More stories

  • in

    Climate change disturbs wildlife microbiomes

    1.
    Baquero, F. & Nombela, C. Clin. Microbiol. Infec. 18(Suppl. 4), 2–4 (2012).
    2.
    Roughgarden, J., Gilbert, S. F., Rosenberg, E., Zilber-Rosenberg, I. & Lloyd, E. A. Biol. Theory 13, 44–65 (2018).
    Article  Google Scholar 

    3.
    Greenspan, S. E. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0899-5 (2020).

    4.
    Caporaso, J. G. et al. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).
    CAS  Article  Google Scholar 

    5.
    Cho, I. & Blaser, M. J. Nat. Rev. Genet. 13, 260–270 (2012).
    CAS  Article  Google Scholar 

    6.
    Walke, J. B. et al. ISME J. 8, 2207–2217 (2014).
    CAS  Article  Google Scholar 

    7.
    Antwis, R. E. et al. PLoS ONE 9, e85563 (2014).
    Article  Google Scholar 

    8.
    Heiman, M. L. & Greenway, F. L. Mol. Metab. 5, 317–320 (2016).
    CAS  Article  Google Scholar 

    9.
    Romero, G. Q. et al. Nat. Commun. 11, 3215 (2020).
    CAS  Article  Google Scholar 

    10.
    Sabagh, L. T. et al. Copeia 2012, 683–689 (2012).
    Article  Google Scholar  More

  • in

    A framework for in situ molecular characterization of coral holobionts using nanopore sequencing

    1.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580. https://doi.org/10.1016/j.cub.2018.07.008 (2018).
    CAS  Article  PubMed  Google Scholar 

    3.
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).
    CAS  Article  PubMed  Google Scholar 

    4.
    Peixoto, R. S., Rosado, P. M., Leite, D. C. D., Rosado, A. S. & Bourne, D. G. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. https://doi.org/10.3389/Fmicb.2017.00341 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x (2006).
    CAS  Article  PubMed  Google Scholar 

    6.
    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152. https://doi.org/10.3354/meps07008 (2007).
    ADS  CAS  Article  Google Scholar 

    7.
    Ben-Haim, Y. et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. System. Evol. Microbiol. 53, 309–315. https://doi.org/10.1099/ijs.0.02402-0 (2003).
    CAS  Article  Google Scholar 

    8.
    Johnston, E. C. et al. A genomic glance through the fog of plasticity and diversification in Pocillopora. Sci. Rep. https://doi.org/10.1038/S41598-017-06085-3 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Shearer, T. L., Van Oppen, M. J., Romano, S. L. & Worheide, G. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol. Ecol. 11, 2475–2487 (2002).
    CAS  Article  Google Scholar 

    10.
    Hellberg, M. E. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol. Biol. 6, 24. https://doi.org/10.1186/1471-2148-6-24 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Wares, J. P. Mitochondrial cytochrome b sequence data are not an improvement for species identification in scleractinian corals. PeerJ 2, e564. https://doi.org/10.7717/peerj.564 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Arrigoni, R. et al. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol. Ecol. Resour. 17, 1054–1071. https://doi.org/10.1111/1755-0998.12640 (2017).
    CAS  Article  PubMed  Google Scholar 

    13.
    Suzuki, G. & Nomura, K. Species boundaries of Astreopora corals (Scleractinia, Acroporidae) inferred by mitochondrial and nuclear molecular markers. Zool. Sci. 30, 626–632. https://doi.org/10.2108/zsj.30.626 (2013).
    CAS  Article  PubMed  Google Scholar 

    14.
    Gelin, P., Postaire, B., Fauvelot, C. & Magalon, H. Reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol. Phylogenet. Evol. 109, 430–446. https://doi.org/10.1016/j.ympev.2017.01.018 (2017).
    CAS  Article  PubMed  Google Scholar 

    15.
    LaJeunesse, T. C. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: In search of a “species” level marker. J. Phycol. 37, 866–880. https://doi.org/10.1046/j.1529-8817.2001.01031.x (2001).
    CAS  Article  Google Scholar 

    16.
    Hume, B. C. C. et al. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6, e4816. https://doi.org/10.7717/peerj.4816 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Hume, B. C. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080. https://doi.org/10.1111/1755-0998.13004 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418–4433. https://doi.org/10.1111/mec.12869 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Smith, E. G., Ketchum, R. N. & Burt, J. A. Host specificity of Symbiodinium variants revealed by an ITS2 metahaplotype approach. Isme J. 11, 1500–1503. https://doi.org/10.1038/ismej.2016.206 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Ziegler, M. et al. Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J. Biogeogr. 44, 674–686. https://doi.org/10.1111/jbi.12913 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674. https://doi.org/10.1093/icb/icq061 (2010).
    Article  PubMed  Google Scholar 

    22.
    Hernandez-Agreda, A., Leggat, W., Bongaerts, P. & Ainsworth, T. D. The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. mBio https://doi.org/10.1128/mBio.00560-16 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Neave, M. J., Apprill, A., Ferrier-Pages, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324. https://doi.org/10.1007/s00253-016-7777-0 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Hernandez-Agreda, A., Gates, R. D. & Ainsworth, T. D. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol. 25, 125–140. https://doi.org/10.1016/j.tim.2016.11.003 (2017).
    CAS  Article  PubMed  Google Scholar 

    25.
    Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511. https://doi.org/10.1111/mec.13251 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252. https://doi.org/10.1002/ece3.3830 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. Isme J. 11, 186–200. https://doi.org/10.1038/ismej.2016.95 (2017).
    Article  PubMed  Google Scholar 

    28.
    Menegon, M. et al. On site DNA barcoding by nanopore sequencing. PLoS ONE 12, e0184741. https://doi.org/10.1371/journal.pone.0184741 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Parker, J., Helmstetter, A. J., Devey, D., Wilkinson, T. & Papadopulos, A. S. T. Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci. Rep. 7, 8345. https://doi.org/10.1038/s41598-017-08461-5 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience https://doi.org/10.1093/gigascience/giy033 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. Struct. Biotechnol. J. 18, 296–305. https://doi.org/10.1016/j.csbj.2020.01.005 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Berntson, E. A., Bayer, F. M., McArthur, A. G. & France, S. C. Phylogenetic relationships within the Octocorallia (Cnidaria:Anthozoa) based on nuclear 18S rRNA sequences. Mar. Biol. 138, 235–246. https://doi.org/10.1007/s002270000457 (2001).
    CAS  Article  Google Scholar 

    33.
    Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Hume, B. et al. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar. Pollut. Bull. 72, 313–322. https://doi.org/10.1016/j.marpolbul.2012.11.032 (2013).
    CAS  Article  PubMed  Google Scholar 

    35.
    Hume, B. C. et al. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci. Rep. 5, 8562. https://doi.org/10.1038/srep08562 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. https://doi.org/10.1093/bioinformatics/bty191 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Noonan, S. H. C., Fabricius, K. E. & Humphrey, C. Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS ONE https://doi.org/10.1371/journal.pone.0063985 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Bayer, T. et al. Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps10197 (2013).
    Article  Google Scholar 

    39.
    Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. Isme J. 10, 2280–2292. https://doi.org/10.1038/ismej.2016.9 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Morrow, K. M. et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. Isme J. 9, 894–908. https://doi.org/10.1038/ismej.2014.188 (2015).
    CAS  Article  PubMed  Google Scholar 

    41.
    Morrow, K. M., Bromhall, K., Motti, C. A., Munn, C. B. & Bourne, D. G. Allelochemicals produced by brown macroalgae of the lobophora genus are active against coral larvae and associated bacteria, supporting pathogenic shifts to vibrio dominance. Appl. Environ. Microb. https://doi.org/10.1128/AEM.02391-16 (2017).
    Article  Google Scholar 

    42.
    Neave, M. J., Michell, C. T., Apprill, A. & Voolstra, C. R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7, 40579. https://doi.org/10.1038/srep40579 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Cardenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. Isme J. 12, 59–76. https://doi.org/10.1038/ismej.2017.142 (2018).
    CAS  Article  PubMed  Google Scholar 

    44.
    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/S41467-018-07275-X (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Cardenas, A., Rodriguez, L. M., Pizarro, V., Cadavid, L. F. & Arevalo-Ferro, C. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. Isme J. 6, 502–512. https://doi.org/10.1038/ismej.2011.123 (2012).
    CAS  Article  PubMed  Google Scholar 

    46.
    Gajigan, A. P., Diaz, L. A. & Conaco, C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiologyopen https://doi.org/10.1002/mbo3.478 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Shnit-Orland, M., Sivan, A. & Kushmaro, A. Shewanella corallii sp. nov., a marine bacterium isolated from a Red Sea coral. Int. J. System. Evol. Microbiol. 60, 2293–2297. https://doi.org/10.1099/ijs.0.015768-0 (2010).
    CAS  Article  Google Scholar 

    48.
    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105, 629–640. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).
    CAS  Article  PubMed  Google Scholar 

    49.
    Paramasivam, N. et al. Bacterial Consortium of Millepora dichotoma exhibiting unusual multifocal lesion event in the gulf of Eilat Red Sea. Microb Ecol 65, 50–59. https://doi.org/10.1007/s00248-012-0097-8 (2013).
    Article  PubMed  Google Scholar 

    50.
    Paramasivam, N., Ben-Dov, E., Arotsker, L. & Kushmaro, A. Eilatimonas milleporae gen. nov., sp. nov., a marine bacterium isolated from the hydrocoral Millepora dichotoma. Int. J. Syst. Evol. Microbiol. 63, 1880–1884. https://doi.org/10.1099/ijs.0.043976-0 (2013).
    CAS  Article  PubMed  Google Scholar 

    51.
    Spring, S., Lunsdorf, H., Fuchs, B. M. & Tindall, B. J. The photosynthetic apparatus and its regulation in the aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp nov. PLoS ONE https://doi.org/10.1371/journal.pone.0004866 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Roder, C. et al. Bacterial profiling of White Plague Disease in a comparative coral species framework. Isme J. 8, 31–39. https://doi.org/10.1038/ismej.2013.127 (2014).
    CAS  Article  PubMed  Google Scholar 

    53.
    Sekar, R., Mills, D. K., Remily, E. R., Voss, J. D. & Richardson, L. L. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl. Environ. Microbiol. 72, 5963–5973. https://doi.org/10.1128/AEM.00843-06 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Blackall, L. L., Wilson, B. & van Oppen, M. J. Coral-the world’s most diverse symbiotic ecosystem. Mol. Ecol. 24, 5330–5347. https://doi.org/10.1111/mec.13400 (2015).
    Article  PubMed  Google Scholar 

    55.
    LaJeunesse, T. C. “Species” radiations of symbiotic Dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition (vol 22, pg 570, 2005). Mol. Biol. Evol. 22, 1158–1158. https://doi.org/10.1093/molbev/msi042 (2005).
    CAS  Article  Google Scholar 

    56.
    Hume, B. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl. Acad. Sci. USA 113, 4416–4421. https://doi.org/10.1073/pnas.1601910113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Thornhill, D. J., Lewis, A. M., Wham, D. C. & LaJeunesse, T. C. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68, 352–367. https://doi.org/10.1111/evo.12270 (2014).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Urban resources limit pair coordination over offspring provisioning

    1.
    Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, Oxford, 2012).
    Google Scholar 
    2.
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).
    Article  Google Scholar 

    3.
    Trivers, R. L. Sexual Selection and the Descent of Man 136–179 (Aldine Press, Chicago, 1972).
    Google Scholar 

    4.
    Lessells, C. M. The Evolution of Parental Care (Oxford Univeristy Press, Oxford, 2012).
    Google Scholar 

    5.
    Houston, A. I., Székely, T. & McNamara, J. M. Conflict between parents over care. Trends Ecol. Evol. 20, 33–38 (2005).
    Article  Google Scholar 

    6.
    Lessells, C. M. The evolutionary outcome of sexual conflict. Philos. Trans. R. Soc. B Biol. Sci. 361, 301–317 (2006).
    CAS  Article  Google Scholar 

    7.
    Houston, A. I. & Davies, N. B. The evolution of cooperation and life history in the dunnock, Prunella modularis. Behav. Ecol. Ecol. Conseq. Adapt. Behav. 20, 471–487 (1985).
    Google Scholar 

    8.
    McNamara, J. M., Gasson, C. E. & Houston, A. I. Incorporating rules for responding into evolutionary games. Nature 401, 368–371 (1999).
    ADS  CAS  PubMed  Google Scholar 

    9.
    McNamara, J. M., Houston, A. I., Barta, Z. & Osorno, J. L. Should young ever be better off with one parent than with two?. Behav. Ecol. 14, 301–310 (2003).
    Article  Google Scholar 

    10.
    Lessells, C. M. & McNamara, J. M. Sexual conflict over parental investment in repeated bouts: Negotiation reduces overall care. Proc. R. Soc. B Biol. Sci. 279, 1506–1514 (2012).
    CAS  Article  Google Scholar 

    11.
    Johnstone, R. A. & Hinde, C. A. Negotiation over offspring care – how should parents respond to each other’s efforts?. Behav. Ecol. 17, 818–827 (2006).
    Article  Google Scholar 

    12.
    Royle, N. J., Hartley, I. R. & Parker, G. A. Sexual conflict reduces offspring fitness in zebra finches. Nature 416, 733–736 (2002).
    ADS  CAS  Article  Google Scholar 

    13.
    Johnstone, R. A. et al. Reciprocity and conditional cooperation between great tit parents. Behav. Ecol. 25, 216–222 (2014).
    Article  Google Scholar 

    14.
    Savage, J. L., Browning, L. E., Manica, A., Russell, A. F. & Johnstone, R. A. Turn-taking in cooperative offspring care: By-product of individual provisioning behavior or active response rule?. Behav. Ecol. Sociobiol. 71, 162 (2017).
    Article  Google Scholar 

    15.
    Raihani, N. J., Nelson-Flower, M. J., Moyes, K., Browning, L. E. & Ridley, A. R. Synchronous provisioning increases brood survival in cooperatively breeding pied babblers. J. Anim. Ecol. 79, 44–52 (2010).
    Article  Google Scholar 

    16.
    Mariette, M. M. & Griffith, C. S. The adaptive significance of provisioning and foraging coordination between breeding partners. Am. Nat. 185, 270–280 (2015).
    Article  Google Scholar 

    17.
    Bebbington, K. & Hatchwell, B. J. Coordinated parental provisioning is related to feeding rate and reproductive success in a songbird. Behav. Ecol. 27, 652–659 (2016).
    Article  Google Scholar 

    18.
    Leniowski, K. & Węgrzyn, E. Synchronisation of parental behaviours reduces the risk of nest predation in a socially monogamous passerine bird. Sci. Rep. 8, 7385 (2018).
    ADS  CAS  Article  Google Scholar 

    19.
    Shen, S. F., Chen, H. C., Vehrencamp, S. L. & Yuan, H. W. Group provisioning limits sharing conflict among nestlings in joint-nesting Taiwan yuhinas. Biol. Lett. 6, 318–321 (2010).
    Article  Google Scholar 

    20.
    Savage, J. L. & Hinde, C. A. What can we quantify about carer behavior?. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00418 (2019).
    Article  Google Scholar 

    21.
    Baldan, D., Curk, T., Hinde, C. A. & Lessells, C. M. Alternation of nest visits varies with experimentally manipulated workload in brood-provisioning great tits. Anim. Behav. 156, 139–146. https://doi.org/10.1016/j.anbehav.2019.08.004 (2019).
    Article  Google Scholar 

    22.
    Griffioen, M., Müller, W. & Iserbyt, A. A fixed agreement—consequences of brood size manipulation on alternation in blue tits. PeerJ 7, e6826. https://doi.org/10.7717/peerj.6826 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Iserbyt, A., Fresneau, N., Kortenhoff, T., Eens, M. & Muller, W. Decreasing parental task specialization promotes conditional cooperation. Sci. Rep. 7, 20 (2017).
    Article  Google Scholar 

    24.
    Baldan, D., Hinde, C. A. & Lessells, C. M. Turn-taking between provisioning parents: Partitioning alternation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00448 (2019).
    Article  Google Scholar 

    25.
    Lejeune, L. et al. Environmental effects on parental care visitation patterns in blue tits Cyanistes caeruleus. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00356 (2019).
    Article  Google Scholar 

    26.
    Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198. https://doi.org/10.1890/1540-9295(2004)002[0191:Elp]2.0.Co;2 (2004).
    Article  Google Scholar 

    27.
    Warren, P. S., Katti, M., Ermann, M. & Brazel, A. Urban bioacoustics: It’s not just noise. Anim. Behav. 71, 491–502. https://doi.org/10.1016/j.anbehav.2005.07.014 (2006).
    Article  Google Scholar 

    28.
    McCarthy, M. P., Best, M. J. & Betts, R. A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. https://doi.org/10.1029/2010gl042845 (2010).
    Article  Google Scholar 

    29.
    Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18. https://doi.org/10.1111/j.1474-919X.2008.00899.x (2009).
    Article  Google Scholar 

    30.
    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7, 5014. https://doi.org/10.1038/s41598-017-04575-y (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156. https://doi.org/10.1002/eap.1730 (2018).
    Article  PubMed  Google Scholar 

    32.
    Seress, G., Sándor, K., Evans, K. L. & Liker, A. Food availability limits avian reproduction in the city: An experimental study on great tits Parus major. J. Anim. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2656.13211 (2020).
    Article  Google Scholar 

    33.
    Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).
    Article  Google Scholar 

    34.
    Peach, W. J., Mallord, J. W., Ockendon, N., Orsman, C. J. & Haines, W. G. Depleted suburban house sparrow Passer domesticus population not limited by food availability. Urban Ecosyst. 21, 1053–1065. https://doi.org/10.1007/s11252-018-0784-4 (2018).
    Article  Google Scholar 

    35.
    Schoech, S. J. et al. Food supplementation: A tool to increase reproductive output? A case study in the threatened Florida Scrub-Jay. Biol. Cons. 141, 162–173. https://doi.org/10.1016/j.biocon.2007.09.009 (2008).
    Article  Google Scholar 

    36.
    Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112. https://doi.org/10.1016/j.anbehav.2013.01.023 (2013).
    Article  Google Scholar 

    37.
    Isaksson, C. & Andersson, S. Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38, 564–572. https://doi.org/10.1111/j.2007.0908-8857.04030.x (2007).
    Article  Google Scholar 

    38.
    New, T. R. Insect Conservation and Urban Environments (Springer, Berlin, 2015).
    Google Scholar 

    39.
    Helden, A., Stamp, G. & Leather, S. Urban biodiversity: Comparison of insect assemblages on native and non-native trees. Urban Ecosyst. 15, 611–624. https://doi.org/10.1007/s11252-012-0231-x (2012).
    Article  Google Scholar 

    40.
    Tallamy, D. W. & Shropshire, K. J. Ranking lepidopteran use of native versus introduced plants. Conserv. Biol. 23, 941–947 (2009).
    Article  Google Scholar 

    41.
    Burghardt, K. T., Tallamy, D. W., Philips, C. & Shropshire, K. J. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1, art11. https://doi.org/10.1890/es10-00032.1 (2010).
    Article  Google Scholar 

    42.
    Marciniak, B., Nadolski, J., Nowakowska, M., Loga, B. & Bańbura, J. Habitat and annual variation in arthropod abundance affects blue tit Cyanistes caeruleus reproduction. Acta Ornithol. 42, 53–62 (2007).
    Article  Google Scholar 

    43.
    Neil, K. & Wu, J. Effects of urbanization on plant flowering phenology: A review. Urban Ecosyst. 9, 243–257. https://doi.org/10.1007/s11252-006-9354-2 (2006).
    Article  Google Scholar 

    44.
    Lessells, C. M. & Stephens, D. W. Central place foraging: Single-prey loaders again. Anim. Behav. 31, 238–243 (1983).
    Article  Google Scholar 

    45.
    Orians, G. H. & Pearson, N. E. On the Theory of Central Place Foraging. Analysis of Ecological Systems 155–177 (Ohio State University Press, Columbus, 1979).
    Google Scholar 

    46.
    Arnold, K. E., Ramsay, S. L., Henderson, L. & Larcombe, S. D. Seasonal variation in diet quality: Antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biol. J. Lin. Soc. 99, 708–717. https://doi.org/10.1111/j.1095-8312.2010.01377.x (2010).
    Article  Google Scholar 

    47.
    Ouyang, J. Q., Baldan, D., Munguia, C. & Davies, S. Genetic inheritance and environment determine endocrine plasticity to urban living. Proc. R. Soc. B Biol. Sci. 286, 20191215. https://doi.org/10.1098/rspb.2019.1215 (2019).
    CAS  Article  Google Scholar 

    48.
    Newhouse, M. J., Marra, P. P. & Johnson, L. S. Reproductive success of house wrens in suburban and rural landscapes. Wilson J. Ornithol. 120, 99–104 (2008).
    Article  Google Scholar 

    49.
    Potti, J., Dávila, J. A., Tella, J. L., Frías, Ó & Villar, S. Gender and viability selection on morphology in fledgling pied flycatchers. Mol. Ecol. 11, 1317–1326. https://doi.org/10.1046/j.1365-294X.2002.01545.x (2002).
    CAS  Article  PubMed  Google Scholar 

    50.
    Balogh, A. L., Ryder, T. B. & Marra, P. P. Population demography of Gray Catbirds in the suburban matrix: Sources, sinks and domestic cats. J. Ornithol. 152, 717–726. https://doi.org/10.1007/s10336-011-0648-7 (2011).
    Article  Google Scholar 

    51.
    Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure?. J. Appl. Ecol. 54, 272–281. https://doi.org/10.1111/1365-2664.12756 (2017).
    Article  Google Scholar 

    52.
    Holmes, R. T. Foraging patterns of forest birds: Male–female differences. Wilson Bull. 98, 196–213 (1986).
    Google Scholar 

    53.
    Chaves, F. G., Vecchi, M. B. & Alves, M. A. S. Intersexual differences in the foraging behavior of Formicivora littoralis (Thamnophilidae), an endangered Neotropical bird. Stud. Neotrop. Fauna Environ. 52, 179–186. https://doi.org/10.1080/01650521.2017.1335275 (2017).
    Article  Google Scholar 

    54.
    Mänd, R., Rasmann, E. & Mägi, M. When a male changes his ways: Sex differences in feeding behavior in the pied flycatcher. Behav. Ecol. 24, 853–858. https://doi.org/10.1093/beheco/art025 (2013).
    Article  Google Scholar 

    55.
    Kölliker, M., Brinkhof, M. W. G., Heeb, P., Fitze, P. S. & Richner, H. The quantitative genetic basis of offspring solicitation and parental response in a passerine bird with biparental care. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2127–2132 (2000).
    Article  Google Scholar 

    56.
    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).
    CAS  Article  Google Scholar 

    57.
    Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: Diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 193, 377–388. https://doi.org/10.1007/s00442-020-04678-w (2020).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Gering, J. C. & Blair, R. B. Predation on artificial bird nests along an urban gradient: Predatory risk or relaxation in urban environments?. Ecography 22, 532–541. https://doi.org/10.1111/j.1600-0587.1999.tb01283.x (1999).
    Article  Google Scholar 

    59.
    Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818. https://doi.org/10.1525/bio.2012.62.9.6 (2012).
    Article  Google Scholar 

    60.
    Vincze, E. et al. Does urbanization affect predation of bird nests? A meta-analysis. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00029 (2017).
    Article  Google Scholar 

    61.
    Griggio, M. & Hoi, H. An experiment on the function of the long-term pair bond period in the socially monogamous bearded reedling. Anim. Behav. 82, 1329–1335. https://doi.org/10.1016/j.anbehav.2011.09.016 (2011).
    Article  Google Scholar 

    62.
    Griffith, S. C. Cooperation and coordination in socially monogamous birds: Moving away from a focus on sexual conflict. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00455 (2019).
    Article  Google Scholar 

    63.
    Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126. https://doi.org/10.1016/j.tree.2014.11.007 (2015).
    Article  PubMed  Google Scholar 

    64.
    Liebl, A. L. & Martin, L. B. Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird. Proc. Biol. Sci. 279, 4375–4381. https://doi.org/10.1098/rspb.2012.1606 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life?. Glob. Change Biol. 24, 1452–1469. https://doi.org/10.1111/gcb.13969 (2018).
    ADS  Article  Google Scholar 

    66.
    Patricelli, G. L. & Blickley, J. L. Avian communication in urban noise: Causes and consequences of vocal adjustment. Auk 123, 639–649. https://doi.org/10.1093/auk/123.3.639 (2006).
    Article  Google Scholar 

    67.
    Grabarczyk, E. E. & Gill, S. A. Anthropogenic noise affects male house wren response to but not detection of territorial intruders. PLoS One 14, e0220576. https://doi.org/10.1371/journal.pone.0220576 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Schroeder, J., Nakagawa, S., Cleasby, I. R. & Burke, T. Passerine birds breeding under chronic noise experience reduced fitness. PLoS One 7, e39200. https://doi.org/10.1371/journal.pone.0039200 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554. https://doi.org/10.1073/pnas.1109091108 (2011).
    ADS  Article  PubMed  Google Scholar 

    70.
    Mariette, M. M. Acoustic cooperation: Acoustic communication regulates conflict and cooperation within the family. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00445 (2019).
    Article  Google Scholar 

    71.
    Johnstone, R. A. & Savage, J. L. Conditional cooperation and turn-taking in parental care. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00335 (2019).
    Article  Google Scholar 

    72.
    Ihle, M., Pick, J. L., Winney, I. S., Nakagawa, S. & Burke, T. Measuring up to reality: Null models and analysis simulations to study parental coordination over provisioning offspring. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00142 (2019).
    Article  Google Scholar 

    73.
    Ihle, M. et al. Rearing success does not improve with apparent pair coordination in offspring provisioning. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00405 (2019).
    Article  Google Scholar 

    74.
    Seress, G., Lipovits, A., Bokony, V. & Czuni, L. Quantifying the urban gradient: A practical method for broad measurements. Landsc. Urban Plan. 131, 42–50. https://doi.org/10.1016/j.landurbplan.2014.07.010 (2014).
    Article  Google Scholar 

    75.
    75Johnson, L. S. in The Birds of North America (ed Editor A. F. Poole) (2014).

    76.
    Pearse, A. T., Cavitt, J. F. & Cully, J. F. effects of food supplementation on female nest attentiveness and incubation mate feeding in two sympatric wren species. Wilson Bull. 116, 23–30 (2004).
    Article  Google Scholar 

    77.
    Greenewalt, C. H. & Jones, F. M. Photographic studies of the feeding of nestling house wrens. Proc. Am. Philos. Soc. 99, 200–204 (1955).
    Google Scholar 

    78.
    Welbers, A. A. M. H. et al. Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00055 (2017).
    Article  Google Scholar 

    79.
    Baldan, D. & Griggio, M. Pair coordination is related to later brood desertion in a provisioning songbird. Anim. Behav. 156, 147–152. https://doi.org/10.1016/j.anbehav.2019.08.002 (2019).
    Article  Google Scholar 

    80.
    Pinheiro J, Bates D, DebRoy S, Sarkar D & Team, R. C. nlme: Linear and nonlinear mixed effects models. (2019).

    81.
    Rolinski, S., Horn, H., Petzoldt, T. & Paul, L. Identifying cardinal dates in phytoplankton time series to enable the analysis of long-term trends. Oecologia 153, 997–1008 (2007).
    ADS  Article  Google Scholar 

    82.
    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430. https://doi.org/10.1111/2041-210x.13234 (2019).
    Article  Google Scholar 

    83.
    Martin, E. mclogit: Multinomial logit models, with or without random effects or overdispersion (2020).

    84.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).
    Article  Google Scholar 

    85.
    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, Hillsdale, 1988).
    Google Scholar 

    86.
    Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    87.
    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. (2020). More

  • in

    Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies

    1.
    Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. N Phytol. 2019;223:1–11.
    Article  CAS  Google Scholar 
    2.
    Miller RM, Jastrow JD, Reinhardt DR. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia. 1995;103:17–23.
    CAS  PubMed  Article  Google Scholar 

    3.
    Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read DJ. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot. 2004;82:1016–45.
    Article  Google Scholar 

    4.
    Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 2000;124:949–58.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci. 2010;107:10938–42.
    CAS  PubMed  Article  Google Scholar 

    6.
    Giri B, Saxena B. Response of arbuscular mycorrhizal fungi to global climate change and their role in terrestrial ecosystem C and N cycling. In: Varma A, Prasad R, Tuteja N editors. Mycorrhiza—function, diversity, state of the art. Cham: Springer International Publishing; 2017. p. 305–27.

    7.
    Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI. Symbiotic options for the conquest of land. Trends Ecol Evol. 2015;30:477–86.
    PubMed  Article  Google Scholar 

    8.
    Martin FM, Uroz S, Barker DG. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science. 2017;356:eaad4501.
    PubMed  Article  CAS  Google Scholar 

    9.
    Brundrett MC. Coevolution of roots and mycorrhizas of land plants. N Phytol. 2002;154:275–304.
    Article  Google Scholar 

    10.
    Werner GDA, Cornelissen JHC, Cornwell WK, Soudzilovskaia NA, Kattge J, West SA, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci. 2018;115:5229–34.
    CAS  PubMed  Article  Google Scholar 

    11.
    Gange AC, Stagg PG, Ward LK. Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol Lett. 2002;5:11–5.
    Article  Google Scholar 

    12.
    Koricheva J, Gange AC, Jones T. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology. 2009;90:2088–97.
    PubMed  Article  Google Scholar 

    13.
    Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.
    Article  Google Scholar 

    14.
    Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. N Phytol. 2014;203:233–44.
    CAS  Article  Google Scholar 

    15.
    Gerz M, Bueno CG, Zobel M, Moora M. Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J Veg Sci. 2016;27:89–99.
    Article  Google Scholar 

    16.
    He X, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). CRC Crit Rev Plant Sci. 2003;22:531–67.
    Article  Google Scholar 

    17.
    Smith, Sally E., and David J. Read. Mycorrhizal symbiosis. 3rd edn. (Academic press, London, 2008).

    18.
    Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 2017;356:1175–8.
    CAS  PubMed  Article  Google Scholar 

    19.
    Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza. 2000;9:331–6.
    CAS  Article  Google Scholar 

    20.
    Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci. 2003;165:1137–45.
    Article  CAS  Google Scholar 

    21.
    Ramírez-Viga TK, Aguilar R, Castillo-Argüero S, Chiappa-Carrara X, Guadarrama P, Ramos-Zapata J. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Mycorrhiza. 2018;28:477–93.
    PubMed  Article  Google Scholar 

    22.
    Weremijewicz J, Janos DP. Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. N Phytol. 2013;198:203–13.
    CAS  Article  Google Scholar 

    23.
    Bücking H, Shachar-Hill Y. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. N Phytol. 2005;165:899–912.
    Article  CAS  Google Scholar 

    24.
    Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci. 2012;109:2666–71.
    CAS  PubMed  Article  Google Scholar 

    25.
    Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, et al. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. N Phytol. 2014;203:646–56.
    CAS  Article  Google Scholar 

    26.
    Konvalinková T, Püschel D, Janoušková M, Gryndler M, Jansa J. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Front Plant Sci. 2015;6:1–11.
    Article  Google Scholar 

    27.
    Zheng C, Ji B, Zhang J, Zhang F, Bever JD. Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. N Phytol. 2015;205:361–8.
    CAS  Article  Google Scholar 

    28.
    Varga S, Kytöviita M. Mycorrhizal benefit differs among the sexes in a gynodioecious species. Ecology. 2010;91:2583–93.
    PubMed  Article  Google Scholar 

    29.
    Merrild MP, Ambus P, Rosendahl S, Jakobsen I. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. N Phytol. 2013;200:229–40.
    CAS  Article  Google Scholar 

    30.
    Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. N Phytol. 2015;205:1632–45.
    CAS  Article  Google Scholar 

    31.
    Weremijewicz J, Sternberg L, da SLO, Janos DP. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. N Phytol. 2016;212:461–71.
    CAS  Article  Google Scholar 

    32.
    Werner GDA, Kiers ET. Partner selection in the mycorrhizal mutualism. N Phytol. 2015;205:1437–42.
    Article  Google Scholar 

    33.
    Bachelot B, Lee CT. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence. Ecology. 2018;99:372–84.
    PubMed  Article  Google Scholar 

    34.
    Wyatt GAK, Kiers ET, Gardner A, West SA. A biological market analysis of the plant-mycorrhizal symbiosis. Evolution. 2014;68:2603–18.
    PubMed  Article  Google Scholar 

    35.
    Noë R, Kiers ET. Mycorrhizal markets, firms, and co-ops. Trends Ecol Evol. 2018;33:777–89.
    PubMed  Article  Google Scholar 

    36.
    Bender SF, Wagg C, van der Heijden MGA. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol. 2016;31:440–52.
    PubMed  Article  Google Scholar 

    37.
    Konvalinková T, Jansa J. Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci. 2016;7:1–11.
    Article  Google Scholar 

    38.
    Whiteside MD, Werner GDAA, Caldas VEA, van’t Padje A, Dupin SE, Elbers B, et al. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr Biol. 2019;29:2043–50.e8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125:7100–6.
    CAS  PubMed  Article  Google Scholar 

    40.
    Jang E, Jun S, Pu L. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem Commun. 2003;24:2964–5.

    41.
    Declerck S, Fortin JA, Strullu DG (eds). In vitro culture of mycorrhizas. Berlin, Heidelberg: Springer; 2005.

    42.
    Engelmoer DJP, Behm JE, Kiers ET. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol. 2014;23:1584–93.
    CAS  PubMed  Article  Google Scholar 

    43.
    Ness RLL, Vlek PLG. Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal hyphae. Soil Sci Soc Am J. 2000;64:949–55.
    CAS  Article  Google Scholar 

    44.
    Tang I-M, Krishnamra N, Charoenphandhu N, Hoonsawat R, Pon-On W. Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett. 2010;6:19.
    PubMed  PubMed Central  Google Scholar 

    45.
    Kawashita M, Taninai K, Li Z, Ishikawa K, Yoshida Y. Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates. J Mater Sci Mater Med. 2012;23:1355–62.
    CAS  PubMed  Article  Google Scholar 

    46.
    Sun S, Chan LS, Li Y-L. Flower-like apatite recording microbial processes through deep geological time and its implication to the search for mineral records of life on Mars. Am Miner. 2014;99:2116–25.
    Article  Google Scholar 

    47.
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.
    CAS  PubMed  Article  Google Scholar 

    48.
    R core team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. https://www.r-project.org/.

    49.
    Walker C. A simple blue staining technique for arbuscular mycorrhizal and other root-inhabiting fung. Inoculum. 2005;56:68–9.
    Google Scholar 

    50.
    Rossow MJ, Sasaki JM, Digman MA, Gratton E. Raster image correlation spectroscopy in live cells. Nat Protoc. 2010;5:1761–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Whiteside MD, Digman MA, Gratton E, Treseder KK. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem. 2012;55:7–13.
    CAS  Article  Google Scholar 

    52.
    Bates D, Mächler M, Bolker B, Walker S. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software. 2015. 67;1:1–48.

    53.
    Kuznetsova A, Brockhoff PB, Christensen RHB (2017). “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software. 2017. 82;13:1–26.

    54.
    Fox J, Weisberg S. An R companion to applied regression. 2nd edn (Sage Publications, Inc, Thousand Oaks CA, 2016).

    55.
    Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 2007;30:310–22.
    CAS  PubMed  Article  Google Scholar 

    56.
    Konečný J, Hršelová H, Bukovská P, Hujslová M, Jansa J. Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula. PLoS ONE. 2019;14:1–24.
    Article  CAS  Google Scholar 

    57.
    Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife. 2017;6:1–33.
    Article  Google Scholar 

    58.
    Burleigh SH, Cavagnaro T, Jakobsen I. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot. 2002;53:1593–601.
    CAS  PubMed  Article  Google Scholar 

    59.
    Smith SE. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 2003;133:16–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Grønlund M, Albrechtsen M, Johansen IE, Hammer EC, Nielsen TH, Jakobsen I. The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene-silencing approach. Physiol Plant. 2013;149:234–48.
    PubMed  Article  CAS  Google Scholar 

    61.
    Smith SE, Smith FA, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. N Phytol. 2004;162:511–24.
    Article  Google Scholar 

    62.
    Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot. 2015;66:4061–73.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Pel R, Dupin S, Schat H, Ellers J, Kiers ET, van Straalen NM. Growth benefits provided by different arbuscular mycorrhizal fungi to Plantago lanceolata depend on the form of available phosphorus. Eur J Soil Biol. 2018;88:89–96.
    CAS  Article  Google Scholar 

    64.
    Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA. Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia. 2006;147:348–58.
    PubMed  Article  Google Scholar 

    65.
    Lu R, Drubin DG, Sun Y. Clathrin-mediated endocytosis in budding yeast at a glance. J Cell Sci. 2016;129:1531–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc. 2000;198:246–59.
    CAS  PubMed  Article  Google Scholar 

    67.
    Read ND, Kalkman ER. Does endocytosis occur in fungal hyphae? Fungal Genet Biol. 2003;39:199–203.
    CAS  PubMed  Article  Google Scholar 

    68.
    Epp E, Nazarova E, Regan H, Douglas LM, Konopka JB, Vogel J, et al. Clathrin- and arp2/3-independent endocytosis in the fungal pathogen Candida albicans. MBio. 2013;4:e00476–13.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Colin Y, Nicolitch O, Turpault MP, Uroz S. Mineral types and tree species determine the functional and taxonomic structures of forest soil bacterial communities. Appl Environ Microbiol. 2017;83:1–23.
    Article  Google Scholar 

    70.
    Fontaine L, Thiffault N, Paré D, Fortin J-A, Piché Y. Phosphate-solubilizing bacteria isolated from ectomycorrhizal mycelium of Picea glauca are highly efficient at fluorapatite weathering. Botany. 2016;94:1183–93.
    CAS  Article  Google Scholar 

    71.
    Alloush GA, Clark RB. Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun Soil Sci Plant Anal. 2001;32:231–54.
    CAS  Article  Google Scholar 

    72.
    Powell CL, Daniel J. Mycorrhizal fungi stimulate uptake of soluble and insoluble phosphate fertilizer from a phosphate‐deficient soil. N Phytol. 1978;80:351–8.
    CAS  Article  Google Scholar 

    73.
    Jakobsen I, Hammer EC. Nutrient dynamics in arbuscular mycorrhizal networks. In: Horton TR, editor. Mycorrhizal networks. Dordrecht: Springer Netherlands; 2015. p. 91–131.

    74.
    Marler MJ, Zabinski CA, Callaway RM. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology. 1999;80:1180–6.
    Article  Google Scholar 

    75.
    Carey EV, Marler MJ, Callaway RM. Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol. 2004;172:133–41.
    Article  Google Scholar 

    76.
    van der Heijden MGA. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett. 2004;7:293–303.
    Article  Google Scholar 

    77.
    van der Heijden MGA, Horton TR. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol. 2009;97:1139–50.
    Article  Google Scholar 

    78.
    Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J. 2005;89:1317–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Nieves DJ, Li Y, Fernig DG, Levy R. Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. R Soc Open Sci. 2015;2:140454.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Johnson NC, Graham JH, Smith FA. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. N Phytol. 1997;135:575–85.
    Article  Google Scholar 

    81.
    Johnson NC, Wilson JA, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci. 2010;107:2093–8.
    CAS  PubMed  Article  Google Scholar 

    82.
    Argüello A, O’Brien MJ, van der Heijden MGA, Wiemken A, Schmid B, Niklaus PA. Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Ecol Lett. 2016;19:648–56.
    PubMed  Article  Google Scholar 

    83.
    Noë R, Hammerstein P. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol. 1994;35:1–11.
    Article  Google Scholar 

    84.
    Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, et al. Evolution of microbial markets. Proc Natl Acad Sci. 2014;111:1237–44.
    CAS  PubMed  Article  Google Scholar 

    85.
    Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol. 2016;41:114–21.
    CAS  PubMed  Article  Google Scholar 

    86.
    Bücking H, Mensah JA, Fellbaum CR. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun Integr Biol. 2016;9:1–4.
    Article  CAS  Google Scholar 

    87.
    Roger A, Colard A, Angelard C, Sanders IR. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J. 2013;7:2137–46.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Wagg C, Jansa J, Schmid B, van der Heijden MGA. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett. 2011;14:1001–9.
    PubMed  Article  Google Scholar 

    89.
    Douglas AE. Conflict, cheats and the persistence of symbioses. N Phytol. 2008;177:849–58.
    Article  Google Scholar  More

  • in

    Publisher Correction: Science diplomacy for plant health

    European and Mediterranean Plant Protection Organization (EPPO)-Euphresco, Paris, France
    Baldissera Giovani & Nico Horn

    Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production, Vienna, Austria
    Sylvia Blümel

    Food Department, Ministry of Agriculture and Forestry of Finland, Helsinki, Finland
    Ralf Lopian

    Better Border Biosecurity (B3), Plant and Food Research, Christchurch, New Zealand
    David Teulon

    North American Plant Protection Organization (NAPPO), Raleigh, NC, USA
    Stephanie Bloem

    Comite Regional de Sanidad Vegetal del Cono Sur (COSAVE), Dirección de Protección Vegetal, del Servicio Nacional y Sanidad Vegetal y Semillas, Asuncion, Paraguay
    Cristina Galeano Martínez

    Comunidad Andina (CAN), Secretaría General de la Comunidad Andina, Lima, Peru
    Camilo Beltrán Montoya

    Organismo Internacional Regional de Sanidad Agropecuaria (OIRSA), San Salvador, El Salvador
    Carlos Ramon Urias Morales

    Asia and Pacific Plant Protection Commission (APPPC), Bangkok, Thailand
    Sridhar Dharmapuri

    Pacific Plant Protection Organization (PPPO), Pacific Community Land Resources Division, Suva, Fiji
    Visoni Timote

    Near East Plant Protection Organization (NEPPO), Rabat, Morocco
    Mekki Chouibani

    African-Union Interafrican Phytosanitary Council (IAPSC), Yaoundé, Cameroon
    Jean Gérard Mezui M’Ella

    Ministry of Primary Industries (MPI), Wellington, New Zealand
    Veronica Herrera & Aurélie Castinel

    Department of Agriculture, Water and the Environment (DAWE), Canberra, Australian Capital Territory, Australia
    Con Goletsos, Carina Moeller & Ian Naumann

    European Food Safety Authority (EFSA), Parma, Italy
    Giuseppe Stancanelli, Stef Bronzwaer & Sara Tramontini

    Canadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada
    Philip MacDonald & Loren Matheson

    French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Plant Health Laboratory, Angers, France
    Géraldine Anthoine

    Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
    Kris De Jonghe

    Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
    Martijn Schenk

    Julius Kühn Institute (JKI), Braunschweig, Germany
    Silke Steinmöller

    National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
    Elena Rodriguez

    National Institute for Agriculture and Veterinary Research (INIAV), Oeiras, Portugal
    Maria Leonor Cruz

    Plant Biosecurity Research Initiative (PBRI), Hort Innovation, Melbourne, Victoria, Australia
    Jo Luck

    Plant Health Australia (PHA), Deakin, Canberra, Australian Capital Territory, Australia
    Greg Fraser

    International Plant Protection Convention (IPPC), Food and Agriculture Organization of the United Nations, Rome, Italy
    Sarah Brunel, Mirko Montuori, Craig Fedchock & Jingyuan Xia

    Department for Environment, Food & Rural Affairs (DEFRA), London, UK
    Elspeth Steel & Helen Grace Pennington

    Centre for Agriculture and Bioscience International (CABI), Nairobi, Kenya
    Roger Day

    French National Institute for Agricultural Research (INRA), INRA-Montpellier-CBGP, Montferrier-sur-Lez, France
    Jean Pierre Rossi More

  • in

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Adams DC (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63(5):685–697.
    PubMed  Article  PubMed Central  Google Scholar 

    Adams DC, Otarola-Castillo E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399.
    Article  Google Scholar 

    Berry RJ (1996) Small mammal differentiation on islands. Philos Trans R Soc Lond B 351(1341):753–764.
    CAS  Article  Google Scholar 

    Berry RJ, Tricker BJK (1969) Competition and extinction: the mice of Foula, with notes on those of Fair Isle and St Kilda. J Zool Lond 158:247–265.
    Article  Google Scholar 

    Bonhomme F, Orth A, Cucchi T, Rajabi-Maham H, Catalan J, Boursot P et al. (2011) Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proc R Soc Lond Biol Sci 278:1034–1043.
    Google Scholar 

    Britton-Davidian J, Caminade P, Davidian E, Pagès M (2017) Does chromosomal change restrict gene flow between house mouse populations (Mus musculus domesticus)? Evidence from microsatellite polymorphisms. Biol J Linn Soc 122(1):224–240.
    Article  Google Scholar 

    Cucchi T (2008) Uluburun shipwreck stowaway house mouse: molar shape analysis and indirect clues about the vessel’s last journey. J Archaeol Sci 35:2953–2959.
    Article  Google Scholar 

    Cucchi T, Barnett R, Martinkova N, Renaud S, Renvoisé E, Evin A et al. (2014) The changing pace of insular life: 5000 years of microevolution in the Orkney vole (Microtus arvalis orcadensis). Evolution 68(10):2804–2820.
    PubMed  PubMed Central  Article  Google Scholar 

    Cucchi T, Kovács ZE, Berthon R, Orth A, Bonhomme F, Evin A et al. (2013) On the trail of Neolithic mice and men towards Transcaucasia: zooarchaeological clues from Nakhchivan (Azerbaijan). Biol J Linn Soc 108:917–928.
    Article  Google Scholar 

    Cucchi T, Papayianni K, Cersoy S, Aznar-Cormano L, Zazzo A, Debruyne R et al. (2020) Tracking the Near Eastern origins and European dispersal of the western house mouse. Sci Rep 10:8276.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Cucchi T, Vigne J-D, Auffray J-C (2005) First occurrence of the house mouse (Mus musculus domesticus Schwarz & Schwarz, 1943) in the Western Mediterranean: a zooarchaeological revision of subfossil occurrences. Biol J Linn Soc 84:429–445.
    Article  Google Scholar 

    Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31(3):277–294.
    Article  Google Scholar 

    Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20.
    Article  Google Scholar 

    Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics 29(4):751–760.
    Article  Google Scholar 

    Excoffier L, Lischer HEL (2010) Arlequin suite ver 3. 5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567.
    PubMed  Article  PubMed Central  Google Scholar 

    Fairley JS, Smal CM (1987) Feral house mice in Ireland. Ir Naturalists’ J 22(7):284–290.
    Google Scholar 

    Gabriel SI, Mathias MDL, Searle JB (2013) Genetic structure of house mouse (Mus musculus Linnaeus 1758) populations in the Atlantic archipelago of the Azores: colonization and dispersal. Biol J Linn Soc 108(4):929–940.
    Article  Google Scholar 

    Gabriel SI, Mathias ML, Searle JB (2015) Of mice and the ‘Age of Discovery’: the complex history of colonization of the Azorean archipelago by the house mouse (Mus musculus) as revealed by mitochondrial DNA variation. J Evolut Biol 28(1):130–114.
    CAS  Article  Google Scholar 

    Ganem G (1998) Behavioural and physiological characteristics of standard and chromosomally divergent populations of house mice from the Orkney archipelago (Scotland). Acta Theriol 43(1):23–38.
    Article  Google Scholar 

    García-Rodríguez O, Andreou D, Herman JS, Mitsainas GP, Searle JB, Bonhomme F et al. (2018) Cyprus as an ancient hub for house mice and humans. J Biogeogr 45:2618–2630.
    Article  Google Scholar 

    Gilbert E, O’Reilly S, Merrigan M, McGettigan D, Vitart V, Joshi PK et al. (2019) The genetic landscape of Scotland and the Isles. Proc Natl Acad Sci USA 116(38):201904761.
    Article  CAS  Google Scholar 

    Gingerich PD, Smith BH, Rosenberg K (1982) Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am J Phys Anthropol 58:81–100.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Günduz İ, Auffray J-C, Britton-Davidian J, Catalan J, Ganem G, Ramalhinho MG et al. (2001) Molecular studies on the colonization of the Madeiran archipelago by house mice. Mol Ecol 10:2023–2029.
    PubMed  Article  PubMed Central  Google Scholar 

    Hardouin E, Chapuis J-L, Stevens MI, van Vuuren JB, Quillfeldt P, Scavetta RJ et al. (2010) House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion. BMC Evolut Biol 10:325.
    Article  Google Scholar 

    Hayden L, Lochovska L, Sémon M, Renaud S, Delignette-Muller M-L, Vicot M et al. (2020) Developmental variability channels mouse molar evolution. eLife 9:e50103.
    PubMed  PubMed Central  Article  Google Scholar 

    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94.
    PubMed  PubMed Central  Article  Google Scholar 

    Jones EP, Eager HM, Gabriel SI, Jóhannesdóttir F, Searle JB (2013) Genetic tracking of mice and other bioproxies to infer human history. Trends Genet 29(5):298–308.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Jones EP, Jensen J-K, Magnussen E, Gregersen N, Hansen HS, Searle JB (2011a) A molecular characterization of the charismatic Faroe house mouse. Biol J Linn Soc 102:471–482.
    Article  Google Scholar 

    Jones EP, Jóhannesdóttir F, Gündüz İ, Richards MB, Searle JB (2011b) The expansion of the house mouse into north-western Europe. J Zool Lond 283(4):257–268.
    Article  Google Scholar 

    Jones EP, Skirnisson K, McGovern T, Gilbert M, Willerslev E, Searle JB (2012) Fellow travellers: a concordance of colonization patterns between mice and men in the North Atlantic region. BMC Evolut Biol 12(1):35.
    Article  Google Scholar 

    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Ledevin R, Chevret P, Ganem G, Britton-Davidian J, Hardouin EA, Chapuis J-L et al. (2016) Phylogeny and adaptation shape the teeth of insular mice. Proc R Soc Lond Biol Sci 283:20152820.
    Google Scholar 

    Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116.
    Article  Google Scholar 

    Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, Day T et al. (2015) The fine-scale genetic structure of the British population. Nature 519(7543):309–314.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Lomolino MV (1985) Body size of mammals on islands: the island rule reexamined. Am Naturalist 125:310–316.
    Article  Google Scholar 

    Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699.
    Article  Google Scholar 

    Lomolino MV, Sax DF, Palombo MR, van der Geer AA (2012) Of mice and mammoths: evaluations of causal explanations for body size evolution in insular mammals. J Biogeogr 39:842–854.
    Article  Google Scholar 

    Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457(7231):830–836.
    CAS  PubMed  Article  Google Scholar 

    Martínková N, Barnett R, Cucchi T, Struchen R, Pascal M, Pascal M et al. (2013) Divergent evolutionary processes associated with colonization of offshore islands. Mol Ecol 22:5205–5220.
    PubMed  PubMed Central  Article  Google Scholar 

    Millien V (2006) Morphological evolution is accelerated among island mammals. PLoS Biol 4(10):e321.
    PubMed  PubMed Central  Article  Google Scholar 

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. (2013) Vegan: Community Ecology Package. R Package Version. 2.0-10. CRAN.

    Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129(2):169–178.
    PubMed  Article  PubMed Central  Google Scholar 

    Pocock MJO, Searle JB, White PCL (2004) Adaptations of animals to commensal habitats: population dynamics of house mice Mus musculus domesticus on farms. J Anim Ecol 73:878–888.
    Article  Google Scholar 

    Polly PD (2004) On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontol Electron 7(2):7A:28.
    Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959.
    CAS  PubMed  PubMed Central  Google Scholar 

    Renaud S, Chevret P, Michaux J (2007) Morphological vs. molecular evolution: ecology and phylogeny both shape the mandible of rodents. Zool Scr 36:525–535.
    Article  Google Scholar 

    Renaud S, Hardouin EA, Quéré J-P, Chevret P (2017) Morphometric variations at an ecological scale: seasonal and local variations in feral and commensal house mice. Mamm Biol 87:1–12.
    Article  Google Scholar 

    Renaud S, Ledevin R, Souquet L, Gomes Rodrigues H, Ginot S, Agret S et al. (2018) Evolving teeth within a stable masticatory apparatus in Orkney mice. Evolut Biol 45(4):405–424.
    Article  Google Scholar 

    Renaud S, Pantalacci S, Auffray J-C (2011) Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLoS One 6(5):e18951.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Romaniuk AA, Shepherd AN, Clarke DV, Sheridan AJ, Fraser S, Bartosiewicz L et al. (2016) Rodents: food or pests in Neolithic Orkney. R Soc Open Sci 3(10):160514.
    PubMed  PubMed Central  Article  Google Scholar 

    Ronquist F, Teslenko M, Pvd Mark, Ayres D, Darling A, Höhna S et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542.
    PubMed  PubMed Central  Article  Google Scholar 

    Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Searle JB, Jones CS, Gündüz İ, Scascitelli M, Jones EP, Herman JS et al. (2009) Of mice and (Viking?) men: phylogeography of British and Irish house mice. Proc R Soc Lond Biol Sci 276:201–207.
    CAS  Google Scholar 

    Sendell-Price AT, Ruegg KC, Clegg SM (2020) Rapid morphological divergence following a human-mediated introduction: the role of drift and directional selection. Heredity 124:535–549.
    PubMed  PubMed Central  Article  Google Scholar 

    Solano E, Franchini P, Colangelo P, Capanna E, Castiglia R (2013) Multiple origins of the western European house mouse in the Aeolian Archipelago: clues from mtDNA and chromosomes. Biol Invasions 15(4):729–739.
    Article  Google Scholar 

    Souquet L, Chevret P, Ganem G, Auffray J-C, Ledevin R, Agret S et al. (2019) Back to the wild: does feralization affect the mandible of non-commensal house mice (Mus musculus domesticus)? Biol J Linn Soc 126:471–486.
    Article  Google Scholar 

    van der Geer AA, Lyras GA, Lomolino MV, Palombo MR, Sax DF (2013) Body size evolution of palaeo-insular mammals: temporal variations and interspecific interactions. J Biogeogr 40:1440–1450.
    Article  Google Scholar  More

  • in

    Breeding transients in capture–recapture modeling and their consequences for local population dynamics

    1.
    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypothesis using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).
    Article  Google Scholar 
    2.
    Viallefont, A., Cooke, F. & Lebreton, J.-D. Age-specific costs of first-time breeding. Auk 112, 67–76 (1995).
    Article  Google Scholar 

    3.
    Ollason, J. C. & Dunnet, G. M. Variation in breeding success in fulmars. In Reproductive Success (ed. Clutton-Brock, T. H.) 263–278 (University of Chicago Press, Chicago, 1988).
    Google Scholar 

    4.
    Weimerskirch, H. The influence of age and experience on breeding performance of the Antarctic fulmar, Fulmarus glacialoides. J. Anim. Ecol. 59, 867–875 (1990).
    Article  Google Scholar 

    5.
    Genovart, M. & Pradel, R. Transience effect in capture–recapture studies: the importance of its biological meaning. PLoS ONE 14, e0222241 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Pradel, R., Hines, J. E., Lebreton, J.-D. & Nichols, J. D. Capture–recapture survival models taking account of transients. Biometrics 53, 60–72 (1997).
    MATH  Article  Google Scholar 

    7.
    Tavecchia, G., Pradel, R., Boy, V., Johnson, A. R. & Cézilly, F. Sex- and age-related variation in survival and cost of first reproduction in greater flamingos. Ecology 82, 165–174 (2001).
    Article  Google Scholar 

    8.
    Oro, D. & Furness, R. W. Influences of food availability and predation on survival of kittiwakes. Ecology 83, 2516–2528 (2002).
    Article  Google Scholar 

    9.
    Boulinier, T., Sorci, G., Clobert, J. & Danchin, E. An experimental study of the costs of reproduction in the Kittiwake Rissa tridactyla: comment. Ecology 78, 1284–1287 (1997).
    Article  Google Scholar 

    10.
    Sanz-Aguilar, A., Béchet, A., Germain, C., Johnson, A. R. & Pradel, R. To leave or not to leave: survival trade-offs between different migratory strategies in the greater flamingo. J. Anim. Ecol. 81, 1171–1182 (2012).
    PubMed  Article  Google Scholar 

    11.
    Sanz-Aguilar, A., De Pablo, F. & Donázar, J. A. Age-dependent survival of island vs. mainland populations of two avian scavengers: delving into migration costs. Oecologia 179, 405–414 (2015).
    ADS  PubMed  Article  Google Scholar 

    12.
    Rotics, S. et al. Wintering in Europe instead of Africa enhances juvenile survival in a long-distance migrant. Anim. Behav. 126, 79–88 (2017).
    Article  Google Scholar 

    13.
    Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for philopatric and immigrant individuals in a long-lived bird adapted to unstable habitats. Oecologia 165, 935–945 (2011).
    ADS  PubMed  Article  Google Scholar 

    14.
    Acker, P. et al. Insights on dispersal and recruitment paradigms: sex- and age-dependent variations in a nomadic breeder. Oecologia https://doi.org/10.1007/s00442-017-3972-7 (2017).
    Article  PubMed  Google Scholar 

    15.
    Clobert, J., Baguette, M., Benton, T. G., Bullock, J. M. & Ducatez, S. Dispersal Ecology and Evolution (Oxford University Press, Oxford, 2012).
    Google Scholar 

    16.
    Acker, P., Besnard, A., Monnat, J.-Y. & Cam, E. Breeding habitat selection across spatial scales: is grass always greener on the other side?. Ecology 98, 2684–2697 (2017).
    PubMed  Article  Google Scholar 

    17.
    Tavecchia, G. et al. Predictors of reproductive cost in female Soay sheep. J. Anim. Ecol. 74, 201–213 (2005).
    Article  Google Scholar 

    18.
    Sanz-Aguilar, A., Tavecchia, G., Pradel, R., Mínguez, E. & Oro, D. The cost of reproduction and experience-dependent vital rates in a small petrel. Ecology 89, 3195–3203 (2008).
    PubMed  Article  Google Scholar 

    19.
    Sandercock, B. K. & Gratto-Trevor, C. L. Local survival in Semipalmated Sandpipers Calidris pusilla breeding at La Pérouse Bay, Canada. Ibis 139, 305–312 (1997).
    Article  Google Scholar 

    20.
    Barbraud, C. & Weimerskirch, H. Environmental conditions and breeding experience affect costs of reproduction in blue petrels. Ecology 86, 682–692 (2005).
    Article  Google Scholar 

    21.
    Pardo, D., Barbraud, C., Authier, M. & Weimerskirch, H. Evidence for an age-dependent influence of environmental variations on a long-lived seabird’s life-history traits. Ecology 94, 208–220 (2012).
    Article  Google Scholar 

    22.
    Oro, D., Hernández, N., Jover, L. & Genovart, M. From recruitment to senescence: food shapes the age-dependent pattern of breeding performance in a long-lived bird. Ecology 95, 446–457 (2014).
    PubMed  Article  Google Scholar 

    23.
    Hadley, G. L., Rotella, J. J. & Garrott, R. A. Evaluation of reproductive costs for Weddell seals in Erebus Bay, Antarctica. J. Anim. Ecol. 76, 448–458 (2007).
    PubMed  Article  Google Scholar 

    24.
    Oro, D., Cam, E., Pradel, R. & Martinez-Abrain, A. Influence of food availability on demography and local population dynamics in a long-lived seabird. Proc. R. Soc. B Biol. Sci. 271, 387–396 (2004).
    Article  Google Scholar 

    25.
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F. & Focardi, S. Nonlinear effects of winter sea ice on the survival probabilities of Adélie penguins. Oecologia 161, 253–265 (2009).
    ADS  PubMed  Article  Google Scholar 

    26.
    Nur, N., Geupel, G. R. & Ballard, G. Estimates of adult survival, capture probability, and recapture probability: evaluating and validating constant-effort mist netting. Stud. Avian Biol. 29, 63–70 (2004).
    Google Scholar 

    27.
    Angelini, C., Antonelli, D. & Utzeri, C. Capture–mark–recapture analysis reveals survival correlates in Salamandrina perspicillata (Savi, 1821). Amphib. Reptil. 31, 21–26 (2010).
    Article  Google Scholar 

    28.
    Saracco, J. F., Royle, J. A., DeSante, D. F. & Gardner, B. Modeling spatial variation in avian survival and residency probabilities. Ecology 91, 1885–1891 (2010).
    PubMed  Article  Google Scholar 

    29.
    Fernández-Chacón, A. et al. When to stay, when to disperse and where to go: survival and dispersal patterns in a spatially structured seabird population. Ecography 36, 1117–1126 (2013).
    Article  Google Scholar 

    30.
    Tavecchia, G., Minguez, E., De León, A., Louzao, M. & Oro, D. Living close, doing differently: Small-scale asynchrony in demography of two species of seabirds. Ecology 89, 77–85 (2008).
    PubMed  Article  Google Scholar 

    31.
    Genovart, M. et al. Contrasting effects of climatic variability on the demography of a trans-equatorial migratory seabird. J. Anim. Ecol. 82, 121–130 (2013).
    PubMed  Article  Google Scholar 

    32.
    Tavecchia, G., Pradel, R., Genovart, M. & Oro, D. Density-dependent parameters and demographic equilibrium in open population. Oikos 116, 1481–1492 (2007).
    Article  Google Scholar 

    33.
    Almaraz, P. & Oro, D. Size-mediated non-trophic interactions and stochastic predation drive assembly and dynamics in a seabird community. Ecology 92, 1948–1958 (2011).
    PubMed  Article  Google Scholar 

    34.
    Genovart, M., Oro, D. & Tenan, S. Immature survival, fertility, and density dependence drive global population dynamics in a long-lived species. Ecology 99, 2823–2832 (2018).
    CAS  PubMed  Article  Google Scholar 

    35.
    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, Oxford, 1992).
    Google Scholar 

    36.
    Roff, A. D. The Evolution of Life Histories (Chapman & Hall, London, 1993).
    Google Scholar 

    37.
    Mihoub, J.-B., Gimenez, O., Pilard, P. & Sarrazin, F. Challenging conservation of migratory species: Sahelian rainfalls drive first-year survival of the vulnerable Lesser Kestrel Falco naumanni. Biol. Conserv. 143, 839–847 (2010).
    Article  Google Scholar 

    38.
    Frederiksen, M. & Petersen, A. Adult survival of the Black Guillemot in Iceland. The Condor 101, 589–597 (1999).
    Article  Google Scholar 

    39.
    Cam, E., Oro, D., Pradel, R. & Jimenez, J. Assessment of hypotheses about dispersal in a long-lived seabird using multistate capture–recapture models. J. Anim. Ecol. 73, 723–736 (2004).
    Article  Google Scholar 

    40.
    Spendelow, J. A. et al. Estimating annual survival and movement rates of adult within a metapopulation of Roseate terns. Ecology 76, 2415–2428 (1995).
    Article  Google Scholar 

    41.
    Genovart, M., Oro, D., Juste, J. & Bertorelle, G. What genetics tell us about the conservation of the critically endangered Balearic shearwater?. Biol. Conserv. 137, 283–293 (2007).
    Article  Google Scholar 

    42.
    Oro, D., Aguilar, J. S., Igual, J. M. & Louzao, M. Modelling demography and extinction risk in the endangered Balearic shearwater. Biol. Conserv. 116, 93–102 (2004).
    Article  Google Scholar 

    43.
    Genovart, M. et al. Differential adult survival at close seabird colonies: the importance of spatial foraging segregation and bycatch risk during the breeding season. Glob. Change Biol. 24, 1279–1290 (2018).
    ADS  Article  Google Scholar 

    44.
    Rolland, V., Nevoux, M., Barbraud, C. & Weimerskirch, H. Respective impact of climate and fisheries on the growth of an albatross population. Ecol. Appl. 19, 1336–1346 (2009).
    CAS  PubMed  Article  Google Scholar 

    45.
    Oro, D., De León, A., Minguez, E. & Furness, R. W. Estimating predation on breeding European storm-petrels by yellow-legged gulls. J. Zool. 265, 1–9 (2005).
    Article  Google Scholar 

    46.
    Jones, C., Clifford, H., Fletcher, D., Cuming, P. & Lyver, P. Survival and age-at-first-return estimates for grey-faced petrels (Pterodroma macroptera gouldi) breeding on Mauao and Motuotau Island in the Bay of Plenty, New Zealand. Notornis 58, 71–80 (2011).
    Google Scholar 

    47.
    Bergès, M., Choquet, R. & Bonadonna, F. Impact of long-term behavioural studies in the wild: the blue petrel, Halobaena caerulea, case at Kerguelen. Anim. Behav. 151, 53–65 (2019).
    Article  Google Scholar 

    48.
    Oppel, S. et al. Is the Yelkouan shearwater Puffinus yelkouan threatened by low adult survival probabilities?. Biol. Conserv. 144, 2255–2263 (2011).
    Article  Google Scholar 

    49.
    VanderWerf, E. A. & Young, L. C. Estimating survival and life-stage transitions in the Laysan albatross (Phoebastria immutabilis) using multistate mark—recapture models. Auk 128, 726–736 (2011).
    Article  Google Scholar 

    50.
    Chastel, O., Weimerskirch, H. & Jouventin, P. Influence of body condition on reproductive decision and reproductive success in the Blue Petrel. Auk 112, 964–972 (1995).
    Article  Google Scholar 

    51.
    Tavecchia, G., Pradel, R., Genovart, M. & Oro, D. Density-dependent parameters and demographic equilibrium in open populations. Oikos 116, 1481–1492 (2007).
    Article  Google Scholar 

    52.
    Reznick, D., Nunney, L. & Tessier, A. Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol. Evol. 15, 421–425 (2000).
    CAS  PubMed  Article  Google Scholar 

    53.
    Hamel, S., Côté, S. D. & Festa-Bianchet, M. Maternal characteristics and environment affect the costs of reproduction in female mountain goats. Ecology 91, 2034–2043 (2010).
    PubMed  Article  Google Scholar 

    54.
    Nichols, J. D., Hines, J. E., Pollock, K. H., Hinz, R. L. & Link, W. A. Estimating breeding proportions and testing hypothesis about costs of reproduction with capture–recapture data. Ecology 75, 2052–2065 (1994).
    Article  Google Scholar 

    55.
    Nichols, J. D. & Kendall, W. L. The use of multi-state capture–recapture models to address questions in evolutionary ecology. J. Appl. Stat. 22, 835–846 (1995).
    Article  Google Scholar 

    56.
    Viallefont, A., Cooch, E. G. & Cooke, F. Estimation of trade-offs with capture–recapture models: a case study on the lesser snow goose. J. Appl. Stat. 22, 847–862 (1995).
    Article  Google Scholar 

    57.
    Lebreton, J., Nichols, J. D., Barker, R. J., Pradel, R. & Spendelow, J. A. Modeling individual animal histories with multistate capture–recapture models. Adv. Ecol. Res. 41, 87–173 (2009).
    Article  Google Scholar 

    58.
    Cam, E., Hines, J. E., Monnat, J. Y., Nichols, J. D. & Danchin, E. Are adult nonbreeders prudent parents? The kittiwake model. Ecology 79, 2917–2930 (1998).
    Article  Google Scholar 

    59.
    Shutler, D., Clark, R. G., Fehr, C. & Diamond, A. W. Time and recruitment costs as currencies in manipulation studies on the costs of reproduction. Ecology 87, 2938–2946 (2006).
    PubMed  Article  Google Scholar 

    60.
    Hamel, S., Côté, S. D., Gaillard, J.-M. & Festa-Bianchet, M. Individual variation in reproductive costs of reproduction: high-quality females always do better. J. Anim. Ecol. 78, 143–151 (2009).
    PubMed  Article  Google Scholar 

    61.
    Rotella, J. J., Clark, R. G. & Afton, A. D. Survival of female lesser scaup: effects of body size, age, and reproductive effort. The Condor 105, 336–347 (2003).
    Article  Google Scholar 

    62.
    Descamps, S., Boutin, S., McAdam, A. G., Berteaux, D. & Gaillard, J.-M. Survival costs of reproduction vary with age in North American red squirrels. Proc. R. Soc. B Biol. Sci. 276, 1129–1135 (2009).
    Article  Google Scholar 

    63.
    Sanz-Aguilar, A., Mínguez, E. & Oro, D. Is laying a large egg expensive? Female-biased cost of first reproduction in a petrel. Auk 129, 510–516 (2012).
    Article  Google Scholar 

    64.
    Pradel, R. Multievent: an extension of multistate capture–recapture models to uncertain states. Biometrics 61, 442–447 (2005).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    65.
    Sanz-Aguilar, A., Igual, J. M., Tavecchia, G., Genovart, M. & Oro, D. When immigration mask threats: The rescue effect of a Scopoli’s shearwater colony in the Western Mediterranean as a case study. Biol. Conserv. 198, 33–36 (2016).
    Article  Google Scholar 

    66.
    Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, New York, 2002).
    Google Scholar 

    67.
    Pradel, R., Cooch, E. & Cooke, F. Transient animals in a resident population of snow geese: local emigration or heterogeneity?. J. Appl. Stat. 22, 695–710 (1995).
    Article  Google Scholar 

    68.
    Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).
    Article  Google Scholar 

    69.
    Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 282, 20150209 (2015).
    Article  Google Scholar 

    70.
    Dennis, T. E. & Shah, S. F. Assessing acute effects of trapping, handling, and tagging on the behavior of wildlife using GPS telemetry: a case study of the common Brushtail possum. J. Appl. Anim. Welf. Sci. 15, 189–207 (2012).
    CAS  PubMed  Article  Google Scholar 

    71.
    Biro, P. A. Are most samples of animals systematically biased? Consistent individual trait differences bias samples despite random sampling. Oecologia 171, 339–345 (2013).
    ADS  PubMed  Article  Google Scholar 

    72.
    Weatherhead, P. J. & Greenwood, H. Age and condition bias of decoy-trapped birds. J. Field Ornithol. 52, 10–15 (1981).
    Google Scholar 

    73.
    Calvo, R. N. & Horvitz, C. C. Pollinator limitation, cost of reproduction, and fitness in plants: a transition-matrix demographic approach. Am. Nat. 136, 499–516 (1990).
    Article  Google Scholar 

    74.
    Reznick, D. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44, 257–267 (1985).
    Article  Google Scholar 

    75.
    Hutchings, J. A. Influence of growth and survival costs of reproduction on Atlantic cod, Gadus morhua, population growth rate. Can. J. Fish. Aquat. Sci. 56, 1612–1623 (1999).
    Article  Google Scholar 

    76.
    Jenouvrier, S., Barbraud, C. & Weimerskirch, H. Sea ice affects the population dynamics of Adélie penguins in Terre Adélie. Polar Biol. 29, 413–423 (2006).
    Article  Google Scholar 

    77.
    Church, D. R., Bailey, L. L., Wilbur, H. M., Kendall, W. L. & Hines, J. E. Iteroparity in the variable environment of the salamander Ambystoma tigrinum. Ecology 88, 891–903 (2007).
    PubMed  Article  Google Scholar 

    78.
    Garnier, A., Gaillard, J.-M., Gauthier, D. & Besnard, A. What shapes fitness costs of reproduction in long-lived iteroparous species? A case study on the Alpine ibex. Ecology https://doi.org/10.1890/15-0014.1 (2015).
    Article  Google Scholar 

    79.
    Proaktor, G., Coulson, T. & Milner-Gulland, E. J. The demographic consequences of the cost of reproduction in ungulates. Ecology 89, 2604–2611 (2008).
    PubMed  Article  Google Scholar 

    80.
    Kuparinen, A., Hardie, D. C. & Hutchings, J. A. Evolutionary and ecological feedbacks of the survival cost of reproduction. Evol. Appl. 5, 245–255 (2012).
    PubMed  Article  Google Scholar 

    81.
    Miller, T. E. X., Williams, J. L., Jongejans, E., Brys, R. & Jacquemyn, H. Evolutionary demography of iteroparous plants: incorporating non-lethal costs of reproduction into integral projection models. Proc. R. Soc. B Biol. Sci. 279, 2831–2840 (2012).
    Article  Google Scholar 

    82.
    Spendelow, J. A., Nichols, J. D., Hines, J. E., Lebreton, J.-D. & Pradel, R. Modelling postfledging survival and age-specific breeding probabilities in species with delayed maturity: a case study of Roseate Terns at Falkner Island, Connecticut. J. Appl. Stat. 29, 385–405 (2002).
    MathSciNet  MATH  Article  Google Scholar 

    83.
    Dugger, K. M., Ainley, D. G., Lyver, P. O., Barton, K. & Ballard, G. Survival differences and the effect of environmental instability on breeding dispersal in an Adelie penguin meta-population. Proc. Natl. Acad. Sci. U. S. A. 107, 12375–12380 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Jenouvrier, S. et al. Global climate patterns explain range-wide synchronicity in survival of a migratory seabird. Glob. Change Biol. 15, 268–279 (2009).
    ADS  Article  Google Scholar 

    85.
    Ronce, O. & Olivieri, I. Life-history evolution in metapopulation. In Ecology, Genetics, and Evolution of Metapopulations (eds Hanski, I. et al.) 227–258 (Elsevier, Amsterdam, 2004).
    Google Scholar 

    86.
    Nussey, D. H., Kruuk, L. E. B., Donald, A., Fowlie, M. & Clutton-Brock, T. H. The rate of senescence in maternal performance increases with early-life fecundity in red deer. Ecol. Lett. 9, 1342–1350 (2006).
    PubMed  Article  Google Scholar 

    87.
    Jenouvrier, S., Tavecchia, G., Thibault, J.-C., Choquet, R. & Bretagnolle, V. Recruitment processes in long-lived species with delayed maturity: estimating key demographic parameters. Oikos 117, 620–628 (2008).
    Article  Google Scholar 

    88.
    Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. The forms and fitness cost of senescence: age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. Am. Nat. 179, E15–E27 (2012).
    PubMed  Article  Google Scholar 

    89.
    Caswell, H. Analysis of life table response experiments I. Decomposition of effects on population growth rate. Ecol. Model. 46, 221–237 (1989).
    CAS  Article  Google Scholar 

    90.
    Stearns, S. C. Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    91.
    Choquet, R., Lebreton, J.-D., Gimenez, O., Reboulet, A.-M. & Pradel, R. U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32, 1071–1074 (2009).
    Article  Google Scholar 

    92.
    Oro, D., Pradel, R. & Lebreton, J.-D. Food availability and nest predation influence life history traits in Audouin’s Gull, Larus audouinii. Oecologia 118, 438–445 (1999).
    ADS  PubMed  Article  Google Scholar 

    93.
    Choquet, R., Rouan, L. & Pradel, R. Program E-SURGE: a software application for fitting multievent models. In Modeling Demographic Processes in Marked Populations (eds Thomson, D. L. et al.) 845–865 (Springer, New York, 2009).
    Google Scholar 

    94.
    Payo-Payo, A., Genovart, M., Bertolero, A., Pradel, R. & Oro, D. Consecutive cohort effects driven by density-dependence and climate influence early-life survival in a long-lived bird. Proc. R. Soc. B Biol. Sci. core team, 20153042 (2016).
    Article  CAS  Google Scholar 

    95.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2012).

    96.
    Caswell, H. Matrix Population Models (Sinauer Associates, Sunderland, 2001).
    Google Scholar 

    97.
    Levin, L. A. et al. Demographic responses of estuarine polychaetes to sewage, algal, and hydrocarbon contaminants. Ecol. Appl. 6, 1295–1313 (1996).
    Article  Google Scholar 

    98.
    Perret, N., Pradel, R., Miaud, C., Grolet, O. & Joly, P. Transience, dispersal and survival rates in newt patchy populations. J. Anim. Ecol. 72, 567–575 (2003).
    PubMed  Article  Google Scholar 

    99.
    Drent, R. H. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
    Google Scholar 

    100.
    Lake, S., Burton, H., Barker, R. & Hindell, M. Annual reproductive rates of Weddell seals in eastern Antarctica from 1973 to 2000. Mar. Ecol. Prog. Ser. 366, 259–270 (2008).
    ADS  Article  Google Scholar 

    101.
    Jones, I. L., Hunter, F. M. & Robertson, G. J. Annual adult survival of Least Auklets (Aves, Alcidae) varies with large-scale climatic conditions of the North Pacific Ocean. Oecologia 133, 38–44 (2002).
    ADS  PubMed  Article  Google Scholar 

    102.
    Julien, J. R., Gauthier, G., Morrison, R. I. G. & Bêty, J. Survival rate of the long-tailed Jaeger at Alert, Ellesmere Island, Nunavut. The Condor 115, 543–550 (2013).
    Article  Google Scholar 

    103.
    Bertram, D. F., Harfenist, A. & Smith, B. D. Ocean climate and El Nino impacts on survival of Cassin’s Auklets from upwelling and downwelling domains of British Columbia. Can. J. Fish. Aquat. Sci. 62, 2841–2853 (2005).
    Article  Google Scholar 

    104.
    Chaloupka, M. & Limpus, C. Survival probability estimates for the endangered loggerhead sea turtle resident in southern Great Barrier Reef waters. Mar. Biol. 140, 267–277 (2002).
    Article  Google Scholar 

    105.
    Karanth, K. U., Nichols, J. D., Kumar, N. S. & Hines, J. E. Assessing tiger population dynamics using photographic capture–recapture sampling. Ecology 87, 2925–2937 (2006).
    PubMed  Article  Google Scholar 

    106.
    Schmidt, B. R., Schaub, M. & Anholt, B. R. Why you should use capture–recapture methods when estimating survival and breeding probabilities: on bias, temporary emigration, overdispersion, and common toads. Amphib.-Reptil. 23, 375–388 (2002).
    Article  Google Scholar 

    107.
    Burthe, S. et al. Cowpox virus infection in natural field vole Microtus agrestis populations: significant negative impacts on survival. J. Anim. Ecol. 77, 110–119 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    108.
    Sandercock, B. K. Estimation of survival rates for wader populations: a review of mark-recapture methods. Wader Study Group Bull. 100, 163–174 (2003).
    Google Scholar  More

  • in

    Ecological parameter reductions, environmental regimes, and characteristic process diagram of carbon dioxide fluxes in coastal salt marshes

    Study wetlands and datasets
    Four salt marshes located in Waquoit Bay and adjacent estuaries at Cape Cod, MA, USA were used as the case study sites: (1) Sage Lot Pond (SL), (2) Eel Pond (EP), (3) Great Pond (GP), and (4) Hamblin Pond (HP) (Fig. 1). The marshes represent a moderate gradient in nitrogen loading and a wide range of human population density31, 32. On the basis of nitrogen loading influx, SL is in relatively pristine condition (~ 5 kg/ha/year), whereas HP (~ 29 kg/ha/year), EP (~ 63 kg/ha/year), and GP (~ 126 kg/ha/year) represent a medium to high nitrogen loading31, 33. The vegetation community of the marshes is mostly dominated by Spartina alterniflora (a C4 plant) in the low marsh zone.
    Figure 1

    Locations of the case study salt marshes along the southern shore of Cape Cod in the Waquoit Bay and adjacent estuaries, MA. Nitrogen loading rates of the Sage Lot Pond, Hamblin Pond, Eel Pond, and Great Pond were 5, 29, 63, and 126 kg/ha/year, respectively.

    Full size image

    A comprehensive detail on the collections and processing of gas fluxes and environmental variables for the four salt marshes were presented in Abdul-Aziz et al.7. Closed chamber-based measurements of the net ecosystem exchange (NEE) of CO2 were made using a cavity ring-down spectrometer (CRDS) gas-analyzer (Model G2301, Picarro, Inc., Santa Clara, CA; frequency: 1 Hz; precision: 0.4 ppm) for different days during the extended growing season (May to October) in 2013 at the low marsh zones of the four salt marshes. The spectrometer analyzer was connected to the transparent, closed acrylic chamber (60 cm × 60 cm × 60 cm) through tubes. We calculated the molar concentrations of CO2 in the chamber using the ideal gas law. The instantaneous molar concentrations of CO2 were then linearly regressed with time (s). The regression slopes (i.e., rates of changes in CO2 concentrations) were normalized by the chamber area (60 cm × 60 cm = 3,600 cm2 = 0.36 m2) to compute the corresponding fluxes of CO2 (i.e., changes in CO2 concentrations per unit area and per unit time in μmol/m2/s) between the wetland soil and the atmosphere inside the chamber for each sampling period (typically ~ 5 min)6, 7. To avoid impacts of any experimental error, a coefficient of determination (R2) of 0.90 was set as the minimum threshold for the regression to qualify the computed CO2 fluxes as accurate and acceptable for analyses6, 7.
    The employed enclosed chamber-based technique of measuring CO2 fluxes is a widely-used method in the carbon research domain34,35,36,37. The technique provides an effective way to measure surface-atmospheric gas fluxes. As demonstrated above, the method first involves the calculation of the gradient of molar concentrations of CO2 in time, which is then divided by the chamber area to compute the vertical CO2 fluxes. Since the measurement chamber is small (e.g., 60 cm × 60 cm × 60 cm for our equipment) and enclosed, the vertical fluxes of CO2 between soil and atmosphere (and not the divergence of CO2 fluxes) drives the changes in CO2 concentrations with time inside the chamber. Therefore, the chamber area-normalized rates of changes in CO2 molar concentrations represent the vertical CO2 gas fluxes between the soil and atmosphere inside the chamber.
    The associated instantaneous environmental variables such as the photosynthetically active radiation (PAR), air temperature (AT), soil temperature (ST), and porewater salinity (SS) were concurrently measured7. The corresponding observations of atmospheric pressure (Pa) were collected from the nearby NOAA National Estuarine Research Reserve System (NOAA-NERRS) monitoring station located at Carriage House, MA38. The filtered daytime net uptake fluxes of CO2 (NEECO2,uptake) represented the measurements made between 8 a.m. and 4.30 p.m. (Eastern Standard Time, EST), with the corresponding PAR higher than 1.5 µmole/m2/s. AT was used to calculate the fluxes of NEECO2,uptake using the ideal gas law7; AT was, therefore, excluded as an environmental driver from further analyses. Instead, soil temperature (ST) was considered to represent the impact of temperature on NEECO2,uptake. The dataset included 137 observational panels from the four study wetlands for 25 sampling days (Table S1, Figure S1 and S2 in Supplemental notes).
    Theoretical formulation of dimensionless numbers through parametric reductions
    Dimensional analysis using Buckingham pi ((Pi)) theorem were applied to formulate wetland ecological similitudes and derive dimensionless functional groups or (Pi) numbers18, 20. According to the pi theorem, a combination of ({text{n}}) dimensional variables would lead to (({text{n}} – {text{r}})) dimensionless Π numbers (({text{r}} =) number of relevant fundamental dimensions). NEECO2,uptake, PAR, ST, SS, Pa, and the time-scale of measurement or estimation (t) were used for the dimensional analysis. PAR, ST, SS were the most dominant drivers of NEECO2,uptake, as identified in the study of Abdul-Aziz et al.7. Furthermore, Pa negatively correlates with net photosynthesis as stomatal conductance increases with decreasing pressure39. The selected variables for the dimensional analysis included four fundamental dimensions (mass: M; length: L; temperature: K; time: T) (Table 1). Since the variables were in different unitary systems, they were converted to the SI units by using appropriate conversion factors (Table 1). As the temperature dimension (K) was only represented by ST, specific heat of wet soil (cp = 1.48 kJ/kg/K) was further incorporated in the dimensional analysis to normalize ST. Following the pi theorem, a functional relationship ((f)) among the response (NEECO2,uptake) and the potential predictors was expressed as follows:

    $$fleft( {NEE_{CO2,uptake} , PAR, ST, SS,{ }P_{a} ,{ }c_{p} , t} right) = 0$$
    (1)

    where the total number of variables, (n = 7); number of fundamental dimensions, (r = 4). Therefore, the total number of possible ({Pi }) numbers (= {text{n}} – {text{r}} = 3). The functional relation of Eq. (1) was then represented with (Phi) in terms of dimensionless numbers as follows:

    $$Phi left( {Pi _{1} ,Pi _{2} , Pi _{3} } right) = 0$$
    (2)

    Table 1 List of variables, units and dimensions used for the dimensional analysis.
    Full size table

    Based on the pi theorem, four variables ((r = 4)) could be considered as “repeating variables” in each iteration to formulate a dimensionless number by involving any of the remaining variables. Although the repeating variables should include all relevant fundamental dimensions (M, L, K, and T in this study), they should not form a dimensionless number among themselves. For example, considering PAR, ST, SS, and t as the “repeating variables”, the first pi number (left( {Pi _{1} } right)) was expressed as follows:

    $$Pi _{1} = PAR^{a} cdot ST^{b} cdot SS^{c} cdot t^{d} cdot NEE_{CO2,uptake}$$
    (3)

    where (a), (b), (c), and (d) were exponents. For (Pi _{1 }) to be dimensionless, the following equation was obtained using the principle of dimensional homogeneity (i.e., equal dimensions on both sides):

    $$M^{0} cdot L^{0} cdot T^{0} cdot K^{0} = left( {frac{M}{{L^{2} T}}} right)^{{text{a}}} cdot left( K right)^{b} cdot left( {frac{M}{{L^{3} }}} right)^{c} cdot left( T right)^{d} cdot frac{M}{{L^{2} T}}$$
    (4)

    Therefore,

    $$M^{0} cdot L^{0} cdot T^{0} cdot K^{0} = M^{{{text{a}} + {text{c}} + 1}} cdot L^{{ – 2{text{a}} – 3c – 2}} cdot T^{ – a + d – 1} cdot K^{b}$$
    (5)

    Equating the exponents of M, L, K, and T on both sides, we obtained the following matrix–vector form:

    $$left[ {begin{array}{*{20}c} 1 & 0 & 1 & 0 \ { – 2} & 0 & { – 3} & 0 \ { – 1} & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ end{array} } right] left[ {begin{array}{*{20}c} a \ b \ c \ d \ end{array} } right] = left[ {begin{array}{*{20}c} { – 1} \ 2 \ 1 \ 0 \ end{array} } right]$$
    (6)

    The system of linear equations was algebraically solved to compute the exponents as: (a = – 1), (b = 0), (c = 0), and (d = 0) (see Text S1 in Supplemental notes for detailed algebraic equations and solutions). Therefore, from Eq. (3), we obtained the first pi number as

    $$Pi _{1} = frac{{NEE_{CO2,uptake} }}{PAR}$$
    (7)

    Similarly, the other two ({Pi }) numbers were formulated as (see Text S1 in Supplemental notes)

    $$Pi_{2} = frac{{SS cdot P_{a} }}{{PAR^{2} }}$$
    (8)

    $$Pi_{3} = frac{{ST cdot c_{p} cdot SS^{2} }}{{PAR^{2} }}$$
    (9)

    The pi theorem also allowed the derivation of new (Pi) numbers by combining any two (or more) original (Pi) numbers through multiplication or division as follows:

    $$Pi _{4} =Pi _{2} timesPi _{3} = frac{{ST cdot c_{p } cdot SS^{3} cdot P_{a} }}{{PAR^{4} }}$$
    (10)

    $$Pi _{5} = frac{{Pi _{3} }}{{Pi _{2} }} = frac{{ST cdot c_{p} cdot SS}}{{P_{a} }}$$
    (11)

    Thus, the functional relationship of Eq. (2) could be represented in any of the following forms:

    $$Phi left( {Pi _{1} ,Pi _{4} } right) = 0$$
    (12)

    $$Phi left( {Pi _{1} ,Pi _{5} } right) = 0$$
    (13)

    Therefore, dimensional analysis reduced the 7 original variables to 2–3 dimensionless numbers. Recalling the definition of similitude from the physical domain18, 20, such parametric reductions for the daytime net uptake fluxes of CO2 and the associated environmental drivers were termed as “wetland ecological similitudes” in this research. As apparent, (Pi _{1}) represented the dimensionless CO2 flux number (i.e., response), whereas (Pi _{2}) to (Pi _{5}) represented the environmental driver numbers (i.e., predictors).
    Various sets of dimensionless numbers were obtained by iteratively changing the “repeating variables” (Table S2; see Text S1 in Supplemental notes for full derivations). However, only the unique ({Pi }) numbers were considered for further analysis with empirical data. For example, (frac{{ SS^{2} cdot ST cdot c_{p} }}{{PAR^{2} }}) (iteration-1 or 4 in Table S2) and (frac{{SS cdot sqrt {ST cdot c_{p} } }}{PAR}) (iteration-3) were considered non-unique ({Pi }) numbers, because the latter could be obtained as a square root function of the former. Similarly, (frac{{P_{a} }}{{PAR cdot sqrt {ST cdot c_{p} } }}) (iteration-3) could be obtained from a square root and inversion of (frac{{PAR^{2} cdot ST cdot c_{p} }}{{P_{a}^{2} }}) (iteration-2 or 5), and were considered the same number. Based on the pi theorem, the response ({Pi }) number (i.e., dimensionless CO2 flux number) were expressed as a general function ((psi)) of all unique dimensionless environmental numbers as follows:

    $$frac{{NEE_{CO2,uptake} }}{PAR} = psi left[ {left( {frac{{SS cdot P_{a} }}{{PAR^{2} }}} right),left( {frac{{ST cdot c_{p} cdot SS^{2} }}{{PAR^{2} }}} right),left( {frac{{ST cdot c_{p } cdot SS^{3} cdot P_{a} }}{{PAR^{4} }}} right),left( {frac{{ST cdot c_{p} cdot SS}}{{P_{a} }}} right),left( {frac{{PAR^{2} cdot ST cdot c_{p} }}{{P_{a}^{2} }}} right),left( {frac{{SS cdot P_{a}^{3} }}{{PAR^{4} cdot ST cdot c_{p} }}} right)} right]$$
    (14)

    Empirical analysis to determine the linkages among the derived numbers
    The multivariate method of principal component analysis (PCA) was applied to the observational dataset from the salt marshes of Waquoit Bay to identify the important environmental driver number(s) that had dominant linkage(s) with the response pi number40. PCA can resolve multicollinearity (mutual correlations) among the environmental driver numbers in a multivariate space, identifying the relatively unbiased information on their individual linkages with the response40, 41. To incorporate any non-linearity in the data matrix, observed (i.e., calculated) values of all pi numbers were log10-transformed, which were further standardized (centralized and scaled) as follows: (Z = left( {X – overline{X}} right)/s_{X}); (X) = log10-transformed pi number, (overline{X}) = mean of (X), and (s_{X}) = standard deviation of (X). More