More stories

  • in

    A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea

    1.
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).
    ADS  Article  Google Scholar 
    2.
    Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. T. Roy. Soc B 360, 339–357 (2005).
    CAS  Article  Google Scholar 

    3.
    Wiemers, M. et al. An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). ZooKeys 811, 9–45 (2018).
    Article  Google Scholar 

    4.
    Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 19, 1623–1636 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Wiemers, M., Chazot, N., Wheat, C., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 897–124 (2020).
    Article  Google Scholar 

    6.
    Kudrna, O. et al. Distribution Atlas of Butterflies In Europe (Gesellschaft für Schmetterlingsschutz e.V., 2011).

    7.
    Settele J. et al. Climatic Risk Atlas Of European Butterflies. BioRisk 1 (Pensoft Publishers, 2008).

    8.
    Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).
    Article  Google Scholar 

    9.
    Balletto, E. & Kudrna, O. Some aspects of the conservation of butterflies in Italy, with recommendations for a future strategy (Lepidoptera, Hesperiidae and Papilionoidea). Boll. Soc. Entomol. Ital. 117, 39–59 (1985).
    Google Scholar 

    10.
    Schweiger, O., Harpke, A., Wiemers, M. & Settele, J. CLIMBER: Climatic niche characteristics of the butterflies in Europe. ZooKeys 367, 65–84 (2014).
    Article  Google Scholar 

    11.
    Kotiaho, J. S., Kaitala, V., Komonen, A. & Päivinen, J. Predicting the risk of extinction from shared ecological characteristics. P. Natl. Acad. Sci. USA 102, 1963–1967 (2005).
    ADS  CAS  Article  Google Scholar 

    12.
    Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).
    Article  Google Scholar 

    13.
    Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. & WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv. 21, 439–450 (2017).
    Article  Google Scholar 

    14.
    Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).
    ADS  Article  Google Scholar 

    15.
    Woodcock, B. A. et al. Identifying time lags in the restoration of grassland butterfly communities: A multi-site assessment. Biol. Conserv. 155, 50–58 (2012).
    Article  Google Scholar 

    16.
    Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92, 1005–1012 (2011).
    PubMed  Article  Google Scholar 

    17.
    Schweiger, O. et al. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob. Ecol. Biogeogr. 21, 88–99 (2012).
    Article  Google Scholar 

    18.
    Fric, Z. F., Rindoš, M. & Konvička, M. Phenology responses of temperate butterflies to latitude depend on ecological traits. Ecol. Lets. 23, 172–180 (2020).
    Article  Google Scholar 

    19.
    Shreeve, T. G., Dennis, R. L. H., Roy, D. B. & Moss, D. An ecological classification of British butterflies: ecological attributes and biotope occupancy. J. Insect Conserv 5, 145–161 (2001).
    Article  Google Scholar 

    20.
    Pavlikova, A. & Konvička, M. An ecological classification of Central European macromoths: habitat associations and conservation status returned from life history attributes. J. Insect Conserv. 16, 187–206 (2012).
    Article  Google Scholar 

    21.
    Eskildsen, A. et al. Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers. Distrib. 21, 792–802 (2015).
    Article  Google Scholar 

    22.
    Bonelli, S., Cerrato, C., Loglisci, N. & Balletto, E. Population extinctions in the Italian diurnal Lepidoptera: an analysis of possible causes. J. Insect Conserv. 15, 879–890 (2011).
    Article  Google Scholar 

    23.
    Middleton-Welling, J., Wade, R. A., Dennis, R. L. H., Dapporto, L. & Shreeve, T. G. Optimising trait and source selection for explaining occurrence and abundance changes: A case study using British butterflies. Funct. Ecol. 32, 1609–1619 (2018).
    Article  Google Scholar 

    24.
    Middleton-Welling, J. et al. Trait data of European and Maghreb butterflies. Dryad Digital Repository https://doi.org/10.5061/dryad.6m905qfx6 (2020).

    25.
    Dennis, R. L. H., Shreeve, T. G. & Van Dyck, H. Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers. Conserv. 15, 1943–1966 (2006).
    Article  Google Scholar 

    26.
    Dennis, R. L. H. A Resource-Based Habitat View For Conservation: Butterflies In The British Landscape (John Wiley & Sons, 2010).

    27.
    Balletto, E., Barbero, F., Bonelli, S., Casacci, L. P., & Dapporto, L. Butterflies (Lepidoptera: Papilionoidea) Vol. I (Calderini, Verona, In Press).

    28.
    Beneš, J. et al. Butterflies Of The Czech Republic: Distribution and Conservation I & II (SOM, 2002).

    29.
    Bink, F. A. Ecologische Atlas Van De Dagvlinders An Noordwest-Europa (Schuyt & Co., 1992).

    30.
    Dapporto, L. & Casnati, O. Le Farfalle dell’Arcipelago Toscano (Parco Nazionale Arcipelago Toscano, 2008).

    31.
    Dennis, R. L. H. A Resource-based Habitat View For Conservation: Butterflies In The British Landscape (John Wiley & Sons, 2010).

    32.
    Fernández-Rubio, F. Guía De Mariposas Diurnas De La Península Ibérica, Baleares, Canarias, Azores y Madeira (Pirámide, 1991).

    33.
    García-Barros, E., Munguira, M. L., Stefanescu, C. & Vives, A. Fauna Iberica, Lepidoptera: Papilionoidea. Vol. 37 (Museo Nacional de Ciencias Naturales, CSIC, 2013).

    34.
    Henriksen, H. J. & Kreutzer, I. B. The Butterflies Of Scandinavia In Nature (Skandinavisk Bogforlag, 1982).

    35.
    Hesselbarth, G., Van Oorschot, H. & Wagener, S. Die Tagfalter Der Türkei: Unter Berücksichtigung Der Angrenzenden Länder. Bd. 2. Spezieller Teil: Nymphalidae. Fundortverzeichnis, Sammlerverzeichnis, Literaturverzeichnis, Indices (Wagener, 1995).

    36.
    Higgins, L. G. & Riley, N. D. A Field Guide To The Butterflies Of Britain And Europe 3rd Edn (Collins, 1980)

    37.
    Kudrna, O. A Revision Of The Genus Hipparchia (Classey, 1977).

    38.
    Lafranchis T. Butterflies Of Europe: New Field Guide And Key (Diatheo, 2004).

    39.
    Lafranchis, T. & Geniez, P. Les Papillons De Jour De France, Belgique Et Luxembourg Et Leurs Chenilles (Biotope Editions, 2000)

    40.
    Layberry, R. A., Hall, P. W. & Lafontaine, J. D. The Butterflies Of Canada (University of Toronto Press, 1998).

    41.
    LSPN. Les Papillons De Jour Et Leurs Biotopes (Pro Natura, 1987).

    42.
    Luquet, G. C. & Demerges, D. Papilions De L’annexe IV De La Directive 92/43/CEE. Papilio hospiton (Ministère de L’écologie Du Développement Et De L’Aménagement Durables, 2007).

    43.
    Maravalhas, E. As Borboletas De Portugal / The Butterflies of Portugal. (Apollo Books, 2003).

    44.
    Munguira, M. L., Barea-Azcón, J. M., Castro, S., Olivares, J. & Miteva, S. Species Recovery Plan For The Zullichi’s Blue (Agriades zullichi) (Butterfly Conservation Europe, 2015).

    45.
    Munguira, M. L., Castro, S, Barea-Azcón, J. M., Olivares, J. & Miteva, S. Species Recovery Plan For The Sierra Nevada Blue Polyommatus (Plebicula) golgus (Butterfly Conservation Europe, 2015).

    46.
    Munguira, M. L., Barea-Azcón, J. M, Castro,S., Olivares, J. & Miteva, S. Species Recovery Plan For the Andalusian Anomalous Blue (Polyommatus violetae) (Butterfly Conservation Europe, 2015).

    47.
    Munguira, M. L., Olivares, J,, Castro, S., Barea-Azcón, J. M., Romo, H. & Miteva, S. Species Recovery Plan For The Spanish Greenish Black-tip (Euchloe bazae) (Butterfly Conservation Europe, 2015).

    48.
    Muñoz Sariot, M. G., Biología Y Ecología De Los Licénidos eEspañoles. (Muñoz Sariot, 2011).

    49.
    Newland, D., Still, R., Swash, A. & Tomlinson, D. Britain’s Butterflies: A Field Guide To The Butterflies Of Britain And Ireland – Fuly Revised And Updated 3rd Edn (Princeton University Press, 2015).

    50.
    Pamperis, L. N. The Butterflies Of Greece (Bastas-Plessas Graphic Arts, 1997).

    51.
    Paolucci, P. Butterflies And Burnets Of The Alps And Their Larvae, Pupae and Cocoons (WBA-Books, 2013).

    52.
    Settele, J. et al. Climatic Risk Atlas Of European Butterflies (Pensoft, 2008).

    53.
    Settele, J., Steiner, R., Reinhardt, R., Feldmann, R. & Hermann, G. Schmetterlinge: Die Tagfalter Deutschlands (Ulmer, 2015)

    54.
    Thompson, R. & Nelson, B. The Butterflies And Moths Of Northern Ireland (Blackstaff Press, 2006).

    55.
    Tolman, T. & Lewington, R. Collins Butterfly Guide: The Most Complete Guide To The Butterflies Of Britain and Europe (Collins, 2008).

    56.
    Tshikolovets, V. V. Butterflies of Europe & The Mediterranean Area. (Tshikolovets Publications, 2011).

    57.
    Tutin, T. et al. Flora Europaea; Vol. 1–5 (Cambridge University Press, 1964-1980).

    58.
    Gilbert, F. & Zalat, S. Butterflies Of Egypt: Atlas, Red Data Listing And Conservation (BioMAP, 2007).

    59.
    Korshunov, Y. & Gorbunov, P. Dnevnye Bbabochki Aziatskoi Chasti Rossii. Spravochnik. [Butterflies of the Asian part of Russia. A handbook in Russian] (Ural University Press, 1995).

    60.
    F. Die Tagfalter Mitteleuropas – Östlicher Teil, Bestimmung – Biotope Und Bionomie – Verbreitung – Gefährdung (Self-published, 2004).

    61.
    Nekrutenko, Y. P. The Butterflies Of The Caucasus. Keys To Their Identification. Papilionidae, Pieridae, Satyridae, Danaidae (Dumka, 1990).

    62.
    Baytas A. A Field Guide To The Butterflies Of Turkey. (NTV, 2007).

    63.
    Aguiar, A. M. F., Wakeham-Dawson, A. & Jesus, J. G. F. The life cycle of the little known and endangered endemic Madeiran Brimstone Butterfly Gonepteryx maderensis Felder, 1862 (Pieridae). Nota Lep. 32, 145–157 (2009).
    Google Scholar 

    64.
    Aussem, B. & Hesselbarth, G. Die Praeimaginalstadien von Pseudochazara cingovskii (Gross, 1973) (Satyridae). Nota Lep. 3, 17–23 (1980).
    Google Scholar 

    65.
    Back, W. Die Praimaginalstadien von Euchloe charlonia (Donzel, 1842) im Vergleich tu Euchioe penia (FREYER, 1852) und Euchloe transcaspica ssp. amseli (Gross & Ebert, 1975). Atalanta 22, 357–363 (1991).
    Google Scholar 

    66.
    Bartonova, A., Benes, J. & Konvička, M. Generalist-specialist continuum and life history traits of Central European butterflies (Lepidoptera) – are we missing a part of the picture? Eur. J. Entomol. 111, 543–553 (2014).
    Article  Google Scholar 

    67.
    Bitzer, R. J. & Shaw, K. C. Territorial behavior of Nymphalis antiopa and Polygonia comma (Nymphalidae). J. Lepid. Soc. 37, 1–13 (1983).
    Google Scholar 

    68.
    Bonelli, S., Barbero, F., Casacci, L. P. & Balletto, E. Habitat preferences of Papilio alexanor Esper [1800]: implications for habitat management in the Italian Maritime Alps. Zoosystema 37, 169–177 (2015).
    Article  Google Scholar 

    69.
    Camerini, G., Groppali, R. & Minerbi, T. Observations on the ecology of the endangered butterfly Zerynthia cassandra in a protected area of Northern Italy. J. Insect Conser. 22, 41–49 (2018).
    Article  Google Scholar 

    70.
    Celik, T. Adult demography, spatial distribution and movements of Zerynthia polyxena (Lepidoptera: Papilionidae) in a dense network of permanent habitats. Eur. J. Entomol. 109, 217–227 (2013).
    Article  Google Scholar 

    71.
    Cho, Y., Choi, D. S., Han, Y. G. & Nam, S. H. Conservation of Hipparchia autonoe (Esper) (Lepidoptera: Nymphalidae), Natural Monument in South Korea. Entomol. Res. 41, 269–274 (2011).
    Article  Google Scholar 

    72.
    Corbera, G., Escrivà, À. & Corbera, J. Hilltopping de les Papallones diürnes al turó d’Onofre Arnau (Mataró, Maresme). L’Atzavarza 20, 59–68 (2011).
    Google Scholar 

    73.
    Courtney, S. Notes on the biology of Zegris eupheme (Pieridae). J. Lepid. Soc. 36, 132–135 (1982).
    Google Scholar 

    74.
    Dennis, R. L. H. & Shreeve, T. G. Does the Marbled White butterfly Melanargia galathea (L.) (Papilionoidea: Satyrinae) behave like a white’? Antenna 28, 139–194 (2004).
    Google Scholar 

    75.
    Dincă, V., Cuvelier, S., Zakharov, E. V., Hebert, P. D. & Vila, R. Biogeography, ecology and conservation of Erebia oeme (Hübner) in the Carpathians (Lepidoptera: Nymphalidae: Satyrinae). Ann. Soc. Entomol. Fr. 46, 486–498 (2010).
    Article  Google Scholar 

    76.
    Dincă, V., Kolev, Z. & Verovnik, R. The distribution, ecology and conservation status of the Spinose Skipper Muschampia cribrellum (Eversmann, 1841) at the western limit of its range in Europe (Hesperiidae). Nota Lep. 33, 39–57 (2010).
    Google Scholar 

    77.
    Diringer, Y. Chronique d’élevage 3: L’élevage des coridon espagnols: Polyommatus (Lysandra) albicans (HERRICH-SCHÄFFER, 1852) et Polyommatus (Lysandra) caelestissima (VERITY, 1921) (Lepidoptera: Lycanidae). Lépidoptères 19, 50–59 (2010).
    Google Scholar 

    78.
    Eichel, S. & Fartmann, T. Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J. Insect Conserv. 12, 677–688 (2008).
    Article  Google Scholar 

    79.
    Fiedler, K. European and North West African Lycaenidae (Lepidoptera) and their associations with ants. J. Res. Lepid. 28, 239–257 (1991).
    Google Scholar 

    80.
    Fric, Z. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lep. 23, 2–25 (2000).
    Google Scholar 

    81.
    Friedrich, E. Zur Biologie von Limenitis populi L. (Lep., Nymphalidae). Entomol. Z. 81, 266–269 (1971).
    Google Scholar 

    82.
    García-Barros, E. Comparative data on the adult biology, ecology and behaviour of species belonging to the genera Hipparchia, Chazara and Kanetisa in central Spain (Nymphalidae: Satyrinae). Nota Lep. 23, 119–140 (2000).
    Google Scholar 

    83.
    García-Villanueva, V., Moreno Tamaurejo, J. A., Vazquez Prado, F. M., Nieto Manzano, M. A. & Novoa Pérez, J. M. Melitaea aetherie (Hübner [6]) en la provincia de Badajoz: nuevos datos sobre su biología y distribución (Lepidoptera: Nymphalidae). Bol. Soc. Entomol. Aragonesa 42, 279–288 (2008).
    Google Scholar 

    84.
    Gascoigne-Pees, M., Trew, D., Pateman, J. & Verovnik, R. The distribution, life cycle, ecology and present status of Leptidea morsei (Fenton 1882) in Slovenia with additional observations from Romania (Lepidoptera: Pieridae). Nachr. Entomol. Ver. Apollo N. F. 29, 113–121 (2008).
    Google Scholar 

    85.
    Gascoigne-Pees, M., Verovnik, R., Wiskin, C. & Luckens, C. & Đurić, M. Notes on the lifecycle of Melitaea arduinna (Esper, 1783) (“Freyer’s Fritillary”) (Lepidoptera: Nymphalidae) with further records from SE Serbia. Nachr. Entomol. Ver. Apollo, N. F. 33, 9–14 (2012).
    Google Scholar 

    86.
    Gascoigne-Pees, M., Verovnik, R., Franeta, F. & Popović, M. The lifecycle and ecology of Pseudochazara amymone (Brown, 1976), (Lepidoptera: Nymphalidae, Satyrinae). Nachr. Entomol. Ver. Apollo, N. F. 35, 129–138 (2014).
    Google Scholar 

    87.
    Gascoigne-Pees, M., Wiskin, C., Đurić, M. & Trew, D. The lifecycle of Nymphalis vaualbum ([Denis & Schiffermüller], 1775) in Serbia including new records and a review of its present status in Europe (Lepidoptera: Nymphalidae. Nachr. Entomol. Ver. Apollo, N. F. 35, 77–96 (2014).
    Google Scholar 

    88.
    Grill, A., Schtickzelle, N., Cleary, D. F., Neve, G. & Menken, S. B. Ecological differentiation between the Sardinian endemic Maniola nurag and the pan-European M. jurtina. Biol. J. Linn. Soc. 89, 561–574 (2006).
    Article  Google Scholar 

    89.
    Hernández-Roldán, J. L., Vicente, J. C., Vila, R. & Munguira, M. L. Natural history and immature stage morphology of Spialia Swinhoe, 1912 in the Iberian Peninsula (Lepidoptera, Hesperiidae). Nota Lep. 41, 1–22 (2018).
    Google Scholar 

    90.
    Hernández-Roldán, J. L., Munguira, M. L. & Martin, J. Ecology of a relict population of the vulnerable butterfly Pyrgus sidae on the Iberian Peninsula (Lepidoptera: Hesperiidae). Eur. J. Entomol. 106, 611–618 (2009).
    Article  Google Scholar 

    91.
    John, E. & Parker, R. Dispersal of Hipparchia cypriensis (Holik, 1949) (Lep.: Satyridae) in Cyprus, with notes on its ecology and life-history. Ent. Gaz. 53, 3–18 (2002).
    Google Scholar 

    92.
    John, E., Gascoigne-Pees, M. & Larsen, T. B. Ypthima asterope (Klug, 1832) (Lepidoptera: Nymphalidae, Satyrinae): its biogeography, lifecycle, ecology and present status in Cyprus, with additional notes from Rhodes and the eastern Mediterranean. Ent. Gaz. 61, 1–22 (2010).
    Google Scholar 

    93.
    Jutzeler, D. Okologie und erste Stände des italienischen Schachbrettes Melanargia arge (Sulzer, 1776) (Lepidoptera: Satyridae). Nota Lep. 16, 213–232 (1994).
    Google Scholar 

    94.
    Jutzeler, D. & Grillo, N. Une visite a l’ile de Vulcano (dans les iles Eoliennes, Sicile) pour Hipparchia leighebi (Kudrna, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 119–126 (1995).
    Google Scholar 

    95.
    Jutzeler, D. & De Bros, E. Observations dans la nature et élevage de Pseudochazara hippolyte williamsi (Romei, 1927) et Erebia hiapania (Butler, 1868) de la Sierra Nevada (Andalousie, Espagne méridionale) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 173–181 (1995).
    Google Scholar 

    96.
    Jutzeler, D., Biermann, H. & De Bros, E. Élevage de Coenonympha corinna elbana (Staudinger, 1901) du Monte Argentario (Toscane, Italie) avec explication géologique de l’aire de répartition du complexe corinna (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 332–347 (1996).
    Google Scholar 

    97.
    Jutzeler, D. & de Bros, E. D. Écologie, élevage et statut taxinomique de Coenonympha corinna trettaui (GROSS, 1970) de l’Isola di Capraia (Toscane, Italie) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 70–78 (1997).
    Google Scholar 

    98.
    Jutzeler, D. et al. Study on the biology, morphology and etiology of Hipparchia sbordonii Kudrna, 1984 from Isola di Ponza (Latium, Italy) and Hipparchia neapolitana (Stauder, 1921) from the Monte Faito (Campanie, Italy) and data on the biology of Hipparchia leighebi (Kudrna, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 105–132 (1997).
    Google Scholar 

    99.
    Jutzeler, D., Biermann, H., Grillo, N. & Volpe, G. On the taxonomical status of Hipparchia blachieri (Fruhstorfer, 1908) from Sicilia (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 17, 69–83 (1999).
    Google Scholar 

    100.
    Jutzeler, D., Embacher, G., Hesselbarth, G., Malicky, M., Stangelmaier, G. & Cameron-Curry, V. Breeding experiments with Erebia claudina (Borkhausen, 1779) from the Radstaedter Tauern (Salzburg, Austria) (Lepidoptera: Nymphalidae, Satyrinae. Linn. Belg. 17, 11–21 (1999).
    Google Scholar 

    101.
    Jutzeler, D., Russel, P. & Volpe, G. Nouveaux points de vue sur la position taxonomique des cinq populations insulaires du complexe d’ Hipparchia wyssii Christ (1889) se basant sur la connaissance de leurs états pré-imaginaux (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 20, 9–44 (2007).
    Google Scholar 

    102.
    Kleckova, I., Konvička, M. & Klecka, J. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. J. Therm. Biol. 41, 50–58 (2014).
    PubMed  Article  Google Scholar 

    103.
    Koestler, W. The preimaginal stages of Hipparchia mersina Staudinger, 1871 – biology, ecology, phenology and breeding Lepidoptera Nymphalidae. Entomol. Z. 1152, 85–90 (2005).
    Google Scholar 

    104.
    Kolev, Z. New data on the taxonomic status and distribution of Polyommatus andronicus Coutsis & Ghavalas, 1995 (Lycaenidae). Nota Lep. 28, 35–48 (2005).
    Google Scholar 

    105.
    Konvička, M., Nedved, O. & Fric, Z. Early-spring floods decrease the survival of hibernating larvae of a wetland-inhabiting population of Neptis rivularis (Lepidoptera: Nymphalidae). Acta Zool. Acad. Sci. Hungar. 48, 79–88 (2002).
    Google Scholar 

    106.
    Kuras, T., Beneš, J. & Konvička, M. Behaviour and within-habitat distribution of adult Erebia sudetica sudetica, endemic of the Hrubý Jeseník Mts., Czech Republic (Nymphalidae, Satyrinae). Nota Lep. 24, 69–83 (2001).
    Google Scholar 

    107.
    Lafranchis, T. Biologie, écologie et répartition de Carcharodus orientalis (Reverdin, 1913) en Grèce. Comparaison avec Carcharodus flocciferus (Zeller, 1847) (Lepidoptera, Hesperiidae). Linn. Belg. 19, 140-146 (2003).

    108.
    Leigheb, G., Jutzeler, D. & Cameron Curry, V. The breeding of Pseudophilotes barbagiae De Prins & Van Der Poorten, 1970, an endemic species of the Gennargentu massif, Sardinia, Italy (Lepidoptera: Lycaenidae). Linn. Belg. 17, 239–246 (2000).
    Google Scholar 

    109.
    Lopez-Villalta, J. S. Ecological trends in endemic Mediterranean butterflies. Bull. Insectol. 63, 161–170 (2010).
    Google Scholar 

    110.
    Leigheb, G. & Cameron-Curry, V. Observations on the biology and distribution of Pseudophilotes barbagiae (Lycaenidae, Polyommatini). Nota Lep. 21, 66–73 (1998).
    Google Scholar 

    111.
    Leigheb, G., Jutzeler, D. & Cameron Curry, V. The breeding of Pseudophilotes barbagiae De Prins & Van Der Poorten, 1970, an endemic species of the Gennargentu massif, Sardinia, Italy (Lepidoptera: Lycaenidae). Linn. Belg. 17, 239–246 (2000).
    Google Scholar 

    112.
    Manino, Z., Leigheb, G., Cameron-Curry, P. & Cameron-Curry, V. Descrizione degli stadi preimarginali di Agrodiaetus humedasae Toso & Balletto, 1976 (Lepidoptera, Lycaenidae). Boll. Mus. Reg. Sci. Nat. Torino 5, 97–101 (1987).
    Google Scholar 

    113.
    Möllenbeck, V., Hermann, G. & Fartmann, T. Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J. Insect Conser. 13, 77–87 (2009).
    Article  Google Scholar 

    114.
    Nardelli, U., Olivares, J. & Jutzeler, D. Etudes sur l’ecologie et le developpement de Melanargia ines (Hoffmannsegg, 1804) en Andalousie et comparaison avec les especes les plus proches (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 183–191 (1998).
    Google Scholar 

    115.
    Ômura, H. & Honda, K. Feeding responses of adult butterflies, Nymphalis xanthomelas, Kaniska canace and Vanessa indica, to components in tree sap and rotting fruits: synergistic effects of ethanol and acetic acid on sugar responsiveness. J. Insect Physiol. 49, 1031–1038 (2003).
    PubMed  Article  CAS  Google Scholar 

    116.
    Özden, Ö. & Hodgson, D. J. Butterflies (Lepidoptera) highlight the ecological value of shrubland and grassland mosaics in Cypriot garrigue ecosystems. Eur. J. Entomol. 108, 43–437 (2011).
    Article  Google Scholar 

    117.
    Page, R. J. C. Perching and patrolling continuum at favoured hilltop sites on a ridge: A mate location strategy by the Purple Emperor butterfly Apatura iris. Entomol. Rec. J. Var. 22, 61–70 (2010).
    Google Scholar 

    118.
    Pennekamp, F., Monteiro, E. & Schmitt, T. The larval ecology of the butterfly Euphydryas desfontainii (Lepidoptera: Nymphalidae) in SW-Portugal: food plant quantity and quality as main predictors of habitat quality. J. Insect Conserv. 17, 195–206 (2013).
    Article  Google Scholar 

    119.
    Pinzari, M. A comparative analysis of mating recognition signals in graylings: Hipparchia statilinus vs. H. semele (Lepidoptera: Nymphalidae, Satyrinae). J. Insect Behav. 22, 227–244 (2009).
    Article  Google Scholar 

    120.
    Pinzari, M. & Sbordoni, V. Species and mate recognition in two sympatric Grayling butterflies: Hipparchia fagi and H. hermione genava (Lepidoptera). Ethol. Ecol. Evol. 25, 28–51 (2013).
    Article  Google Scholar 

    121.
    Pittaway, A. R. et al. Papilio saharae Oberthür, 1879, specifically distinct from Papilio machaon Linnaeus, 1758 (Lepidoptera: Papilionidae). Ent. Gaz. 45, 223–249 (1994).
    Google Scholar 

    122.
    Polcyn, D. M. & Chappell, M. A. Analysis of heat transfer in Vanessa butterflies: effects of wing position and orientation to wind and light. Physiol. Zool. 59, 706–716 (1986).
    Article  Google Scholar 

    123.
    Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim. Ecol. 82, 275–285 (2013).
    PubMed  Article  Google Scholar 

    124.
    Rutowski, R. L. Variation of eye size in butterflies: inter-and intraspecific patterns. J. Zool. 252, 187–195 (2000).
    Article  Google Scholar 

    125.
    Sariot, M. M. Ciclo biológico, morfología de los estadios preimaginales y nuevos datos sobre la distribución de Borbo borbonica zelleri (Lederer, 1855) (Lepidoptera: Hesperiidae) en la provincia de Cádiz, Españ. Rev. Gaditana Entomol. 4, 137–158 (2013).
    Google Scholar 

    126.
    Scott, J. A. Population biology and adult behavior of the circumpolar butterfly, Parnassius phoebus F. (Papilionidae). Insect Syst. Evol. 4, iii–168 (1974).

    127.
    Schurian, K. Beobachtungen zur Biologie und Ökologie von Azanus ubaldus (Cramer, 1782) auf den Kanarischen Inseln (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo, N.F. 37, 41–46 (2016).
    Google Scholar 

    128.
    Slamova, I., Klecka, J. & Konvička, M. Diurnal behavior and habitat preferences of Erebia aethiops, an aberrant lowland species of a mountain butterfly clade. J. Insect Behav. 24, 230–246 (2011).
    Article  Google Scholar 

    129.
    Slancarova, J., Garcia-Pereira, P., Fric, Z. F., Romo, H. & Garcia-Barros, E. Butterflies in Portuguese ‘montados’: relationships between climate, land use and life-history traits. J. Insect Conserv. 19, 823–836 (2015).
    Article  Google Scholar 

    130.
    Slancarova, J. et al. Co-occurrence of three Aristolochia-feeding Papilionids (Archon apollinus, Zerynthia polyxena and Zerynthia cerisyi) in Greek Thrace. J. Nat. Hist. 49, 1825–1848 (2015).
    Article  Google Scholar 

    131.
    Stefanescu, C., Pintureau, B., Tschorsnig, H. P. & Pujade-Villar, J. The parasitoid complex of the butterfly Iphiclides podalirius feisthamelii (Lepidoptera: Papilionidae) in north-east Spain. J. Nat. Hist. 7, 379–396 (2003).
    Article  Google Scholar 

    132.
    Stuhldreher, G. & Fartmann, T. Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur. J. Entomol. 112, 493–499 (2015).
    Article  Google Scholar 

    133.
    Szentirmai, I. et al. Habitat use and population biology of the Danube Clouded Yellow butterfly Colias myrmidone (Lepidoptera: Pieridae) in Romania. J. Insect Conserv. 18, 417–425 (2014).
    Article  Google Scholar 

    134.
    Templado, J. Datos biológicos sobre Melitaea deione (Geyer) (Lep., Nymphalidae). Bol. Estac. Cent.l Ecol. 5, 97–102 (1976).
    Google Scholar 

    135.
    Toso, G. G. & Balletto, E. Una nuova specie del genere Agrodiaetus Hübn. (Lepidoptera, Lycaenidae). Annali Mus. Civico Storia Nat. G. Doria 81, 124–130 (1977).
    Google Scholar 

    136.
    Tóth, J. P. & Varga, Z. Morphometric study on the genitalia of sibling species Melitaea phoebe and M. telona (Lepidoptera: Nymphalidae). Acta Zool. Hung. 56, 273–282 (2010).
    Google Scholar 

    137.
    Tvrtkovic, N., Mihoci, I. & Sasic, M. Colias caucasica balcanica Rebel, 1901 (Pieridae) in Croatia-the most western distribution point. Natura Croatica 20, 375–385 (2011).
    Google Scholar 

    138.
    Väisänen, R., Kuussaari, M., Nieminen, M. & Somerma, P. Biology and conservation of Pseudophilotes baton in Finland (Lepidoptera, Lycaenidae). Ann. Zool. Fenn. 31, 145–156 (1994).
    Google Scholar 

    139.
    Verovnik, R. et al. Conserving Europe’s Most Endangered Butterfly: the Macedonian Grayling (Pseudochazara cingovskii). J. Insect Conserv. 17, 941–947 (2013).
    Article  Google Scholar 

    140.
    Verovnik, R., Franeta, F., Popović, M. & Gascoigne-Pees, M. The discovery of Polyommatus aroaniensis (Brown, 1976) in Bosnia and Herzegovina (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo, N.F. 36, 177–180 (2015).
    Google Scholar 

    141.
    Vieira, V. Lepidopteran fauna from the Sal Island, Cape Verde (Insecta: Lepidoptera). SHILAP-Rev. Lepidopt. 6, 243–252 (2008).
    Google Scholar 

    142.
    Vila, R. Comparative analysis and taxonomic use of the morphology of imma-ture stages and natural history traits in European species of Pyrgus Hübner (Lepidoptera: Hesperiidae, Pyrginae). Zootaxa 347, 1–71 (2012).
    Google Scholar 

    143.
    Vovlas, A., Balletto, E., Altini, E., Clemente, D. & Bonelli, S. Mobility and oviposition site-selection in Zerynthia cassandra (Lepidoptera, Papilionidae): implications for its conservation. J. Insect Conserv. 18, 87–597 (2014).
    Article  Google Scholar 

    144.
    Wahlberg, N. The life history and ecology of Melitaea diamina (Nymphalidae) in Finland. Nota Lep. 20, 70–81 (1997).
    Google Scholar 

    145.
    Wahlberg, N. Comparative descriptions of the immature stages and ecology of five Finnish Melitaeine butterfly species (Lepidoptera: Nymphalidae). Entomol. Fennica 11, 167–174 (2000).
    Article  Google Scholar 

    146.
    Wahlberg, N. On the status of the scarce fritillary Euphydryas maturna (Lepidoptera: Nymphalidae) in Finland. Entomol. Fennica 12, 244–250 (2001).
    Google Scholar 

    147.
    Wiemers, M. The butterflies of the Canary Islands. A survey on their distribution, biology and ecology (Lepidoptera: Papilionoidea and Hesperioidea). Linn. Belg. 15, 63–84 (1995).
    Google Scholar 

    148.
    Franeta, F., Kogovšek, N. & Verovnik, R. On the presence of Pontia chloridice (Lepidoptera: Pieridae) in the Republic of Macedonia. Phegea 40, 17–20 (2012).
    Google Scholar 

    149.
    Franeta, F. & Đurić, M. On the distribution of Colias caucasica balcanica Rebel, 1901, with two new records for Serbia (Lepidoptera: Pieridae. Nachr. Entomol. Ver. Apollo, N.F. 32, 31–37 (2011).
    Google Scholar 

    150.
    Coutsis, J. Revision of the Turanana endymion species-group (Lycaenidae). Nota Lep. 27, 251–272 (2005).
    Google Scholar 

    151.
    Acosta Fernández, B. Una nueva subespecie de Euchloe belemia (Esper, [1800]) de la isla de Gran Canaria, Islas Canarias, España (Lepidoptera: Pieridae). SHILAP-Rev. Lepidopt. 36, 173–182 (2008).
    Google Scholar 

    152.
    Brown, J. & Coutsis, J. G. Two newly discovered Lycaenid butterflies (Lepidoptera: Lycaenidae) from Greece, with notes on allied species. Entomol. Gaz. 29, 201–213 (1978).
    Google Scholar 

    153.
    Brown, J. On the status of a little known Satyrid butterfly from Greece. Entomol. Rec. J. Var. 92, 280–281 (1980).
    Google Scholar 

    154.
    De Prins, W. & Van der Poorten, D. Een nieuwe Pseudochazara-soort voor de wetenschap uit Noordoost-Griekenland (Lepidoptera, Satyridae). Phegea 10, 7–21 (1981).
    Google Scholar 

    155.
    De Prins, W. & Van der Poorten, D. Overzicht van het genus Pseudophilotes in Europa en Noord-Afrika, met beschrijving van een soort uit Sardinie, nieuw voor de wetenschap (Lepidoptera, Lycaenidae). Phegea 10, 61–76 (1982).
    Google Scholar 

    156.
    Higgins, L. G. Hipparchia (Pseudotergumia) wyssii Christoph, with descriptions of two new subspecies. Entomol. 100, 169–171 (1967).
    Google Scholar 

    157.
    Kolev, Z. Polyommatus dantchenkoi (Lukhtanov & Wiemers, 2003) tentatively identified as new to Europe, with a description of a new taxon from the Balkan Peninsula (Lycaenidae). Nota Lep. 28, 25–34 (2005).
    Google Scholar 

    158.
    Manil, L. Découverte de Hipparchia (Pseudotergumia) wyssii Christ dans l’île de La Palma (Canaries) et description d’une nouvelle sous-espèce: Hipparchia wyssii tilosi nova spp. (Lepidoptera Satyridae). Linn. Belg. 9, 359–366 (1984).
    Google Scholar 

    159.
    Olivier, A. & Coutsis, J. G. A revision of the superspecies Hipparchia azorina and of the Hipparchia aristaeus group (Nymphalidae: Satyrinae). Nota Lep. 20, 150–292 (1997).
    Google Scholar 

    160.
    Olivier, A. Taxonomy and geographical variation of Satyrium ledereri (Boisduval, 1848) with the description of a new subspecies from the Greek island of Sámos. Phegea 17, 1–25 (1989).
    Google Scholar 

    161.
    Smith, D. A. S. & Owen, D. F. Inter-island variation in the butterfly Hipparchia (Pseudotergumia) wyssii (Christ, 1889) (Lepidoptera, Satyrinae) in the Canary Islands. Nota Lep. 17, 175–200 (1995).
    Google Scholar 

    162.
    Thomson, G. Maniola chia – a new Satyrid from the Greek island of Chios (Lepidoptera: Nymphalidae: Satyrinae). Phegea 15, 13–22 (1987).
    Google Scholar 

    163.
    Thomson, G. Maniola halicarnassus – a new Satyrid from south-western Turkey (Lepidoptera: Nymphalidae: Satyrinae). Phegea 18, 149–155 (1990).
    Google Scholar 

    164.
    Scalercio, S. et al. How long is 3km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J. Anim. Ecol., https://doi.org/10.1111/1365-2656.13196 (2020).

    165.
    Cini, A. et al. Host plant selection and differential survival on two Aristolochia L. species in an insular population of Zerynthia cassandra. J Insect Conserv 23, 239–246 (2019).
    Article  Google Scholar 

    166.
    Hernández‐Roldán, J. L. et al. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol Ecol. 25, 4267–4284 (2016).
    PubMed  Article  Google Scholar 

    167.
    Dennis, R. L. H., Hardy, P. B. & Dapporto, L. Nestedness in island faunas: novel insights into island biogeography through butterfly community profiles of colonization ability and migration capacity. J Biogeogr 39, 1412–1426 (2012).
    Article  Google Scholar 

    168.
    Sekar, S. A meta analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174–184 (2012).
    PubMed  Article  Google Scholar 

    169.
    Kuussaari, M., Saarinen, M., Korpela, E. L., Pöyry, J. & Hyvönen, T. Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecol. Evol. 4, 3800–381 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    170.
    García-Barros, E. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol. J. Linn. Soc. 70, 251–284 (2000).
    Article  Google Scholar 

    171.
    Wiklund, C. & Kaitala, A. Sexual selection for large male size in a polyandrous butterfly: the effect of body size on male versus female reproductive success in Pieris napi. Behav. Ecol. 6, 6–13 (1995).
    Article  Google Scholar 

    172.
    Peters, R. H. The Ecological Implications Of Body Size. (Cambridge University Press, 1983).

    173.
    Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290 (2007).
    Article  Google Scholar 

    174.
    Betzholtz, P. E., Pettersson, L. B., Ryrholm, N. & Franzén, M. With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc. Roy. Soc. B 280, 20122305 (2013).
    Article  Google Scholar 

    175.
    Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species? Ecology 96, 1473–147 (2015).
    Article  Google Scholar 

    176.
    Chevenne, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long‐term ecological data. Freshwater Biol. 31, 295–309 (1994).
    Article  Google Scholar 

    177.
    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).
    Article  Google Scholar 

    178.
    Stekhoven, D. J. & Bühlmann, P. Missforest – non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model

    1.
    Liu, H. Z., Liu, L., Hui, H. & Wang, Q. Structural characterization and antineoplastic activity of Saccharomyces cerevisiae mannoprotein. Int. J. Food Prop. 18, 359–371 (2015).
    CAS  Google Scholar 
    2.
    Kocourek, J. & Ballou, C. E. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100, 1175–1181 (1969).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).
    CAS  PubMed  Google Scholar 

    4.
    Jin, X., Zhang, M., Cao, G. F. & Yang, Y. F. Saccharomyces cerevisiae mannan induces sheep beta-defensin-1 expression via Dectin-2-Syk-p38 pathways in ovine ruminal epithelial cells. Vet. Res. (Faisalabad) 50, 8 (2019).
    Google Scholar 

    5.
    Michael, C. F. et al. Airway epithelial repair by a prebiotic mannan derived from Saccharomyces cerevisiae. J. Immunol. Res. 2017, 8903982 (2017).
    PubMed  PubMed Central  Google Scholar 

    6.
    Lew, D. B. et al. Beneficial effects of prebiotic Saccharomyces cerevisiae mannan on allergic asthma mouse models. J. Immunol. Res. 2017, 3432701 (2017).
    PubMed  PubMed Central  Google Scholar 

    7.
    Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).
    CAS  PubMed  Google Scholar 

    9.
    Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).
    CAS  PubMed  Google Scholar 

    10.
    Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).
    CAS  PubMed  Google Scholar 

    11.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Arora, T. & Bäckhed, F. The gut microbiota and metabolic disease: Current understanding and future perspectives. J. Intern. Med. 280, 339–349 (2016).
    CAS  PubMed  Google Scholar 

    13.
    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    The Human Microbiome Project Consortium. Structure, function, and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
    ADS  PubMed Central  Google Scholar 

    17.
    Bolam, D. N. & Koropatkin, N. M. Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012).
    CAS  PubMed  Google Scholar 

    18.
    Foley, M. H., Cockburn, D. W. & Koropatkin, N. M. The Sus operon: A model system for starch uptake by the human gut Bacteroidetes. Cell. Mol. Life. Sci. 73, 2603–2617 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Bågenholm, V. et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus. J. Biol. Chem. 292, 229–243 (2017).
    PubMed  Google Scholar 

    20.
    Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: The Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).
    CAS  PubMed  Google Scholar 

    25.
    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Varyukhina, S. et al. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect. 14, 273–278 (2012).
    CAS  PubMed  Google Scholar 

    27.
    López-Boado, Y. S. et al. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148, 1305–1315 (2000).
    PubMed  PubMed Central  Google Scholar 

    28.
    Delday, M., Mulder, I., Logan, E. T. & Grant, G. Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of Crohn’s disease. Inflamm. Bowel Dis. 25, 85–96 (2019).
    PubMed  Google Scholar 

    29.
    Hansen, R. et al. A phase I randomized, double-blind, placebo-controlled study to assess the safety and tolerability of (Thetanix) Bacteroides thetaiotaomicron in adolescents with stable Crohn’s disease. https://www.4dpharmaplc.com/application/files/1815/5824/8886/Thetanix_DDW_poster_2019.pdf. Accessed 15 July 2020 (2019).

    30.
    Salyers, A. A., Vercellotti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Rawi, M. H., Zaman, S. A., Pa’ee, K. F., Leong, S. S. & Sarbini, S. R. Prebiotics metabolism by gut-isolated probiotics. J. Food Sci. Technol. 57, 1–14 (2020).
    Google Scholar 

    32.
    Oba, S. et al. Yeast mannan increases Bacteroides thetaiotaomicron abundance and suppresses putrefactive compound production in in vitro fecal microbiota fermentation. Biosci. Biotechnol. Biochem. 84, 2174–2178 (2020).
    CAS  PubMed  Google Scholar 

    33.
    Sasaki, D. et al. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 8, 435 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    34.
    Takagi, R. et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS ONE 11, e0160533 (2016).
    PubMed  PubMed Central  Google Scholar 

    35.
    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
    PubMed  PubMed Central  Google Scholar 

    36.
    Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Tong, J., Liu, C., Summanen, P., Xu, H. & Finegold, S. M. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17, 64–68 (2011).
    CAS  PubMed  Google Scholar 

    38.
    Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).
    CAS  PubMed  Google Scholar 

    40.
    den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).
    Google Scholar 

    41.
    Gibson, G. R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).
    PubMed  Google Scholar 

    42.
    Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Chang, C. J. et al. Next generation probiotics in disease amelioration. J. Food Drug Anal. 27, 615–622 (2019).
    CAS  PubMed  Google Scholar 

    44.
    Tan, H. et al. Pilot safety evaluation of a novel strain of Bacteroides ovatus. Front. Genet. 9, 539 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Tzianabos, A. O., Onderdonk, A. B., Rosner, B., Cisneros, R. L. & Kasper, D. L. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262, 416–419 (1993).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Bamba, T., Matsuda, H., Endo, M. & Fujiyama, Y. The pathogenic role of Bacteroides vulgatus in patients with ulcerative colitis. J Gastroenterol. 30(Suppl 8), 45–47 (1995).
    PubMed  Google Scholar 

    47.
    Ulsemer, P. et al. Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol. Immunother. 62, 875–887 (2013).
    CAS  PubMed  Google Scholar 

    48.
    Tan, H., Zhao, J., Zhang, H., Zhai, Q. & Chen, W. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl. Microbiol. Biotechnol. 103, 2353–2365 (2019).
    CAS  PubMed  Google Scholar 

    49.
    Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).
    CAS  PubMed  Google Scholar 

    50.
    Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).
    CAS  PubMed  Google Scholar 

    51.
    Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).
    PubMed  Google Scholar 

    53.
    Okubo, T. et al. Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Biosci. Biotechnol. Biochem. 58, 1364–1369 (1994).
    CAS  Google Scholar 

    54.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Google Scholar 

    56.
    Li, W., Fu, L., Niu, B., Wu, S. & Wooley, J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
    PubMed  PubMed Central  Google Scholar 

    57.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  Google Scholar 

    58.
    Maidak, B. L. et al. The RDP-II (ribosomal database project). Nucleic Acids Res. 29, 173–174 (2001).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Furet, J. P. et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol. Ecol. 68, 351–362 (2009).
    CAS  PubMed  Google Scholar 

    62.
    Goubet, F., Jackson, P., Deery, M. J. & Dupree, P. Polysaccharide analysis using carbohydrate gel electrophoresis: A method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal. Biochem. 300, 53–68 (2002).
    CAS  PubMed  Google Scholar 

    63.
    Terrapon, N. et al. PULDB: The expanded database of polysaccharide utilization loci. Nucleic Acids Res. 46, D677–D683 (2018).
    CAS  PubMed  Google Scholar  More

  • in

    Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy

    1.
    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.
    CAS  PubMed  Article  Google Scholar 
    2.
    Reeburgh WS. Oceanic Methane Biogeochemistry. Chem Rev. 2007;107:486–513.
    CAS  PubMed  Article  Google Scholar 

    3.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001;293:484–7.
    CAS  PubMed  Article  Google Scholar 

    4.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000;407:623.
    CAS  PubMed  Article  Google Scholar 

    5.
    McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature. 2015;526:531–5.
    CAS  PubMed  Article  Google Scholar 

    6.
    Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science. 2016;351:703–7.
    CAS  PubMed  Article  Google Scholar 

    7.
    Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–90.
    CAS  PubMed  Article  Google Scholar 

    8.
    Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 2016;10:678–92.
    CAS  PubMed  Article  Google Scholar 

    9.
    Dekas AE, Poretsky RS, Orphan VJ. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science. 2009;326:422–6.
    CAS  PubMed  Article  Google Scholar 

    10.
    Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ. Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ Microbiol. 2014;16:3012–29.
    CAS  PubMed  Article  Google Scholar 

    11.
    Orphan VJ, Turk KA, Green AM, House CH. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environ Microbiol. 2009;11:1777–91.
    CAS  PubMed  Article  Google Scholar 

    12.
    Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.
    CAS  PubMed  Article  Google Scholar 

    13.
    Krukenberg V, Riedel D, Gruber‐Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol. 2018;20:1651–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio. 2017;8:e00530–17.
    PubMed  PubMed Central  Google Scholar 

    15.
    Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol. 2010;12:2327–40.
    CAS  PubMed  Google Scholar 

    16.
    Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME J. 2014;8:150–63.
    CAS  PubMed  Article  Google Scholar 

    17.
    Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature. 1999;398:802.
    CAS  PubMed  Article  Google Scholar 

    18.
    Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF. Identification of methyl coenzyme M Reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol. 2003;69:5483–91.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science. 2002;297:1013–5.
    CAS  PubMed  Article  Google Scholar 

    20.
    Knittel K, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol. 2005;71:467–79.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol. 2001;67:1922–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci. 2002;99:7663–8.
    CAS  PubMed  Article  Google Scholar 

    23.
    Raghoebarsing AA, Pol A, Pas-Schoonen KT, van de, Smolders AJP, Ettwig KF, Rijpstra WIC, et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature. 2006;440:918.
    CAS  PubMed  Article  Google Scholar 

    24.
    Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013;500:567–70.
    CAS  PubMed  Article  Google Scholar 

    25.
    Niemann H, Lösekann T, Beer D, de, Elvert M, Nadalig T, Knittel K, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature. 2006;443:854.
    CAS  PubMed  Article  Google Scholar 

    26.
    Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol. 2007;73:3348–62.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Manz W, Eisenbrecher M, Neu TR, Szewzyk U. Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol. 1998;25:43–61.
    CAS  Article  Google Scholar 

    28.
    Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol. 2007;9:187–96.
    CAS  PubMed  Article  Google Scholar 

    29.
    Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA. 2008;105:7052–7.
    CAS  PubMed  Article  Google Scholar 

    30.
    Vigneron A, Cruaud P, Pignet P, Caprais J-C, Cambon-Bonavita M-A, Godfroy A, et al. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J. 2013;7:1595–608.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    McGlynn SE, Chadwick GL, O’Neill A, Mackey M, Thor A, Deerinck TJ, et al. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners as revealed by integrated multimodal analytical microscopy. Appl Environ Microbiol. 2018;84:e00399–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Treude T, Krüger M, Boetius A, Jørgensen BB. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnol Oceanogr. 2005;50:1771–86.
    CAS  Article  Google Scholar 

    33.
    Girguis PR, Orphan VJ, Hallam SJ, DeLong EF. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol. 2003;69:5472–82.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Kleindienst S, Ramette A, Amann R, Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol. 2012;14:2689–710.
    CAS  PubMed  Article  Google Scholar 

    35.
    Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 2011;5:1946–56.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, et al. Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Appl Environ Microbiol. 2002;68:5064–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Trembath-Reichert E, Case DH, Orphan VJ. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ. 2016;4:e1913.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Trembath-Reichert E, Green-Saxena A, Orphan VJ. Chapter Two—whole cell immunomagnetic enrichment of environmental microbial consortia using rRNA-targeted magneto-FISH. In: DeLong EF (eds). Methods in Enzymology. (Academic Press, San Diego, 2013) pp 21–44.

    39.
    Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci. 2016;113:E4069–78.
    CAS  PubMed  Article  Google Scholar 

    40.
    Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity. ISME J. 2012;6:183–94.
    CAS  PubMed  Article  Google Scholar 

    41.
    Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLOS Comput Biol. 2012;8:e1002687.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLOS Comput Biol. 2015;11:e1004226.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Schwager E, Mallick H, Ventz S, Huttenhower C. A Bayesian method for detecting pairwise associations in compositional data. PLOS Comput Biol. 2017;13:e1005852.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1–9.
    Article  CAS  Google Scholar 

    45.
    Bohrmann G, Heeschen K, Jung C, Weinrebe W, Baranov B, Cailleau B, et al. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova. 2002;14:69–79.
    Article  Google Scholar 

    46.
    Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E. Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol. 2006;225:129–44.
    CAS  Article  Google Scholar 

    47.
    Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, et al. Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst. 2008;9:1–22.
    Article  Google Scholar 

    48.
    Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, et al. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environ Microbiol. 2014;16:1592–611.
    CAS  PubMed  Article  Google Scholar 

    49.
    Case DH, Pasulka AL, Marlow JJ, Grupe BM, Levin LA, Orphan VJ. Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. mBio. 2015;6:1–12.
    CAS  Article  Google Scholar 

    50.
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
    CAS  PubMed  Article  Google Scholar 

    51.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Mason OU, Case DH, Naehr TH, Lee RW, Thomas RB, Bailey JV, et al. Comparison of archaeal and bacterial diversity in methane seep carbonate nodules and host sediments, Eel River Basin and Hydrate Ridge, USA. Micro Ecol. 2015;70:766–84.
    CAS  Article  Google Scholar 

    53.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  Article  Google Scholar 

    54.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  Google Scholar 

    55.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, et al. XSEDE: accelerating scientific discovery. Comput Sci Eng. 2014;16:62–74.
    Article  CAS  Google Scholar 

    57.
    Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE). (San Diego Supercomputing Center, San Diego, 2010) pp 1–8.

    58.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81.
    CAS  PubMed  Article  Google Scholar 

    61.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Daims H, Stoecker K, Wagner M, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. Mol Microbial Ecol. https://www.taylorfrancis.com/. Accessed 15 Jul 2019.

    64.
    Glöckner FO, Fuchs BM, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol. 1999;65:3721–6.
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci. 2004;101:15275–8.
    CAS  PubMed  Article  Google Scholar 

    66.
    Choi HMT, Beck VA, Pierce NA. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano. 2014;8:4284–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Yamaguchi T, Kawakami S, Hatamoto M, Imachi H, Takahashi M, Araki N, et al. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environ Microbiol. 2015;17:2532–41.
    CAS  PubMed  Article  Google Scholar 

    68.
    Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 2018;145:1–10.
    Article  CAS  Google Scholar 

    69.
    Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224:213–32.
    CAS  PubMed  Article  Google Scholar 

    70.
    Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PA, Granger J. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE. 2014;9:e110335.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters1. Limnol Oceanogr. 1969;14:454–8.
    CAS  Article  Google Scholar 

    72.
    Dekas AE, Orphan VJ. Chapter Twelve—identification of diazotrophic microorganisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). In: Klotz MG, editor. Methods in enzymology. Academic Press; 2011. p 281–305.

    73.
    Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS-a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.
    CAS  PubMed  Article  Google Scholar 

    74.
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:1–14.
    Article  Google Scholar 

    75.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
    CAS  Article  Google Scholar 

    76.
    Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17:681–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci. 2015;112:4015–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pr Exp. 1991;21:1129–64.
    Article  Google Scholar 

    79.
    Moody J, White DR. Structural cohesion and embeddedness: a hierarchical concept of social groups. Am Socio Rev. 2003;68:103–27.
    Article  Google Scholar 

    80.
    Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.
    CAS  PubMed  Article  Google Scholar 

    81.
    Nikolakakis K, Lehnert E, McFall-Ngai MJ, Ruby EG. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl Environ Microbiol. 2015;81:4728–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    DePas WH, Starwalt-Lee R, Sambeek LV, Kumar SR, Gradinaru V, Newman DK. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA Labeling. mBio. 2016;7:1–11.
    Article  Google Scholar 

    83.
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 2020;577:519–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:1–6.
    Article  Google Scholar 

    85.
    Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci. 2008;105:10444–9.
    CAS  PubMed  Article  Google Scholar 

    86.
    Parkinson JE, Baumgarten S, Michell CT, Baums IB, LaJeunesse TC, Voolstra CR. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus symbiodinium. Genome Biol Evol. 2016;8:665–80.
    PubMed  PubMed Central  Article  Google Scholar 

    87.
    Barshis DJ, Ladner JT, Oliver TA, Palumbi SR. Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Mol Biol Evol. 2014;31:1343–52.
    CAS  PubMed  Article  Google Scholar 

    88.
    Kapili BJ, Barnett SE, Buckley DH, Dekas AE. Evidence for phylogenetically and catabolically diverse active diazotrophs in deep-sea sediment. ISME J. 2020;14:971–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Klawonn I, Eichner MJ, Wilson ST, Moradi N, Thamdrup B, Kümmel S, et al. Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies. ISME J. 2020;14:399–412.
    CAS  PubMed  Article  Google Scholar 

    90.
    Petroff AP, Wu T-D, Liang B, Mui J, Guerquin-Kern J-L, Vali H, et al. Reaction–diffusion model of nutrient uptake in a biofilm: Theory and experiment. J Theor Biol. 2011;289:90–5.
    CAS  PubMed  Article  Google Scholar 

    91.
    Dekas AE, Fike DA, Chadwick GL, Green‐Saxena A, Fortney J, Connon SA, et al. Widespread nitrogen fixation in sediments from diverse deep-sea sites of elevated carbon loading. Environ Microbiol. 2018;20:4281–96.
    CAS  PubMed  Article  Google Scholar 

    92.
    Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:1–14.
    Google Scholar 

    93.
    Bertics VJ, Löscher CR, Salonen I, Dale AW, Gier J, Schmitz RA, et al. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences. 2013;10:1243–58.
    CAS  Article  Google Scholar 

    94.
    Gier J, Sommer S, Löscher CR, Dale AW, Schmitz RA, Treude T. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences. 2016;13:4065–80.
    CAS  Article  Google Scholar 

    95.
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.
    CAS  PubMed  Article  Google Scholar 

    96.
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:1–7.
    Article  CAS  Google Scholar 

    97.
    Masuda T, Inomura K, Takahata N, Shiozaki T, Yuji S. Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations. Commun Biol. 2020;3:1–12.
    Article  CAS  Google Scholar 

    98.
    Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.
    CAS  PubMed  Article  Google Scholar  More

  • in

    Georgina Mace (1953–2020)

    OBITUARY
    15 October 2020

    Pioneer of biodiversity accounting who overhauled the Red List of threatened species.

    Nathalie Pettorelli

    Nathalie Pettorelli, a senior research fellow, started at the Institute of Zoology, London under Georgina’s directorship; they co-supervised a PhD student at Imperial College London.
    Contact

    Search for this author in:

    Credit: Jussi Puikkonen/KNAW

    Georgina Mace shaped two cornerstones of modern ecology and conservation. One was the global inventory of species threatened with extinction, the International Union for Conservation of Nature (IUCN) Red List. The second was the United Nations Millennium Ecosystem Assessment. One of the sharpest minds of her generation, she strove to document and stem biodiversity loss with analytical rigour and multidisciplinary approaches. She died on 19 September, aged 67.
    Throughout her career, Mace developed tools for evidence-based policymaking. Before her, the Red List was based on nominations from experts rather than data, undermining confidence in its accuracy. She devised criteria to standardize assessments. The Red List is now the most used and trusted source for assessing trends in global biodiversity.
    Mace was born in London in 1953. She studied zoology at the University of Liverpool, UK, before doing a PhD in the 1970s at the University of Sussex in Brighton, UK, where John Maynard Smith was pioneering mathematical approaches to evolutionary ecology. As a postdoc at the Smithsonian Institution in Washington DC, she studied the impacts of inbreeding on captive animals.
    In 1983, she joined the Institute of Zoology, the research arm of the Zoological Society of London, where she remained for 23 years, latterly as director from 2000 to 2006. There, Mace continued to work on the genetic management of zoological collections and small populations. Her findings informed the conservation status of several species, including the western lowland gorilla (Gorilla gorilla gorilla), and highlighted the value of reproductive technology in managing captive populations of endangered species, such as the Arabian oryx (Oryx leucoryx) and Przewalski’s horse (Equus przewalskii). She became increasingly interested in population viability, extinction risk and setting conservation priorities.
    In 1991, this led her, together with US population biologist Russell Lande, to question the IUCN categories of threats and the associated nomination process as being largely subjective. They suggested three categories: critical, endangered and vulnerable. These they defined in terms of the probability of a species becoming extinct within a specific period, such as five years or two generations. They drew up standardized criteria based on population-biology theory. These included, for example, total effective population size, the population trend over the past five years and observed or projected habitat loss. Mace later introduced, among other things, categories for species that are not currently under threat. This work ultimately defined the categories that the IUCN uses now.
    In 2006, Mace became director of the NERC Centre for Population Biology at Imperial College London. There, she worked on the definition of biodiversity targets and assessing species’ vulnerability to climate change. She also studied the link between biodiversity and ecosystem services — the benefits that humans draw from nature, such as carbon sequestration, medicines or waste decomposition.
    From 2012, as founding director of the Centre for Biodiversity and Environment Research at University College London, she developed an interest in natural-capital accounting, the process of calculating the total stocks and flows of natural resources and services in an ecosystem or region. Her blending of economics and ecological theory to define a risk register for natural capital helped to provide an effective focus for monitoring and data gathering. It also contributed to a common understanding of priorities across fields.
    Mace bridged the gaps between genetics, population ecology and macroecology, sub-disciplines in which she regularly supervised students, networked and published. She also demonstrated the importance of conservationists engaging with researchers in other disciplines, such as climate science, economics and social science. She excelled in building consensus, a key step towards evidence-based policy.
    Mace was coordinating lead author for biodiversity on the Millennium Ecosystem Assessment, launched in 2001, which demonstrated that rapidly growing demand for food, fresh water, timber, fibre and fuel resulted in a large and largely irreversible loss in biodiversity. She supported the development of assessments for the biodiversity target of the UN Convention on Biological Diversity in 2010 and, most recently, acted as review editor for the Global Assessment of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. She held similarly pivotal roles at the national level, on UK climate and environmental assessments.
    She broke several glass ceilings. Mace was the first president of the international Society for Conservation Biology from outside North America, and the first female president of the British Ecological Society. Her many awards and honours included a fellowship of the Royal Society and, in 2016, she was made a dame.
    Georgina was a role model: firm but fair, collaborative, reliable, unassuming, approachable — the kind of critical friend we all need. She supported the career progression of numerous ecologists and influenced many more. She’d nominate you for a post even when you didn’t think she had noticed your work; she’d make a witty remark in the middle of a heated discussion. Few knew that she had cancer. Never one to make a fuss about herself, nine days before she died, she published a paper on habitat conversion and biodiversity loss (D. Leclère et al. Nature 585, 551–556; 2020). Her death leaves a void: she will be sorely missed.

    Nature 586, 495 (2020)

    Latest on:

    Biodiversity

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More

  • in

    Physical properties of epilithic river biofilm as a new lead to perform pollution bioassessments in overseas territories

    1.
    Monnier, O., Basilico, L., Reyjol, Y. et al. La bioindication en outre-mer: Situation et perspectives dans le contexte de la directive cadre sur l’eau. Synthèse du séminaire ONEMA «Méthodes de bioindication adaptées aux départements d’outre-mer » Paris, France (2016). https://www.seminaire-evaluation-outremer.oieau.fr/.
    2.
    Jackson, D. A., Peres-Neto, P. R. & Olden, J. D. What controls who is where in freshwater fish communities: the roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci. 58, 157–170 (2001).
    Google Scholar 

    3.
    Battin, T. et al. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).
    CAS  PubMed  Article  Google Scholar 

    4.
    Abreu, P. C. et al. Importance of biofilm as food source for shrimp (Farfantepenaeus paulensis) evaluated by stable isotopes (d13C and d15N). J. Exp. Mar. Biol. Ecol. 347, 88–96 (2007).
    CAS  Article  Google Scholar 

    5.
    Lefrançois, E. et al. Epilithic biofilm as a key factor for small-scale river fisheries on Caribbean islands. Fish. Manag. Ecol. 18, 211–220 (2011).
    Article  Google Scholar 

    6.
    Smith, W. E. Reproductive ecology of Caribbean amphidromous fishes. Ph. D. North Carolina State University (2012).

    7.
    Mc Dowall, R. M. Diadromy: origins and definitions of terminology. Copeia 1, 248–251 (1992).
    Article  Google Scholar 

    8.
    Keith, P. Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and the Caribbean regions. J. Fish Biol. 63, 831–847 (2003).
    Article  Google Scholar 

    9.
    Coat, S. & Monti, D. Lack of significance of usual ecological indicators in predicting pesticides contamination: specificities of tropical islands freshwaters. In: Proceedings of the 15th meeting of the Caribbean academy of sciences, May 21–23, 79–80 (2006).

    10.
    Bertrand, J. A., Abarnou, A., Bocquené, G. et al. Diagnostic de la contamination chimique de la faune halieutique des littoraux des Antilles françaises. Campagnes 2008 en Martinique et en Guadeloupe. Ifremer, Martinique. https://www.ifremer.fr/docelec/doc/2009/rapport-6896.pdf (2009).

    11.
    Coat, S. Identification du réseau trophique de rivière et étude de sa contamination par les pesticides organochlorés (Chlordécone et ß-HCH) en Guadeloupe. Thèse de Doctorat de l’Université des Antilles et de la Guyane, UFR SEN, Campus de Fouillole (2009).

    12.
    Multigner, L. et al. Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol. 28, 3457–3462 (2010).
    CAS  PubMed  Article  Google Scholar 

    13.
    Foster, R. Kepone: the ‘Flour’ factory. In Richmondmag (2005). https://richmondmagazine.com/news/kepone-disaster-pesticide.

    14.
    Sanders, H. O. et al. Biological effects of Kepone and mirex in freshwater invertebrates. Arch. Environ. Contam. Toxicol. 10, 531–539 (1981).
    CAS  PubMed  Article  Google Scholar 

    15.
    Orndorff, S. A. & Colwell, R. R. Distribution and degradation potential of Kepone resistant bacteria in the James River and Upper Chesapeake Bay. In Workshop: Microbial Degradation of Pollutants in Marine Environments, EPA-600/9-79-012 (eds. Bourquin, A. W. & Pritchard, P. H.) 396–407. EPA Environmental Research Information Center, Cincinnati, Ohio (1979).

    16.
    Orndorff, S. A. & Colwell, R. R. Distribution and characterization of kepone-resistant bacteria in the aquatic environment. Appl. Environ. Microbiol. 39, 611–622 (1980).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Mahaffey, W. R., Pritchard, P. H. & Bourquin, A. W. Effects of kepone on growth and respiration of several estuarine bacteria. Appl. Environ. Microbiol. 43, 1419–1424 (1982).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Hödl, I. et al. Voronoi tessellation captures very early clustering of single primary cells as induced by interactions in nascent biofilms. PLoS ONE 6(10), e26368 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Tamaru, Y. et al. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium. Nostoc Commune Appl. Environ. Microbiol. 71, 7327–7333 (2005).
    CAS  PubMed  Article  Google Scholar 

    20.
    Or, D., Phutane, S. & Dechesne, A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone J. 6, 298–305 (2007).
    CAS  PubMed  Article  Google Scholar 

    21.
    Battin, T. J. et al. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Lawrence, J.R., Neu, T.R., Paule, A. et al. Aquatic biofilms: development, cultivation, analyses, and applications. In Manual of Environmental Microbiology (ed. Yates, M., Nakatsu, C., Miller, R., Pillai, S., 4th edn, 4.2.3-1–4.2.3-33 (ASM, Washington, 2016).

    23.
    Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
    CAS  PubMed  Article  Google Scholar 

    24.
    Mora-Gómez, J., Freixa, A., & Perujo, N. et al. Limits of the biofilm concept and types of aquatic biofilms. Aquat. Biofilms. Ecol. Water Qual. Wastewater Treat. 229, 3-27 (2016).

    25.
    Holmström, C. et al. Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling 10, 251–259 (1996).
    PubMed  Article  Google Scholar 

    26.
    Callow, J. A. et al. Cellular and molecular approaches to understanding primary adhesion in Enteromorpha: an overview. Biofouling 16, 141–150 (2000).
    CAS  Article  Google Scholar 

    27.
    Bozorg, A., Gates, I. D. & Sen, A. Real time monitoring of biofilm development under flow conditions in porous media. Biofouling 28, 937–951 (2012).
    PubMed  Article  Google Scholar 

    28.
    Rubol, S. et al. Seeing through porous media: an experimental study for unveiling interstitial flows. Hydrol. Process. 32, 402–407 (2018).
    ADS  Article  Google Scholar 

    29.
    Kundukad, B. et al. Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter 12, 5718 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    30.
    Morita, Y. et al. Frictional properties of regenerated cartilage in vitro. J. Biomech. 39, 103–109 (2006).
    PubMed  Article  Google Scholar 

    31.
    Grad, S. et al. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage. Osteoarthr. Cartil. 20, 288–295 (2012).
    CAS  PubMed  Article  Google Scholar 

    32.
    Souza, J. C. et al. Biofilms inducing ultra-low friction on titanium. J. Dent. Res. 89, 1470–1475 (2010).
    CAS  PubMed  Article  Google Scholar 

    33.
    Garrett, T. R., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–1056 (2008).
    CAS  Article  Google Scholar 

    34.
    Schultz, M. P. et al. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings. Biofouling 31, 759–773 (2015).
    CAS  PubMed  Article  Google Scholar 

    35.
    Ditsche, P. et al. More than just slippery: the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae. J. R. Soc. Interface 11, 20130989 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Rubol, S. et al. Linking biofilm spatial structure to real-time microscopic oxygen decay imaging. Biofouling 34, 200–211 (2018).
    CAS  PubMed  Article  Google Scholar 

    37.
    Larson, F. et al. Surface adhesion measurements in aquatic biofilms using magnetic particle induction: MagPI. Limnol. Oceanogr. Methods 7, 490–497 (2009).
    Article  Google Scholar 

    38.
    Gerbersdorf, S. U. et al. New insights into MagPI: a promising tool to determine the adhesive capacity of biofilm on the mesoscale. Biofouling 34, 618–629 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Passarelli, C. et al. Surface adhesion of microphytobenthic biofilms is enhanced under Hediste diversicolor (O.F. Muller) trophic pressure. J. Exp. Mar. Biol. Ecol. 438, 52–60 (2012).
    Article  Google Scholar 

    40.
    Thom, M. et al. Seasonal biostabilization and erosion behavior of fluvial biofilms under different hydrodynamic and light conditions. Int. J. Sediment Res. 30, 273–284 (2015).
    Article  Google Scholar 

    41.
    Schmidt, H. et al. The effect of seasonality upon the development of lotic biofilms and microbial biostabilisation. Freshw. Biol. 61, 963–978 (2016).
    CAS  Article  Google Scholar 

    42.
    Schmidt, H. et al. Exposure to silver nanoparticles affects biofilm structure and adhesiveness. J. Aquatic Pollut. Toxicol. 1, 1–9 (2017).
    Google Scholar 

    43.
    Oliver, W. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).
    ADS  CAS  Article  Google Scholar 

    44.
    Cense, A. W. et al. Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J. Microbiol. Methods 67, 463–472 (2006).
    CAS  PubMed  Article  Google Scholar 

    45.
    Minatchy, G. et al. Influence of the volume structure on the tribological properties of lamellar tribofilms. Tribol. Lett. 61, 1–15 (2016).
    CAS  Article  Google Scholar 

    46.
    Gloag, E. S. et al. Biofilm mechanics: implications in infection and survival. Biofilm 2, 100017 (2020).
    Article  Google Scholar 

    47.
    Malavoi, J. R. Typologie des faciès d’écoulement ou unités morphodynamiques des cours d’eau à haute énergie. Bull. fr. pêche piscic. 315, 189–210 (1989).
    Article  Google Scholar 

    48.
    Bahner, L. H. et al. Kepone bioconcentration, accumulation, loss, and transfer through estuarine food chains. Chesapeake Sci. 18, 299–308 (1977).
    CAS  Article  Google Scholar 

    49.
    Lange-Bertalot, H. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64, 285–304 (1979).
    Google Scholar 

    50.
    Smol, J. P. & Stoermer, E. F. The Diatoms: Applications for the Environmental and Earth Sciences 2nd edn. (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    51.
    Lobo, E. et al. Diatoms as Bioindicators in Rivers. In River Algae (ed. Orlando Necchi, J. R.) 245–271 (Springer, Berlin, 2016).
    Google Scholar 

    52.
    Shoaib, N. et al. Toxicity of pesticides on photosynthesis of diatoms. Pak. J. Bot. 43, 2067–2069 (2011).
    CAS  Google Scholar 

    53.
    Ebenezer, V. & Ki, J. S. Quantification of toxic effects of the organochlorine insecticide endosulfan on marine green algae, diatom and dinoflagellate. Indian J. Mar. Sci. 43, 393–399 (2014).
    Google Scholar 

    54.
    Karthikeyan, P., Mohan, D. & Jaikumar, M. Growth inhibition effect of organophosphate pesticide monocrotophos on marine diatoms. Indian J. Mar. Sci. 44, 1516–1520 (2015).
    Google Scholar 

    55.
    Bruckner, C. G. et al. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ. Microbiol. 13, 1052–1063 (2011).
    CAS  PubMed  Article  Google Scholar 

    56.
    Yang, C. et al. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.). Mar. Pollut. Bull. 107, 118–124 (2016).
    CAS  PubMed  Article  Google Scholar 

    57.
    Tapolczai, K. et al. Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia 776, 117 (2016).
    Article  Google Scholar 

    58.
    Pandey, L. K. & Bergey, E. A. Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Sci. Total Environ. 550, 372–381 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    59.
    Wu, N. et al. Using river microalgae as indicators for freshwater biomonitoring: review of published research and future directions. Ecol. Indic. 81, 124–131 (2017).
    CAS  Article  Google Scholar 

    60.
    Coquillé, N. et al. Use of diatom motility features as endpoints of metolachlor toxicity. Aquat. Toxicol. 158, 202–210 (2015).
    PubMed  Article  CAS  Google Scholar 

    61.
    Rimet, F. & Bouchez, A. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl. Manag. Aquat. Ecosyst. 406, 1–12 (2012).
    Article  Google Scholar 

    62.
    Sedki, M. et al. Online-monitoring of biofilm formation using nanostructured electrode surfaces. Mater. Sci. Eng. C 100, 178–185 (2019).
    CAS  Article  Google Scholar 

    63.
    Gómez-Gómez, B. et al. Fate and effect of in-house synthesized tellurium based nanoparticles on bacterial biofilm biomass and architecture. Challenges for nanoparticles characterization in living systems. Sci. Total Environ. 719, 137501 (2020).
    ADS  PubMed  Article  CAS  Google Scholar 

    64.
    Wang, X. et al. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic- and endolithobiontic microbial biofilms by scanning electron microscopy. Micron 40, 350–358 (2009).
    CAS  PubMed  Article  Google Scholar 

    65.
    Rabiller-Baudry, M. et al. Coupling of SEM-EDX and FTIR-ATR to (quantitatively) investigate organic fouling on porous organic composite membranes. Curr. Microsc. Contrib. Adv. Sci. Technol. 10, 1066–1076 (2012).
    Google Scholar 

    66.
    Li, N. et al. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol. Res. 171, 73–77 (2015).
    CAS  PubMed  Article  Google Scholar 

    67.
    Zhou, J., Mopper, K. & Passow, U. The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol. Oceanogr. 43, 1860–1871 (1998).
    ADS  CAS  Article  Google Scholar 

    68.
    Hansson, P. M. et al. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces. Phys. Chem. Chem. Phys. 15, 17893–17902 (2013).
    CAS  PubMed  Article  Google Scholar 

    69.
    Thorp, J. H. & Delong, M. D. Dominance of autochtonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550 (2002).
    Article  Google Scholar 

    70.
    ODE971. Database Office de l’Eau Guadeloupe. https://www.observatoire-eau-guadeloupe.fr/outils/base-de-donnees/cours-deau/physico-chimie-et-chimie.

    71.
    Cravo-Laureau, C. et al. Microbial responses to pollution-ecotoxicology: introducing the different biological levels. In Microbial Ecotoxicology (eds Cravo-Laureau, C. et al.) (Springer, New York, 2017).
    Google Scholar 

    72.
    Tapie, N., Kanan, R., Pardon, P. et al. Utilisation d’échantillonneurs passifs de type POCIS pour le suivi de la contamination Chlordécone des eaux de la Guadeloupe. 44ème congrès du Groupe Français des Pesticides (GFP), 26–29 mai 2014, Schœlcher, Martinique (2014).

    73.
    Tapie, N., Risser, T., Pardon, P. et al. Calibration d’échantillonneurs passifs de type POCIS pour le suivi de la contamination des eaux en Chlordécone. 46ème congrès du Groupe Français des Pesticides (GFP), 17–19 mai 2016, Bordeaux, France (2016).

    74.
    Dubois, M. et al. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).
    CAS  Article  Google Scholar 

    75.
    Raunkjaer, K., Hvitved-Jacobsen, T. & Nielsen, P. H. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res. 28, 251–262 (1994).
    CAS  Article  Google Scholar 

    76.
    Stoermer, E. F. et al. Paleolimnological evidence of rapid recent change in Lake Erie’s trophic status. Can. J. Fish. Aquat. Sci. 53, 1451–1458 (1996).
    Article  Google Scholar 

    77.
    Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumental indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).
    ADS  CAS  Article  Google Scholar 

    78.
    Fischer-Cripps, A. C. Nanoindentation (2nd ed. Softcover of orig. ed. 2004). Collection: Mechanical Engineering Series (Springer, New York, 2010).
    Google Scholar 

    79.
    Cattan, P., Berns, A.E., Cabidoche, Y.-M. et al.Quel devenir pour la Chlordécone? CHLORDEXCO, La contamination d’écosystèmes antillais 20 ans après l’application de l’organochloré. In Journée ANR Huit ans de recherche en environnement, dernières découvertes et innovations, Paris, France, 11 décembre 2012. https://agritrop.cirad.fr/569760/.

    80.
    Tonetto, A. F., Branco, C. C. Z. & Peres, C. K. The effects of irradiance and spectral composition on the establishment of macroalgae in streams. Annales de Limnologie-Int. J. Limnol. 48, 363–370 (2012).
    Article  Google Scholar 

    81.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017).

    82.
    Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
    MathSciNet  Article  Google Scholar 

    83.
    Pollard, K. & van der Laan, M. A method to identify significant clusters in gene expression data Sixth World Multiconference on Systemics. Cybern. Inf. 6, 318–325 (2002).
    Google Scholar  More

  • in

    Range expansion of muskox lungworms track rapid arctic warming: implications for geographic colonization under climate forcing

    1.
    Arneth, A. et al. Summary for Policymakers. (2019).
    2.
    Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Dobson, A., Molnár, P. K. & Kutz, S. Climate change and Arctic parasites. Trends Parasitol. 31, 181–188 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Chan, F. T. et al. Climate change opens new frontiers for marine species in the Arctic: current trends and future invasion risks. Glob. Chang. Biol. 25, 25–38 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago—Svalbard, Norway. Glob. Chang. Biol. 23, 490–502 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kutz, S. J., Hoberg, E. P., Polley, L. & Jenkins, E. J. Global warming is changing the dynamics of Arctic host–parasite systems. Proc. R. Soc. Lond. B Biol. Sci. 272, 2571–2576 (2005).
    CAS  Google Scholar 

    8.
    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).
    PubMed  PubMed Central  Google Scholar 

    9.
    Hoberg, E. P. & Brooks, D. R. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130553 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Tomaselli, M., Gerlach, S. C., Kutz, S. J. & Checkley, S. L. Iqaluktutiaq voices: local perspectives about the importance of muskoxen, contemporary and traditional use and practices. Arctic 71, 1–14 (2018).
    Article  Google Scholar 

    11.
    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Hoberg, E. P., Galbreath, K. E., Cook, J. A., Kutz, S. J. & Polley, L. Northern host–parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. In Advances in Parasitology vol. 79. 1–97 (Elsevier, Amsterdam, 2012).

    13.
    Hoberg, E. P. et al. Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J. Helminthol. 91, 409–421 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    COSEWIC. COSEWIC Assessment and Status Report on the Caribou (Rangifer tarandus) Dolphin and Union population in Canada 2017 (2017)

    15.
    Cuyler, C. et al. Muskox status, recent variation, and uncertain future. Ambio 49, 1–15 (2019).
    Google Scholar 

    16.
    Kutz, S., Hoberg, E. & Polley, L. A new lungworm in muskoxen: an exploration in Arctic parasitology. Trends Parasitol. 17, 276–280 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Kafle, P., Sullivan, J., Verocai, G. G. & Kutz, S. J. Experimental life-cycle of Varestrongylus eleguneniensis(Nematoda: Protostrongylidae) in a captive Reindeer (Rangifer tarandus tarandus) and a Muskox (Ovibos moschatus moschatus). J. Parasitol. 103, 584–587 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Kafle, P., Peacock, S. J., Grond, S., Orsel, K. & Kutz, S. Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasit. Vectors 11, 400 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Experimental infections of muskoxen (Ovibos moschatus) and domestic sheep with Umingmakstrongylus pallikuukensis (Nematoda: Protostrongylidae): parasite development, population structure, and pathology. Can. J. Zool. 77, 1562–1572 (1999).
    Article  Google Scholar 

    20.
    Osborn, T. J. & Jones, P. The CRUTEM4 land-surface air temperature data set:Construction, previous versions and dissemination via Google earth. Earth Syst. Sci. Data 6, 61–68 (2014).
    ADS  Article  Google Scholar 

    21.
    Zhang, X. et al. Changes in temperature and precipitation across Canada; Chapter 4. In Canada’s Changing Climate Report (eds Bush, E. & Lemmen, D. S.) 112–193 (Ottawa, Ontario, Government of Canada, 2019).
    Google Scholar 

    22.
    Kutz, S. J. et al. Serendipitous discovery of a novel protostrongylid (Nematoda : Metastrongyloidea) in caribou, muskoxen, and moose from high latitudes of North America based on DNA sequence comparisons. Can. J. Zool. 85, 1143–1156 (2007).
    CAS  Article  Google Scholar 

    23.
    Hoberg, E. P., Polley, L., Gunn, A. & Nishi, J. S. Umingmakstrongylus pallikuukensis gen. nov. et sp. nov. (Nematoda: Protostrongylidae) from muskoxen, Ovibos moschatus, in the central Canadian Arctic, with comments on biology and biogeography. Can. J. Zool. Rev. Can. Zool. 73, 2266–2282 (1995).
    Article  Google Scholar 

    24.
    Forrester, S. G. & Lankester, M. W. Extracting protostrongylid nematode larvae from ungulate feces. J. Wildl. Dis. 33, 511–516 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Kafle, P. et al. Morphological keys to advance the understanding of protostrongylid biodiversity in caribou (Rangifer spp.) at high latitudes. Int. J. Parasitol. Parasites Wildl. 6, 331–339 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Kafle, P., Lejeune, M., Verocai, G. G., Hoberg, E. P. & Kutz, S. J. Morphological and morphometric differentiation of dorsal-spined first-stage larvae of lungworms (Nematoda: Protostrongylidae) infecting muskoxen (Ovibos moschatus) in the central Canadian Arctic. Int. J. Parasitol. Parasites Wildl.4 (2015).

    27.
    Hoberg, E. et al. Caudal polymorphism and cephalic morphology among first-stage larvae of Parelaphostrongylus odocoilei (Protostrongylidae: Elaphostrongylinae) in Dall’s sheep from the Mackenzie mountains, Canada. J. Parasitol. 91, 1318–1325 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Snyder, R. L., Spano, D., Cesaraccio, C. & Duce, P. Determining degree-day thresholds from field observations. Int. J. Biometeorol. 42, 177–182 (1999).
    ADS  Article  Google Scholar 

    29.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Umingmakstrongylus pallikuukensis (Nematoda : Protostrongylidae) in gastropods: larval morphology, morphometrics, and development rates. J. Parasitol. 87, 527–535 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Dainton, B. H. Field and laboratory observations on slug and snail behaviour. Monograph-British Crop Protection Council (1989).

    31.
    Felber, R., Stoeckli, S. & Calanca, P. Generic calibration of a simple model of diurnal temperature variations for spatial analysis of accumulated degree-days. Int. J. Biometeorol. 62, 621–630 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Purcell, L. C. Comparison of thermal units derived from daily and hourly temperatures. Crop Sci. 43, 1874–1879 (2003).
    Article  Google Scholar 

    33.
    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).
    ADS  Article  Google Scholar 

    34.
    Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).
    ADS  Article  Google Scholar 

    35.
    Kutz, S. J., Hoberg, E. P., Nishi, J. & Polley, L. Development of the muskox lungworm, Umingmakstrongylus pallikuukensis (Protostrongylidae), in gastropods in the Arctic. Can. J. Zool. 80, 1977–1985 (2002).
    Article  Google Scholar 

    36.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
    Google Scholar 

    37.
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Verocai, G. G. et al. The biogeography of the caribou lungworm, Varestrongylus eleguneniensis (Nematoda: Protostrongylidae) across northern North America. Int. J. Parasitol. Parasites Wildl 11, 93–102 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Verocai, G. G., Kutz, S. J., Simard, M. & Hoberg, E. P. Varestrongylus eleguneniensis sp n. (Nematoda: Protostrongylidae): a widespread, multi-host lungworm of wild North American ungulates, with an emended diagnosis for the genus and explorations of biogeography. Parasit. Vectors 7, 22 (2014).
    Article  Google Scholar 

    40.
    Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. 3, 1556 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Bush, E. & Lemmen, D. S. Canada’s Changing Climate Report; Government of Canada, Ottawa, ON. 444 (2019).

    42.
    Trenberth, K. E. Observation: surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007).

    43.
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37 (2003).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    47.
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 12, 450–455 (2006).
    ADS  Article  Google Scholar 

    48.
    Hope, A. G., Waltari, E., Payer, D. C., Cook, J. A. & Talbot, S. L. Future distribution of tundra refugia in northern Alaska. Nat Clim Change 3, 931–938 (2013).
    ADS  Article  Google Scholar 

    49.
    Hope, A. G. et al. Arctic biodiversity: increasing richness accompanies shrinking refugia for a cold-associated tundra fauna. Ecosphere 6, 1–67 (2015).
    ADS  Article  Google Scholar 

    50.
    Laaksonen, S. et al. Climate change promotes the emergence of serious disease outbreaks of filarioid nematodes. Ecohealth (2010).

    51.
    Kovats, R. S., Campbell-Lendrum, D. H., McMichel, A. J., Woodward, A. & Cox, J. S. H. Early effects of climate change: do they include changes in vector-borne disease?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1057–1068 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Hoberg, E. P. Invasive processes, mosaics and the structure of helminth parasite faunas. Rev. Sci. Tech. 29, 255 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Bryan, H. M. et al. Identification of Parelaphostrongylus odocoilei (Nematoda: Protostrongylidae) first-stage larvae in the feces of gray wolves (Canis lupus) by molecular methods. J. Wildl. Dis. 46, 297–302 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Bird, S. et al. Geography, seasonality, and host-associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecol. Evol. 23, 13202–13217 (2019).
    Article  Google Scholar 

    55.
    Prewer, E., Kutz, S., Leclerc, L. M. & Kyle, C. J. Already at the bottom? Demographic declines are unlikely further to undermine genetic diversity of a large Arctic ungulate: muskox, Ovibos moschatus (Artiodactyla: Bovidae). Biol. J. Linn. Soc. 129, 459–469 (2020).
    Article  Google Scholar 

    56.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Emergence of third-stage larvae of Umingmakstrongylus pallikuukensis from three gastropod intermediate host species. J. Parasitol. 86, 743–749 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Sullivan, J. Developing a Systematic Sampling Framework for Terrestrial Gastropods in the Canadian Arcitc Calgary, Alberta (University of Calgary, Calgary, 2016).
    Google Scholar 

    58.
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Kearney, M. & Porter, W. P. Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85, 3119–3131 (2004).
    Article  Google Scholar 

    60.
    Simon, J. A. et al. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol. Appl. 7, 750–764 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Vanhanen, H., Veteli, T. O., Paivinen, S., Kellomaki, S. & Niemela, P. Climate change and range shifts in two insect defoliators: gypsy moth and nun moth-a model study. Silva Fenn. 41, 621 (2007).
    Article  Google Scholar 

    62.
    Yang, G.-J. et al. A growing degree-days based time-series analysis for prediction of Schistosoma japonicum transmission in Jiangsu province, China. Am. J. Trop. Med. Hyg. 75, 549–555 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Molnár, P. K., Sckrabulis, J. P., Altman, K. A. & Raffel, T. R. Thermal performance curves and the metabolic theory of ecology-a practical guide to models and experiments for parasitologists. J. Parasitol. (2017).

    64.
    Laaksonen, S., Oksanen, A. & Hoberg, E. A lymphatic dwelling filarioid nematode, Rumenfilaria andersoni (Filarioidea; Splendidofilariinae), is an emerging parasite in Finnish cervids. Parasites Vectors 8, 228 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Laaksonen, S. et al. Filarioid nematodes, threat to arctic food safety and security. In Game Meat Hygiene: Food Safety and Security, 213–223 (Wageningen Academic Publishers, Wageningen, 2017).

    66.
    Brooks, D. R., Hoberg, E. P. & Boeger, W. A. The Stockholm Paradigm: Climate Change and Emerging Disease (University of Chicago Press, Chicago, 2019).
    Google Scholar 

    67.
    Cook, J. A. et al. The Beringian Coevolution Project: holistic collections of mammals and associated parasites reveal novel perspectives on evolutionary and environmental change in the North. Arctic Science 3, 585–617 (2016).
    Article  Google Scholar 

    68.
    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis, Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5). Cambridge, UK and New York, New York, USA (2013)

    69.
    Berkelhammer, M. Synchronous modes of terrestrial and marine productivity in the North Pacific. Front. Earth Sci.7 (2019).

    70.
    Agosta, S. J., Janz, N. & Brooks, D. R. How specialists can be generalists: resolving the” parasite paradox” and implications for emerging infectious disease. Zoologia (Curitiba) 27, 151–162 (2010).
    Article  Google Scholar 

    71.
    Araujo, S. B. et al. Understanding host-switching by ecological fitting. PLoS ONE10 (2015).

    72.
    IPCC Climate Change: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC (eds Core Writing Team et al.) 151 (IPCC, Geneva, 2014).
    Google Scholar 

    73.
    Ford, J. D. & Beaumier, M. Feeding the family during times of stress: experience and determinants of food insecurity in an Inuit community. Geograph J 177, 44–61 (2011).
    Article  Google Scholar 

    74.
    Kutz, S. et al. Erysipelothrix rhusiopathiae associated with recent widespread muskox mortalities in the Canadian Arctic. Can Vet J Rev Vet Can 56, 560–563 (2015).
    Google Scholar 

    75.
    Tomaselli, M. et al. Contagious ecthyma, rangiferine brucellosis, and lungworm infection in a muskox (Ovibos moschatus) from the Canadian Arctic, 2014. J. Wildl. Dis. 52, 719–724 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Kutz, S. et al. Muskox health ecology symposium 2016: gathering to share knowledge on Umingmak in a time of rapid change. Arctic 70, 225–236 (2017).
    Article  Google Scholar 

    77.
    Vors, L. S. & Boyce, M. S. Global declines of caribou and reindeer. Glob. Chang. Biol. 15, 2626–2633 (2009).
    ADS  Article  Google Scholar 

    78.
    Fisheries, N. Diseased ice seals|NOAA fisheries. NOAA https://www.fisheries.noaa.gov/alaska/marine-life-distress/diseased-ice-seals (2020).

    79.
    Jones, T. et al. Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PloS ONE14 (2019).

    80.
    Pörtner, H. O. Intergovernmental panel on climate change: summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019). More

  • in

    Discovering spatial interaction patterns of near repeat crime by spatial association rules mining

    Framework for discovering significant spatial transmission pattern of crime occurrence
    In this section, a framework for discovering significant spatial interaction pattern of crime is developed. As illustrated in Fig. 1, the proposed framework comprises the following three steps.
    Figure 1

    Overview of framework for discovering spatial transmission patterns of crime occurrence.

    Full size image

    The proposed method works on a collection of crime points with spatial and temporal information. Firstly, near repeat crime pairs are identified by specifying the spatio-temporal proximity. All near repeat crime pairs would form a network structure, making it difficult to discover the dominant patterns. Therefore, we simplify the network by overlaying with spatial girds and then aggregating it. Finally, some indicators are defined to measure the spatial interaction strength, and a spatial association pattern mining approach was developed. The whole framework is designed to discover the most probable spatial transmission routes and related high flow regions. Explanation for each step is further illustrated in following sections.
    Construction of crime transmission network
    This study aims to discover spatial interaction patterns from a collection of discrete points. Each point represents a location where crime incident happens. However, these crime incidents are not totally independent, but related with each other in spatial aspect. The typical phenomena demonstrating such interaction is the near repeat crime. The interaction between near repeat crime pairs can be represented as a “directed link”, and a directed network can well describe the spatial interaction of all crime incidents (denoted as “transmission network”).
    The crime transmission network is composed of a node set V and an edge set E, which can be denoted as N = (V, E). Each node in V indicates a crime incident and each edge represents the spatio-temporal relation between two incidents. Because the influence of a crime only existed in a limited spatial and temporal range, spatio-temporal proximity should be defined to identify the near repeat crime. Specifically, given two crime incidents c1 and c2 occurring at timestamps tA and tB, their spatial distance and time difference are denoted as rAB and tAB, respectively. A directed edge eAB is added if the following conditions are satisfied:

    $$left{ {begin{array}{*{20}l} {{0} le t_{B} – t_{A} le Delta t} hfill \ {r_{AB} le Delta s} hfill \ end{array} } right.$$
    (1)

    where Δs and Δt are two parameters to define the spatio-temporal proximity. In this manner, a crime transmission network can be constructed with the dual constraint of spatial and temporal proximity.
    Spatial aggregation based on spatial grids
    In the crime transmission network, each edge stands for an instance of near repeat crime pairs. As described above, crime transmission network indicates the “spatial interaction”. To explore the spatial interaction, the spatial analysis scale should be determined first. On the other hand, because “near repeat” pairs are judged by the spatio-temporal proximity, a single crime incident may be viewed as “close pair” with many other incidents, all the “close pairs” of crime incidents may form a complex structure (like a complex network), thus making it difficult to extract dominant patterns from such complex structure. As illustrated in Fig. 2, network nodes are usually clustered and network edges are usually intersected in an unregularly way. In situation of lots of nodes and edges, it is difficult to extract dominant spatial interaction patterns from the complex network.
    Figure 2

    Illustrative example of spatial aggregation of original network.

    Full size image

    To address the above issues, we then overlay the crime transmission network with spatial grids. The advantage of applying spatial grids lies in two aspects. First, the spatial interaction should be explored at a spatial scale. The analysis scale is closely related to spatial grid size. By setting different grid sizes, multiple scales analysis results can be achieved. Second, by overlaying spatial grids with the crime transmission network, each node and edge in the network can be associated with one or several spatial grids, then the crime network can be simplified greatly by spatial aggregation. As an example illustrated in Fig. 2, each circle in sub-figure (a) represents a crime incident, and crime pairs are connected by dashed lines. Obviously, it is not easy to identify the dominant spatial patterns. The complex network can be simplified by overlaying with spatial grids. The close crime pairs can be classified into two categories: “following in same grids” and “crossing different grids”, and those crossing different grids can be used to analyze spatial interaction between different regions. In sub-figure (d), each spatial region is represented as a square, and the numbers beside links represent number of close crime pairs crossing different regions (i.e. the by spatial aggregation). In this manner, the original crime transmission network has been simplified. It should be pointed out that the “spatial aggregation” does not discard any close crime pair. Those falling in a single grid can be used to measure strength of spatial interaction, which will be described in following section.
    Discovery of significant spatial interaction patterns
    From the above description, we can learn that the aggregated crime network is a directed network. Each node of network represents a spatial region (spatial grid) and edges indicates near repeat pairs crossing different grids. After the aggregated crime network is obtained, the spatial association rule mining technique can be applied to discover the spatial interactions patterns. The spatio-temporal association rule mining approach is a powerful tool for discovering the interdependence relation in both spatial and temporal domains. The existing research has proved that it can not only reveal a spatial dependence structure among various spatial features or spatial objects38,39 but also discover the dynamic interactions among different spatial regions37,40,41. For example, Verhein and Chawla describe spatial interaction patterns between different regions using spatio-temporal association rules37.
    In this study, we also try to summarize the spatial interaction pattern by applying spatio-temporal association rules mining. To fulfil that, following definitions are first clarified.
    Definition 1
    Given two adjacent spatial grids (denoted as GA and GB) and two crime incidents (c1 and c2), if c1 falls in grid GA, c2 falls in GB, and their distance satisfies the spatio-temporal proximity constraint in Eq. (1), then the pair of c1 and c2 is called an instance of flow from GA to GB and denoted as: instance (GA → GB). The total number of instance (GA → GB) is called the out flow number of (GA) and denoted as outNum(GA). Correspondingly, total number of instance (GB → GA) is called the inflow number of (GA) and denoted as inNum(GA). In addition, the total number of close pair which totally falls in grid GA is denoted as statbleNum (GA).
    Definition 2
    The spatial region GA is termed as a source when out flow number outNum (GA) is higher than random assumption. Conversely, region is termed as sink if inflow number inNum (GA) is higher than random assumption. A thoroughfare is a region which meets both the source and sink requirements. Collectively, sources, sinks and thoroughfares are called high flow regions in which near repeat crime pairs can be frequently observed.
    Definition 3
    High flow regions and transmission routes together can describe spatial interaction pattern between different regions. For regions GA and GB, if the number of instance (GA → GB) is higher than random assumption, then it is called a significant transmission route from GA → GB, denoted as route (GA → GB), while GA is called antecedent and GB is consequent of the route.
    Definition 4
    Another two concepts are defined to evaluate the discovered spatial transmission routes. The spatial support of a transmission route r, denoted as Sup(r), is the sum of spatial areas referenced in the antecedent and consequent of the transmission route. The confidence of a transmission route r, denoted as Conf (r), is defined as the ratio of number of instance (GA → GB) to number of instances flowing out and falling in the antecedent grid. They can be represented formally as:

    $$Supleft( r right) = arealeft( {G_{A} } right) + arealeft( {G_{B} } right)$$
    (2)

    $$confleft( r right) = frac{{sum {instance} ;left( {G_{A} to G_{B} } right)}}{{outNumleft( {G_{A} } right) + stableNum(G_{A} )}}$$
    (3)

    The first three definitions are used to discover the spatial interaction pattern, while the last one can be used to evaluate the discovered results. The definition of spatial support considers spatial semantic of discovered pattern (the size of spatial area) and confidence indicates the transmission possibility between antecedent and consequent regions. Both support and confidence indicators are commonly used in Apriori-like association rule mining approaches42, while these concepts have different meanings in this study.
    Based on the above concepts, spatial interaction pattern can be discovered. In spatial association pattern mining process, thresholds for indicators measuring association strength should be determined in advance, e.g. outNum and inNum in this study. However, determination of the thresholds objectively is not easy. Thus, the discovered results are evaluated via the Monte Carlo (MC) testing. In another words, we aim to find out these patterns with their indicators significantly higher than that would be observed by chance. In the current study, MC methods are employed to generate N simulated spatial crime distributions with permutation of temporal information. For example, statistical significance of spatial transmission route r can be calculated as:

    $$pleft( r right) = frac{{sum {left( {instance_num^{obs} left( r right) le instance_num^{ith_sim} left( r right)} right)} + 1}}{N + 1}$$
    (4)

    where (instance_num^{obs} left( r right)) represent the number of instance (r) calculated on real observed data, and (nstance_num^{ith_sim} left( r right)) represent the number calculated on a simulated spatial dataset. Then, given a significant level α (0.05 by default), if the p(r) value is less than the significance level, it can be treated as a significant pattern.
    Study area and material description
    To evaluate the effectiveness of the proposed approach, we aim to explore the spatial interaction pattern of a robbery in the city of Philadelphia, United States. Located in southeastern Pennsylvania, Philadelphia is an economic and cultural anchor of the greater Delaware Valley, with a population of 1,580,863 (based on 2017 census-estimated results). The crime occurrence in Philadelphia consistently ranks above the national average, which is a major concern for the government. The crime-related data can be freely accessed via the OpenDataPhilly website (https://www.opendataphilly.org/), which provides both crime datasets and basic geographic data. The geographic data include administrative division and road network. The crime incidents are recorded with detailed longitude, latitude and timestamps. In this study, we mainly focus on unarmed robbery during the period of January 1st, 2016, to June 30th, 2016. During this period, the total number of unarmed robberies was 1612. We selected robbery crime as a case study because robbery is frequently observed in the study regions and have a profound effect on the quality of life in urban neighborhood43. This study aims to find out: (1) whether robbery crime exhibits the near repeat phenomena? and (2) what kinds of spatial interaction patterns are embedded in the near repeat phenomena? The study region and distribution of robbery crime are showed in the Fig. 3.
    Figure 3

    Study region and distribution of robbery incidents.

    Full size image More

  • in

    Cloning and activity analysis of the promoter of nucleotide exchange factor gene ZjFes1 from the seagrasses Zostera japonica

    Plant material
    Z. japonica used in this study was collected from Fangchenggang, Guangxi, China.
    DNA extraction and primer design
    Leaves of Z. japonica were used as materials to extract genomic DNA from young leaves that had grown well. A MiniBEST Plant Genomic DNA Extraction Kit (TaKaRa, 9768) was used to extract genomic DNA from the leaves of Z. japonica following the manufacturer’s instructions. Based on the full-length cDNA sequence of ZjFes1 obtained by RACE18, three identical and high annealing temperature specific primers (SP Primer) were designed, and four specifically designed degenerate primers, AP1, AP2, AP3 and AP4, were used for thermal asymmetric interlaced PCR (TAIL-PCR). Typically, at least one of these degenerate primers can react with specific primers by TAIL-PCR based on the difference of annealing temperature, and the flanking sequence of known sequence can be obtained by three nested PCR reactions. Because the length obtained in one experiment cannot meet the experimental requirements, we continue to acquire the flanking sequence according to the sequence information obtained in the first genome walking. Four genome walkings were conducted. Twelve SP Primers were designed. DNAMAN software was used to combine the four fragments described above into a consensus sequence by combining overlapping fragments. Specific primers were designed to amplify 2 kb sequences according to the results (Table 1), and the experimental results were verified.
    Table 1 PCR primer sequences.
    Full size table

    Cloning and construction of the plant expression vector and sequence analysis of promoter
    The full-length promoter sequence was amplified using high fidelity polymerase 2 × TransStart FastPfu PCR SuperMix (-dye) (TRANSGEN BIOTECH, AS221-01) using the DNA of Z. japonica as a template following the manufacturer’s instructions. The PCR products were detected using 1% gel electrophoresis. The results showed that the size of the bands was the same as that of the target fragments, and the PCR products were recovered using a MiniBEST Agarose Gel DNA Extraction Kit Ver. 4.0 (TaKaRa, 9762). The pCXGUS-P plasmid is a vector designed to detect the activity of plant promoters. The promoter activity is detected by the dyeing intensity of GUS. We used XcmI to digest the empty vector to obtain T vector. After recovery, the product was recombined with T vector, and then the recombinant vector was transformed into E. coli DH5α Competent Cells (TaKaRa, 9057) following the manufacturer’s instructions. The positive samples identified by PCR were verified by sequencing at the Guangzhou Sequencing Department of Invitrogen. The sequencing results were compared using DNAMAN software. The plasmid was extracted from the correct bacterial solution and designated pZjFes1::GUS. The sequence analysis of cis-acting elements that could possibly be found in the promoter was performed using the plant-CARE online prediction database (plant cis-acting regulatory element, https://bioinformatics.psb.ugent.be/webtools/plantcare/html/)20.
    Agrobacterium-mediated genetic transformation of pZjFes1::GUS into Arabidopsis thaliana
    The fusion vector pZjFes1::GUS was transformed into Agrobacterium Rhizobium strain GV3101 chemically competent cells (Biomed, BC304) using the freeze–thaw method following the manufacturer’s instructions. Transgenic plants of A. thaliana were obtained by floral dipping. Plants in nutrient soil were cultured to form a large number of immature flower clusters. The monoclone of A. tumefaciens GV3101 was selected and inoculated in liquid LB medium containing kanamycin and rifampicin (50 µg/mL). The monoclone was cultured overnight at 200 rpm and 28 °C. A volume of 2 mL bacterial solution was transferred to a 500 mL flask culture (containing 200 mL liquid LB with 50 µg/mL kanamycin and rifampicin added) and was cultured overnight at 200 rpm and 28 °C. The next day, the OD600 of Agrobacterium solution was 1.8–2.0. The solution was centrifuged at 5000 rpm for 15 min at 4 °C. The supernatant was discarded, and the precipitate of A. tumefaciens was resuspended in 1/2 volume (100 mL) osmotic medium (1/2 Murashige-Skoog, 5% sucrose, 0.5 g/L MES, 10 µg/mL 6-BA, 200 µl/L Silwet L-77, and 150 µM acetyleugenone, pH 5.7), resulting in an OD600 of approximately 1.6. The bacterial solution was adsorbed on the transformed plants using the floral dip method (5 min), wrapped with film to keep it fresh, and cultured overnight, followed by the removal of the film. The plants were cultured until the seeds were ripe, and they were harvested. A mixed disinfectant consisting of 70% ethanol and 30% bleaching water was used to soak the seeds for 3 min, suspend them continuously, and wash them three times with anhydrous ethanol. The dried seeds were evenly dispersed on the surface of solid screening medium containing hygromycin (25 µg/mL). After stratification at 4 °C for 2 days, the seeds were germinated in a light incubator and cultured for 2 weeks at 21 °C and 16 h light/8 h darkness. The development of seedlings and length of roots were used to determine whether they were transformants.
    GUS dyeing and activity analysis
    The expression of GUS reporter gene in Arabidopsis tissues was determined using a GUS staining kit (Solarbio, G3060) following the manufacturer’s instructions. The seedlings, leaves, flowers and siliques to be dyed were immersed in GUS dye solution and incubated overnight at 37 °C. The chlorophyll was removed with 75% ethanol until the background color disappeared completely. The results were documented by photography using a Canon 60d camera.
    The material needed to determine Gus enzyme activity was frozen rapidly with liquid nitrogen, and then ground into powder by ball mill. The extraction buffer solution (50 mM NaH2PO4 (pH 7.0), 10 mM EDTA, 0.1% Triton X-100, 0.1 (w / v) sodium dodecyl sulfonate, 10 mM β-mercaptoethanol) were added to extract protein. After centrifugation at 4 °C, 12,000 r/min for 10 min, the supernatant was taken as protein extract. The protein concentration was determined by Bradford method. 4-MUG, the substrate of GUS reaction, was added and reacted at 37 °C for 30 min. Fluorescence measurement was carried out under the condition of 365 nm excitation light and 455 nm emission light. Three independent biological repeats were conducted. Finally, the GUS enzyme activity value was calculated according to the relative change of product in unit time. More