain movement patterns in the Eurasian beaver. Mamm. Biol. 81, 587–594. https://doi.org/10.1016/j.mambio.2016.07.046 (2016).
    Article  Google Scholar 

    48.
    Gallant, D. et al. Linking time budgets to habitat quality suggests that beavers (Castor canadensis) are energy maximizers. Can. J. Zool. 94, 671–676. https://doi.org/10.1139/cjz-2016-0016 (2016).
    ADS  Article  Google Scholar 

    49.
    Graf, P. M., Hochreiter, J., Hacklander, K., Wilson, R. P. & Rosell, F. Short-term effects of tagging on activity and movement patterns of Eurasian beavers (Castor fiber). Eur. J. Wildl. Res. 62, 725–736. https://doi.org/10.1007/s10344-016-1051-8 (2016).
    Article  Google Scholar 

    50.
    Deguchi, T., Suryan, R. M. & Ozaki, K. Muscle damage and behavioral consequences from prolonged handling of albatross chicks for transmitter attachment. J. Wildl. Manag. 78, 1302–1309. https://doi.org/10.1002/jwmg.765 (2014).
    Article  Google Scholar 

    51.
    Grisham, B. A. et al. Evaluation of capture techniques on Lesser Prairie-Chicken trap injury and survival. J. Fish Wildl. Manag. 6, 318–326. https://doi.org/10.3996/032015-JFWM-022 (2015).
    Article  Google Scholar 

    52.
    Laurenson, M. K. & Caro, T. Monitoring the effects of non-trivial handling in free-living cheetahs. Anim. Behav. 47, 547–557. https://doi.org/10.1006/anbe.1994.1078 (1994).
    Article  Google Scholar 

    53.
    Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: a comparison of body condition indices. Oikos 77, 61–67. https://doi.org/10.2307/3545585 (1996).
    Article  Google Scholar 

    54.
    Millar, J. S. & Hickling, G. J. Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 4, 5–12. https://doi.org/10.2307/2389646 (1990).
    Article  Google Scholar 

    55.
    Guinet, C., Roux, J. P., Bonnet, M. & Mison, V. Effect of body size, body mass, and body condition on reproduction of female South African fur seals (Arctocephalus pusillus) in Namibia. Can. J. Zool. 76, 1418–1424. https://doi.org/10.1139/z98-082 (1998).
    Article  Google Scholar 

    56.
    Smith, D. W. & Jenkins, S. H. Seasonal change in body mass and size of tail of northern beavers. J. Mammal. 78, 869–876. https://doi.org/10.2307/1382945 (1997).
    Article  Google Scholar 

    57.
    Magurran, A. E. & Garcia, C. M. Sex differences in behaviour as an indirect consequence of mating system. J. Fish Biol. 57, 839–857. https://doi.org/10.1111/j.1095-8649.2000.tb02196.x (2000).
    Article  Google Scholar 

    58.
    Drickamer, L. C., Vandenbergh, J. G. & Colby, D. R. Predictors of dominance in the male golden hamster (Mesocricetus auratus). Anim. Behav. 21, 557–563. https://doi.org/10.1016/s0003-3472(73)80016-8 (1973).
    CAS  Article  PubMed  Google Scholar 

    59.
    Bernstein, I. S. Dominance: the baby and the bathwater. Behav. Brain Sci. 4, 419–429. https://doi.org/10.1017/S0140525X00009614 (1981).
    Article  Google Scholar 

    60.
    Taillon, J. & Côté, S. D. The role of previous social encounters and body mass in determining social rank: an experiment with white-tailed deer. Anim. Behav. 72, 1103–1110. https://doi.org/10.1016/j.anbehav.2006.03.016 (2006).
    Article  Google Scholar 

    61.
    Marolf, B., McElligott, A. G. & Müller, A. E. Female social dominance in two Eulemur species with different social organizations. Zoo. Biol. 26, 201–214. https://doi.org/10.1002/zoo.20135 (2007).
    Article  PubMed  Google Scholar 

    62.
    Huang, B., Wey, T. W. & Blumstein, D. T. Correlates and consequences of dominance in a social rodent. Ethology 117, 573–585 (2011).
    Article  Google Scholar 

    63.
    Righton, D., Miller, M. & Ormond, R. Correlates of territory size in the butterflyfish Chaetodon austriacus (Rüppell). J. Exp. Mar. Biol. Ecol. 226, 183–193. https://doi.org/10.1016/s0022-0981(97)00235-9 (1998).
    Article  Google Scholar 

    64.
    Bobek, B. Summer food as the factor limiting roe deer population size. Nature 268, 47. https://doi.org/10.1038/268047a0 (1977).
    ADS  Article  Google Scholar 

    65.
    Myers, J. P., Connors, P. G. & Pitelka, F. A. Territory size in wintering sanderlings: the effects of prey abundance and intruder density. Auk 96, 551–561. https://doi.org/10.1093/auk/96.3.551 (1979).
    Article  Google Scholar 

    66.
    Gass, C. L., Angehr, G. & Centa, J. Regulation of food supply by feeding territoriality in the rufous hummingbird. Can. J. Zool. 54, 2046–2054. https://doi.org/10.1139/z76-238 (1976).
    Article  Google Scholar 

    67.
    Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303. https://doi.org/10.1146/annurev.ecolsys.32.081501.114034 (2001).
    Article  Google Scholar 

    68.
    Kelly, K. G., Diamond, A. W., Holberton, R. L. & Bowser, A. K. Researcher handling of incubating Atlantic Puffins Fratercula arctica has no effect on reproductive success. Mar. Ornithol. 43, 77–82 (2015).
    Google Scholar 

    69.
    Ramsay, M. A. & Stirling, I. Long-term effects of drugging and handling free-ranging polar bears. J. Wildl. Manag. 1, 619–626. https://doi.org/10.2307/3800972 (1986).
    CAS  Article  Google Scholar 

    70.
    Serventy, D. L. & Curry, P. J. Observations on colony size, breeding success, recruitment and inter-colony dispersal in a Tasmanian colony of Short-tailed Shearwaters Puffinus tenuirostris over a 30-year peroid. EMU 84, 71–79. https://doi.org/10.1071/MU9840071 (1984).
    Article  Google Scholar 

    71.
    Schradin, C. & Hayes, L. D. A synopsis of long-term field studies of mammals: achievements, future directions, and some advice. J. Mammal. 98, 670–677. https://doi.org/10.1093/jmammal/gyx031 (2017).
    Article  Google Scholar 

    72.
    Blumstein, D. T. Habituation and sensitization: new thoughts about old ideas. Anim. Behav. 120, 255–262. https://doi.org/10.1016/j.anbehav.2016.05.012 (2016).
    Article  Google Scholar 

    73.
    Baudains, T. P. & Lloyd, P. Habituation and habitat changes can moderate the impacts of human disturbance on shorebird breeding performance. Anim. Conserv. 10, 400–407. https://doi.org/10.1111/j.1469-1795.2007.00126.x (2007).
    Article  Google Scholar 

    74.
    Vincze, E. et al. Habituation to human disturbance is faster in urban than rural house sparrows. Behav. Ecol. 27, 1304–1313. https://doi.org/10.1093/beheco/arw047 (2016).
    Article  Google Scholar 

    75.
    Van Oers, K. & Carere, C. Long-term effects of repeated handling and bleeding in wild caught great tits Parus major. J. Ornithol. 148, 185–190. https://doi.org/10.1007/s10336-007-0200-y (2007).
    Article  Google Scholar 

    76.
    Ordiz, A. et al. Habituation, sensitization, or consistent behavioral responses? Brown bear responses after repeated approaches by humans on foot. Biol. Conserv. 232, 228–237. https://doi.org/10.1016/j.biocon.2019.01.016 (2019).
    Article  Google Scholar 

    77.
    Seress, G. et al. Effects of capture and video-recording on the behavior and breeding success of Great Tits in urban and forest habitats. J. Field Ornithol. 88, 299–312. https://doi.org/10.1111/jofo.12205 (2017).
    Article  Google Scholar 

    78.
    Ellenberg, U., Mattern, T., Houston, D. M., Davis, L. S. & Seddon, P. J. Previous experiences with humans affect responses of Snares Penguins to experimental disturbance. J. Ornithol. 153, 621–631. https://doi.org/10.1007/s10336-011-0780-4 (2012).
    Article  Google Scholar 

    79.
    Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 7, 67. https://doi.org/10.1093/conphys/coy067 (2019).
    Article  Google Scholar 

    80.
    Rabdeau, J., Badenhausser, I., Moreau, J., Bretagnolle, V. & Monceau, K. To change or not to change experimenters: caveats for repeated behavioural and physiological measures in Montagu’s harrier. J. Avian Biol. 50, 1. https://doi.org/10.1111/jav.02160 (2019).
    Article  Google Scholar 

    81.
    Rode, K. D. et al. Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population. Wildl. Res. 41, 311–322. https://doi.org/10.1071/WR13225 (2014).
    Article  Google Scholar 

    82.
    Larsen, K. W. & Boutin, S. Movements, survival, and settlement of red squirrel (Tamiasciurus hudsonicus) offspring. Ecology 75, 214–223. https://doi.org/10.2307/1939395 (1994).
    Article  Google Scholar 

    83.
    Mayer, M., Zedrosser, A. & Rosell, F. Couch potatoes do better: Delayed dispersal and territory size affect the duration of territory occupancy in a monogamous mammal. Ecol. Evol. 7, 4347–4356. https://doi.org/10.1002/ece3.2988 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    84.
    Mayer, M., Zedrosser, A. & Rosell, F. Extra-territorial movements differ between territory holders and subordinates in a large, monogamous rodent. Sci. Rep. 7, 15261. https://doi.org/10.1038/s41598-017-15540-0 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    85.
    Rosell, F., Johansen, G. & Parker, H. Eurasian beavers (Castor fiber) behavioral response to simulated territorial intruders. Can. J. Zool. 78, 931–935. https://doi.org/10.1139/cjz-78-6-931 (2000).
    Article  Google Scholar 

    86.
    Rosell, F. & Bjorkoyli, T. A test of the dear enemy phenomenon in the Eurasian beaver. Anim. Behav. 63, 1073–1078. https://doi.org/10.1006/anbe.2002.3010 (2002).
    Article  Google Scholar 

    87.
    Tinnesand, H. V., Jojola, S., Zedrosser, A. & Rosell, F. The smell of desperadoes? Beavers distinguish between dominant and subordinate intruders. Behav. Ecol. Sociobiol. 67, 895–904. https://doi.org/10.1007/s00265-013-1512-y (2013).
    Article  Google Scholar 

    88.
    Fretwell, S. D. Populations in a seasonal environment. (Princeton University Press, 1972).

    89.
    Rosell, F., Parker, H. & Steifetten, O. Use of dawn and dusk sight observations to determine colony size and family composition in Eurasian beaver Castor fiber. Acta Theriol. 51, 107–112. https://doi.org/10.1007/Bf03192662 (2006).
    Article  Google Scholar 

    90.
    Shier, D. M. & Swaisgood, R. R. Fitness costs of neighborhood disruption in translocations of a solitary mammal. Conserv. Biol. 26, 116–123. https://doi.org/10.1111/j.1523-1739.2011.01748.x (2012).
    Article  PubMed  Google Scholar 

    91.
    Shier, D. M. Effect of family support on the success of translocated black-tailed prairie dogs. Conserv. Biol. 20, 1780–1790. https://doi.org/10.1111/j.1523-1739.2006.00512.x (2006).
    CAS  Article  PubMed  Google Scholar 

    92.
    Gaillard, J. M., Allainé, D., Pontier, D., Yoccoz, N. G. & Promislow, D. E. L. Senescence in natural populations of mammals: a reanalysis. Evolution 48, 509–516. https://doi.org/10.1111/j.1558-5646.1994.tb01329.x (1994).
    Article  PubMed  Google Scholar 

    93.
    Lindenmayer, D. B. & Likens, G. E. Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol. Evol. 24, 482–486. https://doi.org/10.1016/j.tree.2009.03.005 (2009).
    Article  PubMed  Google Scholar 

    94.
    Campbell, R. D., Rosell, F., Nolet, B. A. & Dijkstra, V. A. A. Territory and group sizes in Eurasian beavers (Castor fiber): echoes of settlement and reproduction?. Behav. Ecol. Sociobiol. 58, 597–607. https://doi.org/10.1007/s00265-005-0942-6 (2005).
    Article  Google Scholar 

    95.
    Sun, L., Müller-Schwarze, D. & Schulte, B. A. Dispersal pattern and effective population size of the beaver. Can. J. Zool. 78, 393–398. https://doi.org/10.1139/z99-226 (2000).
    Article  Google Scholar 

    96.
    Campbell, R. D., Nouvellet, P., Newman, C., Macdonald, D. W. & Rosell, F. The influence of mean climate trends and climate variance on beaver survival and recruitment dynamics. Global Change Biol. 18, 2730–2742. https://doi.org/10.1111/j.1365-2486.2012.02739.x (2012).
    ADS  Article  Google Scholar 

    97.
    Rosell, F. & Hovde, B. Methods of aquatic and terrestrial netting to capture Eurasian beavers. Wildl. Soc. Bull. 29, 269–274 (2001).
    Google Scholar 

    98.
    Rosell, F. & Sun, L. Use of anal gland secretion to distinguish the two beaver species Castor canadensis and C. fiber. Wildl. Biol. 5, 119–123. https://doi.org/10.2981/wlb.1999.015 (1999).
    Article  Google Scholar 

    99.
    Rosell, F., Zedrosser, A. & Parker, H. Correlates of body measurements and age in Eurasian beaver from Norway. Eur. J. Wildl. Res. 56, 43–48. https://doi.org/10.1007/s10344-009-0289-9 (2010).
    Article  Google Scholar 

    100.
    Mayer, M., Künzel, F., Zedrosser, A. & Rosell, F. The 7-year itch: non-adaptive mate change in the Eurasian beaver. Behav. Ecol. Sociobiol. 71, 1. https://doi.org/10.1007/s00265-016-2259-z (2017).
    Article  Google Scholar 

    101.
    Buchanan, K. et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83, 301–309. https://doi.org/10.1016/j.anbehav.2011.10.031 (2012).
    Article  Google Scholar 

    102.
    Aleksiuk, M. The function of the tail as a fat storage depot in the beaver (Castor canadensis). J. Mammal. 51, 145–148. https://doi.org/10.2307/1378541 (1970).
    CAS  Article  PubMed  Google Scholar 

    103.
    Parker, H., Rosell, F. & Mysterud, A. Harvesting of males delays female breeding in a socially monogamous mammal; the beaver. Biol. Lett. 3, 107–109. https://doi.org/10.1098/rsbl.2006.0563 (2007).
    Article  Google Scholar 

    104.
    Fouchet, D., Santin-Janin, H., Sauvage, F., Yoccoz, N. G. & Pontier, D. An R package for analysing survival using continuous-time open capture–recapture models. Methods Ecol. Evol. 7, 518–528. https://doi.org/10.1111/2041-210x.12497 (2016).
    Article  Google Scholar 

    105.
    Borchers, D., Distiller, G., Foster, R., Harmsen, B. & Milazzo, L. Continuous-time spatially explicit capture–recapture models, with an application to a jaguar camera-trap survey. Methods Ecol. Evol. 5, 656–665. https://doi.org/10.1111/2041-210X.12196 (2014).
    Article  Google Scholar 

    106.
    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118. https://doi.org/10.2307/2937171 (1992).
    Article  Google Scholar 

    107.
    Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: dispersal and mortality in snakes. Biol. Conserv. 89, 39–50. https://doi.org/10.1016/S0006-3207(98)00140-2 (1999).
    Article  Google Scholar 

    108.
    Lucas, J. R., Waser, P. M. & Creel, S. R. Death and disappearance: estimating mortality risks associated with philopatry and dispersal. Behav. Ecol. 5, 135–141. https://doi.org/10.1093/beheco/5.2.135 (1994).
    Article  Google Scholar 

    109.
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, Berlin, 2009).

    110.
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, Berlin, 2002).

    111.
    Magnusson, A. et al. Package ‘glmmTMB’. R Package (2017).

    112.
    Barton, K. R-package ‘MuMIn’ (2018).

    113.
    Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manage 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).
    Article  Google Scholar 

    114.
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package (2017).

    115.
    Team, R. C. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Austria, 2015. (2018). More

  • in

    Microbial community dynamics in phyto-thermotherapy baths viewed through next generation sequencing and metabolomics approach

    Temperature and pH
    Figure 1 shows the temperature trend during the July, August and October PTBs. In the first 35 h, all the PTBs showed similar temperatures rising from 26 to 35 °C – 39 °C (Fig. 1). In the following hours, the temperature showed different trends according to the month. In July, the temperature was stable for the first four days (96 h) and then rose, reaching the max. temperature of 51 °C. In August, the temperature was stable for the first 55 h and then rose reaching the max. temperature of 61 °C. Finally, in October, after the first 35 h, the temperature rose immediately reaching 50 °C, and then was stable reaching the max. of 64.8 °C.
    Figure 1

    Temperature dynamic of herbs pile bath during PTB. Temperature was recorded for seven days from day 0 to d7 each hour (24 h = d1; 48 h = d2; 72 h = d3; 96 h = d4; 120 h = d5; 144 h = d6; and 168 h = d7) at 20 cm of depth in the middle of the pool bath. In yellow is the temperature trend for July, in red August and in blue October batch.

    Full size image

    The pH (Table 1), in the first two days, was in a range between 6.2 and 6.5 with the exception of October when pH sowed a mean value of 7.4. After d5, the pH increased significantly and stabilized in a range between 7.4 and 7.8.
    Table 1 Microbiological counts (Log CFU g−1) and pH in the herbs samples in different days and month of the PTB.
    Full size table

    Microbial counts in herbs during PT process
    The counts of viable total aerobic, mesophilic and thermophilic anaerobic bacteria, enterobacteria, yeasts and moulds in July, August and October at day 0, d2, d3, d5 and d7 are shown in Table 1. The plate counts showed no significant difference for depth of sampling (p value  > 0.05; data not shown). The aerobic bacteria were always high at day 0 (6.7, 7.7 and 9.1 Log CFU g−1 in July, August and October respectively). In July and August, they significantly rose until d7, reaching similar amounts (8.7 and 8.8 Log CFU g−1 respectively). The mesophilic and thermophilic lactic acid bacteria (LAB) were very low in July and August at day 0 when they were present in traces or not detected (Table 1). Mesophilic LAB rose from d2 to d7 with a similar trend to aerobic bacteria reaching 5.9 Log CFU g−1. By contrast, in October they showed different trend: as aerobic bacteria, mesophilic LAB counts were very high at day 0 and stable without significant differences until d3 and then significantly decreased until d7 reaching 4.9 Log CFU g−1. Counts of thermophilic LAB showed similar trends in all the three months: they rose until d7 reaching similar amount in July, August and October (5.2, 5.7 and 5.1 Log CFU g−1 respectively). Enterobacteria counts were lower in herbs at day 0 (3.8, 4.3 and 5.0 Log CFU g−1 in July, August and October respectively) and then significantly rose until d7 reaching 6.2, 5.7 and 6.7 Log CFU g−1 in July, August and October respectively. In July, yeasts and moulds in the first two days were not detected or present in traces, then reached their highest value at d3 and significantly decreased until d7. By contrast, their counts were very high in both August and October; in particular, moulds counts trends were similar: they significantly decreased until d7 to 3.2 and 6.4 Log CFU g−1 in August and October respectively.
    Characteristics of the sequencing data
    The DNA extracted from the 90 PTB samples had been all successfully amplified. After merging and quality trimming the raw data, 2,980,511 reads for bacteria and 1,227,092 reads for fungi remained for subsequent analysis (Table S1). After alignment, the remaining Operational Taxonomy Units (OTU) had been clustered at a 3% of distance.
    Bacteria and fungi: alpha diversity
    The number of OTUs and the Shannon diversity index were determined using QIIME2 at 97% similarity levels (Table 2), in order to analyse the bacterial and fungi community richness in samples obtained during the PT process. Regarding the sample position (5 and 40 cm depth), there was no significant difference in both observed OTUs number and Shannon diversity index for bacteria and fungi communities (p value  > 0.05). It is worth noting that the degree of bacterial diversity was significantly higher in July and August than in October samples, by contrast, the degree of fungal diversity was significantly higher in July and October than in August samples (Shannon diversity index in Table 2).
    Table 2 Observed OTUs (Obs. OTUs) and Shannon diversity index (Shannon div. ind.) in the herbs at different depth, month and of day sampling of the PTB.
    Full size table

    The variation in number of OTUs and Shannon diversity index over time indicates highest microbial diversity at day 0 and d2, and a lower microbial diversity at d5 and d7.
    Bacteria and fungi: beta diversity
    The PCoA of UniFrac and Jaccard metric indicated clear clustering of both bacterial and fungi communities according to the different PTB days (Fig. 2a,b).
    Figure 2

    Principal coordinate analysis of Weighted UniFrac distances for bacterial community (a) and Bray–Curtis distances for fungi community (b) in PTB. The Time custom axis has been used to show the PCoA changes in the days. For interpretation of the symbols and colors the reader is referred to the legend.

    Full size image

    Bacterial and fungi communities were more phylogenetically dissimilar between successional days (day 0, d2, d3, d5 and d7) or months (July, August and October) than between position of sampling (5 and 40 cm). The bacterial Weighted UniFrac PCoA (Fig. 2a, total variation explained: 52.09%) and the fungal Jaccards PCoA (Fig. 2b, total variation explained: 32.83%) revealed a clearer picture of the similarities across different days. The PCoA plots emphasized the similarities of the bacterial and fungi communities in the PTB at d2 and d3 when compared with d5 and d7.
    These results were supported by the PERMANOVA statistical analysis (Table 3). The differences between position of sampling (5 and 40 cm) were not significant both for bacteria and fungi communities as the p values were 0.19 for bacteria and 0.27 for fungi community respectively. The differences among months of sampling were significant comparing July and August with October for both bacteria and fungi communities as well as the differences among microbial communities through time. The pairwise comparison (Table 3) clearly showed two significantly different stages during the PTB after day 0: the first stage including d2 and d3 (1st stage), and the second stage including d5 and d7 (2nd stage). The time effect on microbial composition (pseudo-F value) was showing a growing trend with the proceeding of the sampling days (Table 3). The bacterial pseudo-F values were smaller and smaller with progression of the days; by contrast, fungi pseudo-F values were higher. This means that the bacteria became more similar and the fungi more different in the samples from the three piles studied as the process progressed.
    Table 3 Permanova analysis (999 permutations) results for bacterial and fungi communities based on weighted unifrac and Jaccard distances respectively.
    Full size table

    Bacterial community structure
    Eleven prokaryotic phyla were found in the 90 samples accounting for the total bacterial community. The predominant phylum across all bacterial communities was the Proteobacteria, accounting for 33%–83% of the OTUs in each time and month of the PTB (Fig. 3). The trend of Proteobacteria was similar in all the months with different amount of presence: at day 0 and d2 Proteobacteria abundance was between 61% and 85%; at d3, showed a slight decrease (between 58% and 72%) and reached the lower values at d5 and d7 (between 33% and 65%). Twenty-six bacterial phylotypes were found dominant across all samples, accounting for the 90% of the total bacterial community. Of these 26 phylotypes (in Fig. 4), 10 belonged to Proteobacteria. Erwinia was the most abundant genus in this phylum and reached the higher presence at d2 and d3. Other frequently sequenced genera included Acinetobacter, Pseudomonas, mainly found at day 0, and unclassified genera belonging to Xanthomonadaceae family.
    Figure 3

    Phylum composition (in mean relative abundance) of herbs samples as revealed by high-throughput sequencing analysis. The samples were collected in triplicate from the same pool, for five days (day 0, d2, d3, d5, and d7) at 5 and 40 cm of depth, in July, August (Aug) and October (Oct). For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

    Full size image

    Figure 4

    Bacterial taxa groups (genus level or above) composition, in mean relative abundance, of herb samples as revealed by high-throughput sequencing analysis. The samples have been collected in triplicate from the same pool, for five days (d0, d2, d3, d5, and d7) at 5 and 40 cm of depth, in July, August (Aug) and October (Oct). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

    Full size image

    Of the Alphaproteobacteria, the genera Agrobacterium, Methylobacterium, Sphingomonas and unclassified genera of the family Beijerinckiaceae were the most abundant and dominant at day 0. All these phylotypes showed a lowering trend in time decreasing from day 0 to d7 with the only exceptions of the Beijerinckiaceae that were higher at d7 than at day 0.
    Of the Betaproteobacteria, unclassified genera belonging to Alcaligenaceae and Oxalobacteraceae were the most abundant families. Their relative abundances were constant along the time and showed higher differences among the months than the sampling days (average values of relative abundance were 2.4%, 4.5% and 0.5% in July, August and October respectively).
    Firmicutes accounted for 12%–38% of the OTUs from d2 to d7 of the PT process. At day 0, Firmicutes were present only in October’s samples at 7%, then increased at d2 and remained stable until the end of the process (Fig. 3). Overall, there were 10 Firmicutes in the 26 most abundant phylotypes found during the PTBs (Fig. 4). Most of these were thermophilic bacteria such as Bacillus, Thermoactinomycetaceae, Brevibacillus and Paenibacillus6. These themophilic phylotypes had never been detected at day 0, appeared at d2 and reached their higher values at d5 when their presence accounted for 29.9%, 19.4% and 8.5% in July, August and October respectively.
    The Bacteroidetes constituted another dominant phylum detected in all the samples (Fig. 3). Bacteroidetes abundance at d0 was in the range of 1.4%–17.0%, decreased at d2, d3 and d5 to a range of 0.7%–8.1% and reached the highest values at d7 (between 8.1% and 21.2%). The most abundant genera belonging to this phylum were Flavobacterium and Sphingobacterium.
    The abundance of Actinobacteria was 1.0%–3.3% at day 0 and increased until the end of the process reaching a maximum of 7.5–36.6% relative abundances respectively (Fig. 3). The most abundant phylotypes in the Actinobacteria phylum were Microbacteriaceae and Streptomyces (Fig. 4); in particular, Streptomyces was one of the genera dominating bacterial community biodiversity at d5 and d7.
    Cyanobacteria were found at relative abundances higher than 1% only in July and August samples at day 0 and d2, with a maximum at day 0 (16.9% and 4.5% relative abundances in June and July samples respectively). After d2, Cyanobacteria decreased until the end of the process (Fig. 3). The relative abundance of Verrucomicrobia was 0.35%–2.8% at d0 and remained constant during the whole PTB process (Fig. 3). Chtoniobacteraceae was the most abundant bacterial family of the Verrucomicrobia phylum.
    Further bacterial phyla had always been found at very low relative abundances (never higher than 1.0%, Fig. 3).
    Fungal community structure
    Before the PTB started, the fungal community in the herbs (day 0 in Fig. 5), was dominated by Mycosphaerellaceaes (Mycosphaerella, Ramularia and Zymoseptoria genera), representing the 21.5%, 21.4% and 15.0% of the total in July, August and October respectively, and Bulleribasidiaceaes (Vishniacozyma, and Dioszegia genera) representing the 22.3%, 32.4% and 23.4% of the total in July, August and October respectively. Other fungal taxonomic groups, mainly belonging to the Ascomycota phylum, were detected in lower relative abundance (lower than 10%). After two days (d2), the Aspergillaceae family was emerging, mainly constituted by the Aspergillus genus with traces of Penicillium in 13 out of the 90 samples. Aspergillaceae dramatically increased from day 0 (always less than 1%) to d2 in July and August trials (10.6% and 24.9% respectively), and after d3 they became the most dominant fungi (26.6% and 83.2% respectively). By October, Bullerobasidiaceae was always the dominant fungal family at d2 and d3. After five days (d5 in Fig. 5), Bulleribasidiaceaes (lower than 10.6%) and Mycosphaerellaceae (lower than 6.5%) relative abundances decreased sharply. Aspergillaceae kept their rising trend, remaining the dominant fungal family in July and August trials (47.9% and 56.6% respectively), but they represented only the 11.4% of the fungal relative abundance in October. Other thermophilic species emerged in July and August: the Trichocomaceae mainly constituted by Thermomyces lanuginosus whose relative abundance was never higher than 2.1% in the first three days and then suddenly increased to 32.8% and 23.2% in July and August respectively.
    Figure 5

    Fungi taxa groups (genus level or above) composition, in mean relative abundance, of herb samples as revealed by high-throughput sequencing analysis. The samples were collected in triplicate from the same pool, for five days (d0, d2, d3, d5, and d7) at 5 and 40 cm of depth, in July, August (Aug) and October (Oct). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

    Full size image

    After seven days (d7 in Fig. 5), the fungal community was totally dominated by Aspergillaceae (46.6%, 69.2% and 35.9% in July, August and October respectively) and Thermomyces lanuginosus (44.2%, 23.3% and 21.6% in July, August and October respectively). None of the OTUs was predominant throughout all samples.
    Volatiles organic compounds (VOCs) released during the PTBs
    After raw GCxGC–MS data deconvolution and pre-processing, the three dataset (July, August and October) consisted of 722, 1105 and 815 volatiles respectively. As already reported by Narduzzi et al.7, the majority of the VOCs are not in common among the months. The identified volatiles through all the three months’ datasets were matched using their InchiKey, and produced a table consisting of 295 VOCs present in all the months (Table S2). As shown in the top part of the Fig. 6, there is a cluster of 34 compounds that are the most representative of all PTB samples because contributing to the 85% of the total VOCs mass emissions. In the heatmap Fig. 6, the samples from the same month clustered together. Moreover, within each month, the samples split in two different clusters according to the stages already identified in the microbial analysis. The first cluster is composed by the samples of d1, d2 and d3 (1st stage) and the second cluster by the samples of d4, d5, and d6 (2nd stage). Looking at the differences in the days within each batch, the d1, d2 and d3 samples were richer in aliphatic hydrocarbons (heneicosane, hexadecane, tetradecane and 3-methyltridecane), alpha-terpineol, and estragole. By contrast, the d4, d5 and d6 samples were richer in 1-methylnaphthalene, nonanal, 2-nonanone, 3-octanol, m-xylene, 2,6-dimethylheptadecane and 2-ethyl-hexanol.
    Figure 6

    Heatmap and hierarchical clustering based on the normalized quantities of the identified VOCs, for PTB herbs in the six days (d1, d2, d3, d4, d5, and d6) and three months (July, August and October) of sampling. The highest content is in red and the lowest in blue. The values have been UV scaled and clustered according the Ward algorithm. The list of the 34 compounds highlighted in the upper side represents the most abundant (core) VOCs found. In July, d6 is missing as the sample has not been collected.

    Full size image More

  • in

    New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment

    1.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    WWF. Living Planet Report – 2018: Aiming higher. (WWF International, 2018).

    3.
    Kelly, R. P. et al. Harnessing DNA to improve environmental management. Science 344, 1455–1456 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Bonar, S. A., Hubert, W. A. & Willis, D. W. Standard methods for sampling North American freshwater fishes (2009).

    5.
    Wheeler, Q. D., Raven, P. H. & Wilson, E. O. Taxonomy: impediment or expedient?. Science (New York, NY) 303, 285 (2004).
    CAS  Article  Google Scholar 

    6.
    Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    McDevitt, A. D. et al. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. J. Fish Biol. 95, 679–682 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Nobile, A. B. et al. DNA metabarcoding of neotropical ichthyoplankton: enabling high accuracy with lower cost. Metabarcoding Metagenomics 3, e35060 (2019).
    Article  Google Scholar 

    12.
    Mariac, C. et al. Metabarcoding by capture using a single COI probe (MCSP) to identify and quantify fish species in ichthyoplankton swarms. PLoS ONE 13, e0202976 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Leray, M., Meyer, C. P. & Mills, S. C. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ 3, e1047 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Shokralla, S. et al. Massively parallel multiplex DNA sequencing for specimen identification using an IlluminaMiSeq platform. Sci. Rep. 5, 9687 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Kitano, T., Umetsu, K., Tian, W. & Osawa, M. Two universal primer sets for species identification among vertebrates. Int. J. Legal Med. 121, 423–427 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Sales, N. G. et al. Fishing for mammals: landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).
    CAS  Article  Google Scholar 

    18.
    Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).
    Article  Google Scholar 

    19.
    De Souza, L. S., Godwin, J. C., Renshaw, M. A. & Larson, E. Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS ONE 11, e0165273 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).
    Article  Google Scholar 

    21.
    Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes. Mol. Ecol. Resour. 19(1), 27–46. https://doi.org/10.1111/1755-0998.12900 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 1(2), 119–130. https://doi.org/10.1002/edn3.14 (2019).
    Article  Google Scholar 

    23.
    Sales, N. G. et al. Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil. Mamm. Rev. 50, 221–225 (2020).
    Article  Google Scholar 

    24.
    Dejean, T. et al. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Gomes, L. C., Pessali, T. C., Sales, N. G., Pompeu, P. S. & Carvalho, D. C. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143, 581–588 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Pugedo, M. L., de Andrade Neto, F. R., Pessali, T. C., Birindelli, J. L. O. & Carvalho, D. C. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin. Genetica 144, 341–349 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Ramirez, J. L. et al. Revealing hidden diversity of the underestimated NeotropicalIchthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front. Genet. 8, 1–11 (2017).
    Article  CAS  Google Scholar 

    28.
    Carvalho, D. C. et al. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River basin. Mitochondrial DNA 22, 80–86 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    29.
    Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).
    Article  Google Scholar 

    30.
    Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 197, 131–138 (2016).
    Article  Google Scholar 

    31.
    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    MacDonald, A. J. & Sarre, S. D. A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA. Mol. Ecol. Resour. 17, 708–720 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693 (1997).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Thomsen, P. F. et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic deepwater fishes. PLoS ONE 11, e0165252 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  Article  Google Scholar 

    38.
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
    ADS  CAS  Article  Google Scholar 

    39.
    Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees’. Mol. Biol. Evol. 4, 406–425 (1987).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Felsenstein, J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution (N. Y.) 35, 1229–1242 (1981).
    Google Scholar 

    41.
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Proutski, V. & Holmes, E. SWAN: sliding window analysis of nucleotide sequence variability. Bioinformatics 14, 467–468 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Brown, S. D. J. et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. 12, 562–565 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    R Core Team. R: A Language and Environment for Statistical Computing (2020).

    45.
    Meusnier, I. et al. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
    CAS  Article  Google Scholar 

    47.
    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer 1.6 http://beast.bio.ed.ac.uk/tracer (2014).

    52.
    Rambaut, A. & Drummond, A. J. TreeAnnotator, version 1.7. 5. Available beast. bio. ed. ac. uk/TreeAnnotator (accessed 15 April 2010) (2012).

    53.
    Ward, R. D. DNA barcode divergence among species and genera of birds and fishes. Mol. Ecol. Resour. 9, 1077–1085 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).
    CAS  Article  Google Scholar 

    55.
    Yu, H.-J. & You, Z.-H. Comparison of DNA truncated barcodes and full-barcodes for species identification. in International Conference on Intelligent Computing 108–114 (Springer, 2010).

    56.
    Harper, L. R. et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 238, 108225 (2019).
    Article  Google Scholar  More

  • in

    A globally threatened shark, Carcharias taurus, shows no population decline in South Africa

    1.
    Gabriel, W. & Bürger, R. Survival of small populations under demographic stochasticity. Theor. Popul. Biol. 41, 44–71 (1992).
    CAS  PubMed  MATH  Article  Google Scholar 
    2.
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).
    PubMed  Article  Google Scholar 

    3.
    Melbourne, B. A. & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–103 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Article  Google Scholar 

    5.
    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA 101, 15261–15264 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Wright, S. Evolution in mendelian populations. Genetics 16, 97 (1931).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Nunney, L. The influence of mating system and overlapping generations on effective population size. Evolution 47, 1329–1341 (1993).
    PubMed  Article  Google Scholar 

    8.
    Ardren, W. R. & Kapuscinski, A. R. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol. Ecol. 12, 35–49 (2003).
    CAS  PubMed  Article  Google Scholar 

    9.
    Turner, T. F., Osborne, M. J., Moyer, G. R., Benavides, M. A. & Alò, D. Life history and environmental variation interact to determine effective population to census size ratio. Proc. R. Soc. B Biol. Sci. 273, 3065–3073 (2006).
    Article  Google Scholar 

    10.
    Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K. & Allendorf, F. W. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv. Gen. 11, 355–373 (2010).
    CAS  Article  Google Scholar 

    11.
    Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Palstra, F. P. & Ruzzante, D. E. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?. Mol. Ecol. 17, 3428–3447 (2008).
    PubMed  Article  Google Scholar 

    13.
    Nunney, L. Measuring the ratio of effective population size to adult numbers using genetic and ecological data. Evolution 49, 389–392 (1995).
    PubMed  Article  Google Scholar 

    14.
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).
    Article  Google Scholar 

    15.
    Ruggeri, P. et al. Coupling demographic and genetic variability from archived collections of European anchovy (Engraulis encrasicolus). PLoS ONE 11, e0151507 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Waples, R. S., Grewe, P. M., Bravington, M. W., Hillary, R. & Feutry, P. Robust estimates of a high Ne/N ratio in a top marine predator, southern bluefin tuna. Sci. Adv. 4, eaar7759 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Dudgeon, C. L. & Ovenden, J. R. The relationship between abundance and genetic effective population size in elasmobranchs: an example from the globally threatened zebra shark Stegostoma fasciatum within its protected range. Conserv. Gen. 16, 1443–1454 (2015).
    Article  Google Scholar 

    18.
    Portnoy, D. S., McDowell, J. R., McCandless, C. T., Musick, J. A. & Graves, J. E. Effective size closely approximates the census size in the heavily exploited western Atlantic population of the sandbar shark, Carcharhinus plumbeus. Conserv. Gen. 10, 1697–1705 (2009).
    Article  Google Scholar 

    19.
    Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. B Biol. Sci. 280, 20131339 (2013).
    Article  Google Scholar 

    20.
    Chevolot, M., Hoarau, G., Rijnsdorp, A. D., Stam, W. T. & Olsen, J. L. Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae). Mol. Ecol. 15, 3693–3705 (2006).
    CAS  PubMed  Article  Google Scholar 

    21.
    Nunney, L. & Elam, D. R. Estimating the effective population size of conserved populations. Conserv. Biol. 8, 175–184 (1994).
    Article  Google Scholar 

    22.
    Grimm, A., Gruber, B., Hoehn, M., Enders, K. & Henle, K. A model-derived short-term estimation method of effective size for small populations with overlapping generations. Methods Ecol. Evol. 7, 734–743 (2016).
    Article  Google Scholar 

    23.
    Blower, D. C., Riginos, C. & Ovenden, J. R. neogen: a tool to predict genetic effective population size (Ne) for species with generational overlap and to assist empirical Ne study design. Mol. Ecol. Resour. 19, 260–271 (2019).
    PubMed  Article  Google Scholar 

    24.
    Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de-León, P. & van Herwerden, L. Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conserv. Genet. 18, 1151–1163 (2017).
    Article  Google Scholar 

    25.
    Reid-Anderson, S., Bilgmann, K. & Stow, A. Effective population size of the critically endangered east Australian grey nurse shark Carcharias taurus. Mar. Ecol. Prog. Ser. 610, 137–148 (2019).
    ADS  CAS  Article  Google Scholar 

    26.
    Vignaud, T. M. et al. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline. Mol. Ecol. 23, 2590–2601 (2014).
    CAS  PubMed  Article  Google Scholar 

    27.
    Bansemer, C. S. & Bennett, M. B. Retained fishing gear and associated injuries in the east Australian grey nurse sharks (Carcharias taurus): implications for population recovery. Mar. Freshw. Res. 61, 97–103 (2010).
    Article  Google Scholar 

    28.
    Irigoyen, A. & Trobbiani, G. Depletion of trophy large-sized sharks populations of the Argentinean coast, south-western Atlantic: insights from fishers’ knowledge. Neotrop. Ichthyol. 14, e150081 (2016).
    Article  Google Scholar 

    29.
    Chiaramonte, G., Domingo, A. & Soto, J. Carcharias taurus (Southwest Atlantic subpopulation). The IUCN Red List of Threatened Species. e.T63163A12625032 (2007).

    30.
    Pollard, D., Gordon, I., Williams, S., Flaherty, A. & McAuley, R. Carcharias taurus (East coast of Australia subpopulation). The IUCN Red List of Threatened Species. e.T44070A10854830 (2003).

    31.
    Walls, A. & Soldo, A. Carcharias taurus (Mediterranean subpopulation). The IUCN Red List of Threatened Species: e.T3854A48947509 (2015).

    32.
    Green, M., Ganassin, C. & Reid, D. Report into the NSW Shark Meshing (Bather Protection) Program. New South Wales Department of Primary Industries (2009).

    33.
    Reid, D. D., Robbins, W. D. & Peddemors, V. M. Decadal trends in shark catches and effort from the New South Wales, Australia, Shark Meshing Program 1950–2010. Mar. Freshw. Res. 62, 676–693 (2011).
    CAS  Article  Google Scholar 

    34.
    Dudley, S. F. J. & Simpfendorfer, C. A. Population status of 14 shark species caught in the protective gillnets off KwaZulu-Natal beaches, South Africa, 1978–2003. Mar. Freshw. Res. 57, 225 (2006).
    Article  Google Scholar 

    35.
    Dicken, M. L., Smale, M. J. & Booth, A. J. Long-term catch and effort trends in Eastern Cape Angling Week competitions. Afr. J. Mar. Sci. 34, 259–268 (2012).
    Article  Google Scholar 

    36.
    Dicken, M., Booth, A. J. & Smale, M. J. Estimates of juvenile and adult raggedtooth shark (Carcharias taurus) abundance along the east coast of South Africa. Can. J. Fish. Aquat. Sci. 65, 621–632 (2008).
    Article  Google Scholar 

    37.
    Klein, J. D., Bester-van der Merwe, A. E., Dicken, M. L., Mmonwa, K. L. & Teske, P. R. Reproductive philopatry in a coastal shark drives age-related population structure. Mar. Biol. 166, 26 (2019).
    Article  Google Scholar 

    38.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    39.
    Rousset, F. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Res. 8, 103–106 (2008).
    Article  Google Scholar 

    40.
    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).
    MathSciNet  MATH  Article  Google Scholar 

    41.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2017).

    42.
    Chikhi, L., Sousa, V. C., Luisi, P., Goossens, B. & Beaumont, M. A. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186, 983–995 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Leblois, R. et al. Maximum-likelihood inference of population size contractions from microsatellite data. Mol. Biol. Evol. 31, 2805–2823 (2014).
    CAS  PubMed  Article  Google Scholar 

    44.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Cornuet, J. M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  Google Scholar 

    46.
    Goldman, K. J., Branstetter, S. & Musick, J. A. A re-examination of the age and growth of sand tiger sharks, Carcharias taurus, in the western North Atlantic: the importance of ageing protocols and use of multiple back-calculation techniques. Environ. Biol. Fish. 77, 241–252 (2006).
    Article  Google Scholar 

    47.
    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).
    CAS  PubMed  Article  Google Scholar 

    48.
    Cornuet, J.-M. et al. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24, 2713–2719 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    de Irio, M. D. & Griffiths, R. C. Importance sampling on coalescent histories. I. Adv. Appl. Prob. 36, 417–433 (2004).
    MathSciNet  MATH  Article  Google Scholar 

    50.
    de Iorio, M. D. & Griffiths, R. C. Importance sampling on coalescent histories. II: subdivided population models. Adv. Appl. Prob. 36, 434–454 (2004).
    MathSciNet  MATH  Article  Google Scholar 

    51.
    Cornuet, J. M. & Beaumont, M. A. A note on the accuracy of PAC-likelihood inference with microsatellite data. Theor. Popul. Biol. 71, 12–19 (2007).
    CAS  PubMed  MATH  Article  Google Scholar 

    52.
    Nance, H. A., Klimley, P., Galván-Magaña, F., Martínez-Ortíz, J. & Marko, P. B. Demographic processes underlying subtle patterns of population structure in the scalloped hammerhead shark, Sphyrna lewini. PLoS ONE 6, e21459 (2011).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Vignaud, T. M. et al. Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range. Mol. Ecol. 23, 5193–5207 (2014).
    PubMed  Article  Google Scholar 

    54.
    Cabrera, A. A. & Palsbøll, P. J. Inferring past demographic changes from contemporary genetic data: a simulation-based evaluation of the ABC methods implemented in DIYABC. Mol. Ecol. Res. 17, e94–e110 (2017).
    CAS  Article  Google Scholar 

    55.
    Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: biological impacts of southern hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).
    PubMed  Article  Google Scholar 

    57.
    Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).
    PubMed  Article  Google Scholar 

    58.
    Tolley, K., Groeneveld, J., Gopal, K. & Matthee, C. Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Mar. Ecol. Prog. Ser. 297, 225–231 (2005).
    ADS  CAS  Article  Google Scholar 

    59.
    O’Brien, S. M., Gallucci, V. F. & Hauser, L. Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conserv. Gen. 14, 125–144 (2013).
    Article  Google Scholar 

    60.
    Portnoy, D. S. et al. Contemporary population structure and post-glacial genetic demography in a migratory marine species, the blacknose shark, Carcharhinus acronotus. Mol. Ecol. 23, 5480–5495 (2014).
    CAS  PubMed  Article  Google Scholar 

    61.
    Domingues, R. R., Hilsdorf, A. W. S., Shivji, M. M., Hazin, F. V. H. & Gadig, O. B. F. Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Rev. Fish Biol. Fish. 28, 213–227 (2018).
    Article  Google Scholar 

    62.
    Portnoy, D. S. et al. Population structure, gene flow, and historical demography of a small coastal shark (Carcharhinus isodon) in US waters of the Western Atlantic Ocean. ICES J. Mar. Sci. 73, 2322–2332 (2016).
    Article  Google Scholar 

    63.
    Smale, M. J., Booth, A. J., Farquhar, M. R., Meÿer, M. R. & Rochat, L. Migration and habitat use of formerly captive and wild raggedtooth sharks (Carcharias taurus) on the southeast coast of South Africa. Mar. Biol. Res. 8, 115–128 (2012).
    Article  Google Scholar 

    64.
    Bradshaw, C. J. A., Peddemors, V. M., McAuley, R. B. & Harcourt, R. G. Population viability of eastern Australian grey nurse sharks under fishing mitigation and climate change. Final Report to the Commonwealth of Australia, Department of the Environment, Water, Heritage and the Arts (2008).

    65.
    Ahonen, H., & Stow, A. Population size and structure of grey nurse shark in east and west Australia. Final Report to Department of Marine and Freshwater Environment, Water, Heritage and the Arts (2009).

    66.
    Otway, N. M. & Burke, A. L. Mark-recapture population estimate and movements of grey nurse sharks. NSW Fisheries Final Report Series. No. 63 (2004).

    67.
    Belmar-Lucero, S. et al. Concurrent habitat and life history influences on effective/census population size ratios in stream-dwelling trout. Ecol. Evol. 2, 562–573 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95 (1995).
    Article  Google Scholar 

    69.
    Hedgecock, D. Does variance in reproductive success limit effective population sizes of marine organisms. In Genetics and Evolution of Aquatic Organisms (ed. Beaumont, A.) 122–134 (Springer, Berlin, 1994).
    Google Scholar 

    70.
    Gilmore, R., Putz, O. & Dodrill, J. Oophagy, intrauterine cannibalism and reproductive strategy in lamnoid sharks. In Reproductive Biology and Phylogeny of Chondrichthyes (ed. Hamlett, W.) 435–463 (Science Publishers Inc., Enfield, 2005).
    Google Scholar 

    71.
    Franklin, I. R. Evolutionary change in small populations. In Conservation Biology: An Evolutionary-Ecological Perspective (eds Soulé, M. E. & Wilcox, B. M.) 135–150 (Sunderland, Sinauer, 1980).
    Google Scholar 

    72.
    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).
    Article  Google Scholar 

    73.
    Franklin, I. R. & Frankham, R. How large must populations be to retain evolutionary potential?. Anim. Conserv. 1, 69–70 (1998).
    Article  Google Scholar 

    74.
    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).
    Article  Google Scholar 

    75.
    Department of the Environment. Recovery plan for the grey nurse shark (Carcharias taurus) in Australia (2014).

    76.
    van Sittert, L. The marine fisheries of South Africa in Oxford Research Encyclopedia of African History 1–15 (2017).

    77.
    RSA (Republic of South Africa). Marine living resources act (act no. 18 of 1998). 1–67 (1998). More

  • in

    Hidden Markov Models reveal a clear human footprint on the movements of highly mobile African wild dogs

    1.
    Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
    PubMed  Article  CAS  Google Scholar 

    5.
    Durant, S. M. et al. The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc. Natl. Acad. Sci. 114, 528–533 (2017).
    CAS  Article  Google Scholar 

    6.
    6Woodroffe, R. & Sillero Zubiri, C. Lycaon pictus. The IUCN Red List of Threatened Species. e.T12436A16711116 (Gland, Switzerland, 2012).

    7.
    Riggio, J. et al. The size of savannah Africa: A lion’s (Panthera leo) view. Biodivers. Conserv. 22, 17–35 (2013).
    Article  Google Scholar 

    8.
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).
    Google Scholar 

    9.
    Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42, 3–16 (1991).
    Article  Google Scholar 

    10.
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl. Acad. Sci. 105, 20770 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Kareiva, P. Habitat fragmentation and the stability of predator–prey interactions. Nature 326, 388–390 (1987).
    ADS  Article  Google Scholar 

    13.
    Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in Neotropical landbirds. Am. Nat. 140, 447–476 (1992).
    Article  Google Scholar 

    14.
    Durant, S. M. Competition refuges and coexistence: An example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).
    Article  Google Scholar 

    15.
    Durant, S. M. Living with the enemy: Avoidance of hyenas and lions by cheetahs in the Serengeti. Behav. Ecol. 11, 624–632 (2000).
    Article  Google Scholar 

    16.
    Creel, S. & Creel, N. M. Limitation of African wild dogs by competition with larger carnivores. Conserv. Biol. 10, 526–538 (1996).
    Article  Google Scholar 

    17.
    Creel, S. & Creel, N. M. The African wild dog: Behavior, ecology and conservation (Princeton University Press, Princeton, 2002).
    Google Scholar 

    18.
    Swanson, A. et al. Cheetahs and wild dogs show contrasting patterns of suppression by lions. J. Anim. Ecol. 83, 1418–1427 (2014).
    Article  Google Scholar 

    19.
    Dröge, E., Creel, S., Becker, M. S. & Msoka, J. Spatial and temporal avoidance of risk within a large carnivore guild. Ecol. Evol. 7, 189–199 (2017).
    PubMed  Article  Google Scholar 

    20.
    Gorman, M. L., Mills, M. G., Raath, J. P. & Speakman, J. R. High hunting costs make African wild dogs vulnerable to kleptoparasitism by hyaenas. Nature 391, 479–481 (1998).
    ADS  CAS  Article  Google Scholar 

    21.
    Broekhuis, F., Cozzi, G., Valeix, M., McNutt, J. W. & Macdonald, D. W. Risk avoidance in sympatric large carnivores: Reactive or predictive?. J. Anim. Ecol. 82, 1098–1105 (2013).
    Article  Google Scholar 

    22.
    Creel, S. et al. Carnivores, competition and genetic connectivity in the Anthropocene. Sci. Rep. 9, 16339. https://doi.org/10.1038/s41598-019-52904-0 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Frid, A. & Dill, L. M. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Article  Google Scholar 

    24.
    Broekhuis, F. Natural and anthropogenic drivers of cub recruitment in a large carnivore. Ecol. Evol. 8, 6748–6755 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Broekhuis, F., Madsen, E. K. & Klaassen, B. Predators and pastoralists: how anthropogenic pressures inside wildlife areas influence carnivore space use and movement behaviour. Anim. Conserv. 22, 404–416. https://doi.org/10.1111/acv.12483 (2019).
    Article  Google Scholar 

    26.
    Klaassen, B. & Broekhuis, F. Living on the edge: Multiscale habitat selection by cheetahs in a human-wildlife landscape. Ecol. Evol. 8, 7611–7623 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Dolrenry, S., Stenglein, J., Hazzah, L., Lutz, R. S. & Frank, L. A metapopulation approach to African lion (Panthera leo) conservation. PLoS ONE 9, e88081 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Mills, M. G. & Gorman, M. L. Factors affecting the density and distribution of wild dogs in the Kruger National Park. Conserv. Biol. 11, 1397–1406 (1997).
    Article  Google Scholar 

    30.
    Fuller, T., Mills, M. L., Borner, M., Laurenson, M. & Kat, P. Long distance dispersal by African wild dogs in East and South Africa. Revue de zoologie africaine 106, 535–537 (1992).
    Google Scholar 

    31.
    Frame, L. H., Malcolm, J. R., Frame, G. W. & Van Lawick, H. Social organization of African Wild Dogs (Lycaon pictus) on the Serengeti Plains, Tanzania 1967–1978 1. Zeitschrift für Tierpsychologie 50, 225–249 (1979).
    Article  Google Scholar 

    32.
    Woodroffe, R. et al. Dispersal behaviour of African wild dogs in Kenya. Afr. J. Ecol. 58, 46–57 (2020).
    Article  Google Scholar 

    33.
    Creel, S. & Creel, N. M. Communal hunting and pack size in African wild dogs, Lycaon pictus. Anim. Behav. 50, 1325–1339 (1995).
    Article  Google Scholar 

    34.
    Creel, S., Creel, N. M., Creel, A. & Creel, B. Hunting on a hot day: Effects of temoperature on interactions between African wild dogs and their prey. Ecology 97, 2910–2916 (2016).
    PubMed  MATH  Article  Google Scholar 

    35.
    Woodroffe, R. Ranging behaviour of African wild dog packs in a human-dominated landscape. J. Zool. 283, 88–97 (2011).
    Article  Google Scholar 

    36.
    Creel, S. Four factors modifying the effect of competition on carnivore population dynamics as illustrated by African wild dogs. Conserv. Biol. 15, 271–274 (2001).
    Article  Google Scholar 

    37.
    Cushman, S. A. et al. Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS ONE 13, e0196213 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Cushman, S. A., Elliot, N. B., Macdonald, D. W. & Loveridge, A. J. A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landsc. Ecol. 31, 1337–1353 (2016).
    Article  Google Scholar 

    39.
    Short Bull, R. A. et al. Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol. Ecol. 20, 1092–1107 (2011).
    Article  Google Scholar 

    40.
    Zeller, K. A. et al. Using step and path selection functions for estimating resistance to movement: Pumas as a case study. Landsc. Ecol. 31, 1319–1335 (2016).
    Article  Google Scholar 

    41.
    Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51, 1169–1178 (2014).
    Article  Google Scholar 

    42.
    Oriol-Cotterill, A., Macdonald, D. W., Valeix, M., Ekwanga, S. & Frank, L. G. Spatiotemporal patterns of lion space use in a human-dominated landscape. Anim. Behav. 101, 27–39 (2015).
    Article  Google Scholar 

    43.
    Cozzi, G. et al. African Wild dog dispersal and implications for management. J. Wildl. Manag. 84, 614–621 (2020).
    Article  Google Scholar 

    44.
    Cozzi, G., Broekhuis, F., McNutt, J. W. & Schmid, B. Comparison of the effects of artificial and natural barriers on large African carnivores: implications for interspecific relationships and connectivity. J. Anim. Ecol. 82, 707–715 (2013).
    PubMed  Article  Google Scholar 

    45.
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).
    Article  Google Scholar 

    46.
    Whittington-Jones, B. M., Parker, D. M., Bernard, R. T. & Davies-Mostert, H. T. Habitat selection by transient African wild dogs (Lycaon pictus) in northern KwaZulu-Natal, South Africa: Implications for range expansion. South Afr. J. Wildlife Res. 44, 135–147 (2011).
    Article  Google Scholar 

    47.
    47Becker, M. Zambian Carnivore Programme 2019 Annual Report. 40 (Zambian Carnivore Programme, Mfuwe, Zambia, 2020).

    48.
    Abrahms, B. et al. Lessons from integrating behaviour and resource selection: activity-specific responses of African wild dogs to roads. Anim. Conserv. 19, 247–255 (2016).
    Article  Google Scholar 

    49.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    52.
    van Beest, F. M. et al. Classifying grey seal behaviour in relation to environmental variability and commercial fishing activity-a multivariate hidden Markov model. Sci. Rep. 9, 1–14 (2019).
    Article  CAS  Google Scholar 

    53.
    McClintock, B. T. & Michelot, T. momentuHMM: R package for generalized hidden Markov models of animal movement. Methods Ecol. Evol. 9, 1518–1530 (2018).
    Article  Google Scholar 

    54.
    Michelot, T., Langrock, R. & Patterson, T. A. moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol. Evol. 7, 1308–1315 (2016).
    Article  Google Scholar 

    55.
    Langrock, R. et al. Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions. Ecology 93, 2336–2342 (2012).
    PubMed  Article  Google Scholar 

    56.
    Zucchini, W., MacDonald, I. L. & Langrock, R. Hidden Markov models for time series: an introduction using R (CRC Press, Boca Raton, 2017).
    Google Scholar 

    57.
    57DNPW. National Conservation Action Plan for Cheetah and African Wild Dog for Zambia, 2019–2023. (Zambia Department of National Parks and WIldlife, Chilanga, Zambia, 2019).

    58.
    Chomba, C., Mwenya, A. N. & Nyirenda, N. Wildlife legislation and institutional reforms in Zambia for the period 1912–2011. J. Sustain. Dev. Afr. 13, 2 (2011).
    Google Scholar 

    59.
    Astle, W., Webster, R. & Lawrance, C. Land classification for management planning in the Luangwa Valley of Zambia. J. Appl. Ecol. 6, 143–169 (1969).
    Article  Google Scholar 

    60.
    Rosenblatt, E. et al. Detecting declines of apex carnivores and evaluating their causes: An example with Zambian lions. Biol. Cons. 180, 176–186 (2014).
    Article  Google Scholar 

    61.
    Rosenblatt, E. et al. Effects of a protection gradient on carnivore density and survival: An example with leopards in the Luangwa valley Zambia. Ecol. Evol. 6, 3772–3785 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Rosenblatt, E. et al. Do protection gradients explain patterns in herbivore densities? An example with ungulates in Zambia’s Luangwa Valley. PLoS ONE 14, e0224438. https://doi.org/10.1371/journal.pone.0224438 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Watson, F. G., Becker, M. S., Milanzi, J. & Nyirenda, M. Human encroachment into protected area networks in Zambia: Implications for large carnivore conservation. Reg. Environ. Change 15, 415–429 (2015).
    Article  Google Scholar 

    64.
    Watson, F., Becker, M. S., McRobb, R. & Kanyembo, B. Spatial patterns of wire-snare poaching: Implications for community conservation in buffer zones around National Parks. Biol. Cons. 168, 1–9 (2013).
    Article  Google Scholar 

    65.
    Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139. https://doi.org/10.1080/20964471.2019.1625151 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Creel, S. et al. What explains variation in the strength of behavioral responses to predation risk? A standardized test with large carnivore and ungulate guilds in three ecosystems. Biol. Cons. 232, 164–172 (2019).
    Article  Google Scholar 

    67.
    67Masenga, E. H. Behavioural ecology of free-ranging and reintroduced African wild dog (Lycaon pictus) packs in the Serengeti ecosystem, Tanzania PhD thesis, Norwegian University of Science and Technology, (2017).

    68.
    Marsden, C. D. et al. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus). Mol. Ecol. 21, 1379–1393 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Becker, M. Zambian Carnivore Programme 2016 Annual Report (Mfuwe, Zambia, 2016).
    Google Scholar 

    70.
    momentuHMM: R package for analysis of telemetry data using generalized multivariate hidden Markov models of animal movement (CRAN, Vienna, Austria, 2020). More