More stories

  • in

    The endangered California Condor (Gymnogyps californianus) population is exposed to local haemosporidian parasites

    1.
    Snyder, N. & Snyder, H. The California Condor: A Saga of Natural History and Conservation (Academic Press, San Diego, 2000).
    Google Scholar 
    2.
    Emslie, S. D. Age and diet of fossil California Condors in Grand Canyon, Arizona. Science 237, 768–770. https://doi.org/10.1126/science.237.4816.768 (1987).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Mee, A. & Snyder, N.F.R. California Condors in the 21st century-Conservation problems and solutions (eds. Mee, A. & Hall, L.S. & Grantham, J.). California Condors in the 21st Century. 243–272 (Series in Ornithology, no. 2. American Ornithologists’ Union and Nuttall Ornithological Club, Washington, DC, 2007).

    4.
    Parish, C.N., Heinrich, W.R. & Hunt, W.G. Lead exposure, diagnosis, and treatment in California Condors released in Arizona, (eds. Mee, A. & Hall, L.S. & Grantham, J.). California Condors in the 21st Century. 97–108 (Series in Ornithology, no. 2. American Ornithologists’ Union and Nuttall Ornithological Club,Washington, DC, 2007).

    5.
    Brandt, J. & Astell, M. California Condor Recovery Program 2017 Annual Report (eds. Weprin, N., Cook, D. & Ledig, D.). 1–62. (Hopper Mountain National Wildlife Refuge Complex. US Fish and Wildlife Service, Ventura, CA, 2019).

    6.
    Parish, C.N., Hunt, W.G., Feltes, E., Sieg, R. & Orr., K. Lead exposure among a reintroduced population of California Condors in northern Arizona and southern Utah (eds. Watson, R.T., Fuller, M., Pokras & M., Hunt, W.G.). Ingestion of lead from spent ammunition: Implications for wildlife and humans. 259–264. (The Peregrine Fund, Boise, Idaho, 2009). DOI https://doi.org/10.4080/ilsa.2009.0217.

    7.
    Koford, C. B. The California Condor. Nat. Audubon Res. Rep. 4, 1–154 (1953).
    Google Scholar 

    8.
    Wilbur, S.R. The California Condor, 1966–76: a look at its past and future. U. S. Fish & Wildlife Service North American Fauna 72, 1–136 (1978).

    9.
    D’Elia, J., Haig, S. M., Mullins, T. D. & Miller, M. P. Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck. Condor 118, 703–714. https://doi.org/10.1650/CONDOR-16-35.1 (2016).
    Article  Google Scholar 

    10.
    Ralls, K., Ballou, J. D., Rideout, B. A. & Frankham, R. Genetic management of chondrodystrophy in California Condors. Anim. Conserv. 3, 145–153. https://doi.org/10.1111/j.1469-1795.2000.tb00239.x (2000).
    Article  Google Scholar 

    11.
    Ralls, K. & Ballou, J. D. Genetic status and management of California Condors. Condor 106, 215–228 (2004).
    Article  Google Scholar 

    12.
    Aguilar, R. F., Yoshicedo, J. N. & Parish, C. N. Ingluviotomy tube placement for lead-induced crop stasis in the California condor (Gymnogyps californianus). J. Avian Med. Surg. 26, 176–181. https://doi.org/10.1647/2010-029R2.1 (2012).
    Article  PubMed  Google Scholar 

    13.
    Plaza, P. I. & Lambertucci, S. A. What do we know about lead contamination in wild vultures and condors? A review of decades of research. Sci. Total. Environ. 654, 409–417. https://doi.org/10.1016/j.scitotenv.2018.11.099 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    14.
    Cade, T.J., Osborn, S.A.H., Hunt & W.G., Woods, C.P. Commentary on released California Condors Gymnogyps californianus in Arizona, (eds. Chancellor, R.D. & Meyburg, B.U.). Raptors worldwide: Proceedings of the VI world conference on birds of prey and owls. 11–25. (World Working Group on Birds of Prey and Owls/MME-Birdlife 11–25, Hungary, 2004).

    15.
    Hunt, W. G., Parish, C. N., Orr, K. & Aguilar, R. F. Lead poisoning and the reintroduction of the California condor in northern Arizona. J. Avian Med. Surg. 23, 145–150. https://doi.org/10.1647/2007-035.1 (2009).
    Article  PubMed  Google Scholar 

    16.
    Richner, H., Christe, P. & Opplinger, A. Paternal investment affects prevalence of malaria. Proc. Natl. Acad. Sci. USA 92, 1192–1194. https://doi.org/10.1073/pnas.92.4.1192 (1995).
    ADS  CAS  Article  PubMed  Google Scholar 

    17.
    Forrester, D.J. & Spalding, M.G. Parasites and diseases of wild birds in Florida. (University Press of Florida, 2003).

    18.
    Webb, S. L., Fedynich, A. M., Yeltatzie, S. K., De Vault, T. L. & Rhodes, O. E. Jr. Survey of blood parasites in black vultures and turkey vultures from South Carolina. Southeast Nat. 4, 355–360 (2005).
    Article  Google Scholar 

    19.
    Greiner, E. C., Fedynich, A. M., Webb, S. L., DeVault, T. L. & Rhodes, O. E. Jr. Hematozoa and a new haemoproteid species from Cathartidae (New World Vulture) in South Carolina. J Parasitol. 97, 1137–1139. https://doi.org/10.1645/GE-2332.1 (2011).
    Article  PubMed  Google Scholar 

    20.
    Yabsley, M. J. et al. Parasitaemia data and molecular characterization of Haemoproteus catharti from New World vultures (Cathartidae) reveals a novel clade of Haemosporida. Malar J. 17, 12. https://doi.org/10.1186/s12936-017-2165-5 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Wetmore, P. W. Blood parasites of birds of the District of Columbia and Patuxent Research Refuge vicinity. J. Parasitol. 27, 379–393 (1941).
    Article  Google Scholar 

    22.
    Love, G. J., Wilkin, S. A. & Goodwin, M. H. Incidence of blood parasites in birds collected in southwestern Georgia. J. Parasitol. 39, 52–57 (1953).
    CAS  Article  Google Scholar 

    23.
    Halpern, N. & Bennett, G. F. Haemoproteus and Leucocytozoon infections in birds of the Oklahoma City Zoo. J. Wildl. Dis. 19, 330–332 (1983).
    CAS  Article  Google Scholar 

    24.
    Wahl, M. Blood-borne parasites in the Black Vulture Coragyps atratus in northwestern Costa Rica. Vulture News. 64, 21–30 (2013).
    Google Scholar 

    25.
    Chagas, C. R. F. et al. Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis. Malar J. 16, 83. https://doi.org/10.1186/s12936-017-1729-8 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Walther, E. L. et al. Description, molecular characterization, and patterns of distribution of a widespread New World avian malaria parasite (Haemosporida: Plasmodiidae), Plasmodium (Novyella) homopolare sp. nov. Parasitol. Res. 113, 3319–3332. https://doi.org/10.1007/s00436-014-3995-5 (2014).
    Article  PubMed  Google Scholar 

    27.
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 125, 3389–3402. https://doi.org/10.1093/nar/25.17.3389 (1997).
    Article  Google Scholar 

    28.
    Bensch, S., Hellgren, O. & Pérez-Tris, J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9, 1353–1358. https://doi.org/10.1111/j.1755-0998.2009.02692.x (2009).
    Article  PubMed  Google Scholar 

    29.
    Walther, E. L. et al. First molecular study of prevalence and diversity of avian haemosporidia in a Central California songbird community. J. Ornithol. 157, 549–564 (2016).
    Article  Google Scholar 

    30.
    Pacheco, M. A., Escalante, A. A., Garner, M. M., Bradley, G. A. & Aguilar, R. F. Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail. Vet. Parasitol. 182, 113–120. https://doi.org/10.1016/j.vetpar.2011.06.006 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Ishak, H. D. et al. Blood parasites in owls with conservation implications for the Spotted Owl (Strix occidentalis). PLoS ONE 3, e2304. https://doi.org/10.1371/journal.pone.0002304 (2008).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Remple, J. D. Intracellular hematozoa of raptors: a review and update. J. Avian Med. Surg. 18, 75–88 (2004).
    Article  Google Scholar 

    33.
    Valkiunas, G. & Iezhova, T. A. Keys to the avian malaria parasites. Malar. J. 17, 212. https://doi.org/10.1186/s12936-018-2359-5 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Gonzalez-Serrano, P., et al. Climate change and risks for mountain species. Mosquito vectors and circulation of West Nile virus and avian malaria in territories of Bearded vultures (Gypaetus barbatus). First Iberian Congress of Applied Science on Game Resources (CICARC) Ciudad Real, (Spain, 1–4 July 2019).

    35.
    Garnham, P. C. C. Malaria parasites and other Haemosporidia (Blackwell Scientific Publications, Oxford, 1966).
    Google Scholar 

    36.
    Valkiunas, G. Avian Malaria Parasites and Other Haemosporidia (CRC Press, New York, 2005).
    Google Scholar 

    37.
    Atkinson, C. T. & Samuel, M. D. Avian malaria Plasmodium relictum in native Hawaiian forest birds: epizootiology and demographic impacts on ‘apapane Himatione sanguinea. J. Avian Biol. 41, 357–366 (2010).
    Article  Google Scholar 

    38.
    Cornet, S., Nicot, A., Rivero, A. & Gandon, S. Evolution of plastic transmission strategies in avian malaria. PLoS Pathog. 10(9), e1004308. https://doi.org/10.1371/journal.ppat.1004308 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Pacheco, M. A. et al. Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. Int. J. Parasitol. 48, 657–670. https://doi.org/10.1016/j.ijpara.2018.02.003 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357. https://doi.org/10.1111/j.1523-1739.2006.00524.x (2006).
    Article  PubMed  Google Scholar 

    41.
    Mace, M.E. California Condor (Gymnogyps californianus) international studbook. (Zoological Society of San Diego, San Diego Wild Animal Park, Escondido, California, 2005).

    42.
    Pacheco, M. A., García-Amado, M. A., Manzano, J., Matta, N. E. & Escalante, A. A. Blood parasites infecting the Hoatzin (Opisthocomus hoazin), a unique neotropical folivorous bird. PeerJ 7, e6361. https://doi.org/10.7717/peerj.6361 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 272, 221–224. https://doi.org/10.1093/molbev/msp259 (2010).
    CAS  Article  Google Scholar 

    44.
    Pacheco, M. A. et al. Mode and rate of evolution of haemosporidian mitochondrial genomes: Timing the radiation of avian parasites. Mol. Biol. Evol. 35, 383–403. https://doi.org/10.1098/rstb.2015.0128 (2018).
    CAS  Article  PubMed  Google Scholar 

    45.
    Benson, D. A. et al. GenBank. Nucl. Acids Res. 41, D36–D42. https://doi.org/10.1093/nar/gks1195 (2012).
    CAS  Article  PubMed  Google Scholar 

    46.
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 1912, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).
    CAS  Article  Google Scholar 

    47.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
    CAS  Article  Google Scholar  More

  • in

    Genassemblage 2.0 software facilitates conservation of genetic variation of captively propagated species

    1.
    Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mamm. 78, 320–335 (1997).
    Article  Google Scholar 
    2.
    Hansen, M. M., Villanueva, B., Nielsen, E. E. & Bekkevold, D. Investigating the genetics of populations. In The Atlantic Salmon: Genetics, Conservation and Management (eds Verspoor, E. et al.) 86–114 (Blackwell Publishing, Hoboken, 2008).
    Google Scholar 

    3.
    Hallerman, E. Inbreeding. In Population Genetics: Principles and Applications for Fisheries Scientists (ed. Hallerman, E. M.) (American Fisheries Society, Bethesda, 2003).
    Google Scholar 

    4.
    Koljonen, M. L., Jansson, H., Paaver, T., Vasin, O. & Koskiniemi, J. Phylogeographic lineages and differentiation pattern of Atlantic salmon in the Baltic Sea with management implications. Can. J. Fish. Aquat. Sci. 56, 1766–1780 (1999).
    Article  Google Scholar 

    5.
    Koljonen, M. L., Tähtinen, J., Säisä, M. & Koskiniemi, J. Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programs and the geographic distribution of microsatellite variation. Aquaculture 212, 69–92 (2002).
    CAS  Article  Google Scholar 

    6.
    Verspoor, E. et al. Population structure in the Atlantic salmon: Insights from 40 years of research into genetic protein variation. J. Fish. Biol. 67(Suppl A), 3–55 (2005).
    CAS  Article  Google Scholar 

    7.
    Bryant, E. H., McCommas, S. A. & Combs, L. M. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114, 1191–1211 (1986).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Kim, J. E., Withler, R. E., Ritland, C. & Cheng, K. M. Genetic variation within and between domesticated Chinook salmon, Oncorhynchus tschawytscha, strains and their progenitor populations. Dev. Environ. Biol. Fish. 23, 371–378 (2004).
    Article  Google Scholar 

    9.
    Miller, L. M. & Kapuscinski, A. R. Genetic guidelines for hatchery supplementation programs. In Population Genetics: Principles and Applications for Fisheries Scientists (ed. Hallerman, E. M.) 329–355 (American Fisheries Society, Bethesda, 2003).
    Google Scholar 

    10.
    Kusznierz, J., Paśko, Ł & Tagayev, D. On the variation and distribution of the lake minnow, Eupallasella percnurus (Pall.). Arch. Pol. Fish. 19, 161–166 (2011).
    Article  Google Scholar 

    11.
    Sowińska-Świerkosz, B. & Kolejko, M. Extinction risk to lake minnow (Eupallasella percnurus) due to habitat loss: Eastern Poland case study. Environ. Monit. Assess. 191, 571 (2019).
    Article  Google Scholar 

    12.
    Kaczmarczyk, D., Wolnicki, J., Kamiński, R., Sikorska, J. & Radtke, G. Genetic variability of the endangered fish lake minnow, Eupallasella percnurus (Pall.) in populations newly established by translocations in Poland. in XVI European Congress of Ichthyology Lausanne, Swiss, 2–6 September 2019. Frontier of Marine Science, Conference Abstract: XVI European Congress of Ichthyology, 92–93.

    13.
    Wolnicki, J., Kaminski, R., Sikorska, J. & Kaczmarczyk, D. Occurrence and active protection of the endangered cyprinid fish species, lake minnow Eupallasella percnurus (Pall.), in Poland. in XVI European Congress of Ichthyology Lausanne, Swiss, 2–6 September 2019. Frontier of Marine Science, Conference Abstract: XVI European Congress of Ichthyology, 206–208.

    14.
    Attard, C. et al. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conserv. Biol. 30, 1060–1069 (2016).
    CAS  Article  Google Scholar 

    15.
    Kaczmarczyk, D. Techniques based on the polymorphism of microsatellite DNA as tools for conservation of endangered populations. Appl. Ecol. Environ. Res. 17, 1599–1615 (2019).
    Article  Google Scholar 

    16.
    Kaczmarczyk, D. & Wolnicki, J. Genetic diversity of the endangered cyprinid fish lake minnow Eupallasella percnurus in Poland and its implications for conservation. PLoS ONE 12, 1–16 (2016).
    Google Scholar 

    17.
    Dimsoski, P., Toth, G. P. & Bagley, M. J. Microsatellite characterization in central stoneroller Campostoma anomalum (Pisces: Cyprinidae). Mol. Ecol. 9, 2187–2189 (2000).
    CAS  Article  Google Scholar 

    18.
    Holmen, J., Vøllestad, L. A., Jakobsen, K. S. & Primmer, C. R. Cross-species amplification of zebrafish and central stoneroller microsatellite loci in six other cyprinids. J. Fish. Biol. 66, 851–859 (2005).
    CAS  Article  Google Scholar 

    19.
    Aksoy, S. et al. Permanent genetic resources. Mol. Ecol. Res. 13, 341–343 (2013).
    Article  Google Scholar 

    20.
    Dieringer, D. & Schlötterer, C. Microsatellite analyzer (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).
    CAS  Article  Google Scholar 

    21.
    Kaczmarczyk, D. & Fopp-Bayat, D. Assemblage of spawning pairs based on their individual genetic profiles—As tool for maintaining genetic variation within sturgeon populations. Aquacult. Res. 44, 677–682 (2013).
    Article  Google Scholar 

    22.
    Ruzzante, D. E. A comparison of several measures of genetic distance and population structure with microsatellite data: Bias and sampling variance. Can. J. Fish. Aquat. Sci. 55, 1–14 (1998).
    Article  Google Scholar 

    23.
    Kaminski, R., Kusznierz, J., Myszkowski, L. & Wolnicki, J. The first attempt to artificially reproduce the endangered cyprinid lake minnow Eupallasella percnurus (Pallas). Aquacult. Int. 12, 3–10 (2004).
    Article  Google Scholar 

    24.
    Wolnicki, J., Kamiński, R. & Sikorska, J. Occurrence, threats and active protection of the lake minnow, Eupallasella percnurus (Pall.), in Mazowieckie Voivodeship in Poland. Arch. Pol. Fish. 19, 209–216. https://doi.org/10.2478/v10086-011-0026-3 (2011).
    Article  Google Scholar 

    25.
    Liu, D. et al. Low genetic diversity in broodstocks of endangered Chinese sucker, Myxocyprinus asiaticus: Implications for artificial propagation and conservation. ZooKeys 792, 117–132 (2018).
    Article  Google Scholar 

    26.
    Hariyono, D. N. H. et al. Genetic diversity and phylogenetic relationship analyzed by microsatellite markers in eight Indonesian local duck populations. Asian-Australas J. Anim. Sci. 32, 31–37 (2019).
    Article  Google Scholar 

    27.
    Ryman, N. & Laikre, L. Effects of supportive breeding on the genetically effective population size. Conserv. Biol. 5, 325–329 (1991).
    Article  Google Scholar 

    28.
    Hansen, M. M., Nielsen, E. E., Ruzzante, D. E., Bouza, C. & Mensberg, K. Genetic monitoring of supportive breeding in brown trout Salmo trutta L., using microsatellite DNA markers. Can. J. Fish. Aquat. Sci. 57, 2130–2139 (2000).
    Article  Google Scholar 

    29.
    Bartley, D., Bagley, M., Gall, G. & Bentley, B. Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv. Biol. 6, 365–375 (1992).
    Article  Google Scholar 

    30.
    Hara, M. & Sekino, M. Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus using microsatellite DNA marker. Aquaculture 217, 107–114 (2003).
    CAS  Article  Google Scholar 

    31.
    Sekino, M. et al. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: Implications for hatchery management related to stock enhancement program. Aquaculture 221, 255–263 (2003).
    Article  Google Scholar 

    32.
    Brown, R. C., Woolliams, J. A. & McAndrew, B. J. Factors influencing effective population size in commercial populations of gilthead seabream, Sparus aurata. Aquaculture 247, 219–225 (2005).
    Article  Google Scholar 

    33.
    Frost, L. A., Evans, B. S. & Jerry, D. R. Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261, 1056–1064 (2006).
    CAS  Article  Google Scholar 

    34.
    Loughnan, S. R. et al. Broodstock contribution after mass spawning and size grading in barramundi (Lates calcarifer, Bloch). Aquaculture 404–405, 139–149 (2013).
    Article  Google Scholar 

    35.
    Herlin, M. et al. Analysis of the parental contribution to a group of fry from a single day of spawning from a commercial Atlantic cod (Gadus morhua) breeding tank. Aquaculture 274, 218–224 (2008).
    Article  Google Scholar 

    36.
    Kaczmarczyk, D., Dobosz, S. & Kaczor, A. Prediction of genetic variation in stocks of offspring and its correlation with viability and growth rate. J. World Aquacult. Soc. 1, 1–8 (2017).
    Google Scholar  More

  • in

    Individual dietary specialization reduces intraspecific competition, rather than feeding activity, in black amur bream (Megalobrama terminalis)

    1.
    Jones, G. P. Competitive interactions among adults and juveniles in a coral reef fish. Ecology 68, 1534–1547 (1987).
    Article  ADS  Google Scholar 
    2.
    Smith, C. L. Coral reef fish communities: A compromise view. Environ. Biol. Fish. 3, 109–128 (1978).
    Article  Google Scholar 

    3.
    Belovsky, G. E. & Jordan, P. A. The time-energy budget of a moose. Theor. Popul. Biol. 14, 76–104 (1978).
    CAS  PubMed  Article  Google Scholar 

    4.
    Ward, A. J. W., Webster, M. M. & Hart, P. J. B. Intraspecific food competition in fishes. Fish Fish. 7, 231–261 (2006).
    Article  Google Scholar 

    5.
    Del Arco, A. I., Parra, G., Rico, A. & Van den Brink, P. J. Effects of intra- and interspecific competition on the sensitivity of aquatic macroinvertebrates to carbendazim. Ecotoxicol. Environ. Saf. 120, 27–34 (2015).
    PubMed  Article  CAS  Google Scholar 

    6.
    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    7.
    Quintana, X. D. et al. Predation and competition effects on the size diversity of aquatic communities. Aquat. Sci. 77, 45–57 (2015).
    Article  Google Scholar 

    8.
    Swanson, B. O., Gibb, A. C., Marks, J. C. & Hendrickson, D. A. Trophic polymorphism and behavioral differences decrease intraspecific competition in a cichlid, Herichthys minckleyi. Ecology 84, 1441–1446 (2003).
    Article  Google Scholar 

    9.
    Sánchez-Vázquez, F. J., Madrid, J. A., Zamora, S. & Tabata, M. Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding-entrainable circadian oscillator. J. Comp. Physiol. 181, 121–132 (1997).
    Article  Google Scholar 

    10.
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialisation. Am. Nat. 161, 1–28 (2003).
    MathSciNet  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Araujo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Vindenes, Y., Engen, S. & Saether, B. Individual heterogeneity in vital parameters and demographic stochasticity. Am. Nat. 171, 455–467 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Duffy, M. A. Ecological consequences of intraspecific variation in lake Daphnia. Freshw. Biol. 55, 995–1004 (2010).
    Article  Google Scholar 

    14.
    Schreiber, S. J., Bürger, R. & Bolnick, D. I. The community effects of phenotypic and genetic variation within a predator population. Ecology 92, 1582–1593 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Darimont, C. T., Paquet, P. C. & Reimchen, T. E. Stable isotopic niche predicts fitness of prey in a wolf–deer system. Biol. J. Linn. Soc. 90, 125–137 (2007).
    Article  Google Scholar 

    16.
    Johnson, C. K. et al. Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. PNAS 106, 2242–2247 (2009).
    CAS  PubMed  Article  ADS  Google Scholar 

    17.
    Wagner, C. E., McIntyre, P. B., Buels, K. S., Gilbert, D. M. & Michel, E. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Funct. Ecol. 23, 1122–1131 (2009).
    Article  Google Scholar 

    18.
    Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
    Article  Google Scholar 

    19.
    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).
    Article  Google Scholar 

    20.
    Ackermann, M. & Doebeli, M. Evolution of niche width and adaptive diversification. Evolution 58, 2599–2612 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Fausch, K. D. Profitable stream positions for salmonids: Relating specific growth rate to net energy gain. Revue Canadienne De Zoologie. 62, 441–451 (1984).
    Article  Google Scholar 

    22.
    Metcalfe, N. B. Intraspecific variation in competitive ability and food intake in salmonids: Consequences for energy budgets and growth rates. J. Fish Biol. 28, 525–531 (1986).
    Article  Google Scholar 

    23.
    Sol, D. et al. Ecological mechanisms of a resource polymorphism in Zenaida Doves of Barbados. Ecology 86, 2397–2407 (2005).
    Article  Google Scholar 

    24.
    Lu, K. Fisheries Resources in Pearl River (ed. Lu, K.) 146–150 (Guangdong Science and Technology Press, 1990).

    25.
    Xia, Y. et al. Small-subunit ribosomal DNA sequencing analysis of dietary shifts during gonad maturation in wild black Amur bream (Megalobrama terminalis) in the lower reaches of the Pearl River. Fish. Sci. 83, 955–965 (2017).
    CAS  Article  Google Scholar 

    26.
    Li, J. et al. Species diversity of fish community of Provincial Xijiang River rare fishes natural reserve in Zhaoqing City, Guangdong Province. J. Lake Sci. 21, 556–562 (2009).
    Article  Google Scholar 

    27.
    Zhang, Y. et al. Fish community structure and environmental effects of West River. South China Fish. Sci. 16, 42–52 (2020).
    CAS  Google Scholar 

    28.
    Li, Y. et al. Exploitation status of Megalobrama terminalis based on analysis of SBR and YPR models in Xijiang River. Acta Hydrobiol. Sin. 42, 975–983 (2018).
    Google Scholar 

    29.
    Svanbäck, R. & Eklov, P. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131, 61–70 (2002).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    30.
    Uchikawa, K. & Kidokoro, H. Feeding habits of juvenile Japanese common squid Todarodes pacificus: Relationship between dietary shift and allometric growth. Fish. Res. 152, 29–36 (2014).
    Article  Google Scholar 

    31.
    Carreonmartinez, L. B. & Heath, D. D. Revolution in food web analysis and trophic ecology: Diet analysis by DNA and stable isotope analysis. Mol. Ecol. 19, 25–27 (2010).
    CAS  Article  Google Scholar 

    32.
    Hardy, C. M., Krull, E. S., Hartley, D. M. & Oliver, R. L. Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol. Ecol. 19, 197–212 (2010).
    CAS  PubMed  Article  Google Scholar 

    33.
    Peterson, B. J., Howarth, R. W. & Garritt, R. H. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67, 865–874 (1986).
    CAS  Article  Google Scholar 

    34.
    Peterson, B. J., Howarth, R. W. & Garritt, R. H. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227, 1361–1363 (1985).
    CAS  PubMed  Article  ADS  Google Scholar 

    35.
    Peterson, B. J. & Fry, B. Stable isotope in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).
    Article  Google Scholar 

    36.
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Article  Google Scholar 

    37.
    Valen, L. V. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).
    Article  Google Scholar 

    38.
    Lesser, J. S., James, W. R., Stallings, C. D., Wilson, R. M. & Nelson, J. A. Trophic niche size and overlap decreases with increasing ecosystem productivity. Oikos https://doi.org/10.1111/oik.07026 (2020).
    Article  Google Scholar 

    39.
    Pool, T. et al. Seasonal increases in fish trophic niche plasticity within a flood-pulse river ecosystem (Tonle Sap Lake, Cambodia). Ecosphere. 8, e01881 (2017).
    Article  Google Scholar 

    40.
    Persson, L. Food consumption and the significance of detritus and algae to intraspecific competition in roach Rutilus rutilus in a shallow eutrophic lake. Oikos 41, 118–125 (1983).
    Article  Google Scholar 

    41.
    Zhang, B. et al. Characteristics of aquatic vascular plant communities in Dongguan reaches of dongjiang river during two periods. Wetland Sci. 13, 284–290 (2015).
    Google Scholar 

    42.
    Bing, X. et al. Spatial and temporal difference of primary productivity and its influencing factors in the Pearl River Delta. South China Fish. Sci. 13, 1–8 (2017).
    Google Scholar 

    43.
    Slatkin, M. Ecological character displacement. Ecology 61, 163–177 (1980).
    Article  Google Scholar 

    44.
    Steiner, C. F., Caceres, C. E. & Smith, S. D. P. Resurrecting the ghost of competition past with dormant zooplankton eggs. Am. Nat. 169, 416–422 (2007).
    PubMed  Article  Google Scholar 

    45.
    Hamrin, S. F. & Persson, L. Asymmetrical competition between age classes as a factor causing population oscillations in an obligate planktivorous fish species. Oikos 47, 223–232 (1986).
    Article  Google Scholar 

    46.
    Taylor, R. C., Trexler, J. C. & Loftus, W. F. Separating the effects of intra- and interspecific age-structured interactions in an experimental fish assemblage. Oecologia 127, 143–152 (2001).
    PubMed  Article  ADS  Google Scholar 

    47.
    Pan, B. Z., Wang, H. Z., Pusch, M. T. & Wang, H. J. Macroinvertebrate responses to regime shifts caused by eutrophication in subtropical shallow lakes. Freshw. Sci. 34, 942–952 (2015).
    Article  Google Scholar 

    48.
    Ru, H., Li, Y., Sheng, Q., Zhong, L. & Ni, Z. River damming affects energy flow and food web structure: A case study from a subtropical large river. Hydrobiologia 847, 679–695 (2020).
    CAS  Article  Google Scholar 

    49.
    Yin, M. 1995. The Fish Ecology (ed. Yin, M.) 266–267 (China Agriculture Press, Beijing, 1995).

    50.
    Bates, D. M. lme4: Mixed-effects modeling with R. https://cran.r-project.org/web/packages/lme4/vignettes/lmer.pdf (2010).

    51.
    R Core Team. R: a language and environment for statistical computing. https://www.R-project.org (2019).

    52.
    Parnell, A. C., Inger, R., Bearhop, S., Jackson, A. L. & Rands, S. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672 (2010).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    53.
    McCutchan, J. H., Lewis, W. M., Kendall, C. & Mcgrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).
    CAS  Article  Google Scholar 

    54.
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
    PubMed  Article  Google Scholar 

    55.
    Layman, C. A., Quattrochi, J. P., Peyer, C. M. & Allgeier, J. E. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol. Lett. 10, 937–944 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotope ecology. Front. Ecol. Environ. 5, 429–436 (2007).
    Article  Google Scholar 

    57.
    Turner, T. F., Collyer, M. L. & Krabbenhoft, T. J. A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91, 2227–2233 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Krebs, C. J. Ecological Methodology (ed. Krebs, C. J.) 466–496 (Harper and Row, Manhattan, 1989).

    59.
    Hall, D. H., Raffaelli, D., Basfors, D. J., Robertson, M. R. & Fryer, R. The feeding relationships of the larger fish species in a Scottish sea loch. J. Fish Biol. 37, 775–791 (1990).
    Article  Google Scholar 

    60.
    Pinzone, M., Damseaux, F., Michel, L. N. & Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 237, 124448 (2019).
    CAS  PubMed  Article  ADS  Google Scholar 

    61.
    Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).
    Article  Google Scholar 

    62.
    Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).
    Article  Google Scholar 

    63.
    Roughgarden, J. Theory of Population Genetics and Evolutionary Ecology: An Introduction (ed. Roughgarden, J.) 510 (Macmillan, New York, 1979).

    64.
    Zaccarelli, N., Bolnick, D. I. & Mancinelli, G. RInSp: An r package for the analysis of individual specialization in resource use. Methods Ecol. Evol. 4, 1018–1023 (2013).
    Article  Google Scholar  More

  • in

    Mucin-derived O-glycans supplemented to diet mitigate diverse microbiota perturbations

    1.
    Earle KA, Billings G, Sigal M, Lichtman JS, Hansson GC, Elias JE, et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe. 2015;18:478–88.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307:1955–9.
    CAS  PubMed  Article  Google Scholar 

    3.
    Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Marcobal A, Southwick AM, Earle KA, Sonnenburg JL. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology. 2013;23:1038–46.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10:507–14.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22:1147–62.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Wu S, Salcedo J, Tang N, Waddell K, Grimm R, German JB, et al. Employment of tandem mass spectrometry for the accurate and specific identification of oligosaccharide structures. Anal Chem. 2012;84:7456–62.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722.
    CAS  PubMed  Article  Google Scholar 

    9.
    Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011;128:e1520–31.
    PubMed  Article  Google Scholar 

    10.
    Bao Y, Zhu L, Newburg DS. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis. Anal Biochem. 2007;370:206–14.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Coppa GV, Pierani P, Zampini L, Carloni I, Carlucci A, Gabrielli O. Oligosaccharides in human milk during different phases of lactation. Acta Paediatr Suppl. 1999;88:89–94.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Wang B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr. 2012;3:465S–472S.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr Allergy Immunol. 2010;21:1179–88.
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr. 2005;135:1304–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278:14112–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Triantis V, Bode L, van Neerven RJJ. Immunological effects of human milk oligosaccharides. Front Pediatr. 2018;6:1–14.
    Article  Google Scholar 

    17.
    Porcelli P, Schanler R, Greer F, Chan G, Gross S, Mehta N, et al. Growth in human milk-fed very low birth weight infants receiving a new human milk fortifier. Ann Nutr Metab. 2000;44:2–10.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O’Shea TM. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J Perinatol. 2007;27:428–33.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Lauwaet T, Bliss LA, Bode L, Gillin FD, Reed SL, Jantscher-Krenn E. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br J Nutr. 2012;108:1839–46.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Charbonneau MR. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164:859–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Jantscher-Krenn E, Marx C, Bode L. Human milk oligosaccharides are differentially metabolised in neonatal rats. Br J Nutr. 2013;110:640–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci. 2008;105:18964–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Kim J-H, Henrissat B, Bottacini F, Turroni F, Mills D, Kelly D, et al. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci. 2010;107:19514–9.
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–53.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:1–10. 6ra14.
    Article  CAS  Google Scholar 

    27.
    Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 2013;7:1933–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58:5334–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;4:447–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Jin C, Kenny DT, Skoog EC, Padra M, Adamczyk B, Vitizeva V, et al. Structural diversity of human gastric mucin glycans. Mol Cell Proteomics. 2017;16:743–58.

    32.
    Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol. 2001;63:411–23.
    Article  Google Scholar 

    33.
    Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362:eaat9076.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Byndloss MX, Olsan EE, Rivera-Chavez F, Tiffany CR, Cevallos SA, Lokken KL, et al. Mictobiota-activated PPAR-gamma signaling inhibits dysbiotic Eneterobacteriaceae expansion. Science. 2017;357:570–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, et al. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med. 2018;10:eaam7019.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Cherian RM, Jin C, Liu J, Karlsson NG, Holgersson J. Recombinant mucin-type fusion proteins with a Galα1,3Gal substitution as Clostridium difficile Toxin A inhibitors. Infect Immun. 2016;84:2842–52.

    38.
    Hansen CHF, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sørensen SJ, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55:2285–94.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol. 2017;8:1–8.
    Article  Google Scholar 

    40.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013;110:9066–71.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature. 2019;568:505–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Cowardin CA, Ahern PP, Kung VL, Hibberd MC, Cheng J, Guruge JL, et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc Natl Acad Sci USA. 2019;116:11988–96.
    CAS  PubMed  Google Scholar 

    43.
    Rudloff S, Pohlentz G, Borsch C, Lentze MJ, Kunz C. Urinary excretion of in vivo 13C-labelled milk oligosaccharides in breastfed infants. Br J Nutr. 2012;107:957–63.
    CAS  PubMed  Article  Google Scholar 

    44.
    Albrecht S, Schols HA, van Zoeren D, van Lingen RA, Groot Jebbink LJM, van den Heuvel EGHM, et al. Oligosaccharides in feces of breast- and formula-fed babies. Carbohydr Res. 2011;346:2173–81.
    CAS  PubMed  Article  Google Scholar 

    45.
    Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2007;74:1646–8.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Santacruz A, Collado MC, García-Valdés L, Segura MT, Marítn-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104:83–92.
    CAS  PubMed  Article  Google Scholar 

    47.
    Karlsson CLJ, Önnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity. 2012;20:2257–61.
    PubMed  Article  Google Scholar 

    48.
    Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–8.
    CAS  PubMed  Article  Google Scholar 

    49.
    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.
    CAS  PubMed  Article  Google Scholar 

    50.
    Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017;357:802–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    I C, F K. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res. 1984;131:209–17.
    Article  Google Scholar 

    53.
    Dell A, Ranzinger R, Damerell D, Maass K, Ceroni A, Haslam SM. The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. Biol Chem. 2012;393:1357–62.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    54.
    Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslma SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res. 2008;7:1650–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Knights D, Walters WA, Caparose JGKJ, Stombaugh J, Bittinger K, Bushman FD. QIIME allows analysis of high-throughput community sequencing data. Nat Publ Gr. 2010;7:335–6. Nat Met 7:335–6.
    Google Scholar 

    56.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Holmes SP, Sankaran K, Callahan BJ, McMurdie PJ, Fukuyama JA. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res. 2016;5:1492.
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, et al. DbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 2018;46:D516–D521.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. DbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:445–51.
    Article  CAS  Google Scholar 

    60.
    Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology. 2013;144:967–77.
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016

    1.
    Chuine, I. et al. Historical phenology: grape ripening as a past climate indicator. Nature 432, 289 (2004).
    ADS  CAS  Article  Google Scholar 
    2.
    Hufkens, K., Basler, D., Milliman, T., Melaas, E. K. & Richardson, A. D. An integrated phenology modelling framework in r. Methods Ecol. Evol. 9, 1276–1285. https://doi.org/10.1111/2041-210x.12970 (2018).
    Article  Google Scholar 

    3.
    Zhu, K. & Wan, M. A productive science—phenology. In Public Science (1963).

    4.
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature526, 104–107, doi:https://doi.org/10.1038/nature15402. https://www.nature.com/nature/journal/v526/n7571/abs/nature15402.html#supplementary-information (2015).

    5.
    Jochner, S., Sparks, T. H., Laube, J. & Menzel, A. Can we detect a nonlinear response to temperature in European plant phenology?. Int. J. Biometeorol. 60, 1551–1561. https://doi.org/10.1007/s00484-016-1146-7 (2016).
    ADS  Article  PubMed  Google Scholar 

    6.
    D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. (2018).

    7.
    Ganguly, S., Friedl, M. A., Tan, B., Zhang, X. & Verma, M. Land surface phenology from MODIS: characterization of the collection 5 global land cover dynamics product. Remote Sens. Environ. 114, 1805–1816 (2010).
    ADS  Article  Google Scholar 

    8.
    Zhang, X. et al. Generation and evaluation of the VIIRS land surface phenology product. Remote Sens. Environ. 216, 212–229. https://doi.org/10.1016/j.rse.2018.06.047 (2018).
    ADS  Article  Google Scholar 

    9.
    de Beurs, K. M. & Henebry, G. M. Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 89, 497–509 (2004).
    ADS  Article  Google Scholar 

    10.
    Liu, L., Zhang, X., Donnelly, A. & Liu, X. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Int. J. Biometeorol. 60, 1563–1575. https://doi.org/10.1007/s00484-016-1147-6 (2016).
    ADS  Article  PubMed  Google Scholar 

    11.
    Adole, T., Dash, J. & Atkinson, P. M. Major trends in the land surface phenology (LSP) of Africa, controlling for land-cover change. Int. J. Remote Sens. https://doi.org/10.1080/01431161.2018.1479797 (2018).
    Article  Google Scholar 

    12.
    Xu, C., Liu, H., Williams, A. P., Yin, Y. & Wu, X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol. 22, 2852–2860 (2016).
    ADS  Article  Google Scholar 

    13.
    Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. 34, L19405 (2007).
    ADS  Article  Google Scholar 

    14.
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x (2011).

    15.
    Reed, B. Trend analysis of time-series phenology of North America derived from satellite data. GISci. Remote Sens. 43, 24–38 (2006).
    Article  Google Scholar 

    16.
    White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Chang Biol. 15, 2335–2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x (2009).
    ADS  Article  Google Scholar 

    17.
    Pelletier, J. D. & Turcotte, D. L. In Advances in Geophysics vol 40 (eds Renata Dmowska & Barry Saltzman) 91–166 (Elsevier, Amsterdam, 1999).

    18.
    Zhang, X., Tan, B. & Yu, Y. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982–2010. Int. J. Biometeorol. 58, 547–564. https://doi.org/10.1007/s00484-014-0802-z (2014).
    ADS  Article  PubMed  Google Scholar 

    19.
    Melaas, E. K., Friedl, M. A. & Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 132, 176–185. https://doi.org/10.1016/j.rse.2013.01.011 (2013).
    ADS  Article  Google Scholar 

    20.
    Friedl, M. A. et al. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ. Res. Lett. 9, 054006 (2014).
    ADS  Article  Google Scholar 

    21.
    Wang, T., Peng, S., Lin, X. & Chang, J. Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proc. Natl. Acad. Sci. 110, E2854–E2855. https://doi.org/10.1073/pnas.1306157110 (2013).
    ADS  Article  PubMed  Google Scholar 

    22.
    Reed, B., Budde, M., Spencer, P. & Miller, A. Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ. 113, 1443–1452 (2009).
    ADS  Article  Google Scholar 

    23.
    Dong, J., Zhang, G., Zhang, Y. & Xiao, X. Reply to Wang et al.: Snow cover and air temperature affect the rate of changes in spring phenology in the Tibetan Plateau. Proc. Natl. Acad. Sci. 110, E2856-E2857. https://doi.org/10.1073/pnas.1306813110 (2013).

    24.
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob. Change Biol. 18, 566–584 (2012).
    ADS  Article  Google Scholar 

    25.
    Keenan, T. et al. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).
    ADS  Article  Google Scholar 

    26.
    Liu, F. et al. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. J. Geogr. Sci. 27, 1085–1099. https://doi.org/10.1007/s11442-017-1423-3 (2017).
    Article  Google Scholar 

    27.
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Bio.l 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).

    28.
    Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310. https://doi.org/10.1038/nature04188 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Kharin, V. V. et al. Risks from climate extremes change differently from 1.5 to 2.0°C depending on rarity. Earth’s Future 6, 704–715. https://doi.org/10.1002/2018EF000813 (2018).

    30.
    Upperman, C. R. et al. Exposure to extreme heat events is associated with increased hay fever prevalence among nationally representative sample of US adults: 1997–2013. J. Allergy Clin. Immunol. Pract. 5(435), e432-441.e432 (2017).
    Google Scholar 

    31.
    Stéfanon, M., Drobinski, P., & D’Andrea, F. Noblet-Ducoudré of interactive vegetation phenology on the, 2003 summer heat waves. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD018187 (2012).
    Article  Google Scholar 

    32.
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. 113, 5880–5885. https://doi.org/10.1073/pnas.1519620113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    33.
    Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Luthi, D. & Schar, C. Soil moisture—atmosphere interactions during the 2003 European summer heat wave. J. Clim. 20, 5081–5099. https://doi.org/10.1175/Jcli4288.1 (2007).
    ADS  Article  Google Scholar 

    34.
    Zaitchik, B. F., Macalady, A. K., Bonneau, L. R. & Smith, R. B. Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int. J. Climatol. 26, 743–769. https://doi.org/10.1002/joc.1280 (2006).
    Article  Google Scholar 

    35.
    Dunne, J. P., Stouffer, R. J. & John, J. G. Reductions in labour capacity from heat stress under climate warming. Nat. Climate Change3, 563. https://doi.org/10.1038/nclimate1827. https://www.nature.com/articles/nclimate1827#supplementary-information (2013).

    36.
    Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. https://doi.org/10.1126/sciadv.1700066 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Alexandrov, V. A. & Hoogenboom, G. The impact of climate variability and change on crop yield in Bulgaria. Agric. For. Meteorol. 104, 315–327. https://doi.org/10.1016/S0168-1923(00)00166-0 (2000).
    ADS  Article  Google Scholar 

    38.
    Siegmund, J. F., Wiedermann, M., Donges, J. F. & Donner, R. V. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species. Biogeosciences 13, 5541–5555 (2016).
    ADS  Article  Google Scholar 

    39.
    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0135 (2017).

    40.
    Pedelty, J. et al. In 2007 IEEE International Geoscience and Remote Sensing Symposium 1021–1025.

    41.
    Rocha, A. V. & Shaver, G. R. Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agric. For. Meteorol. 149, 1560–1563. https://doi.org/10.1016/j.agrformet.2009.03.016 (2009).
    ADS  Article  Google Scholar 

    42.
    Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405. https://doi.org/10.1029/2005gl025583 (2006).
    ADS  Article  Google Scholar 

    43.
    Huete, A., Miura, T., Yoshioka, H., Ratana, P. & Broich, M. in Biophysical Applications of Satellite Remote Sensing (ed Jonathan M. Hanes) 1–41 (Spring, 2013).

    44.
    Zhang, Q. Y. et al. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371 (2005).
    ADS  Article  Google Scholar 

    45.
    Zhang, Q. Y. et al. Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPAR(chl)) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest?. Remote Sens. Environ. 113, 880–888 (2009).
    ADS  Article  Google Scholar 

    46.
    White, K., Pontius, J. & Schaberg, P. Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty. Remote Sens. Environ. 148, 97–107. https://doi.org/10.1016/j.rse.2014.03.017 (2014).
    ADS  Article  Google Scholar 

    47.
    Peng, D. et al. Spring green-up phenology products derived from MODIS NDVI and EVI: intercomparison, interpretation and validation using national phenology network and AmeriFlux observations. Ecol. Indic. 77, 323–336 (2017).
    Article  Google Scholar 

    48.
    Karkauskaite, P., Tagesson, T. & Fensholt, R. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for start-of-season trend analysis of the northern hemisphere boreal zone. Remote Sens. Basel. https://doi.org/10.3390/rs9050485 (2017).
    Article  Google Scholar 

    49.
    Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320. https://doi.org/10.5194/bg-11-4305-2014 (2014).
    ADS  Article  Google Scholar 

    50.
    Zhang, X. Y. et al. Evaluation of land surface phenology from VIIRS data using time series of phenocam imagery. Agric. For. Meteorol. 256–257, 137–149 (2018).
    ADS  Article  Google Scholar 

    51.
    Zhang, X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ 156, 457–472. https://doi.org/10.1016/j.rse.2014.10.012 (2015).
    ADS  Article  Google Scholar 

    52.
    Kogan, F., Gitelson, A., Zakarin, E., Spivak, L. & Lebed, L. AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogram. Eng. Remote Sens. 69, 899–906 (2003).
    Article  Google Scholar 

    53.
    Zhang, X. Y. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).
    ADS  Article  Google Scholar 

    54.
    Zhang, X., Friedl, M. A. & Schaaf, C. B. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. 111, G04017 (2006).
    ADS  Google Scholar 

    55.
    Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331. https://doi.org/10.1093/treephys/tpn040 (2009).
    CAS  Article  PubMed  Google Scholar 

    56.
    Donnelly, A., Liu, L., Zhang, X. & Wingler, A. Autumn leaf phenology: discrepancies between in situ observations and satellite data at urban and rural sites. Int. J. Remote Sens. 39, 8129–8150. https://doi.org/10.1080/01431161.2018.1482021 (2018).
    ADS  Article  Google Scholar 

    57.
    Badeck, F. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x (2004).
    Article  Google Scholar 

    58.
    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).
    ADS  Article  Google Scholar 

    59.
    Luo, Y., Berbery, E. H., Mitchell, K. E. & Betts, A. K. Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis. J. Hydrometeorol. 8, 1184–1203 (2007).
    ADS  Article  Google Scholar 

    60.
    Reidmiller, D. R. et al. (eds) US Global Change Research Program (USGCRP Washington, DC, 2018).
    Google Scholar 

    61.
    Los, S. O., Collatz, G. J., Bounoua, L., Sellers, P. J. & Tucker, C. J. Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation. J. Climate 14, 1535–1549. https://doi.org/10.1175/1520-0442(2001)014%3c1535:giviss%3e2.0.co;2 (2001).
    ADS  Article  Google Scholar 

    62.
    Myneni, R. B., Tucker, C. J., Asrar, G. & Keeling, C. D. Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J. Geophys. Res. 103, 6145–6160 (1998).
    ADS  Article  Google Scholar 

    63.
    Chen, X. Q. & Xu, L. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int. J. Biometeorol. 56, 695–706 (2012).
    ADS  Article  Google Scholar 

    64.
    Matsumoto, K., Ohta, T., Irasawa, M. & Nakamura, T. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob. Change Biol. 9, 1634–1642 (2003).

    65.
    Liu, L., Zhang, X., Yu, Y. & Donnelly, A. Detecting spatiotemporal changes of peak foliage coloration in deciduous and mixedforests across the Central and Eastern United States. Environ. Res. Lett. 12, 024013 (2017).
    ADS  Article  Google Scholar 

    66.
    Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Clim. Change 81, 71–95. https://doi.org/10.1007/s10584-006-9226-z (2007).
    Article  Google Scholar 

    67.
    Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Climate Change 3, 115–129. https://doi.org/10.1002/wcc.160 (2012).
    Article  Google Scholar 

    68.
    Melaas, E. K., Sulla-Menashe, D. & Friedl, M. A. Multi-decadal changes and interannual variation in springtime phenology of North American temperate and boreal deciduous forests (Geophys. Res, Lett, 2018).
    Google Scholar 

    69.
    Papineau, J. M. Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int. J. Climatol. 21, 1577–1592. https://doi.org/10.1002/joc.686 (2001).
    Article  Google Scholar 

    70.
    Willis, J. K., Roemmich, D. & Cornuelle, B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res. Oceans. https://doi.org/10.1029/2003jc002260 (2004).
    Article  Google Scholar 

    71.
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484. https://doi.org/10.1126/science.291.5503.481 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    72.
    Fang, J., Piao, S., Tang, Z., Peng, C. & Ji, W. Interannual variability in net primary production and precipitation. Science 293, 1723–1723. https://doi.org/10.1126/science.293.5536.1723a (2001).
    CAS  Article  PubMed  Google Scholar 

    73.
    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388. https://doi.org/10.1038/s41467-019-13365-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Marchand, L. J. et al. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agric. For. Meteorol. 290, 108031. https://doi.org/10.1016/j.agrformet.2020.108031 (2020).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Zhang, J., Zheng, H., Zhang, X. & VanLooy, J. Changes in regional snowfall in Central North America (1961–2017): mountain versus plains. Geosciences 10, 157 (2020).
    ADS  CAS  Article  Google Scholar 

    76.
    Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Global Ecol. Biogeogr. 19, 607–620 (2010).
    Google Scholar 

    77.
    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607 (2008).
    CAS  Article  Google Scholar 

    78.
    Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691 (2007).
    ADS  CAS  Article  Google Scholar 

    79.
    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).
    Article  Google Scholar 

    80.
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Climate Change 4, 287. https://doi.org/10.1038/nclimate2153. https://www.nature.com/articles/nclimate2153#supplementary-information (2014).

    81.
    Myneni, R., Keeling, C., Tucker, C., Asrar, G. & Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).
    ADS  CAS  Article  Google Scholar 

    82.
    Peñuelas, J. & Filella, I. Responses to a warming world. Science 294, 793–795 (2001).
    Article  Google Scholar 

    83.
    Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M. & Peterson, D. H. Changes in the onset of spring in the Western United States. Bull. Am. Meteorol. Soc. 82, 399–416. https://doi.org/10.1175/1520-0477(2001)082%3c0399:CITOOS%3e2.3.CO;2 (2001).
    ADS  Article  Google Scholar 

    84.
    Zheng, C. et al. Climatic anomaly and its impact on vegetation phenology, carbon sequestration and water-use efficiency at a humid temperate forest. J. Hydrol. 565, 150–159. https://doi.org/10.1016/j.jhydrol.2018.08.012 (2018).
    ADS  CAS  Article  Google Scholar 

    85.
    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. 111, 4916 (2014).
    ADS  CAS  Article  Google Scholar 

    86.
    Allen, M. R. et al. IPCC fifth assessment synthesis report-climate change 2014 synthesis report (2014).

    87.
    Friedlingstein, P. et al. Global carbon budget 2019(11), 1783–1838 (2019).
    Google Scholar 

    88.
    Ogunbode, C. A., Doran, R. & Böhm, G. Exposure to the IPCC special report on 1.5 °C global warming is linked to perceived threat and increased concern about climate change. Climate Change 158, 361–375.https://doi.org/10.1007/s10584-019-02609-0 (2020).

    89.
    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. 114, 4881 (2017).
    ADS  CAS  Article  Google Scholar 

    90.
    Teshome, A. & Zhang, J. Increase of extreme drought over ethiopia under climate warming. Adv. Meteorol. https://doi.org/10.1155/2019/5235429 (2019).
    Article  Google Scholar 

    91.
    Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H. & Liu, Z. Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004JD005263 (2005).
    Article  Google Scholar 

    92.
    Wang, J. & Zhang, X. Impacts of wildfires on interannual trends in land surface phenology: an investigation of the Hayman Fire. Environ. Res. Lett. 12, 054008 (2017).
    ADS  Article  Google Scholar 

    93.
    Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. 103, 14637 (2006).
    ADS  CAS  Article  Google Scholar 

    94.
    Xin, Q., Broich, M., Zhu, P. & Gong, P. Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sens. Environ. 161, 63–77. https://doi.org/10.1016/j.rse.2015.02.003 (2015).
    ADS  Article  Google Scholar 

    95.
    Peng, D. et al. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. ISPRS J. Photogram. Remote Sens. 132, 185–198. https://doi.org/10.1016/j.isprsjprs.2017.09.002 (2017).
    ADS  Article  Google Scholar 

    96.
    Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. & Beierkuhnlein, C. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob. Change Biol. 15, 837–849. https://doi.org/10.1111/j.1365-2486.2008.01690.x (2009).
    ADS  Article  Google Scholar 

    97.
    Nagy, L., Kreyling, J., Gellesch, E., Beierkuhnlein, C. & Jentsch, A. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int. J. Biometeorol. 57, 579–588. https://doi.org/10.1007/s00484-012-0585-z (2013).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Methods matter in repeating ocean acidification studies

    1.
    Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Munday, P. L., Jarrold, M. D. & Nagelkerken, I. in Fish Physiology: Carbon Dioxide Vol. 37 (eds Grosell, M. et al.) 323–368 (Elsevier, 2019).

    3.
    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl Acad. Sci. USA 106, 1848–1852 (2009).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).
    ADS  CAS  Google Scholar 

    5.
    Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13, 68–75 (2010).
    PubMed  PubMed Central  Google Scholar 

    6.
    Munday, P. L. et al. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water. PeerJ 4, e2501 (2016).
    PubMed  PubMed Central  Google Scholar 

    7.
    Jarrold, M. D., Humphrey, C., McCormick, M. I. & Munday, P. L. Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification. Sci. Rep. 7, 10153 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    8.
    McMahon, S. J., Donelson, J. M. & Munday, P. L. Food ration does not influence the effect of elevated CO2 on antipredator behaviour of a reef fish. Mar. Ecol. Prog. Ser. 586, 155–165 (2018).
    ADS  CAS  Google Scholar 

    9.
    Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Change 4, 487–492 (2014).
    ADS  CAS  Article  Google Scholar 

    10.
    Ferrari, M. C. O. et al. Predation in high CO2 waters: prey fish from high-risk environments are less susceptible to ocean acidification. Integr. Comp. Biol. 57, 55–62 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).
    ADS  Google Scholar 

    12.
    Welch, M. J., Watson, S.-A., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat. Clim. Change 4, 1086–1089 (2014).
    ADS  CAS  Google Scholar 

    13.
    Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).
    Google Scholar 

    14.
    Ferrari, M. C. O. et al. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Glob. Change Biol. 21, 1848–1855 (2015).
    ADS  Google Scholar 

    15.
    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).
    Google Scholar 

    16.
    Roggatz, C. C., Lorch, M., Hardege, J. D. & Benoit, D. M. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Glob. Change Biol. 22, 3914–3926 (2016).
    ADS  Google Scholar 

    17.
    Jutfelt, F., Sundin, J., Raby, G. D., Krång, A.-S. & Clark, T. D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 8, 379–390 (2017).
    Google Scholar 

    18.
    Domenici, P., Allan, B., McCormick, M. I. & Munday, P. L. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol. Lett. 8, 78–81 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Domenici, P., Allan, B. J. M., Watson, S.-A., McCormick, M. I. & Munday, P. L. Shifting from right to left: the combined effect of elevated CO2 and temperature on behavioural lateralization in a coral reef fish. PLoS ONE 9, e87969 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    20.
    Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204 (2012).
    ADS  CAS  Google Scholar 

    21.
    Ferrari, M. C. O. et al. Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct. Ecol. 26, 553–558 (2012).
    Google Scholar 

    22.
    Chung, W. S., Marshall, N. J., Watson, S.-A., Munday, P. L. & Nilsson, G. E. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J. Exp. Biol. 217, 323–326 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Welch, M. & Munday, P. L Raw Data for Olfactory Response of Acanthochromis polyacanthus in a Y-maze Flume (dataset). https://doi.org/10.4225/28/5add60af3a267 (James Cook University, 2018).

    24.
    Schunter, C. et al. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nat. Clim. Change 6, 1014–1018 (2016).
    ADS  CAS  Google Scholar 

    25.
    Allan, B. J. M., Miller, G. M., McCormick, M. I., Domenici, P. & Munday, P. L. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc. R. Soc. Lond. B 281, 20132179 (2014).
    Google Scholar 

    26.
    Welch, M. J. & Munday, P. L. Heritability of behavioural tolerance to high CO2 in a coral reef fish is masked by nonadaptive phenotypic plasticity. Evol. Appl. 10, 682–693 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Stiasny, M. H. et al. Ocean acidification effects on Atlantic cod larval survival and recruitment to the fished population. PLoS ONE 11, e0155448 (2016).
    PubMed  PubMed Central  Google Scholar 

    28.
    Murray, C. S., Wiley, D. & Baumann, H. High sensitivity of a keystone forage fish to elevated CO2 and temperature. Conserv. Physiol. 7, coz084 (2019).
    PubMed  PubMed Central  Google Scholar 

    29.
    Munday, P. L. et al. Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar. Biol. 160, 2137–2144 (2013).
    CAS  Google Scholar 

    30.
    Allan, B. J. M., Domenici, P., McCormick, M. I., Watson, S.-A. & Munday, P. L. Elevated CO2 affects predator–prey interactions through altered performance. PLoS ONE 8, e58520 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Benítez, S. et al. Intertidal pool fish Girella laevifrons (Kyphosidae) shown strong physiological homeostasis but shy personality: the cost of living in hypercapnic habitats. Mar. Pollut. Bull. 118, 57–63 (2017).
    PubMed  PubMed Central  Google Scholar 

    32.
    Borges, F. O. et al. Ocean warming and acidification may challenge the riverward migration of glass eels. Biol. Lett. 15, 20180627 (2019).
    PubMed  PubMed Central  Google Scholar 

    33.
    Castro, J. M. et al. Painted goby larvae under high-CO2 fail to recognize reef sounds. PLoS ONE 12, e0170838 (2017).
    PubMed  PubMed Central  Google Scholar 

    34.
    Chivers, D. P. et al. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob. Change Biol. 20, 515–522 (2014).
    ADS  Google Scholar 

    35.
    Ferrari, M. C. O. et al. Putting prey and predator into the CO2 equation—qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol. Lett. 14, 1143–1148 (2011).
    PubMed  PubMed Central  Google Scholar 

    36.
    Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).
    PubMed  PubMed Central  Google Scholar 

    37.
    Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).
    ADS  Google Scholar 

    38.
    Green, L. & Jutfelt, F. Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biol. Lett. 10, 20140538 (2014).
    PubMed  PubMed Central  Google Scholar 

    39.
    Hamilton, T. J., Holcombe, A. & Tresguerres, M. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc. R. Soc. B 281, 20132509 (2014).
    PubMed  PubMed Central  Google Scholar 

    40.
    Heuer, R. M., Welch, M. J., Rummer, J. L., Munday, P. L. & Grosell, M. Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish. Sci. Rep. 6, 33216 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Hurst, T. P. et al. Elevated CO2 alters behavior, growth, and lipid composition of Pacific cod larvae. Mar. Environ. Res. 145, 52–65 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Jiahuan, R. et al. Ocean acidification impairs foraging behavior by interfering with olfactory neural signal transduction in black sea bream, Acanthopagrus schlegelii. Front. Physiol. 9, 1592 (2018).
    PubMed  PubMed Central  Google Scholar 

    43.
    Jutfelt, F., Bresolin de Souza, K., Vuylsteke, A. & Sturve, J. Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8, e65825 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Lai, F., Jutfelt, F. & Nilsson, G. E. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv. Physiol. 3, cov018 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.
    Laubenstein, T. D., Rummer, J. L., McCormick, M. I. & Munday, P. L. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci. Rep. 9, 4265 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    46.
    Lopes, A. F. et al. Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. Mar. Biol. 163, 243 (2016).
    Google Scholar 

    47.
    Maulvault, A. L. et al. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius). Sci. Total Environ. 634, 1136–1147 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    48.
    McCormick, M. I., Watson, S.-A. & Munday, P. L. Ocean acidification reverses competition for space as habitats degrade. Sci. Rep. 3, 3280 (2013).
    PubMed  PubMed Central  Google Scholar 

    49.
    Munday, P. L. et al. Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidif. 1, 1–5 (2012).
    Google Scholar 

    50.
    Nadler, L. E., Killen, S. S., McCormick, M. I., Watson, S.-A. & Munday, P. L. Effect of elevated carbon dioxide on shoal familiarity and metabolism in a coral reef fish. Conserv. Physiol. 4, cow052 (2016).
    PubMed  PubMed Central  Google Scholar 

    51.
    Näslund, J., Lindstrom, E., Lai, F. & Jutfelt, F. Behavioural responses to simulated bird attacks in marine three-spined sticklebacks after exposure to high CO2 levels. Mar. Freshw. Res. 66, 877–885 (2015).
    Google Scholar 

    52.
    Ou, M. et al. Responses of pink salmon to CO2-induced aquatic acidification. Nat. Clim. Change 5, 950–955 (2015).
    ADS  CAS  Google Scholar 

    53.
    Paula, J. R. et al. Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification. Sci. Rep. 9, 12728 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    54.
    Paula, J. R. et al. The past, present and future of cleaner fish cognitive performance as a function of CO2 levels. Biol. Lett. 15, 20190618 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Porteus, C. S. et al. Near-future CO2 levels impair the olfactory system of a marine fish. Nat. Clim. Change 8, 737–743 (2018).
    ADS  CAS  Google Scholar 

    56.
    Pistevos, J. C. A., Nagelkerken, I., Rossi, T., Olmos, M. & Connell, S. D. Ocean acidification and global warming impair shark hunting behaviour and growth. Sci. Rep. 5, 16293 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Regan, M. D. et al. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. J. Exp. Biol. 219, 109–118 (2016).
    PubMed  PubMed Central  Google Scholar 

    58.
    Rossi, T., Nagelkerken, I., Pistevos, J. C. A. & Connell, S. D. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol. Lett. 12, 20150937 (2016).
    PubMed  PubMed Central  Google Scholar 

    59.
    Rossi, T., Pistevos, J. C. A., Connell, S. D. & Nagelkerken, I. On the wrong track: ocean acidification attracts larval fish to irrelevant environmental cues. Sci. Rep. 8, 5840 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    60.
    Schmidt, M. et al. Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard. Mar. Ecol. Prog. Ser. 571, 183–191 (2017).
    ADS  CAS  Google Scholar 

    61.
    Schunter, C. et al. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nat. Ecol. Evol. 2, 334–342 (2018).
    PubMed  PubMed Central  Google Scholar 

    62.
    Simpson, S. D. et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol. Lett. 7, 917–920 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Sundin, J. & Jutfelt, F. 9–28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse (Ctenolabrus rupestris). ICES J. Mar. Sci. 73, 620–632 (2016).
    Google Scholar 

    64.
    Sundin, J. & Jutfelt, F. Effects of elevated carbon dioxide on male and female behavioural lateralization in a temperate goby. R. Soc. Open Sci. 5, 171550 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    65.
    Devine, B. M. & Munday, P. L. Habitat preferences of coral-associated fishes are altered by short-term exposure to elevated CO2. Mar. Biol. 160, 1955–1962 (2013).
    CAS  Google Scholar 

    66.
    Velez, Z., Roggatz, C. C., Benoit, D. M., Hardege, J. D. & Hubbard, P. C. Short- and medium-term exposure to ocean acidification reduces olfactory sensitivity in gilthead seabream. Front. Physiol. 10, 731 (2019).
    PubMed  PubMed Central  Google Scholar 

    67.
    Williams, C. R. et al. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob. Change Biol. 25, 963–977 (2019).
    ADS  Google Scholar  More

  • in

    Reply to: Methods matter in repeating ocean acidification studies

    1.
    Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13, 68–75 (2010).
    Article  Google Scholar 
    2.
    Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).
    ADS  CAS  Article  Google Scholar 

    3.
    Clements, J. C. & Hunt, H. L. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser. 536, 259–279 (2015).
    ADS  CAS  Article  Google Scholar 

    4.
    Watson, S.-A. et al. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proc. R. Soc. B 281, 20132377 (2014).
    Article  Google Scholar 

    5.
    Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).
    ADS  CAS  Article  Google Scholar 

    6.
    Munday, P. L. et al. Methods matter in repeating ocean acidification studies. Nature https://doi.org/10.1038/s41586-020-2803-x (2020).
    Article  Google Scholar 

    7.
    Nosek, B. A. & Errington, T. M. What is replication? PLoS Biol. 18, e3000691 (2020).
    CAS  Article  Google Scholar 

    8.
    Munday, P. L. et al. Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar. Biol. 160, 2137–2144 (2013).
    CAS  Article  Google Scholar 

    9.
    Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Change 4, 487–492 (2014).
    ADS  CAS  Article  Google Scholar 

    10.
    Munday, P. L. et al. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water. PeerJ 4, e2501 (2016).
    Article  Google Scholar 

    11.
    Ioannidis, J. P. A. Why science is not necessarily self-correcting. Perspect. Psychol. Sci. 7, 645–654 (2012).
    Article  Google Scholar 

    12.
    Browman, H. I. Applying organized scepticism to ocean acidification research. ICES J. Mar. Sci. 73, 529–536 (2016).
    Article  Google Scholar 

    13.
    Nissen, S. B., Magidson, T., Gross, K. & Bergstrom, C. T. Publication bias and the canonization of false facts. eLife 5, e21451 (2016).
    Article  Google Scholar  More

  • in

    Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence

    1.
    Monteiro, P. J. M., Miller, S. A. & Horvath, A. Towards sustainable concrete. Nat. Mater. 16, 698–699 (2017).
    ADS  CAS  Article  Google Scholar 
    2.
    Schneider, M., Romer, M., Tschudin, M. & Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 41, 642–650 (2011).
    CAS  Article  Google Scholar 

    3.
    Worrell, E., Price, L., Martin, N., Hendriks, C. & Meida, L. O. Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 26, 303–329 (2001).
    Article  Google Scholar 

    4.
    Mehta, P. K. & Monteiro, P. J. M. Concrete: Microstructure, Properties, and Materials (McGraw-Hill, New York, 2005).
    Google Scholar 

    5.
    Chen, C., Habert, G., Bouzidi, Y. & Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 18, 478–485 (2010).
    CAS  Article  Google Scholar 

    6.
    Bu, J., Tian, Z., Zheng, S. & Tang, Z. Effect of sand content on strength and pore structure of cement mortar. J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 382–390 (2017).
    CAS  Article  Google Scholar 

    7.
    Khaliq, W. & Ehsan, M. B. Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 102, 349–357 (2016).
    CAS  Article  Google Scholar 

    8.
    Vijay, K. & Murmu, M. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete. Front. Struct. Civ. Eng. https://doi.org/10.1007/s11709-018-0494-2 (2018).
    Article  Google Scholar 

    9.
    Vahabi, A., Ramezanianpour, A. A. & Noghabi, K. A. A preliminary insight into the revolutionary new line in improving concrete properties using an indigenous bacterial strain Bacillus licheniformis AK01, as a healing agent. Eur. J. Environ. Civ. Eng. 19, 614–627 (2015).
    Article  Google Scholar 

    10.
    Schlangen, E. & Joseph, C. Self-Healing Processes in Concrete. Self-Healing Materials: Fundamentals, Design Strategies, and Applications (WILEY-VCH Verlag Gmbh & Co. KGaA, New York, 2009). https://doi.org/10.1002/9783527625376.ch5.
    Google Scholar 

    11.
    Mehta, P. K. High-performance, high-volume fly ash concrete for sustainable development. Int. Work. Sustain. Dev. Concr. Technol. 31, 3–14 (2008).
    Google Scholar 

    12.
    Achal, V. & Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 93, 1224–1235 (2015).
    Article  Google Scholar 

    13.
    Burne, R. A. & Chen, Y. Y. M. Bacterial ureases in infectious diseases. Microbes Infect. 2, 533–542 (2000).
    CAS  Article  Google Scholar 

    14.
    Dick, J. et al. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17, 357–367 (2006).
    CAS  Article  Google Scholar 

    15.
    De Muynck, W., De Belie, N. & Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36, 118–136 (2010).
    Article  Google Scholar 

    16.
    Van Tittelboom, K., De Belie, N., De Muynck, W. & Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157–166 (2010).
    Article  Google Scholar 

    17.
    Dhami, N. K., Reddy, M. S. & Mukherjee, M. S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 4, 1–13 (2013).
    Article  Google Scholar 

    18.
    Ramachandran, S. K., Ramakrishnan, V. & Bang, S. S. Remediation of concrete using micro-organism. Aci Mater. J. 1, 1. https://doi.org/10.14359/10154 (2001).
    Article  Google Scholar 

    19.
    Dhami, N. K., Reddy, M. S. & Mukherjee, A. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World J. Microbiol. Biotechnol. 29, 2397–2406 (2013).
    CAS  Article  Google Scholar 

    20.
    De Muynck, W., Cox, K., De Belie, N. & Verstraete, W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22, 875–885 (2008).
    Article  Google Scholar 

    21.
    Achal, V., Mukerjee, A. & Reddy, M. S. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater. 48, 1–5 (2013).
    Article  Google Scholar 

    22.
    Chahal, N., Siddique, R. & Rajor, A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Constr. Build. Mater. 37, 645–651 (2012).
    Article  Google Scholar 

    23.
    van Paassen, L. A. et al. Potential soil reinforcement by biological denitrification. Ecol. Eng. 36, 168–175 (2010).
    Article  Google Scholar 

    24.
    Erşan, Y. Ç, Hernandez-Sanabria, E., Boon, N. & De Belie, N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem. Concr. Compos. 70, 159–170 (2016).
    Article  Google Scholar 

    25.
    Glass, C. & Silverstein, J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 32, 831–839 (1998).
    CAS  Article  Google Scholar 

    26.
    van Paassen, L. Biogrout: Ground Improvement by Microbially Induced Carbonate Precipitation (Delft University of Technology, Delft, 2009).
    Google Scholar 

    27.
    Li, M., Fu, Q. L., Zhang, Q., Achal, V. & Kawasaki, S. Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci. Rep. 5, 1–9 (2015).
    Google Scholar 

    28.
    Jonkers, H. M. & Schlangen, E. A two component bacteria-based self-healing concrete. In Concrete Repair, Rehabilitation and Retroftting II (eds Alexander, M. G. et al.) (CRC Press, Taylor and Francis Group, Boca Raton, 2009).
    Google Scholar 

    29.
    Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. & Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230–235 (2010).
    Article  Google Scholar 

    30.
    Jonkers, H. M. Bacteria-based self-healing concrete. Heron 56, 1–12 (2011).
    Google Scholar 

    31.
    Chaurasia, L., Bisht, V., Singh, L. P. & Gupta, S. A novel approach of biomineralization for improving micro and macro-properties of concrete. Constr. Build. Mater. 195, 340–351 (2019).
    CAS  Article  Google Scholar 

    32.
    Seifan, M., Samani, A. K. & Berenjian, A. Induced calcium carbonate precipitation using Bacillus species. Appl. Microbiol. Biotechnol. 100, 9895–9906 (2016).
    CAS  Article  Google Scholar 

    33.
    Wang, J., Ersan, Y. C., Boon, N. & De Belie, N. Application of microorganisms in concrete: A promising sustainable strategy to improve concrete durability. Appl. Microbiol. Biotechnol. 100, 2993–3007 (2016).
    CAS  Article  Google Scholar 

    34.
    Mondal, S. & Ghosh, A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Constr. Build. Mater. 183, 202–214 (2018).
    Article  Google Scholar 

    35.
    Andalib, R. et al. Optimum concentration of Bacillus megaterium for strengthening structural concrete. Constr. Build. Mater. 118, 180–193 (2016).
    CAS  Article  Google Scholar 

    36.
    Achal, V. & Pan, X. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 62, 894–902 (2011).
    CAS  Article  Google Scholar 

    37.
    Sharma, A. & Bhattacharya, A. Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J. Mol. Catal. B Enzym. 67, 122–128 (2010).
    CAS  Article  Google Scholar 

    38.
    Morandeau, A., Thiéry, M. & Dangla, P. Investigation of the carbonation mechanism of CH and C–S–H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 56, 153–170 (2014).
    CAS  Article  Google Scholar 

    39.
    Ameri, F., Shoaei, P., Bahrami, N., Vaezi, M. & Ozbakkaloglu, T. Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Constr. Build. Mater. 222, 796–813 (2019).
    CAS  Article  Google Scholar 

    40.
    Syarif, R., Rizki, I. N., Wattimena, R. K. & Chaerun, S. K. Selection of bacteria inducing calcium carbonate precipitation for self-healing concrete application. Curr. Res. Biosci. Biotechnol. 1, 26–30 (2019).
    Google Scholar 

    41.
    SNI 15-2049-2004. Semen Portland. BSN – National Standardization Agency of Indonesia (2004).

    42.
    Stephen, H. & Stephen, T. Solubilities of Inorganic and Organic Compounds. Binary Systems Part 1 Vol. 1 (Pergamon Press, Oxford, 1979).
    Google Scholar 

    43.
    ASTM C642-13. Standard test method for density, absorption, and voids in hardened concrete. Am. Society Testing Mater. https://doi.org/10.1520/C0642-13.5 (2013).
    Article  Google Scholar 

    44.
    ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. 16, 137–140 (1979).
    Google Scholar 

    45.
    ISRM. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. 15, 99–103 (1978).
    Article  Google Scholar  More