Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts
1.
Fleming, T. H. & Kress, W. J. The Ornaments of Life: Coevolution and Conservation in the Tropics (Univ. Chicago Press, 2013).
Google Scholar
2.
Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
PubMed PubMed Central Article Google Scholar
3.
Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).
Article Google Scholar
4.
Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities 2nd edn (ed. Fenner, M.) 125–165 (CABI, 2000).
5.
Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).
ADS CAS PubMed Article PubMed Central Google Scholar
6.
Guimarães, P. R., Galetti, M. & Jordano, P. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745 (2008).
ADS PubMed PubMed Central Article CAS Google Scholar
7.
Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
8.
Bender, I. M. A. et al. Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography 41, 1910–1919 (2018).
Article Google Scholar
9.
Faurby, S. & Svenning, J. C. Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).
Article Google Scholar
10.
Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).
CAS PubMed Article PubMed Central Google Scholar
11.
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
12.
Martin, P. & Klein, R. Quaternary Extinctions: A Prehistoric Revolution. (Univ. Arizona Press, 1984).
Google Scholar
13.
Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).
ADS Article Google Scholar
14.
Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
ADS PubMed PubMed Central Article Google Scholar
15.
Carbone, C., Cowlishaw, G., Isaac, N. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).
PubMed Article PubMed Central Google Scholar
16.
Pires, M. M., Guimaraes, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).
Article Google Scholar
17.
Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2017).
PubMed Article PubMed Central Google Scholar
18.
Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. Proc. Natl Acad. Sci. USA 109, 12610–12615 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
19.
Onstein, R. E. et al. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proc. R. Soc. B 285, 20180882 (2018).
PubMed Article PubMed Central Google Scholar
20.
Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evolut. Syst. 47, 333–358 (2016).
Article Google Scholar
21.
Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).
Article Google Scholar
22.
Emer, C., Galetti, M., Pizo, M. A., Jordano, P. & Verdú, M. Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Sci. Adv. 5, eaav6699 (2019).
ADS PubMed PubMed Central Article Google Scholar
23.
Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
24.
Dransfield, J. et al. Genera Palmarum — The Evolution and Classification of Palms (Royal Botanic Gardens, 2008).
Google Scholar
25.
Couvreur, T. L. P. & Baker, W. J. Tropical rain forest evolution: palms as a model group. BMC Biol. 11, 48 (2013).
PubMed PubMed Central Article Google Scholar
26.
Terborgh, J. W. in Conservation Biology: the Science of Scarcity and Diversity (ed. Soulé, M. E.) 330–344 (Sinauer Associates, 1986).
27.
Zona, S. & Henderson, A. A review of animal-mediated seed dispersal of palms. Selbyana 11, 6–21 (1989).
Google Scholar
28.
Muñoz, G., Trøjelsgaard, K. & Kissling, W. D. A synthesis of animal-mediated seed dispersal of palms reveals distinct biogeographical differences in species interactions. J. Biogeogr. 46, 466–484 (2019).
Article Google Scholar
29.
Kissling, W. D. et al. PalmTraits 1.0: a species-level functional trait database for palms worldwide. Sci. Data 6, 178 (2019).
PubMed PubMed Central Article Google Scholar
30.
Govaerts, R. & Dransfield, J. World Checklist of Palms (Royal Botanic Gardens, 2005).
Google Scholar
31.
Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions (TDWG, 2001).
32.
Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).
PubMed Article PubMed Central Google Scholar
33.
Wheelwright, N. T. Fruit size, gape width, and the diets of fruit-eating birds. Ecology 66, 808–818 (1985).
Article Google Scholar
34.
Lord, J. M. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecol. 29, 430–436 (2004).
Article Google Scholar
35.
Levey, D. J. Seed size and fruit-handling techniques of avian frugivores. Am. Nat. 129, 471–485 (1987).
Article Google Scholar
36.
Corlett, R. T. How to be a frugivore (in a changing world). Acta Oecol. 37, 674–681 (2011).
ADS Article Google Scholar
37.
Göldel, B., Kissling, W. D. & Svenning, J. C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).
Article Google Scholar
38.
Kissling, W. D. et al. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109, 7379–7384 (2012).
ADS CAS PubMed Article Google Scholar
39.
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
ADS CAS PubMed Article PubMed Central Google Scholar
40.
Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281, 20133254 (2014).
PubMed Article PubMed Central Google Scholar
41.
Doughty, C. E. et al. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39, 194–203 (2015).
Article Google Scholar
42.
Galetti, M., Donatti, C. I., Pires, A. S., Guimarães Jr, P. R. & Jordano, P. Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot. J. Linn. Soc. 151, 141–149 (2006).
Article Google Scholar
43.
Beaune, D., Fruth, B., Bollache, L., Hohmann, G. & Bretagnolle, F. Doom of the elephant-dependent trees in a Congo tropical forest. For. Ecol. Manag. 295, 109–117 (2013).
Article Google Scholar
44.
Wotton, D. M. & Kelly, D. Frugivore loss limits recruitment of large-seeded trees. Proc. R. Soc. B 278, 3345–3354 (2011).
PubMed Article PubMed Central Google Scholar
45.
Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).
PubMed Article PubMed Central Google Scholar
46.
Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).
ADS PubMed PubMed Central Article CAS Google Scholar
47.
Nevo, O. et al. Frugivores and the evolution of fruit colour. Biol. Lett. 14, 20180377 (2018).
PubMed PubMed Central Article Google Scholar
48.
Nevo, O., Razafimandimby, D., Jeffrey, J. A. J., Schulz, S. & Ayasse, M. Fruit scent as an evolved signal to primate seed dispersal. Sci. Adv. 4, eaat4871 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar
49.
Bueno, R. S. et al. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS ONE 8, e56252 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
50.
Sekar, N., Lee, C.-L. & Sukumar, R. Functional nonredundancy of elephants in a disturbed tropical forest. Conserv. Biol. 31, 1152–1162 (2017).
PubMed Article PubMed Central Google Scholar
51.
Campos-Arceiz, A., Traeholt, C., Jaffar, R., Santamaria, L. & Corlett, R. T. Asian tapirs are no elephants when it comes to seed dispersal. Biotropica 44, 220–227 (2012).
Article Google Scholar
52.
Corlett, R. T. The impact of hunting on the mammalian fauna of tropical asian forests. Biotropica 39, 292–303 (2007).
Article Google Scholar
53.
Vidal, M. M., Pires, M. M. & Guimarães Jr, P. R. Large vertebrates as the missing components of seed-dispersal networks. Biol. Conserv. 163, 42–48 (2013).
Article Google Scholar
54.
Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction-driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2017).
Article Google Scholar
55.
Valido, A. & Olesen, J. M. Frugivory and seed dispersal by lizards: a global review. Front. Ecol. Evolut. 7, 49 (2019).
Article Google Scholar
56.
Florens, F. B. V. et al. Disproportionately large ecological role of a recently mass-culled flying fox in native forests of an oceanic island. J. Nat. Conserv. 40, 85–93 (2017).
Article Google Scholar
57.
Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai‘i. Science 364, 78–82 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
58.
Muñoz-Gallego, R., Fedriani, J. M. & Traveset, A. Non-native mammals are the main seed dispersers of the ancient mediterranean palm Chamaerops humilis L. in the balearic islands: rescuers of a lost seed dispersal service? Front. Ecol. Evolut. 7, 161 (2019).
Article Google Scholar
59.
Pires, M. M. Rewilding ecological communities and rewiring ecological networks. Perspect. Ecol. Conserv. 15, 257–265 (2017).
Google Scholar
60.
Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
61.
Maisels, F. et al. Devastating decline of forest elephants in central Africa. PLoS ONE 8, e59469 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
62.
Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2014).
Article Google Scholar
63.
Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
64.
Sales, L. P., Ribeiro, B. R., Pires, M. M., Chapman, C. A. & Loyola, R. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the Anthropocene. Ecography 42, 1789–1801 (2019).
Article Google Scholar
65.
Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evolut. 3, 1043–1047 (2019).
Article Google Scholar
66.
Cronk, Q. Plant extinctions take time. Science 353, 446–447 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
67.
Svenning, J. C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
68.
Galetti, M., Pires, A. S., Brancalion, P. H. & Fernandez, F. A. Reversing defaunation by trophic rewilding in empty forests. Biotropica 49, 5–8 (2017).
Article Google Scholar
69.
Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Glob. Change Biol. 24, e190–e200 (2017).
Article Google Scholar
70.
Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).
PubMed Article PubMed Central Google Scholar
71.
Kissling, W. D. et al. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Glob. Ecol. Biogeogr. 21, 909–921 (2012).
Article Google Scholar
72.
Cheke, A. S. & Dahl, J. F. The Status of bats on western Indian Ocean islands, with special reference to Pteropus. Mammalia 45, 205–238 (1981).
Article Google Scholar
73.
Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl Acad. Sci. USA 109, 4527–4531 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
74.
Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds Martin, P. S. & Klein, R. G.) 354–403 (Univ. Arizona Press, 1984).
75.
Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
76.
Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).
PubMed PubMed Central Article Google Scholar
77.
Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evolut. 4, 2913–2930 (2014).
Article Google Scholar
78.
International Union for Conservation of Nature and Natural Resources. The IUCN Red List of threatened species. Version 2018-2. IUCN http://www.iucnredlist.org (2018).
79.
Tiffney, B. H. Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evolut. Syst. 35, 1–29 (2004).
Article Google Scholar
80.
Franãğa, L. D. M. et al. Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation. Earth Sci. Rev. 140, 158–165 (2015).
ADS Article CAS Google Scholar
81.
MacFadden, B. J. & Shockey, B. J. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23, 77–100 (1997).
Article Google Scholar
82.
Morosi, E. & Ubilla, M. Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay). Hist. Biol. 31, 196–202 (2017).
Article Google Scholar
83.
MacFadden, B. J. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat. Res. 64, 113–124 (2005).
Article Google Scholar
84.
Domingo, L., Prado, J. L. & Alberdi, M. T. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quat. Sci. Rev. 55, 103–113 (2012).
ADS Article Google Scholar
85.
DeSantis, L. R. G., Field, J. H., Wroe, S. & Dodson, J. R. Dietary responses of Sahul (Pleistocene Australia-New Guinea) megafauna to climate and environmental change. Paleobiology 43, 181–195 (2017).
Article Google Scholar
86.
Karger, D. N. et al. Data descriptor: climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
PubMed PubMed Central Article Google Scholar
87.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
88.
Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).
ADS Article Google Scholar
89.
Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).
Article Google Scholar
90.
Bivand, R. et al. spatialreg: spatial regression analysis. GitHub https://r-spatial.github.io/spatialreg/ (2019).
91.
Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).
92.
Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evolut. Biol. 24, 699–711 (2011).
CAS Article Google Scholar
93.
Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
PubMed PubMed Central Article Google Scholar
94.
Bartoń, K. MuMIn: multi-model inference. CRAN https://cran.r-project.org/package=MuMIn (2019).
95.
Galipaud, M., Gillingham, M. A. F. & Dechaume-Moncharmont, F.-X. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evolut. 8, 1668–1678 (2017).
Article Google Scholar
96.
Zuber, V. & Strimmer, K. High-dimensional regression and variable selection using CAR scores. Stat. Appl. Genet. Mol. Biol. 10, 34 (2011).
MathSciNet MATH Article Google Scholar
97.
Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).
Article Google Scholar
98.
Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).
ADS PubMed PubMed Central Article CAS Google Scholar
99.
Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl Acad. Sci. USA 115, 11262–11267 (2018).
CAS PubMed Article PubMed Central Google Scholar
100.
International Union for Conservation of Nature and Natural Resources. IUCN Red List categories and criteria: version 3.1, 2nd edn (IUCN, 2012).
101.
Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
102.
Di Marco, M. et al. A retrospective evaluation of the global decline of carnivores and ungulates. Conserv. Biol. 28, 1109–1118 (2014).
PubMed Article PubMed Central Google Scholar More