In vivo assessment of mitochondrial respiratory alternative oxidase activity and cyclic electron flow around photosystem I on small coral fragments
1.
Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).
CAS Article Google Scholar
2.
Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).
CAS PubMed Article Google Scholar
3.
LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 (2018).
CAS PubMed Article Google Scholar
4.
Cunning, R., Silverstein, R. N. & Baker, A. C. Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs 37, 145–152 (2018).
ADS Article Google Scholar
5.
Muscatine, L., Falkowski, P. G., Porter, J. W. & Dubinsky, Z. Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 222, 181–202 (1984).
ADS CAS Google Scholar
6.
Porter, J. W. Primary productivity in the sea: Reef corals in situ. In Primary Productivity in the Sea. Environmental Science Research (ed. Falkowski, P. G.) 403–410 (Springer, Boston, 1980).
Google Scholar
7.
Patterson, M. R., Sebens, K. P. & Olson, R. O. In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnol. Oceanogr. 36, 936–948 (1991).
ADS CAS Article Google Scholar
8.
Wangpraseurt, D. et al. Spectral effects on Symbiodinium photobiology studied with a programmable light engine. PLoS ONE 9, e112809 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
9.
Kühl, M. et al. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172 (1995).
ADS Article Google Scholar
10.
Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).
CAS PubMed PubMed Central Article Google Scholar
11.
Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).
PubMed Article Google Scholar
12.
Holcomb, M., Tambutté, E., Allemand, D. & Tambutté, S. Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ 2, e375 (2014).
PubMed PubMed Central Article CAS Google Scholar
13.
Agostini, S., Fujimura, H., Hayashi, H. & Fujita, K. Mitochondrial electron transport activity and metabolism of experimentally bleached hermatypic corals. J. Exp. Mar. Biol. Ecol. 475, 100–107 (2016).
CAS Article Google Scholar
14.
Imbs, A. B. & Yakovleva, I. M. Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: and experimental approach. Coral Reefs 31, 31–41 (2012).
ADS Article Google Scholar
15.
Dunn, S. R., Pernice, M., Green, K., Hoegh-Guldberg, O. & Dove, S. G. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out?. PLoS ONE 7, e39024 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
16.
Blackstone, N. Mitochondria and the redox control of development in cnidarians. Semin. Cell Dev. Biol. 20, 330–336 (2009).
CAS PubMed Article Google Scholar
17.
McDonald, A. E., Vanlerberghe, G. C. & Staples, J. F. Alternative oxidase in animals: unique characteristics and taxonomic distribution. J. Exp. Biol. 212, 2627–2634 (2009).
CAS PubMed Article Google Scholar
18.
McDonald, A. E. & Gospodaryov, D. V. Alternative NAD(P)H dehydrogenase and alternative oxidase: proposed physiological roles in animals. Mitochondrion 45, 7–17 (2019).
CAS PubMed Article Google Scholar
19.
Raven, J. A. & Beardall, J. Consequences of the genotypic loss of mitochondrial Complex I in dinoflagellates and of phenotypic regulation of Complex I content in other photosynthetic organisms. J. Exp. Bot. 68, 2683–2692 (2017).
CAS Article Google Scholar
20.
Oakley, C. A., Hopkinson, B. M. & Schmidt, G. W. Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium. Coral Reefs 33, 543–552 (2014).
ADS Article Google Scholar
21.
Nelson, H. R. & Altieri, A. H. Oxygen: The universal currency on coral reefs. Coral Reefs 38, 177–189 (2019).
ADS Article Google Scholar
22.
Iglesias-prieto, A. R., Govind, N. S. & Trench, R. K. Isolation and characterization of three membrane bound chlorophyll-protein complexes from four dinoflagellate species. Philos. Trans. R. Soc. Lond. B 340, 381–392 (1993).
CAS Article Google Scholar
23.
Aihara, Y., Takahashi, S. & Minagawa, J. Heat induction of cyclic electron flow around photosystem I in the symbiotic dinoflagellate Symbiodinium. Plant Physiol. 171, 522–529 (2016).
CAS PubMed PubMed Central Article Google Scholar
24.
Leggat, W., Badger, M. & Yellowlees, D. Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol. 121, 1247–1255 (1999).
CAS PubMed PubMed Central Article Google Scholar
25.
Raven, J. A., Suggett, D. J. & Giordano, M. Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. J. Phycol. https://doi.org/10.1111/jpy.13050 (2020).
Article PubMed PubMed Central Google Scholar
26.
Barott, K. L. et al. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl. Acad. Sci. USA 112, 607–612 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
27.
Mayfield, A. B., Hsiao, Y. Y., Chen, H. K. & Chen, C. S. Rubisco expression in the dinoflagellate Symbiodinium sp. is influenced by both photoperiod and endosymbiotic lifestyle. Mar. Biotechnol. 16, 371–384 (2014).
CAS PubMed Article PubMed Central Google Scholar
28.
Tremblay, P., Grover, R., Maguer, J. F., Legendre, L. & Ferrier-Pagès, C. Autotrophic carbon budget in coral tissue: A new 13C-based model of photosynthate translocation. J. Exp. Biol. 215, 1384–1393 (2012).
CAS PubMed Article PubMed Central Google Scholar
29.
Maor-Landaw, K., van Oppen, M. J. H. & McFadden, G. I. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol. Evol. 10, 451–466 (2020).
PubMed Article PubMed Central Google Scholar
30.
Roth, M. S. The engine of the reef: photobiology of the coral-algal symbiosis. Front. Microbiol. 5, 1–22 (2014).
ADS Article Google Scholar
31.
Roberty, S., Béraud, E., Grover, R. & Ferrier-Pagès, C. Coral productivity is co-limited by bicarbonate and ammonium availability. Microorganisms 8, 640 (2020).
PubMed Central Article PubMed Google Scholar
32.
Tchernov, D. et al. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Natl. Acad. Sci. USA 101, 13531–13535 (2004).
ADS CAS PubMed Article Google Scholar
33.
Cardol, P., Forti, G. & Finazzi, G. Regulation of electron transport in microalgae. Biochim. Biophys. Acta 1807, 912–918 (2011).
CAS PubMed Article Google Scholar
34.
Papageorgiou, G. C. Chlorophyll a Fluorescence. A Signature of Photosynthesis (Springer, Dordrecht, 2004).
Google Scholar
35.
Hennige, S. J., Suggett, D. J., Warner, M. E., McDougall, K. E. & Smith, D. J. Photobiology of Symbiodinium revisited: Bio-physical and bio-optical signatures. Coral Reefs 28, 179–195 (2009).
ADS Article Google Scholar
36.
Reynolds, J. M. C., Bruns, B. U., Fitt, W. K. & Schmidt, G. W. Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc. Natl. Acad. Sci. USA 105, 17206 (2008).
CAS Article Google Scholar
37.
Roberty, S., Bailleul, B., Berne, N., Franck, F. & Cardol, P. PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol. 204, 81–91 (2014).
CAS PubMed Article Google Scholar
38.
Dang, K. V., Pierangelini, M., Roberty, S. & Cardol, P. Alternative photosynthetic electron transfers and bleaching phenotypes upon acute heat stress in Symbiodinium and Breviolum spp. (Symbiodiniaceae) in culture. Front. Mar. Sci. 6, 1–10 (2019).
Article Google Scholar
39.
Hoogenboom, M. O., Campbell, D. A., Beraud, E., DeZeeuw, K. & Ferrier-Pagès, C. Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I of coral symbionts. PLoS ONE 7, e30167 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
40.
Szabó, M. et al. Non-intrusive assessment of photosystem II and photosystem I in whole coral tissues. Front. Mar. Sci. 4, 269 (2017).
Article Google Scholar
41.
Enríquez, S., Méndez, E. R. & Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 1025–1032 (2005).
ADS Article Google Scholar
42.
Gilmore, A. M. et al. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem. Photobiol. 77, 515 (2003).
CAS PubMed Article Google Scholar
43.
Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51, 659–668 (2000).
CAS PubMed Article Google Scholar
44.
Sandmann, G., Reck, H., Kessler, E. & Böger, P. Distribution of plastocyanin and soluble plastidic cytochrome c in various classes of algae. Arch. Microbiol. 134, 23–27 (1983).
CAS Article Google Scholar
45.
Schreiber, U. Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynth. Res. 134, 343–360 (2017).
CAS PubMed PubMed Central Article Google Scholar
46.
Joliot, P. & Joliot, A. Quantification of cyclic and linear flows in plants. Proc. Natl. Acad. Sci. USA 102, 4913–4918 (2005).
ADS CAS PubMed Article Google Scholar
47.
Witt, H. et al. Species-specific differences of the spectroscopic properties of P700: Analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. J. Biol. Chem. 278, 46760–46771 (2003).
CAS PubMed Article Google Scholar
48.
Klughammer, C. & Schreiber, U. An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192, 261–268 (1994).
CAS Article Google Scholar
49.
Bailleul, B., Cardol, P., Breyton, C. & Finazzi, G. Electrochromism: A useful probe to study algal photosynthesis. Photosynth. Res. 106, 179–189 (2010).
CAS PubMed Article Google Scholar
50.
Vega De Luna, F., Dang, K. V., Cardol, M., Roberty, S. & Cardol, P. Photosynthetic capacity of the endosymbiotic dinoflagellate Cladocopium sp. is preserved during digestion of its jellyfish host Mastigias papua by the anemone Entacmaea medusivora. FEMS Microbiol. Ecol. 95, 1–7 (2019).
Google Scholar
51.
Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).
CAS PubMed Article PubMed Central Google Scholar
52.
Hume, B. C. C. et al. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6, e4816 (2018).
PubMed PubMed Central Article CAS Google Scholar
53.
Hume, B. C. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).
CAS PubMed PubMed Central Article Google Scholar
54.
Shafir, S., Van Rijn, J. & Rinkevich, B. Nubbing of coral colonies: a novel approach for the development of inland broodstocks. Aquar. Sci. Conserv. 3, 183–190 (2001).
Article Google Scholar
55.
Hoadley, K. D. et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci. Rep. 9, 1–15 (2019).
CAS Article Google Scholar
56.
Heyward, A. J. & Collins, J. D. Fragmentation in Montipora ramosa: the genet and ramet concept applied to a reef coral. Coral Reefs 4, 35–40 (1985).
ADS Article Google Scholar
57.
Raz-Bahat, M., Erez, J. & Rinkevich, B. In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Cell Tissue Res. 325, 361–368 (2006).
PubMed Article Google Scholar
58.
Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. USA 96, 8007–8012 (1999).
ADS CAS PubMed Article Google Scholar
59.
Rehman, A. U. et al. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytol. 212, 472–484 (2016).
CAS PubMed Article Google Scholar
60.
Hill, R. & Ralph, P. J. Dark-induced reduction of the plastoquinone pool in zooxanthellae of scleractinian corals and implications for measurements of chlorophyll a fluorescence. Symbiosis 46, 45–56 (2008).
CAS Google Scholar
61.
Einbinder, S. et al. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front. Mar. Sci. 3, 1–9 (2016).
Article Google Scholar
62.
Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).
ADS CAS Article Google Scholar
63.
Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellae coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).
Article Google Scholar
64.
Peltier, G., Tolleter, D., Billon, E. & Cournac, L. Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth. Res. 106, 19–31 (2010).
CAS PubMed Article PubMed Central Google Scholar
65.
Pierangelini, M., Thiry, M. & Cardol, P. Different levels of energetic coupling between photosynthesis and respiration do not determine the occurrence of adaptive responses of Symbiodiniaceae to global warming. New Phytol. https://doi.org/10.1111/nph.16738 (2020).
Article PubMed PubMed Central Google Scholar
66.
Bailleul, B. et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524, 366–369 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
67.
Badger, M. R. et al. Electron flow to oxygen in higher plants and algae: Rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos. Trans. R. Soc. B 355, 1433–1446 (2000).
CAS Article Google Scholar
68.
Fan, D. Y. et al. Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants. Photosynth. Res. 129, 239–251 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
69.
Szabó, M. et al. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis. Plant Physiol. Biochem. 83, 159–167 (2014).
ADS PubMed Article CAS PubMed Central Google Scholar
70.
Kato, H. et al. Characterization of a giant photosystem I supercomplex in the symbiotic dinoflagellate Symbiodiniaceae. Plant Physiol. https://doi.org/10.1104/pp.20.00726 (2020).
Article PubMed PubMed Central Google Scholar
71.
Alric, J. Cyclic electron flow around photosystem I in unicellular green algae. Photosynth. Res. 106, 47–56 (2010).
CAS PubMed Article Google Scholar
72.
Melis, A. & Jeanette, J. S. Stoichiometry of system I and system II reaction centers and of plastoquinone in different photosynthetic membranes. Proc. Natl. Acad. Sci. USA. 77, 4712–4716 (1980).
ADS CAS PubMed Article Google Scholar More
