The endangered California Condor (Gymnogyps californianus) population is exposed to local haemosporidian parasites
1.
Snyder, N. & Snyder, H. The California Condor: A Saga of Natural History and Conservation (Academic Press, San Diego, 2000).
Google Scholar
2.
Emslie, S. D. Age and diet of fossil California Condors in Grand Canyon, Arizona. Science 237, 768–770. https://doi.org/10.1126/science.237.4816.768 (1987).
ADS CAS Article PubMed Google Scholar
3.
Mee, A. & Snyder, N.F.R. California Condors in the 21st century-Conservation problems and solutions (eds. Mee, A. & Hall, L.S. & Grantham, J.). California Condors in the 21st Century. 243–272 (Series in Ornithology, no. 2. American Ornithologists’ Union and Nuttall Ornithological Club, Washington, DC, 2007).
4.
Parish, C.N., Heinrich, W.R. & Hunt, W.G. Lead exposure, diagnosis, and treatment in California Condors released in Arizona, (eds. Mee, A. & Hall, L.S. & Grantham, J.). California Condors in the 21st Century. 97–108 (Series in Ornithology, no. 2. American Ornithologists’ Union and Nuttall Ornithological Club,Washington, DC, 2007).
5.
Brandt, J. & Astell, M. California Condor Recovery Program 2017 Annual Report (eds. Weprin, N., Cook, D. & Ledig, D.). 1–62. (Hopper Mountain National Wildlife Refuge Complex. US Fish and Wildlife Service, Ventura, CA, 2019).
6.
Parish, C.N., Hunt, W.G., Feltes, E., Sieg, R. & Orr., K. Lead exposure among a reintroduced population of California Condors in northern Arizona and southern Utah (eds. Watson, R.T., Fuller, M., Pokras & M., Hunt, W.G.). Ingestion of lead from spent ammunition: Implications for wildlife and humans. 259–264. (The Peregrine Fund, Boise, Idaho, 2009). DOI https://doi.org/10.4080/ilsa.2009.0217.
7.
Koford, C. B. The California Condor. Nat. Audubon Res. Rep. 4, 1–154 (1953).
Google Scholar
8.
Wilbur, S.R. The California Condor, 1966–76: a look at its past and future. U. S. Fish & Wildlife Service North American Fauna 72, 1–136 (1978).
9.
D’Elia, J., Haig, S. M., Mullins, T. D. & Miller, M. P. Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck. Condor 118, 703–714. https://doi.org/10.1650/CONDOR-16-35.1 (2016).
Article Google Scholar
10.
Ralls, K., Ballou, J. D., Rideout, B. A. & Frankham, R. Genetic management of chondrodystrophy in California Condors. Anim. Conserv. 3, 145–153. https://doi.org/10.1111/j.1469-1795.2000.tb00239.x (2000).
Article Google Scholar
11.
Ralls, K. & Ballou, J. D. Genetic status and management of California Condors. Condor 106, 215–228 (2004).
Article Google Scholar
12.
Aguilar, R. F., Yoshicedo, J. N. & Parish, C. N. Ingluviotomy tube placement for lead-induced crop stasis in the California condor (Gymnogyps californianus). J. Avian Med. Surg. 26, 176–181. https://doi.org/10.1647/2010-029R2.1 (2012).
Article PubMed Google Scholar
13.
Plaza, P. I. & Lambertucci, S. A. What do we know about lead contamination in wild vultures and condors? A review of decades of research. Sci. Total. Environ. 654, 409–417. https://doi.org/10.1016/j.scitotenv.2018.11.099 (2019).
ADS CAS Article PubMed Google Scholar
14.
Cade, T.J., Osborn, S.A.H., Hunt & W.G., Woods, C.P. Commentary on released California Condors Gymnogyps californianus in Arizona, (eds. Chancellor, R.D. & Meyburg, B.U.). Raptors worldwide: Proceedings of the VI world conference on birds of prey and owls. 11–25. (World Working Group on Birds of Prey and Owls/MME-Birdlife 11–25, Hungary, 2004).
15.
Hunt, W. G., Parish, C. N., Orr, K. & Aguilar, R. F. Lead poisoning and the reintroduction of the California condor in northern Arizona. J. Avian Med. Surg. 23, 145–150. https://doi.org/10.1647/2007-035.1 (2009).
Article PubMed Google Scholar
16.
Richner, H., Christe, P. & Opplinger, A. Paternal investment affects prevalence of malaria. Proc. Natl. Acad. Sci. USA 92, 1192–1194. https://doi.org/10.1073/pnas.92.4.1192 (1995).
ADS CAS Article PubMed Google Scholar
17.
Forrester, D.J. & Spalding, M.G. Parasites and diseases of wild birds in Florida. (University Press of Florida, 2003).
18.
Webb, S. L., Fedynich, A. M., Yeltatzie, S. K., De Vault, T. L. & Rhodes, O. E. Jr. Survey of blood parasites in black vultures and turkey vultures from South Carolina. Southeast Nat. 4, 355–360 (2005).
Article Google Scholar
19.
Greiner, E. C., Fedynich, A. M., Webb, S. L., DeVault, T. L. & Rhodes, O. E. Jr. Hematozoa and a new haemoproteid species from Cathartidae (New World Vulture) in South Carolina. J Parasitol. 97, 1137–1139. https://doi.org/10.1645/GE-2332.1 (2011).
Article PubMed Google Scholar
20.
Yabsley, M. J. et al. Parasitaemia data and molecular characterization of Haemoproteus catharti from New World vultures (Cathartidae) reveals a novel clade of Haemosporida. Malar J. 17, 12. https://doi.org/10.1186/s12936-017-2165-5 (2018).
CAS Article PubMed PubMed Central Google Scholar
21.
Wetmore, P. W. Blood parasites of birds of the District of Columbia and Patuxent Research Refuge vicinity. J. Parasitol. 27, 379–393 (1941).
Article Google Scholar
22.
Love, G. J., Wilkin, S. A. & Goodwin, M. H. Incidence of blood parasites in birds collected in southwestern Georgia. J. Parasitol. 39, 52–57 (1953).
CAS Article Google Scholar
23.
Halpern, N. & Bennett, G. F. Haemoproteus and Leucocytozoon infections in birds of the Oklahoma City Zoo. J. Wildl. Dis. 19, 330–332 (1983).
CAS Article Google Scholar
24.
Wahl, M. Blood-borne parasites in the Black Vulture Coragyps atratus in northwestern Costa Rica. Vulture News. 64, 21–30 (2013).
Google Scholar
25.
Chagas, C. R. F. et al. Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis. Malar J. 16, 83. https://doi.org/10.1186/s12936-017-1729-8 (2017).
Article PubMed PubMed Central Google Scholar
26.
Walther, E. L. et al. Description, molecular characterization, and patterns of distribution of a widespread New World avian malaria parasite (Haemosporida: Plasmodiidae), Plasmodium (Novyella) homopolare sp. nov. Parasitol. Res. 113, 3319–3332. https://doi.org/10.1007/s00436-014-3995-5 (2014).
Article PubMed Google Scholar
27.
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 125, 3389–3402. https://doi.org/10.1093/nar/25.17.3389 (1997).
Article Google Scholar
28.
Bensch, S., Hellgren, O. & Pérez-Tris, J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9, 1353–1358. https://doi.org/10.1111/j.1755-0998.2009.02692.x (2009).
Article PubMed Google Scholar
29.
Walther, E. L. et al. First molecular study of prevalence and diversity of avian haemosporidia in a Central California songbird community. J. Ornithol. 157, 549–564 (2016).
Article Google Scholar
30.
Pacheco, M. A., Escalante, A. A., Garner, M. M., Bradley, G. A. & Aguilar, R. F. Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail. Vet. Parasitol. 182, 113–120. https://doi.org/10.1016/j.vetpar.2011.06.006 (2011).
Article PubMed PubMed Central Google Scholar
31.
Ishak, H. D. et al. Blood parasites in owls with conservation implications for the Spotted Owl (Strix occidentalis). PLoS ONE 3, e2304. https://doi.org/10.1371/journal.pone.0002304 (2008).
ADS CAS Article PubMed PubMed Central Google Scholar
32.
Remple, J. D. Intracellular hematozoa of raptors: a review and update. J. Avian Med. Surg. 18, 75–88 (2004).
Article Google Scholar
33.
Valkiunas, G. & Iezhova, T. A. Keys to the avian malaria parasites. Malar. J. 17, 212. https://doi.org/10.1186/s12936-018-2359-5 (2018).
Article PubMed PubMed Central Google Scholar
34.
Gonzalez-Serrano, P., et al. Climate change and risks for mountain species. Mosquito vectors and circulation of West Nile virus and avian malaria in territories of Bearded vultures (Gypaetus barbatus). First Iberian Congress of Applied Science on Game Resources (CICARC) Ciudad Real, (Spain, 1–4 July 2019).
35.
Garnham, P. C. C. Malaria parasites and other Haemosporidia (Blackwell Scientific Publications, Oxford, 1966).
Google Scholar
36.
Valkiunas, G. Avian Malaria Parasites and Other Haemosporidia (CRC Press, New York, 2005).
Google Scholar
37.
Atkinson, C. T. & Samuel, M. D. Avian malaria Plasmodium relictum in native Hawaiian forest birds: epizootiology and demographic impacts on ‘apapane Himatione sanguinea. J. Avian Biol. 41, 357–366 (2010).
Article Google Scholar
38.
Cornet, S., Nicot, A., Rivero, A. & Gandon, S. Evolution of plastic transmission strategies in avian malaria. PLoS Pathog. 10(9), e1004308. https://doi.org/10.1371/journal.ppat.1004308 (2014).
CAS Article PubMed PubMed Central Google Scholar
39.
Pacheco, M. A. et al. Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. Int. J. Parasitol. 48, 657–670. https://doi.org/10.1016/j.ijpara.2018.02.003 (2018).
CAS Article PubMed PubMed Central Google Scholar
40.
Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357. https://doi.org/10.1111/j.1523-1739.2006.00524.x (2006).
Article PubMed Google Scholar
41.
Mace, M.E. California Condor (Gymnogyps californianus) international studbook. (Zoological Society of San Diego, San Diego Wild Animal Park, Escondido, California, 2005).
42.
Pacheco, M. A., García-Amado, M. A., Manzano, J., Matta, N. E. & Escalante, A. A. Blood parasites infecting the Hoatzin (Opisthocomus hoazin), a unique neotropical folivorous bird. PeerJ 7, e6361. https://doi.org/10.7717/peerj.6361 (2019).
Article PubMed PubMed Central Google Scholar
43.
Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 272, 221–224. https://doi.org/10.1093/molbev/msp259 (2010).
CAS Article Google Scholar
44.
Pacheco, M. A. et al. Mode and rate of evolution of haemosporidian mitochondrial genomes: Timing the radiation of avian parasites. Mol. Biol. Evol. 35, 383–403. https://doi.org/10.1098/rstb.2015.0128 (2018).
CAS Article PubMed Google Scholar
45.
Benson, D. A. et al. GenBank. Nucl. Acids Res. 41, D36–D42. https://doi.org/10.1093/nar/gks1195 (2012).
CAS Article PubMed Google Scholar
46.
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 1912, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).
CAS Article Google Scholar
47.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
CAS Article Google Scholar More
