More stories

  • in

    Parasite intensity drives fetal development and sex allocation in a wild ungulate

    1.
    Stien, A. et al. The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. J. Anim. Ecol. 71, 937–945 (2002).
    Article  Google Scholar 
    2.
    Budischak, S. A., O’Neal, D., Jolles, A. E. & Ezenwa, V. O. Differential host responses to parasitism shape divergent fitness costs of infection. Funct. Ecol. 32, 324–333 (2018).
    Article  Google Scholar 

    3.
    Albon, S. D. et al. The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. Lond. B 269, 1625–1632 (2002).
    CAS  Article  Google Scholar 

    4.
    Festa-Bianchet, M. Numbers of lungworm larvae in feces of bighorn sheep: yearly changes, influence of host sex, and effects on host survival. Can. J. Zool. 69, 547–554 (1991).
    Article  Google Scholar 

    5.
    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).
    Article  Google Scholar 

    6.
    Fitze, P. S., Tschirren, B. & Richner, H. Life history and fitness consequences of ectoparasites. J. Anim. Ecol. 73, 216–226 (2004).
    Article  Google Scholar 

    7.
    Patterson, J. E. H., Neuhaus, P., Kutz, S. J. & Ruckstuhl, K. E. Parasite removal improves reproductive success of female North American red squirrels (Tamiasciurus hudsonicus). PLoS ONE 8, e55779 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Gilbert, S. F. Ecological developmental biology: developmental biology meets the real world. Dev. Biol. 233, 1–12 (2001).
    CAS  PubMed  Article  Google Scholar 

    9.
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos Trans. R. Soc. Lond. B Biol. Sci. 363, 1635–1645 (2008).
    PubMed  Article  Google Scholar 

    10.
    Bowers, E. K. et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology 95, 3027–3034 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Gluckman, P. D., Hanson, M. A., Morton, S. M. B. & Pinal, C. S. Life-long echoes–a critical analysis of the developmental origins of adult disease model. Neonatology 87, 127–139 (2005).
    Article  Google Scholar 

    12.
    Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Early life events and their consequences for later disease: A life history and evolutionary perspective. Am. J. Hum. Biol. 19, 1–19 (2007).
    PubMed  Article  Google Scholar 

    13.
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).
    PubMed  Article  Google Scholar 

    14.
    Wu, G., Bazer, F. W., Wallace, J. M. & Spencer, T. E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337 (2006).
    CAS  PubMed  Article  Google Scholar 

    15.
    Greenwood, P. L. & Bell, A. W. Prenatal nutritional influences on growth and development of ruminants. Recent Adv. Animal Nutr. Aust. 14, 57 (2003).
    Google Scholar 

    16.
    Alexander, G. & Williams, D. Heat stress and development of the conceptus in domestic sheep. J. Agric. Sci. 76, 53–72 (1971).
    Article  Google Scholar 

    17.
    Holland, M. D. & Odde, K. G. Factors affecting calf birth weight: a review. Theriogenology 38, 769–798 (1992).
    CAS  PubMed  Article  Google Scholar 

    18.
    Reynolds, L. P., Ferrell, C. L., Nienaber, J. A. & Ford, S. P. Effects of chronic environmental heat stress on blood flow and nutrient uptake of the gravid bovine uterus and foetus. J. Agric. Sci. 104, 289–297 (1985).
    Article  Google Scholar 

    19.
    Johnson, J. S. et al. The impact of in utero heat stress and nutrient restriction on progeny body composition. J. Therm. Biol. 53, 143–150 (2015).
    PubMed  Article  Google Scholar 

    20.
    Lindström, J. & Kokko, H. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. Biol. Sci. 265, 483–488 (1998).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    de Figueiredo, P., Ficht, T. A., Rice-Ficht, A., Rossetti, C. A. & Adams, L. G. Pathogenesis and Immunobiology of Brucellosis: Review of Brucella-Host Interactions. Am. J. Pathol. 185, 1505–1517 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Donahoe, S. L., Lindsay, S. A., Krockenberger, M., Phalen, D. & Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 4, 216–238 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Robbins, C. T. & Robbins, B. L. Fetal and Neonatal Growth Patterns and Maternal Reproductive Effort in Ungulates and Subungulates. Am. Nat. 114, 101–116 (1979).
    Article  Google Scholar 

    24.
    Martin, R. D. & MacLarnon, A. M. Gestation period, neonatal size and maternal investment in placental mammals.pdf. Nature 313, 220–223 (1985).
    ADS  Article  Google Scholar 

    25.
    O’Callaghan, D. & Boland, M. P. Nutritional effects on ovulation, embryo development and the establishment of pregnancy in ruminants. Anim. Sci. 68, 299–314 (1999).
    Article  Google Scholar 

    26.
    Blackwell, A. D. Helminth infection during pregnancy: insights from evolutionary ecology. Int. J. Womens Health 8, 651–661 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 92, 108–134 (2017).
    PubMed  Article  Google Scholar 

    28.
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Silk, J. B. Local Resource Competition and Facultative Adjustment of Sex Ratios in Relation to Competitive Abilities. Am. Nat. 121, 56–66 (1983).
    Article  Google Scholar 

    30.
    Ryan, C. P., Anderson, W. G., Gardiner, L. E. & Hare, J. F. Stress-induced sex ratios in ground squirrels: support for a mechanistic hypothesis. Behav. Ecol. 23, 160–167 (2012).
    Article  Google Scholar 

    31.
    Cameron, E. Z. Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism. Proc. Biol. Sci. 271, 1723–1728 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schwanz, L. E. & Robert, K. A. Proximate and ultimate explanations of mammalian sex allocation in a marsupial model. Behav. Ecol. Sociobiol. 68, 1085–1096 (2014).
    Article  Google Scholar 

    33.
    Silk, J. B. & Brown, G. R. Local resource competition and local resource enhancement shape primate birth sex ratios. Proc. Biol. Sci. 275, 1761–1765 (2008).
    PubMed  PubMed Central  Google Scholar 

    34.
    Ruckstuhl, K. E., Colijn, G. P., Amiot, V. & Vinish, E. Mother’s occupation and sex ratio at birth. BMC Public Health 10, 269 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Flegr, J. & Kaňková, Š. The effects of toxoplasmosis on sex ratio at birth. Early Hum. Dev. 141, 104874 (2020).
    CAS  PubMed  Article  Google Scholar 

    36.
    Kanková, S. et al. Women infected with parasite Toxoplasma have more sons. Naturwissenschaften 94, 122–127 (2007).
    ADS  PubMed  Article  CAS  Google Scholar 

    37.
    Kanková, S. et al. Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology 134, 1709–1717 (2007).
    PubMed  Article  Google Scholar 

    38.
    Simmons, N. M., Bayer, M. B. & Sinkey, L. O. Demography of Dall’s Sheep in the Mackenzie Mountains Northwest Territories. J. Wildl. Manage 48, 156–162 (1984).
    Article  Google Scholar 

    39.
    Aleuy, O. A. et al. Diversity of gastrointestinal helminths in Dall’s sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators. PLoS ONE 13, e0192825 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Geist, V. Mountain Sheep: A Study in Behavior and Evolution (University of Chicago Press, Chicago, 1971).
    Google Scholar 

    41.
    Rachlow, J. L. & Bowyer, R. T. Interannual Variation in Timing and Synchrony of Parturition in Dall’s Sheep. J. Mammal. 72, 487–492 (1991).
    Article  Google Scholar 

    42.
    Goodrowe, K. L., Smak, B., Presley, N. & Nlonfort, S. L. Reproductive, behavioral, and endocrine characteristics of the Dall’s Sheep (Ovis dalli). Zoo Biol. 15, 45–54 (1996).
    Article  Google Scholar 

    43.
    Bunnell, F. L. & Nichols, L. Natural history of thinhorn sheep. In Mountain sheep of North America (ed. Valdez, R.) 23–77 (University of Arizona Press, Arizona, 1999).
    Google Scholar 

    44.
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 20, 3256–3269 (2014).
    ADS  PubMed  Article  Google Scholar 

    45.
    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).
    PubMed  Google Scholar 

    46.
    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).
    PubMed  Article  Google Scholar 

    47.
    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69 (2009).
    Article  Google Scholar 

    49.
    Pettorelli, N., Pelletier, F. & von Hardenberg, A. Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates. Ecology 88(2), 381–390 (2007).
    PubMed  Article  Google Scholar 

    50.
    Sanchez, G. PLS Path Modeling with R. (Trowchez Editions, Berkeley, 2013). http://www.gastonsanchez.com/PLSPathModelingwithR.pdf.

    51.
    Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    52.
    Hair, J. F., Ringle, C. M. & Sarstedt, M. Partial least squares structural equation modeling: rigorous applications, better results and higher acceptance. Long Range Plann. 46, 1–12 (2013).
    Article  Google Scholar 

    53.
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Article  Google Scholar 

    54.
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).
    Article  Google Scholar 

    55.
    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for partial least squares path modeling (PLS-PM). R package version 0.4. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2017).
    Article  Google Scholar 

    56.
    Lê, S., Josse, J., Husson, F. Facto. & Mine, R. An R Package for multivariate analysis. J. Stat. Softw. https://doi.org/10.18637/jss.v025.i0 (2008).
    Article  Google Scholar 

    57.
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308, 358–360 (1984).
    ADS  Article  Google Scholar 

    58.
    De Roos, A. M., Galic, N. & Heesterbeek, H. How resource competition shapes individual life history for nonplastic growth: ungulates in seasonal food environments. Ecology 90, 945–960 (2009).
    PubMed  Article  Google Scholar 

    59.
    Festa-Bianchet, M. Individual Differences, Parasites, and the Costs of Reproduction for Bighorn Ewes (Ovis canadensis). J. Anim. Ecol. 58, 785–795 (1989).
    Article  Google Scholar 

    60.
    Festa-Bianchet, M., Jorgenson, J. T. & Wuhart, W. D. Early weaning in bighorn sheep, Ovis canadensis affects growth of males but not of females. Behav. Ecol. 5, 21–27 (1994).
    Article  Google Scholar 

    61.
    Singer, F. J., Williams, E., Miller, M. W. & Zeigenfuss, L. C. Population Growth, Fecundity, and Survivorship in Recovering Populations of Bighorn Sheep. Restor. Ecol. 8, 75–84 (2000).
    Article  Google Scholar 

    62.
    Simmons, N. M. Seasonal Ranges of Dall’s Sheep, Mackenzie Mountains Northwest Territories. Arctic 35, 512–518 (1982).
    Article  Google Scholar 

    63.
    Neilsen, C. & Neiland, K. Sheep Disease Report, Project Progress Report, Federal Aid in Wildlife Restoration. (1974).

    64.
    Kutz, S. J. et al. Chapter 2: parasites in ungulates of Arctic North America and Greenland—a view of contemporary diversity, ecology, and impact in a world under change. In Adv Parasit (ed. Rollinson, D.) 99–252 (Academic Press, Cambridge, 2012).
    Google Scholar 

    65.
    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. The effect of Marshallagia marshalli on Serum Gastrin concentrations in experimentally infected lambs. J. Parasitol. 102, 436–439 (2016).
    CAS  PubMed  Article  Google Scholar 

    66.
    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. Pathophysiology of Marshallagia marshalli in experimentally infected lambs. Parasitology 140, 1762–1767 (2013).
    PubMed  Article  Google Scholar 

    67.
    Simcock, D. C. et al. Hypergastrinaemia, abomasal bacterial population densities and pH in sheep infected with Ostertagia circumcincta. Int. J. Parasitol. 29, 1053–1063 (1999).
    CAS  PubMed  Article  Google Scholar 

    68.
    Jacobs, D., Fox, M., Gibbons, L. & Hermosilla, C. Principles of Veterinary Parasitology (Wiley, Hoboken, 2015).
    Google Scholar 

    69.
    Berger, T. Fertilization in ungulates. Anim. Reprod. Sci. 42, 351–360 (1996).
    MathSciNet  Article  Google Scholar 

    70.
    Hayward, A. D. Causes and consequences of intra- and inter-host heterogeneity in defence against nematodes. Parasite Immunol. https://doi.org/10.1111/pim.12054 (2013).
    Article  PubMed  Google Scholar 

    71.
    Hayward, A. D. et al. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS Biol. 12, e1001917 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Reimers, E. Growth rate and body size differences in Rangifer, a study of causes and effects. Rangifer 3, 3–15 (1983).
    Article  Google Scholar 

    73.
    Sontakke, S. D. Monitoring and controlling ovarian activities in wild ungulates. Theriogenology 109, 31–41 (2018).
    PubMed  Article  Google Scholar 

    74.
    Festa-Bianchet, M. Birthdate and survival in bighorn lambs (Ovis canadensis). J. Zool. 214, 653–661 (1988).
    Article  Google Scholar 

    75.
    Feder, C., Martin, J. G. A., Festa-Bianchet, M., Bérubé, C. & Jorgenson, J. Never too late? Consequences of late birthdate for mass and survival of bighorn lambs. Oecologia 156, 773–781 (2008).
    ADS  PubMed  Article  Google Scholar 

    76.
    Hewison, A. J. M. & Gaillard, J.-M. Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends Ecol. Evol. 14, 229–234 (1999).
    CAS  PubMed  Article  Google Scholar 

    77.
    Leimar, O. Life-history analysis of the Trivers and Willard sex-ratio problem. Behav. Ecol. 7, 316–325 (1996).
    Article  Google Scholar 

    78.
    Sheldon, B. C. & West, S. A. Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am. Nat. 163, 40–54 (2004).
    PubMed  Article  Google Scholar 

    79.
    Julliard, R. Sex-specific dispersal in spatially varying environments leads to habitat-dependent evolutionary stable offspring sex ratios. Behav. Ecol. 11, 421–428 (2000).
    Article  Google Scholar 

    80.
    Schindler, S. et al. Sex-specific demography and generalization of the Trivers-Willard theory.PDF. Nature 526, 249–252 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    81.
    Festa-Bianchet, M. Offspring sex ratio studies of mammals: Does publication depend upon the quality of the research or the direction of the results?. Écoscience 3, 42–44 (1996).
    Article  Google Scholar 

    82.
    Douhard, M. Offspring sex ratio in mammals and the Trivers-Willard hypothesis: In pursuit of unambiguous evidence. Bioessays 39(9), 1700043 (2017).
    Article  Google Scholar 

    83.
    Larson, M. A., Kimura, K., Michael Kubisch, H. & Michael Roberts, R. Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-τ. Proc. Natl. Acad. Sci. U. S. A. 98, 9677–9682 (2001).

    84.
    Cameron, E. Z., Lemons, P. R., Bateman, P. W. & Bennett, N. C. Experimental alteration of litter sex ratios in a mammal. Proc. Biol. Sci. 275, 323–327 (2008).
    PubMed  Google Scholar 

    85.
    Shea-Donohue, T., Qin, B. & Smith, A. Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol. 39, e12422 (2017).
    Article  Google Scholar 

    86.
    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).
    PubMed  Article  Google Scholar 

    87.
    Kutz, S. J., Hoberg, E. P., Molnár, P. K., Dobson, A. & Verocai, G. G. A walk on the tundra: Host–parasite interactions in an extreme environment. Int. J. Parasitol. Parasites Wildl. 3, 198–208 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    88.
    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).
    PubMed  Article  Google Scholar 

    89.
    Rose, H., Hoar, B., Kutz, S. J. & Morgan, E. R. Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants. Int. J. Parasitol. Parasites Wildl. 3, 209–219 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Morgan, E. R. et al. Assessing risks of disease transmission between wildlife and livestock: The Saiga antelope as a case study. Biol. Conserv. 131, 244–254 (2006).
    Article  Google Scholar  More

  • in

    COVID19: an announced pandemic

    1.
    Barrett, R., Kuzawa, C. W., McDade, T. & Armelagos, G. J. Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu. Rev. Anthropol. 27, 247–271 (1998).
    Article  Google Scholar 
    2.
    McMichael, A. J. Human culture, ecological change, and infectious disease: are we experiencing history’s fourth great transition? Ecosyst. Health 7, 107–115 (2001).
    Article  Google Scholar 

    3.
    Horby, P. W., Hoa, N. ., Pfeiffer, D. U. & Wertheim, H. F. L. Drivers of emerging zoonotic infectious diseases. Confronting Emerging Zoonoses (eds Yamada, A., Kahn, L., Kaplan, B., Monath, T., Woodall, J. & Conti, L.) (Springer Press, Tokyo, 2014).

    4.
    Wilcox, B. A. & Gubler, D. J. Disease ecology and the global emergence of zoonotic pathogens. Environ. Health Prev. Med. 10, 263–272 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Wilcox, B. A. & Colwell, R. R. Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. Ecohealth 2, 244–257 (2005).
    PubMed Central  Article  PubMed  Google Scholar 

    7.
    Hooper, D. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
    PubMed  Article  CAS  Google Scholar 

    8.
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Woo, P. C. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180–187 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Wolfe, N. D., Daszak, P., Kilpatrick, A. M. & Burke, D. S. Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg. Infect. Dis. 11, 1822–1827 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lai, M. M. C. & Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res. 48, 1–100 (1997).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Ziebuhr, J. The Coronavirus replicase. Curr. Top. Microbiol. Immunol. 287, 57–94 (2005).
    PubMed  CAS  Google Scholar 

    14.
    Brian, D. A. & Baric, R. S. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 287, 1–30 (2005).
    PubMed  CAS  Google Scholar 

    15.
    Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Walls, A. et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114–117 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Hoffmann, M., Hofmann-Winkler, H. & Poehlmann, S. Priming time: how cellular proteases arm coronavirus spike proteins, in Activation of viruses by host proteases. (eds Eva Boettger –Friebertsaeuser, Wolfgang Gartner, Hans Dieter Klenk) 71-–98 (Springer, Cham, 2018).

    18.
    Li, F., Li, W., Farzan, M. & Harrison, S. C. Interactions between Sars coronavirus and its receptors. Adv. Exp. Med. Biol. 581, 229–234 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Hoffmann, M. et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 1–10 (2020).
    Article  CAS  Google Scholar 

    20.
    Hoffmann, M. et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Preprint at BioRxiv https://doi.org/10.1101/2020.01.31.929042 (2020).

    21.
    Snijder, E. J., Decroly, E. & Ziebhur, J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96, 59–126 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Gao, Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Preprint at BioRxiv https://doi.org/10.1101/2020.04.08.032763 (2020).

    24.
    Zhang, X. et al. Nucleocapsid protein of SARS.CoV activates Interleukin-6 expression through cellular transcription factor NF-kB. Virology 365, 324–335 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
    PubMed  Article  CAS  Google Scholar 

    27.
    Yang, X.-L. et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J. Virol. 90, 3253–3256 (2016).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    28.
    Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).
    PubMed  Article  CAS  Google Scholar 

    29.
    Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).
    PubMed  Article  CAS  Google Scholar 

    30.
    Tang, X. C. et al. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80, 7481–7490 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Cui, J., Li, F. & Shi, Z. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
    PubMed  Article  CAS  Google Scholar 

    32.
    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the Spike protein. Curr. Biol. 30, 2196–2203 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Wang, N. et al. Serological evidence of bat SARS-related Coronavirus infection in humans, China. Virol. Sin. 33, 104–107 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Joyjinda, Y. et al. First complete genome sequence of human coronavirus HKU1 from a non hill bat guano miner in Thailand. Microbiol. Resour. Announc. 8, 1–3 (2019).
    Article  Google Scholar 

    35.
    Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).
    PubMed  Article  CAS  Google Scholar 

    36.
    Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).
    PubMed  Article  CAS  Google Scholar 

    37.
    Centers for Disease Control. Prevalence of IgG antibody to SARS-associated coronavirus in animal traders: Guangdong Province, China. MMWR 52, 986–987 (2003).
    Google Scholar 

    38.
    Normile, D. Viral DNA match spurs China’s civet roundup. Science 303, 292 (2004).
    PubMed  Article  CAS  Google Scholar 

    39.
    Watts, J. China culls wild animals to prevent new SARS threat. Lancet 363, 134 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Xu, H. F. et al. An epidemiologic investigation on infection with severe acute respiratory syndrome coronavirus in wild animals traders in Guangzhou. Zhonghua Yu Fang Yi Xue Za Zhi 38, 81–83 (2004).
    PubMed  Google Scholar 

    41.
    Wu, D. et al. Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J. Virol. 79, 2620–26255 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Kan, B. et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892–11900 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Wang, L. F. et al. Review of bats and SARS. Emerg. Infect. Dis. 12, 1834–1840 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Tommy, T. L. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).
    Article  CAS  Google Scholar 

    45.
    Liu, P. et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLOS Pathog. 16, 1–13 (2020).
    Google Scholar 

    46.
    Damas, J. et al. Broad host range of SARS-CoV-2 predicted Comparative and structural analysis of ACE2 in vertebrates. Preprint at BioRxiv https://doi.org/10.1101/2020.04.16.045302 (2020).

    47.
    Lee, J. et al. No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife trade via Malaysia. Preprint at BioRxiv https://doi.org/10.1101/2020.06.19.158717 (2020).

    48.
    Xiang, X. Sichuan villager capture 33 bats isolated from their homes and have eaten them. Morning Post (February, 2020).

    49.
    Xu, D. Huanan market has more than a dozen of wildlife animals. China Business Network (March, 2020).

    50.
    Zhang, L., Zhu, G., Jones, G. & Zhang, S. Conservation of bats in China: problems and recommendations. Oryx 43, 179–182 (2009).
    Article  Google Scholar 

    51.
    Yu, W. B., Tang, G. D., Zhang, L. & Corlett, R. T. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool. Res. 41, 247–257 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Chen, W. et al. SARS-associated coronavirus transmitted from human to pig. Emerg. Infect. Dis. 11, 446–448 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Ling, H. Beijing Xinfa wholesale market temporarily closed! Imported salmon case board detected with new coronavirus. Science and Technology Daily Beijing (2020).

    54.
    Josephine M. Coronavirus: China’s first confirmed COVID-19 case traced back to November 17th. South China Morning Post (2020).

    55.
    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Cohen, J. Wuhan seafood market may not be source of novel virus spreading globally. Science 367, 234–235 (2020).
    PubMed  Article  CAS  Google Scholar 

    57.
    Deslandes, A. et al. SARS-CoV-2 was already spreading in France in late December 2019. Int. J. Antimicrob. Agents https://doi.org/10.1016/j.ijantimicag.2020.106006 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Forster, P., Forster, L., Renfrew, C. & Forster, M. M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl Acad. Sci. USA 117, 9241–9243 (2020).
    PubMed  Article  CAS  Google Scholar 

    59.
    Korber, B. et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. Preprint at BioRxiv https://doi.org/10.1101/2020.04.29.069054 (2020).

    60.
    Bhattacharyya, C., et al. Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. Preprint at BioRxiv https://doi.org/10.1101/2020.05.04.075911 (2020).

    61.
    Zhang, L. et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. Preprint at BioRxiv https://doi.org/10.1101/2020.06.12.148726 (2020).

    62.
    Balboni, A., Palladini, A., Bogliani, G. & Battilani, M. Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol. Infect. 139, 216–219 (2011).
    PubMed  Article  CAS  Google Scholar 

    63.
    Mousavizadeh, L. & Ghasemi, S. Genotype and phenotype of COVID-19: Their role in patghogenesis. J. Microbiol. Immunol. Infection, 1–5 https://doi.org/10.1016/j.jmil.2020.03.022 (2020).

    64.
    Ellinghaus D. et al. Genome-wide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med., 1–13 https://doi.org/10.1056/NEJMoa2020283 (2020).

    65.
    Zeberg, H. & Paabo, S. The major genetic risk factor for severe COVID-19 is inherited from Neandertals. Preprint at BioRxiv https://doi.org/10.1101/2020.07.03.186296 (2020).

    66.
    Drexler, J. F. et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84, 11336–11349 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Pfefferle, S. et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats. Ghana. Emerg. Infect. Dis. 15, 1377–1384 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Quan, P. L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. mBio 1(4), e00208–e00210 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Ren, W. et al. Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J. Gen. Virol. 87, 3355–3359 (2006).
    PubMed  Article  CAS  Google Scholar 

    70.
    Wu, Z. et al. ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus. J. Infect. Dis. 213, 579–583 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Lau, S. K. P. et al. Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. J. Virol. 89, 10532–10547 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Mapping carbon accumulation potential from global natural forest regrowth

    1.
    Rogelj, J. et al. Paris Agreement climate proposals need boost to keep warming well below 2 °C. Nat. Clim. Chang. 534, 631–639 (2016).
    CAS  Google Scholar 
    2.
    Masson-Delmotte, V. et al. (eds) Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (IPCC, 2018).

    3.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).

    5.
    Dong, H., MacDonald, J. D., Ogle, S. M., Sanz Sanchez, M. J. & Rocha, M. T. (eds) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).

    6.
    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).
    ADS  Google Scholar 

    7.
    International Union for Conservation of Nature infoFLR https://infoflr.org/ (IUCN, accessed 20 June 2018).

    8.
    Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. Lond. B 375, 20190120 (2020).
    Google Scholar 

    10.
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    11.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Lewis, S., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Regenerate natural forests to store carbon. Nature 568, 25–28 (2019).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manage. 352, 109–123 (2015).
    Google Scholar 

    14.
    United Nations Adoption of the Paris Agreement https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (UN, 2015).

    15.
    Holl, K. D. & Brancalion, P. S. Tree planting is not a simple solution. Science 368, 580–582 (2020).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 4, 503–507 (2014).
    ADS  Google Scholar 

    17.
    Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. Ann. Missouri Botan. Gardens 102, 251–257 (2017).
    Google Scholar 

    18.
    Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2014).
    ADS  Google Scholar 

    19.
    Meli, P. et al. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS One 12, e0171368 (2017).
    PubMed  PubMed Central  Google Scholar 

    20.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    21.
    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. Lond. B 285, 20172577 (2018).
    Google Scholar 

    22.
    Shimamoto, C. Y., Padial, A. A., Da Rosa, C. M. & Marques, M. C. M. Restoration of ecosystem services in tropical forests: a global meta-analysis. PLoS One 13, e0208523 (2018).
    PubMed  PubMed Central  Google Scholar 

    23.
    Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, eaas9143 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    24.
    Betts, R. A. Climate science: afforestation cools more or less. Nat. Geosci. 4, 504–505 (2011).
    ADS  CAS  Google Scholar 

    25.
    Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl Acad. Sci. USA 115, 2776–2781 (2018).
    CAS  PubMed  Google Scholar 

    26.
    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds) The Global Assessment Report on Biodiversity and Ecosystem Services https://ipbes.net/global-assessment (IPBES, 2019).

    27.
    Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291, 73–86 (2013).
    Google Scholar 

    28.
    Tuomisto, H. L., Ellis, M. J. & Haastrup, P. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2014).
    Google Scholar 

    29.
    Arneth, A. et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, And Greenhouse Gas Fluxes In Terrestrial Ecosystems https://www.ipcc.ch/srccl/ (IPCC, 2019).

    30.
    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).
    ADS  Google Scholar 

    31.
    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).
    ADS  CAS  Google Scholar 

    33.
    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Paul, K. I. & Roxburgh, S. H. Predicting carbon sequestration of woody biomass following land restoration. For. Ecol. Manage. 460, 117838 (2020).
    Google Scholar 

    35.
    Anderson-Teixeira, K. J. et al. ForC: a global database of forest carbon stocks and fluxes. Ecology 99, 1507 (2018).
    PubMed  Google Scholar 

    36.
    Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).
    ADS  CAS  PubMed  Google Scholar 

    37.
    Stocker, T.F. et al (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

    38.
    Zahawi, R. a., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).
    Google Scholar 

    39.
    Ashton, M. S. et al. Restoration of rain forest beneath pine plantations: a relay floristic model with special application to tropical South Asia. For. Ecol. Manage. 329, 351–359 (2014).
    Google Scholar 

    40.
    Teixeira, A. M. G., Soares-Filho, B. S., Freitas, S. R. & Metzger, J. P. Modeling landscape dynamics in an Atlantic rainforest region: implications for conservation. For. Ecol. Manage. 257, 1219–1230 (2009).
    Google Scholar 

    41.
    Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).
    Google Scholar 

    42.
    Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. of Chicago Press, 2014).

    43.
    Speed, J. D. M., Martinsen, V., Mysterud, A., Holand, O. & Austrheim, G. Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems 17, 1138–1150 (2014).
    CAS  Google Scholar 

    44.
    Reid, J. L. et al. How long do restored ecosystems persist? Ann. Missouri Botan. Gardens 102, 258–265 (2017).
    Google Scholar 

    45.
    Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).
    Google Scholar 

    46.
    Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
    ADS  Google Scholar 

    47.
    Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 8165 (2008).
    ADS  Google Scholar 

    48.
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).
    Google Scholar 

    49.
    Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).
    ADS  CAS  PubMed  Google Scholar 

    50.
    Crouzeilles, R., Ferreira, M. S. & Curran, M. Forest restoration: a global dataset for biodiversity and vegetation structure. Ecology 97, 2167 (2016).
    PubMed  Google Scholar 

    51.
    Deng, L., Shangguan, Z. P. & Sweeney, S. ‘Grain for Green’ driven land use change and carbon sequestration on the Loess Plateau, China. Sci. Rep. 4, 7039 (2015).
    Google Scholar 

    52.
    Bárcena, T. G. et al. Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob. Change Biol. 20, 2393–2405 (2014).
    ADS  Google Scholar 

    53.
    Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013).
    Google Scholar 

    54.
    Deng, L., Zhu, G., Tang, Z. & Shangguan, Z. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
    Google Scholar 

    55.
    Zhang, K., Dang, H., Zhang, Q. & Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Glob. Change Biol. 21, 2762–2772 (2015).
    ADS  Google Scholar 

    56.
    Becknell, J. M., Kissing, L. & Powers, J. S. Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For. Ecol. Manage. 276, 88–95 (2012).
    Google Scholar 

    57.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 1–15 (2016).
    Google Scholar 

    58.
    Guo, Q. & Ren, H. Productivity as related to diversity and age in planted versus natural forests. Glob. Ecol. Biogeogr. 23, 1461–1471 (2014).
    Google Scholar 

    59.
    Krankina, O. NPP Boreal Forests: Siberian Scots Pine Forests, Russia, 1968–1974, R1 http://daac.ornl.gov (Oak Ridge National Laboratory, 1995).

    60.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
    PubMed  PubMed Central  Google Scholar 

    61.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 

    62.
    Chew, S. T. & Gallagher, J. B. Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep. 8, 2553 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    63.
    James, J., Devine, W., Harrison, R. & Terry, T. Deep soil carbon: quantification and modeling in subsurface layers. Soil Sci. Soc. Am. J. 78, S1–S10 (2014).
    Google Scholar 

    64.
    Aalde, H. et al. Forest land. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 4 (IPCC, 2006).

    65.
    Aalde, H. et al. Generic methodologies applicable to multiple land-use categories. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 2 (IPCC, 2006).

    66.
    Russell, M. B. et al. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manage. 350, 107–128 (2015).
    Google Scholar 

    67.
    Pribyl, D. W. A critical review of the convential SOC to SOM conversion factor. Geoderma 156, 75–83 (2010).
    ADS  CAS  Google Scholar 

    68.
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).
    PubMed  PubMed Central  Google Scholar 

    69.
    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).
    ADS  Google Scholar 

    70.
    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Google Scholar 

    71.
    Swedish National Forest Inventory Sample Plot Data https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/listor/sample-plot-data/ (SNFI, 2019).

    72.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Google Scholar 

    73.
    Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

    74.
    Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
    MATH  Google Scholar 

    75.
    Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).
    CAS  PubMed  Google Scholar 

    76.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. & Thirion, B. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    MathSciNet  MATH  Google Scholar 

    77.
    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    78.
    Shono, K., Cadaweng, E. A. & Durst, P. B. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 15, 620–626 (2007).
    Google Scholar 

    79.
    Nieuwenhuis, M. Terminology of forest management. In International Union of Forest Research Organizations World Series Vol. 9-en (IUFRO, 2000).

    80.
    Winrock International AFOLU Carbon Calculator. The Agroforestry Tool: Underlying Data and Methods (USAID and Winrock International, 2014).

    81.
    Vieira, D. L. M., Holl, K. D. & Peneireiro, F. M. Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor. Ecol. 17, 451–459 (2009).
    Google Scholar  More

  • in

    Abiotic and past climatic conditions drive protein abundance variation among natural populations of the caddisfly Crunoecia irrorata

    1.
    West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, Oxford, 2003).
    Google Scholar 
    2.
    Beldade, P., Mateus, A. R. A. & Keller, R. A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 20, 1347–1363 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Dall, S. R. X., McNamara, J. M. & Leimar, O. Genes as cues: Phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends Ecol. Evol. 30, 327–333 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
    Article  Google Scholar 

    5.
    Ovaskainen, O. & Meerson, B. Stochastic models of population extinction. Trends Ecol. Evol. 25, 643–652 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Lawson, C. R., Vindenes, Y., Bailey, L. & van de Pol, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Mayr, E. The growth of biological thought: Diversity, evolution, and inheritance. Am. Biol. Teach. 46, 462–463 (1984).
    Article  Google Scholar 

    8.
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
    ADS  Article  Google Scholar 

    9.
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Riddell, E. A., Odom, J. P., Damm, J. D. & Sears, M. W. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 4, eaar5471 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Noble, D. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. 93, 16–26 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Whitehead, A. & Crawford, D. L. Variation within and among species in gene expression: Raw material for evolution. Mol. Ecol. 15, 1197–1211 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Regulatory changes underlying expression differences within and between Drosophila species. Nat. Genet. 40, 346–350 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gonzalez, E. G. et al. Population proteomics of the European hake (Merluccius merluccius). J. Proteome Res. 9, 6392–6404 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Papakostas, S. et al. A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (Coregonus lavaretus ). Mol. Ecol. 21, 3516–3530 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Chevalier, F. et al. Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 4, 1372–1381 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Mueller, R. S. et al. Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 6, 374 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12, 119–125 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. In Advances in Genetics Vol. 13 (eds Caspari, E. W. & Thoday, J. M.) 115–155 (Academic Press, New York, 1965).
    Google Scholar 

    21.
    Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Fisher, M. A. & Oleksiak, M. F. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics 8, 108 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Pujolar, J. M. et al. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel. BMC Genomics 13, 507 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Davies, S. W., Marchetti, A., Ries, J. B. & Castillo, K. D. Thermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coral. Front. Mar. Sci. 3, 112 (2016).

    25.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Bludau, I. & Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0231-2 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Lodish, H. et al. Molecular Cell Biology (W. H. Freeman, New York, 2000).
    Google Scholar 

    30.
    Watson, J. D. Molecular Biology of the Gene (Pearson Education, London, 2004).
    Google Scholar 

    31.
    Giardi, M. T., Masojídek, J. & Godde, D. Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol. Plant. 101, 635–642 (1997).
    CAS  Article  Google Scholar 

    32.
    Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135, 216–226 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: From theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Nikinmaa, M., Tiihonen, K. & Paajaste, M. Adrenergic control of red cell pH in salmonid fish: Roles of the sodium/proton exchange, Jacobs-Stewart cycle and membrane potential. J. Exp. Biol. 154, 257–271 (1990).
    CAS  Google Scholar 

    35.
    Pavlov, M. Y. & Ehrenberg, M. Optimal control of gene expression for fast proteome adaptation to environmental change. Proc. Natl. Acad. Sci. USA 110, 20527–20532 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Adams, S. M., Giesy, J. P., Tremblay, L. A. & Eason, C. T. The use of biomarkers in ecological risk assessment: recommendations from the Christchurch conference on Biomarkers in Ecotoxicology. Biomarkers 6, 1–6 (2001).
    CAS  PubMed  Article  Google Scholar 

    37.
    Diz, A. P., Truebano, M. & Skibinski, D. O. F. The consequences of sample pooling in proteomics: An empirical study. Electrophoresis 30, 2967–2975 (2009).
    CAS  PubMed  Article  Google Scholar 

    38.
    Karp, N. A. & Lilley, K. S. Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9, 388–397 (2009).
    CAS  PubMed  Article  Google Scholar 

    39.
    Bennike, T. B. et al. Comparing the proteome of snap frozen, RNAlater preserved, and formalin-fixed paraffin-embedded human tissue samples. EuPA Open Proteomics 10, 9–18 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Johnsen, I. K. et al. Evaluation of a standardized protocol for processing adrenal tumor samples: Preparation for a European adrenal tumor bank. Horm. Metab. Res. 42, 93–101 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Kruse, C. P. S., Basu, P., Luesse, D. R. & Wyatt, S. E. Transcriptome and proteome responses in RNAlater preserved tissue of Arabidopsis thaliana. PLoS ONE 12, e0175943–e0175943 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    43.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.3-13. https://CRAN.R-project.org/package=raster. (2020).

    44.
    Cox, J. et al. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Ebner, J. N., Ritz, D. & von Fumetti, S. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Mol. Ecol. 28, 4453–4469 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Jimenez-Morales, D., Campos, A.R. & Von Dollen, J. artMS: Analytical R tools for Mass Spectrometry. R package version 1.5.3. https://github.com/bioadavidjm/artMS. (2020).

    49.
    Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. R package version 1.6.20. https://CRAN.R-project.org/package=VennDiagram. (2018).

    50.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2019).

    51.
    Carrillo, B., Yanofsky, C., Laboissiere, S., Nadon, R. & Kearney, R. E. Methods for combining peptide intensities to estimate relative protein abundance. Bioinform. Oxf. Engl. 26, 98–103 (2010).
    CAS  Article  Google Scholar 

    52.
    Bolstad, B. preprocessCore: A collection of pre-processing functions. R package version 1.48.0. https://github.com/bmbolstad/proprocessCore. (2019).

    53.
    Hastie, T., Tibshirani, R., Balasubramanian, N. & Chu, G. impute: Imputation for microarray data. R package version 1.60.0. (2019).

    54.
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
    Article  Google Scholar 

    55.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. (2019).

    56.
    Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559–559 (2008).
    Article  CAS  Google Scholar 

    57.
    Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–498 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Campbell-Staton, S. C., Bare, A., Losos, J. B., Edwards, S. V. & Cheviron, Z. A. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline. Mol. Ecol. 27, 2243–2255 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Horvath, S. Weighted network analysis: Applications in genomics and systems biology (Springer, New York, 2011).
    Google Scholar 

    60.
    Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

    61.
    Smyth, G. K. limma: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds Gentleman, R. et al.) 397–420 (Springer, New York, 2005). https://doi.org/10.1007/0-387-29362-0_23.
    Google Scholar 

    62.
    Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.17.4. (Comprehensive R Archive Network (CRAN), 2018).

    63.
    Stearns, S. C. & Koella, J. C. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40, 893–913 (1986).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection (Blakiston, Philadelphia, 1949).
    Google Scholar 

    65.
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
    Article  Google Scholar 

    66.
    Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5-10. https://CRAN.R-project.org/package=geosphere. (2019).

    67.
    Rieder, V. et al. DISMS2: A flexible algorithm for direct proteome-wide distance calculation of LC-MS/MS runs. BMC Bioinform. 18, 148 (2017).

    68.
    Grüning, B. et al. Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.38.1. (2019).

    75.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Fang, H. & Gough, J. dcGO: Database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Res. 41, D536–D544 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Kuhn, N. J., Setlow, B. & Setlow, P. Manganese(II) activation of 3-phosphoglycerate mutase of Bacillus megaterium: pH-Sensitive interconversion of active and inactive forms. Arch. Biochem. Biophys. 306, 342–349 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Chander, M., Setlow, B. & Setlow, P. The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn2+ and is pH sensitive. Can. J. Microbiol. 44, 759–767 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Ferrer, M., Chernikova, T. N., Yakimov, M. M., Golyshin, P. N. & Timmis, K. N. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21, 1266–1267 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Strocchi, M., Ferrer, M., Timmis, K. N. & Golyshin, P. N. Low temperature-induced systems failure in Escherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics 6, 193–206 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Visudtiphole, V., Watthanasurorot, A., Klinbunga, S., Menasveta, P. & Kirtikara, K. Molecular characterization of Calreticulin: A biomarker for temperature stress responses of the giant tiger shrimp Penaeus monodon. Aquaculture 308, S100–S108 (2010).
    CAS  Article  Google Scholar 

    82.
    Wehrly, K. E., Wang, L. & Mitro, M. Field-based estimates of thermal tolerance limits for trout: Incorporating exposure time and temperature fluctuation. Trans. Am. Fish. Soc. 136, 365–374 (2007).
    Article  Google Scholar 

    83.
    Alberts, B. et al. Molecular Biology of the Cell (Garland Science, New York, 2002).
    Google Scholar 

    84.
    Hagner-Holler, S., Pick, C., Girgenrath, S., Marden, J. H. & Burmester, T. Diversity of stonefly hexamerins and implication for the evolution of insect storage proteins. Insect Biochem. Mol. Biol. 37, 1064–1074 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Descazeaud, V., Mestre, E., Marquet, P. & Essig, M. Calcineurin regulation of cytoskeleton organization: A new paradigm to analyse the effects of calcineurin inhibitors on the kidney. J. Cell. Mol. Med. 16, 218–227 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Urra, H. et al. IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat. Cell Biol. 20, 942–953 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Tong, M. & Jiang, Y. FK506-binding proteins and their diverse functions. Curr. Mol. Pharmacol. 9, 48–65 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    88.
    Miranti, C. K. & Brugge, J. S. Sensing the environment: A historical perspective on integrin signal transduction. Nat. Cell Biol. 4, E83–E90 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).
    CAS  Article  Google Scholar 

    90.
    Snape, J. R., Maund, S. J., Pickford, D. B. & Hutchinson, T. H. Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat. Toxicol. 67, 143–154 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Nikinmaa, M. & Rytkönen, K. T. Functional genomics in aquatic toxicology—Do not forget the function. Aquat. Toxicol. 105, 16–24 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    92.
    Kearney, E. B., Ackrell, B. A. C., Mayr, M. & Singer, T. P. Activation of succinate dehydrogenase by anions and pH. J. Biol. Chem. 249, 2016–2020 (1974).
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Bissoli, G. et al. Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J. Cell Mol. Biol. 70, 704–716 (2012).
    CAS  Article  Google Scholar 

    94.
    Simčič, T. & Brancelj, A. Effects of pH on electron transport system (ETS) activity and oxygen consumption in Gammarus fossarum, Asellus aquaticus and Niphargus sphagnicolus. Freshw. Biol. 51, 686–694 (2006).
    Article  CAS  Google Scholar 

    95.
    Kadrmas, J. L. & Beckerle, M. C. The LIM domain: From the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol. 5, 920–931 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    van der Flier, A. & Sonnenberg, A. Structural and functional aspects of filamins. Biochim. Biophys. Acta BBA Mol. Cell Res. 1538, 99–117 (2001).
    Article  Google Scholar 

    97.
    Sun, H. Q., Yamamoto, M., Mejillano, M. & Yin, H. L. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274, 33179–33182 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    98.
    Diskin, S. et al. Galectin-8 promotes cytoskeletal rearrangement in trabecular meshwork cells through activation of rho signaling. PLoS ONE 7, e44400 (2012).

    99.
    Motizuki, M., Yokota, S. & Tsurugi, K. Effect of low pH on organization of the actin cytoskeleton in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1780, 179–184 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Wang, F., Sampogna, R. V. & Ware, B. R. pH dependence of actin self-assembly. Biophys. J. 55, 293–298 (1989).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Sperelakis, N. Cell Physiology Source book (Academic Press, Amsterdam, 2012).
    Google Scholar 

    102.
    Tomanek, L. Proteomics to study adaptations in marine organisms to environmental stress. J. Proteomics 105, 92–106 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    103.
    Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E. & Sokolova, I. M. Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: Evidence for oxidative stress. J. Exp. Biol. 214, 1836–1844 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    104.
    Koritzinsky, M. et al. Two phases of disulfide bond formation have differing requirements for oxygen. J. Cell Biol. 203, 615–627 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    L’Haridon, F. et al. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog. 7, e1002148 (2011).

    106.
    Richards, A. G. Studies on arthropod cuticle—XIII: The penetration of dissolved oxygen and electrolytes in relation to the multiple barriers of the epicuticle. J. Insect Physiol. 1, 23–39 (1957).
    CAS  Article  Google Scholar 

    107.
    Wang, K. et al. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4, e537–e537 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Szablowska-Gadomska, I., Zayat, V. & Buzanska, L. Influence of low oxygen tensions on expression of pluripotency genes in stem cells. Acta Neurobiol. Exp. (Warsz.) 71, 86–93 (2011).
    Google Scholar 

    109.
    Dreffs, A., Henderson, D., Dmitriev, A. V., Antonetti, D. A. & Linsenmeier, R. A. Retinal pH and acid regulation during metabolic acidosis. Curr. Eye Res. 43, 902–912 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    110.
    Raeker, M. Ö et al. Targeted deletion of the zebrafish obscurin A RhoGEF domain affects heart, skeletal muscle and brain development. Dev. Biol. 337, 432 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    111.
    Serafim, A. et al. Application of an integrated biomarker response index (IBR) to assess temporal variation of environmental quality in two Portuguese aquatic systems. Ecol. Indic. 19, 215–225 (2012).
    CAS  Article  Google Scholar 

    112.
    Berra, E., Forcella, M., Giacchini, R., Rossaro, B. & Parenti, P. Biomarkers in Caddisfly Larvae of the Species Hydropsyche pellucidula (Curtis, 1834) (Trichoptera: Hydropsychidae) measured in natural populations and after short term exposure to fenitrothion. Bull. Environ. Contam. Toxicol. 76, 863–870 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    113.
    Wernersson, A.-S. et al. The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ. Sci. Eur. 27, 7 (2015).
    Article  CAS  Google Scholar 

    114.
    Ryan, J. A. & Hightower, L. E. Stress proteins as molecular biomarkers for environmental toxicology. In Stress-Inducible Cellular Responses (eds Feige, U. et al.) (Birkhäuser, Basel, 1996). https://doi.org/10.1007/978-3-0348-9088-5_28.
    Google Scholar 

    115.
    Sanders, B. M. Stress proteins in aquatic organisms: An environmental perspective. Crit. Rev. Toxicol. 23, 49–75 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    116.
    Barata, C. et al. Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ. Toxicol. Chem. 26, 370–379 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    117.
    Dorts, J. et al. Ecotoxicoproteomics in gills of the sentinel fish species, Cottus gobio, exposed to perfluorooctane sulfonate (PFOS). Aquat. Toxicol. 103, 1–8 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    118.
    Daborn, P. J. et al. A single P450 allele associated with insecticide resistance in Drosophila. Science 297, 2253–2256 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    119.
    Amichot, M. et al. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem. 271, 1250–1257 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Dunkov, B. C. et al. The Drosophila cytochrome P450 gene Cyp6a2: Structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol. 16, 1345–1356 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Nat. Preced. https://doi.org/10.1038/npre.2010.4282.2 (2010).
    Article  Google Scholar 

    122.
    Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform. 14, 91 (2013).
    Article  Google Scholar 

    123.
    Kim, S. & Coulombe, P. A. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat. Rev. Mol. Cell Biol. 11, 75–81 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    124.
    Parker, A. L., Kavallaris, M. & McCarroll, J. A. Microtubules and their role in cellular stress in cancer. Front. Oncol. 4, 153 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    125.
    Skelly, D. A., Ronald, J. & Akey, J. M. Inherited variation in gene expression. Annu. Rev. Genomics Hum. Genet. 10, 313–332 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    126.
    Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    127.
    Arias, M. B., Poupin, M. J. & Lardies, M. A. Plasticity of life-cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: Effect of temperature variability. J. Therm. Biol. 36, 355–362 (2011).
    CAS  Article  Google Scholar 

    128.
    Place, S. P. & Hofmann, G. E. Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish. Polar Biol. 28, 261–267 (2005).
    Article  Google Scholar 

    129.
    Hotaling, S. et al. Mountain stoneflies may tolerate warming streams: evidence from organismal physiology and gene expression. bioRxiv 2019.12.16.878926 (2019). https://doi.org/10.1101/2019.12.16.878926.

    130.
    Cuellar, J. et al. Assisted protein folding at low temperature: Evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins. Biol. Open 3, 261–270 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    131.
    Cantonati, M., Füreder, L., Gerecke, R., Jüttner, I. & Cox, E. J. Crenic habitats, hotspots for freshwater biodiversity conservation: Toward an understanding of their ecology. Freshw. Sci. 31, 463–480 (2012).
    Article  Google Scholar 

    132.
    Hofmann, G. E. & Todgham, A. E. Living in the now: Physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    133.
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: An integrative view. Philos. Trans. R. Soc. B Biol. Sci. 362, 2233–2258 (2007).
    Article  CAS  Google Scholar 

    134.
    Shah, A. A. et al. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct. Ecol. https://doi.org/10.1111/1365-2435.12906 (2018).
    Article  Google Scholar 

    135.
    Treanor, H. B., Giersch, J. J., Kappenman, K. M., Muhlfeld, C. C. & Webb, M. A. H. Thermal tolerance of meltwater stonefly Lednia tumana nymphs from an alpine stream in Waterton-Glacier International Peace Park, Montana, USA. Freshw. Sci. 32, 597–605 (2013).
    Article  Google Scholar 

    136.
    Forsman, A. & Wennersten, L. Inter-individual variation promotes ecological success of populations and species: Evidence from experimental and comparative studies. Ecography 39, 630–648 (2016).
    Article  Google Scholar 

    137.
    Cogne, Y. et al. Comparative proteomics in the wild: Accounting for intrapopulation variability improves describing proteome response in a Gammarus pulex field population exposed to cadmium. Aquat. Toxicol. 214, 105244 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    138.
    Gotelli, N. J., Ellison, A. M. & Ballif, B. A. Environmental proteomics, biodiversity statistics and food-web structure. Trends Ecol. Evol. 27, 436–442 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    139.
    Liu, F. et al. New Perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLOS Pathog. 2, e29 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    140.
    Nold, S. C. & Zwart, G. Patterns and governing forces in aquatic microbial communities. Aquat. Ecol. 32, 17–35 (1998).
    CAS  Article  Google Scholar 

    141.
    Pass, D. A. et al. The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environ. Microbiol. 17, 1884–1896 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    142.
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
    CAS  Article  Google Scholar  More

  • in

    Play fighting social networks do not predict injuries from later aggression

    1.
    Smith, P. L. Play fighting and real fighting. Perspectives on their relationship. In New Aspects of Human Ethology (eds Schmitt, A. et al.) 47–64 (Plenum Press, New York, 1997).
    Google Scholar 
    2.
    Burghardt, G. M. The Genesis of Animal Play: Testing the Limits (MIT Press, Cambridge, 2005).
    Google Scholar 

    3.
    Byers, J. A. Play in ungulates. In Play in Animals and Humans (ed. Smith, P. K.) 43–65 (Blackwell, New York, 1984).
    Google Scholar 

    4.
    Thompson, K. V. Self assessment in juvenile play. In Animal Play: Evolutionary, Comparative, and Ecological Perspectives (eds Bekoff, M. & Byers, J. A.) 183–204 (Cambridge University Press, Cambridge, 1998).
    Google Scholar 

    5.
    Špinka, M., Newberry, R. C. & Bekoff, M. Mammalian play: training for the unexpected. Q. Rev. Biol. 76, 141–168 (2001).
    PubMed  Article  Google Scholar 

    6.
    Pellis, S. M. & Pellis, V. C. What is play fighting and what is it good for?. Learn. Behav. 45, 355–366 (2017).
    PubMed  Article  Google Scholar 

    7.
    Smith, P. K. Does play matter? Functional and evolutionary aspects of animal and human play. Behav. Brain Sci. 5, 139–184 (1982).
    Article  Google Scholar 

    8.
    Rothstein, A. & Griswold, G. R. Age and sex preferences for social partners by juvenile bison bulls, Bison bison. Anim. Behav. 41, 227–237 (1991).
    Article  Google Scholar 

    9.
    Watson, D. M. & Croft, D. B. Playfighting in captive red-necked wallabies, Macropus rufogriseus banksianus. Behaviour 126, 219–245 (1993).
    Article  Google Scholar 

    10.
    Bekoff, M. Social play behaviour: cooperation, fairness, trust and the evolution of morality. J. Consciousness Stud. 8, 81–90 (2001).
    Google Scholar 

    11.
    Petit, O., Bertrand, F. & Thierry, B. Social play in crested and Japanese macaques: testing the covariation hypothesis. Dev. Psychobiol. 50, 399–407 (2008).
    PubMed  CAS  Article  Google Scholar 

    12.
    Horback, K. Nosing around: play in pigs. Anim. Behav. Cogn. 1, 186–196 (2014).
    Article  Google Scholar 

    13.
    Pellis, S. M. & Pellis, V. C. Play-fighting in the Syrian golden hamster Mesocricetus auratus Waterhouse, and its relationship to serious fighting during postweaning development. Dev. Psychobiol. 21, 323–337 (1988).
    PubMed  CAS  Article  Google Scholar 

    14.
    Sharpe, L. L. Play fighting does not affect subsequent fighting success in wild meerkats. Anim. Behav. 69, 1023–1029 (2005).
    Article  Google Scholar 

    15.
    Blumstein, D. T., Chung, L. K. & Smith, J. E. Early play may predict later dominance relationships in yellow-bellied marmots (Marmota faviventris). Proc. R. Soc. B. 280, 20130485 (2013).
    PubMed  Article  Google Scholar 

    16.
    Weller, J. E., Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. Socialisation and its effect on play behaviour and aggression in the domestic pig (Sus scrofa). Sci. Rep. 9, 4180 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Cenni, C. & Fawcett, T. W. The co-evolution of juvenile play-fighting and adult competition. Ethology 124, 290–301 (2017).
    Article  Google Scholar 

    18.
    Pellis, S. M. & Pellis, V. C. Play fighting in Visayan warty pigs (Sus cebifrons): insights on restraint and reciprocity in the maintenance of play. Behaviour 153, 727–747 (2016).
    Article  Google Scholar 

    19.
    Šilerová, J., Špinka, M., Šarova, R. & Algers, B. Playing and fighting by piglets around weaning on farms, employing individual or group housing of lactating sows. Appl. Anim. Behav. Sci. 124, 83–89 (2010).
    Article  Google Scholar 

    20.
    Mauget, R. Behavioural and reproductive strategies in wild forms of Sus scrofa (European wild boar and feral pigs). In The Welfare of Pigs (ed. Sybesma, W.) 3–13 (Martinus Nijhoff, The Hague, 1981).
    Google Scholar 

    21.
    Mendl, M. The social behaviour of non-lactating sows and its implications for managing sow aggression. Pig J. 34, 9–20 (1995).
    Google Scholar 

    22.
    Gonyou, H. W. The social behaviour of pigs. In Social Behaviour in Farm Animals (eds Keeling, L. J. & Gonyou, H. W.) 147–176 (CABI, Wallingford, 2001).
    Google Scholar 

    23.
    Turner, S. P. et al. The accumulation of skin lesions and their use as a predictor of individual aggressiveness in pigs. Appl. Anim. Behav. Sci. 96, 245–259 (2006).
    Article  Google Scholar 

    24.
    Jensen, P. & Yngvesson, J. Aggression between unacquainted pigs: sequential assessment and effects of familiarity and weight. Appl. Anim. Behav. Sci. 58, 49–61 (1998).
    Article  Google Scholar 

    25.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. The influence of experience on contest assessment strategies. Sci. Rep. 7, 14492 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Martin, J. E., Ison, S. H. & Baxter, E. M. The influence of neonatal environment on piglet play behaviour and post-weaning social and cognitive development. Appl. Anim. Behav. Sci. 163, 69–79 (2015).
    Article  Google Scholar 

    27.
    Govindarajulu, P., Hunte, W., Vermeer, L. A. & Horrocks, J. A. The ontogeny of social play in a feral troop of vervet monkeys (Cercopithecus aethiops sabaeus): the function of early play. Int. J. Primatol. 14, 701–719 (1993).
    Article  Google Scholar 

    28.
    Thompson, K. V. Play-partner preferences and the function of social play in infant sable antelope, Hippotragus niger. Anim. Behav. 52, 1143–1155 (1996).
    Article  Google Scholar 

    29.
    Llamazares-Martín, C., Scopa, C., Guillén-Salazar, F. & Palagi, E. Strong competition does not always predict play asymmetry: the case of South American sea lions (Otaria flavescens). Ethology 123, 270–282 (2017).
    Article  Google Scholar 

    30.
    Lutz, M. C., Ratsimbazafy, J. & Judge, P. G. Use of social network models to understand play partner choice strategies in three primate species. Primates https://doi.org/10.1007/s10329-018-00708-7 (2018).
    Article  Google Scholar 

    31.
    Foister, S. et al. Social network properties predict chronic aggression in commercial pig systems. PLoS ONE 13, e0205122 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Stanton, M. A. & Mann, J. Early social networks predict survival in wild bottlenose dolphins. PLoS ONE 7, e47508 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Gilby, I. C. et al. Fitness benefits of coalitionary aggression in male chimpanzees. Behav. Ecol. Sociobiol. 67, 373 (2013).
    PubMed  Article  Google Scholar 

    34.
    Cheney, D. L., Silk, J. B. & Seyfarth, R. M. Network connections, dyadic bonds and fitness in wild female baboons. R. Soc. Open Sci. 3, 160255 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Lehmann, J., Majolo, B. & McFarland, R. The effects of social network position on the survival of wild Barbary macaques, Macaca sylvanus. Behav. Ecol. 27, 20–28 (2016).
    Article  Google Scholar 

    36.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. Advantages of social skills for contest resolution. R. Soc. Open Sci. 6, 181456 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    D’Eath, R. B. & Pickup, H. E. Behaviour of young growing pigs in a resident-intruder test designed to measure aggressiveness. Aggress. Behav. 28, 401–415 (2002).
    Article  Google Scholar 

    38.
    Koolhaas, J. M. et al. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J. Vis. Exp. 77, e4367 (2013).
    Google Scholar 

    39.
    Luescher, U. A., Friendship, R. M. & McKeown, D. B. Evaluation of methods to reduce fighting among regrouped gilts. Can. J. Anim. Sci. 70, 363–370 (1990).
    Article  Google Scholar 

    40.
    Turner, S. P., Sinclair, A. G. & Edwards, S. A. The interaction of liveweight and the degree of competition on drinking behaviour of growing pigs at different group sizes. Appl. Anim. Behav. Sci. 67, 321–334 (2000).
    PubMed  CAS  Article  Google Scholar 

    41.
    Newberry, R. C., Wood-Gush, D. G. M. & Hall, J. W. Playful behaviour of piglets. Behav. Process. 17, 205–216 (1988).
    CAS  Article  Google Scholar 

    42.
    Fraser, D., Phillips, P. A., Thompson, B. K. & Tennessen, T. Effect of straw on the behavior of growing pigs. Appl. Anim. Behav. Sci. 30, 307–318 (1991).
    Article  Google Scholar 

    43.
    Brown, S. M., Peters, R., Nevison, I. M. & Lawrence, A. B. Playful pigs: evidence of consistency and change in play depending on litter and developmental stage. Appl. Anim. Behav. Sci. 198, 36–43 (2018).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    44.
    Brown, S. M., Klaffenböck, M., Nevison, I. M. & Lawrence, A. B. Evidence for litter differences in play behaviour in pre-weaned pigs. Appl. Anim. Behav. Sci. 172, 17–25 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Asher, L. et al. Recent advances in the analysis of behavioural organization and interpretation as indicators of animal welfare. J. R. Soc. Interface 6, 1103–1119 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Büttner, K., Scheffler, K., Czycholl, I. & Krieter, J. Network characteristics and development of social structure of agonistic behaviour in pigs across three repeated rehousing and mixing events. Appl. Anim. Behav. Sci. 168, 24–30 (2015).
    Article  Google Scholar 

    48.
    Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).
    Article  Google Scholar 

    49.
    Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29, 555–564 (2007).
    Article  Google Scholar 

    50.
    Madden, J. R., Drewe, J. A., Pearce, G. P. & Clutton-Brock, T. H. The social network structure of a wild meerkat population: 3. Position of individuals within networks. Behav. Ecol. Sociobiol. 65, 1857–1871 (2011).
    Article  Google Scholar 

    51.
    Farine, D. assortnet: calculate the assortativity coefficient of weighted and binary networks. R package version 0.12 (2016).

    52.
    Shizuka, D. & Farine, D. R. Measuring the robustness of network community structure using assortativity. Anim. Behav. 112, 237–246 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2(1), 74 (2007).
    Google Scholar 

    55.
    Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. Package ‘mass’. Cran R 538 (2013).

    56.
    Taylor, G. T. Fighting in juvenile rats and the ontogeny of agonistic behavior. J. Comp. Physiol. Psychol. 94, 953–961 (1980).
    Article  Google Scholar 

    57.
    Pellis, S. M., Pellis, V. C. & Kolb, B. Neonatal testosterone augmentation increases juvenile play fighting but does not influence the adult dominance relationships of male rats. Aggress. Behav. 18, 437–447 (1992).
    CAS  Article  Google Scholar 

    58.
    Chaloupková, H., Illman, G., Bartoš, L. & Špinka, M. The effect of pre-weaning housing on the play and agonistic behaviour of domestic pigs. Appl. Anim. Behav. Sci. 103, 25–34 (2007).
    Article  Google Scholar 

    59.
    Flack, J. C., Girvan, M., de Waal, F. B. M. & Krakauer, D. C. Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006).
    ADS  PubMed  CAS  Article  Google Scholar 

    60.
    Abell, J. et al. A social network analysis of social cohesion in a constructed pride: implications for ex situ reintroduction of the African lion (Panthera leo). PLoS ONE 8, e82541 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Shimada, M. & Sueur, C. Social play among juvenile wild Japanese macaques (Macaca fuscata) strengthens their social bonds. Am. J. Primatol. 80, e22728 (2018).
    Article  Google Scholar 

    62.
    Shimada, M. & Sueur, C. The importance of social play networks for wild chimpanzees at Mahale Mountains National Park, Tanzania. Am. J. Primatol. 76, 1025–1036 (2014).
    PubMed  Article  Google Scholar 

    63.
    Camerlink, I., Arnott, G., Farish, M. & Turner, S. P. Complex contests and the influence of aggressiveness in pigs. Anim. Behav. 121, 71–78 (2016).
    Article  Google Scholar 

    64.
    Antonacci, D., Norscia, I. & Palagi, E. Stranger to familiar: wild strepsirhines manage xenophobia by playing. PLoS ONE 5, e13218 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Gentsch, C., Lichtsteiner, M., Frischknecht, H. R., Feer, H. & Siegfried, B. Isolation-induced locomotor hyperactivity and hypoalgesia in rats are prevented by handling and reversed by resocialization. Physiol. Behav. 43, 13–16 (1988).
    PubMed  CAS  Article  Google Scholar 

    66.
    Potegal, M. & Einon, D. Aggressive behaviors in adult rats deprived of playfighting experience as juveniles. Dev. Psychobiol. 22, 159–172 (1989).
    PubMed  CAS  Article  Google Scholar 

    67.
    Drea, C. M., Hawk, J. E. & Glickman, S. E. Aggression decreases as play emerges in infant spotted hyaenas: preparation for joining the clan. Anim. Behav. 51, 1323–1336 (1996).
    Article  Google Scholar 

    68.
    Newberry, R. C. & Wood-Gush, D. G. M. Development of some behaviour patterns in piglets under semi-natural conditions. Anim. Prod. 46, 103–109 (1988).
    Google Scholar 

    69.
    Petersen, H. V., Vestergaard, K. & Jensen, P. Integration of piglets into social groups of free-ranging domestic pigs. Appl. Anim. Behav. Sci. 23, 223–236 (1989).
    Article  Google Scholar 

    70.
    Ellis, L. et al. Sex Differences: Summarizing More Than a Century of Scientific Research (Psychology Press, New York, 2008).
    Google Scholar 

    71.
    Carter, R. N., Romanow, C. A., Pellis, S. M. & Lingle, S. Play for prey: do deer fawns play to develop species-typical anti-predator tactics or to prepare for the unexpected?. Anim. Behav. 156, 31–40 (2019).
    Article  Google Scholar 

    72.
    Byers, J. A. Play partner preferences in Siberian ibex, Capra ibex sibirica. Z. Tierpsychol. 53, 23–40 (1980).
    Article  Google Scholar 

    73.
    Berger, J. The ecology, structure and functions of social play in bighorn sheep (Ovis canadensis). J. Zool. 192, 531–542 (1980).
    Article  Google Scholar 

    74.
    Sachs, B. D. & Harris, V. S. Sex differences and developmental changes in selected juvenile activities (play) of domestic lambs. Anim. Behav. 26, 678–684 (1978).
    Article  Google Scholar 

    75.
    Reinhardt, V., Mutiso, F. & Reinhardt, A. Social behaviour and social relationships between female and male prepubertal bovine calves (Bos indicus). Appl. Anim. Behav. Sci. 4, 43–54 (1978).
    Google Scholar 

    76.
    Crowell-Davis, S. L., Houpt, K. A. & Kane, L. Play development in Welsh pony (Equus caballus) foals. Appl. Anim. Behav. Sci. 18, 119–131 (1987).
    Article  Google Scholar 

    77.
    Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. Maternal investment results in better foal condition through increased play behaviour in horses. Anim. Behav. 76, 1511–1518 (2008).
    Article  Google Scholar 

    78.
    Dobao, M. T., Rodribanez, J. & Siliŏ, L. Choice of companions in social play in piglets. Appl. Anim. Behav. Sci. 13, 259–266 (1985).
    Article  Google Scholar 

    79.
    D’Eath, R. D. & Turner, S. P. The natural behaviour of the pig. In The Welfare of Pigs (ed. Marchant-Forde, J. N.) 13–45 (Springer, Berlin, 2007).
    Google Scholar  More

  • in

    Ethnopharmacological study of native medicinal plants and the impact of pastoralism on their loss in arid to semiarid ecosystems of southeastern Iran

    1.
    Asfaw, Z. & Tadesse, M. Prospects for sustainable use and development of wild food plants in Ethiopia. Econ. Bot. 55, 47–62 (2001).
    Article  Google Scholar 
    2.
    Della, A., Paraskeva-Hadjichambi, D. & Hadjichambis, A. C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2, 34 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    WHO. Health of Indigenous Peoples. Factsheets No 326 (World Health Organisation, Geneva, 2007).
    Google Scholar 

    4.
    Kawarty, A. M. A. M. A., Behçet, L. & Cakilcioğlu, U. An ethnobotanical survey of medicinal plants in Ballakayati (Erbil, North Iraq). Turk. J. Bot. 44, 345–357 (2020).
    Article  Google Scholar 

    5.
    Satıl, F. & Selvi, S. Ethnobotanical features of Ziziphora L. (Lamiaceae) Taxa in Turkey. Int. J. Nat. Life Sci. 4, 56–65 (2020).
    Google Scholar 

    6.
    Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present) (Nobel Medicine Publication, Istanbul, 1999).
    Google Scholar 

    7.
    Nikbakht, A., Kafi, M. & Haghighi, M. The abilities and potentials of medicinal plants production and herbal medicine in Iran. Acta Hortic. 790, 259–262. https://doi.org/10.17660/actahortic.2008.790.38 (2008).
    Article  Google Scholar 

    8.
    Zeder, M. A. & Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Rÿser, R. C. Indigenous people and traditional knowledge. Berkshire Encyclopedia of Sustainability. https://www.academia.edu/841635/Indigenous_and_Traditional_Knowledge (2011).

    10.
    Gemedo-Dalle, T., Maass, B. L. & Isselstein, J. Plant biodiversity and ethnobotany of Borana pastoralists in Southern Oromia, Ethiopia. Econ. Bot. 59, 43–65 (2005).
    Article  Google Scholar 

    11.
    Little, P. D. Pastoral ecologies: Rethinking interdisciplinary paradigms and the political ecology of pastoralism in East Africa. In African Savannas: Global Narratives and Local Knowledge of Environmental Change (eds Bassett, T. J. & Crummey, D.) 161–177 (James Currey, Oxford, 2003).
    Google Scholar 

    12.
    Boardman, J., Poesen, J. & Evans, R. Socio-economic factors in soil erosion and conservation. Environ. Sci. Policy 6, 1–6 (2003).
    Article  Google Scholar 

    13.
    Gaikwad, J. et al. Combining ethnobotany and informatics to discover knowledge from data. In Ethnomedicinal Plants: Revitalizing of Traditional Knowledge of Herbs (eds Rai, M. et al.) 447–457 (Science Publishers, Enfield, 2011).
    Google Scholar 

    14.
    Brouwer, N. et al. An ethnopharmacological study of medicinal plants in New South Wales. Molecules 10, 1252–1262 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lambert, J., Srivastava, J. P. & Vietmeyer, N. Medicinal plants. World Bank Technical Papers (1997).

    16.
    Walter, K. S. & Gillett, H. J. 1997 IUCN Red List of Threatened Plants (IUCN, World Conservation Union, Cambridge, 1998).
    Google Scholar 

    17.
    Ansari-Renani, H. R., Rischkowsky, B., Mueller, J. P., Momen, S. M. S. & Moradi, S. Nomadic pastoralism in southern Iran. Pastor. Res. Policy Pract. 3, 11 (2013).
    Article  Google Scholar 

    18.
    Tashakkori, A. & Teddlie, C. SAGE Handbook of Mixed Methods in Social & Behavioral Research (SAGE, Thousand Oaks, 2010).
    Google Scholar 

    19.
    Rechinger, K.H. (ed.) Flora Iranica (Graz, 1963–2012).

    20.
    Assadi, M. et al. (eds.). Flora of Iran: No 1-89 (Iran Research Institute of Forests and Rangelands, Tehran , 1989–2016).

    21.
    Napagoda, M. T., Sundarapperuma, T., Fonseka, D., Amarasiri, S. & Gunaratna, P. An ethnobotanical study of the medicinal plants used as anti-inflammatory remedies in Gampaha District, Western Province, Sri Lanka. Scientifica (Cairo) 2018, 9395052 (2018).
    Google Scholar 

    22.
    Bano, A. et al. Quantitative ethnomedicinal study of plants used in the skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. J. Ethnobiol. Ethnomed. 10, 43 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Reyes-García, V., Huanca, T., Vadez, V., Leonard, W. & Wilkie, D. Cultural, practical, and economic value of wild plants: A quantitative study in the Bolivian Amazon. Econ. Bot. 60, 62–74 (2006).
    Article  Google Scholar 

    24.
    Tardío, J. & Pardo-de-Santayana, M. Cultural importance indices: A comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ. Bot. 62, 24–39 (2008).
    Article  Google Scholar 

    25.
    Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38, 297–306 (1997).
    Google Scholar 

    26.
    González-Hernández, M. P., Mouronte, V., Romero, R., Rigueiro-Rodríguez, A. & Mosquera-Losada, M. R. Plant diversity and botanical composition in an Atlantic heather-gorse dominated understory after horse grazing suspension: Comparison of a continuous and rotational management. Glob. Ecol. Conserv. 23, e01134 (2020).
    Article  Google Scholar 

    27.
    Davies, K. W., Bates, J. D. & Boyd, C. S. Response of planted sagebrush seedlings to cattle grazing applied to decrease fire probability. Rangel. Ecol. Manag. https://doi.org/10.1016/j.rama.2020.05.002 (2020).
    Article  Google Scholar 

    28.
    Hailu, H. Analysis of vegetation phytosociological characteristics and soil physico-chemical conditions in Harishin Rangelands of Eastern Ethiopia. Land 6, 4 (2017).
    Article  Google Scholar 

    29.
    Spellmeier, J., Périco, E., Haetinger, C., Freitas, E. M. & Morás, A. P. B. Effect of grazing on the plant community of a southern Brazilian swamp. Floresta e Ambiente 26, e20180339 (2019).
    Article  Google Scholar 

    30.
    Curtis, J. T. & McIntosh, R. P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32, 476–496 (1951).
    Article  Google Scholar 

    31.
    Mishra, R. Ecology Workbook (IBH Publishing Company, Oxford, 1968).
    Google Scholar 

    32.
    Murphy, K. P. Machine Learning a Probabilistic Perspective (MIT Press, Cambridge, 2012).
    Google Scholar 

    33.
    Tang, C., Yi, Y., Yang, Z. & Sun, J. Risk analysis of emergent water pollution accidents based on a Bayesian network. J. Environ. Manag. 165, 199–205 (2016).
    Article  Google Scholar 

    34.
    Taylor, D., Hicks, T. & Champod, C. Using sensitivity analyses in Bayesian networks to highlight the impact of data paucity and direct future analyses: A contribution to the debate on measuring and reporting the precision of likelihood ratios. Sci. Justice 56, 402–410 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Alimirzaei, F., Mohammadi Kalayeh, A., Shahraki, M. R. & Behmanesh, B. Local knowledge of medicinal plants from the point of view of nomads in the rangelands of Chehel-Kaman, North Khorasan province. J. Indig. Knowl. 4, 156–201 (2017).
    Google Scholar 

    36.
    Hosseini, M., Forouzeh, R. & Barani, H. Identification and investigation of ethnobotany of some medicinal plants in Razavi Khorasan Province. J. Med. Plants 18, 212–231 (2019).
    Google Scholar 

    37.
    Okoye, T. C., Uzor, P. F., Onyeto, C. A. & Okereke, E. K. Safe African medicinal plants for clinical studies. In Toxicological Survey of African Medicinal Plants (ed. Kuete, V.) 535–555 (Elsevier, Amsterdam, 2014).
    Google Scholar 

    38.
    Freidin, B. & Timmermans, S. Complementary and alternative medicine for children’s asthma: Satisfaction, care provider responsiveness, and networks of care. Qual. Health Res. 18, 43–55 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Simbo, D. J. An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon. J. Ethnobiol. Ethnomed. 6, 8 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Tangjitman, K., Wongsawad, C., Kamwong, K., Sukkho, T. & Trisonthi, C. Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailand. J. Ethnobiol. Ethnomed. 11, 27 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Chen, Y. et al. Phytochemical profiles and antioxidant activities in six species of ramie leaves. PLoS ONE 9, e108140–e108140 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Bahmani, M., Baharvand-Ahmadi, B., Tajeddini, P., Rafieian-Kopaei, M. & Naghdi, N. Identification of medicinal plants for the treatment of kidney and urinary stones. J. Ren. Inj. Prev. 5, 129–133 (2016).
    PubMed  Article  Google Scholar 

    43.
    Ahmed, H. M. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J. Ethnobiol. Ethnomed. 12, 8 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Nimrouzi, M. & Zarshenas, M. M. Phytochemical and pharmacological aspects of Descurainia sophia Webb ex Prantl: Modern and traditional applications. Avicenna J. Phytomed. 6, 266–272 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Miraj, S. & Kiani, S. Pharmacological activities of Carum carvi L. Der. Pharm. Lett. 8, 135–138 (2016).
    CAS  Google Scholar 

    46.
    de Lucena, R. F. P., de Lima Araújo, E. & de Albuquerque, U. P. Does the local availability of woody Caatinga plants (Northeastern Brazil) explain their use value. Econ. Bot. 61, 347–361 (2007).
    Article  Google Scholar 

    47.
    Thomas, E., Vandebroek, I. & Van Damme, P. valuation of forests and plant species in Indigenous Territory and National Park Isiboro-Sécure, Bolivia. Econ. Bot. 63, 229–241 (2009).
    Article  Google Scholar 

    48.
    Berlin, B. The common flora = the medicinal flora: Theoretical implications of a comparison of medical ethnobotanical and general floristic surveys in the Chiapas Highlands. In Symposium “Ethnobotany of southern Mexico” (Society of Economic Botany, 2003).

    49.
    Guèze, M. et al. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon. Econ. Bot. 68, 1–15 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ouarghidi, A., Powell, B., Martin, G. J. & Abbad, A. Traditional sustainable harvesting knowledge and distribution of a vulnerable wild medicinal root (A. pyrethrum var. pyrethrum) in Ait M’hamed Valley, Morocco. Econ. Bot. 71, 83–95 (2017).
    Article  Google Scholar 

    51.
    Posthouwer, C., Verheijden, T. M. S. & van Andel, T. R. A rapid sustainability assessment of wild plant extraction on the Dutch Caribbean Island of St. Eustatius. Econ. Bot. 70, 320–331 (2016).
    Article  Google Scholar 

    52.
    Papageorgiou, D., Bebeli, P. J., Panitsa, M. & Schunko, C. Local knowledge about sustainable harvesting and availability of wild medicinal plant species in Lemnos Island, Greece. J. Ethnobiol. Ethnomed. 16, 36 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Donaghy, D. J. & Fulkerson, W. J. The importance of water-soluble carbohydrate reserves on regrowth and root growth of Lolium perenne (L.). Grass Forage Sci. 52, 401–407 (1997).
    CAS  Article  Google Scholar 

    54.
    González-Tejero, M. R. et al. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. J. Ethnopharmacol. 116, 341–357 (2008).
    PubMed  Article  Google Scholar 

    55.
    Tuttolomondo, T. et al. Ethnobotanical investigation on wild medicinal plants in the Monti Sicani Regional Park (Sicily, Italy). J. Ethnopharmacol. 153, 568–586 (2014).
    PubMed  Article  Google Scholar 

    56.
    Weber, K. T. & Horst, S. Desertification and livestock grazing: The roles of sedentarization, mobility and rest. Pastor. Res. Policy Pract. 1, 19 (2011).
    Article  Google Scholar 

    57.
    Miara, M. D., Bendif, H., Ait Hammou, M. & Teixidor-Toneu, I. Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. J. Ethnopharmacol. 219, 248–256 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Rana, D., Bhatt, A. & Lal, B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari’s) of Churah subdivision, district Chamba, Western Himalaya. J. Ethnobiol. Ethnomed. 15, 10 (2019).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota

    1.
    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 1–10 (2017).
    Article  Google Scholar 

    3.
    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Marchesi, J. R. et al. The gut microbiota and host health: A new clinical frontier. Gut 65, 330–339 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lee, W. J. & Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of microbiota in immunity and inflammation. Cell 157, 121–141 (2018).
    Article  CAS  Google Scholar 

    8.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Pickard, J. M. & Núñez, G. Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. Am. J. Pathol. 189, 1300–1310 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Rosshart, S. P. et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171, 1015–1028 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Blanga-Kanfi, S. et al. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. T. Roy. Soc. B 370, 20140295 (2015).
    Article  Google Scholar 

    14.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Weldon, L. et al. The gut microbiota of wild mice. PLoS ONE 10, 1–15 (2015).
    Article  CAS  Google Scholar 

    16.
    Lavrinienko, A., et al. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME J 12 (2018).

    17.
    Lavrinienko, A., Tukalenko, E., Mappes, T. & Watts, P. C. Skin and gut microbiomes of a wild mammal respond to different environmental cues. Microbiome 6, 209 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Lavrinienko, A. et al. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment. J. Anim. Ecol. In press, https://doi.org/10.1111/1365-2656.13342 (2020).

    19.
    Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotech. 33, 1103–1108 (2015).
    CAS  Article  Google Scholar 

    20.
    Pan, H. et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. GigaScience 7, 1–8 (2018).
    CAS  Google Scholar 

    21.
    Hutterer, R., et al. Myodes glareolus. The IUCN Red List of Threatened Species e.T4973A115070929 (2016); erratum (2017).

    22.
    Lonn, E. et al. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc. Natl. Acad. Sci. USA 114, 3690–3695 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Van Cann, J., Koskela, E., Mappes, T., Sims, A. & Watts, P. C. Intergenerational fitness effects of the early life environment in a wild rodent. J. Anim. Ecol. 88, 1355–1365 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Kohl, K. D., Sadowska, E. T., Rudolf, A. M., Dearing, M. D. & Koteja, P. Experimental evolution on a wild mammal species results in modifications of gut microbial communities. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 

    25.
    Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).
    Article  Google Scholar 

    26.
    Lagkouvardos, I. et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7, 1–15 (2019).
    Article  Google Scholar 

    27.
    Tonteri, E. J. et al. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 17, 72–75 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc Natl. Acad. Sci. USA 112, 7039–7044 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasite. Vector. 8, 13–15 (2015).
    Article  Google Scholar 

    31.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP254056 (2020).

    32.
    Didion, J. P., Martin, M. & Collins, F. S. Atropos: Specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e3720 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 1–8 (2018).
    Article  CAS  Google Scholar 

    35.
    Li, D. et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Li, W. et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Sommer, D. D. et al. Minimus: A fast, lightweight genome assembler. BMC Bioinform. 8, 1–11 (2007).
    Article  CAS  Google Scholar 

    38.
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Binsanity: Unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ 5, e3035 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Parks, D. H. et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Delmont, T. O. & Eren, A. M. Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ 4, e1839 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Campbell, J. H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. USA. 110, 5540–5545 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Chen, L.-X. et al. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
    Article  CAS  Google Scholar 

    45.
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, 501–504 (2005).
    Article  CAS  Google Scholar 

    47.
    Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Edgar, R. C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 1–19 (2004).
    Article  CAS  Google Scholar 

    50.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. figshare https://doi.org/10.6084/m9.figshare.c.4910601 (2020).

    54.
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Ecol. Evol. 27, 105–117 (2019).
    CAS  Google Scholar  More

  • in

    Crop climate suitability mapping on the cloud: a geovisualization application for sustainable agriculture

    1.
    Campbell, B. M. et al. Reducing risks to food security from climate change. Glob. Food Secur. 11, 34–43 (2016).
    Article  Google Scholar 
    2.
    Nair, P. K. R. Grand challenges in agroecology and land use systems. Front. Environ. Sci. 2, 1 (2014).
    Google Scholar 

    3.
    Connolly-Boutin, L. & Smit, B. Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Change 16, 385–399 (2016).
    Article  Google Scholar 

    4.
    Maxwell, D. The political economy of urban food security in Sub-Saharan Africa. World Dev. 27, 1939–1953 (1999).
    Article  Google Scholar 

    5.
    IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds. Shukla, P. R. et al.) (2019).

    6.
    Altieri, M. A., Nicholls, C. I., Henao, A. & Lana, M. A. Agroecology and the design of climate change-resilient farming systems. Agron. Sust. Dev. 35, 869–890 (2015).
    Article  Google Scholar 

    7.
    Tadross, M. et al. Growing-season rainfall and scenarios of future change in southeast Africa: Implications for cultivating maize. Clim. Res. 40, 147–161 (2009).
    Article  Google Scholar 

    8.
    Challinor, A., Wheeler, T., Garforth, C., Craufurd, P. & Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Clim. Change 83, 381–399 (2007).
    ADS  Article  Google Scholar 

    9.
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 114, 9326–9331 (2017).
    CAS  PubMed  Article  Google Scholar 

    11.
    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
    ADS  Article  Google Scholar 

    12.
    Hammond, S. T. et al. Food spoilage, storage, and transport: Implications for a sustainable future. Bioscience 65, 758–768 (2015).
    Article  Google Scholar 

    13.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  Google Scholar 

    14.
    Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).
    Article  Google Scholar 

    15.
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Lee, J. G. & Kang, M. Geospatial big data: Challenges and opportunities. Big Data Res. 2, 74–81 (2015).
    Article  Google Scholar 

    17.
    Serra-Diaz, J. M. & Franklin, J. What’s hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Divers. Distrib. 25, 492–498 (2019).
    Article  Google Scholar 

    18.
    Snyder, K. A., Miththapala, S., Sommer, R. & Braslow, J. The yield gap: Closing the gap by widening the approach. Exp. Agric. 53, 445–459 (2017).
    Article  Google Scholar 

    19.
    Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Fernández, M., Hamilton, H. & Kueppers, L. M. Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere 4, 1–17 (2013).
    Article  Google Scholar 

    21.
    Grabowski, P. et al. Assessing adoption potential in a risky environment: The case of perennial pigeonpea. Agric. Syst. 171, 89–99 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Habib-Mintz, N. Biofuel investment in Tanzania: Omissions in implementation. Energy Policy 38, 3985–3997 (2010).
    Article  Google Scholar 

    23.
    Shiferaw, B. A., Okello, J. & Reddy, R. V. Adoption and adaptation of natural resource management innovations in smallholder agriculture: Reflections on key lessons and best practices. Environ. Dev. Sustain. 11, 601–619 (2009).
    Article  Google Scholar 

    24.
    Kwesiga, F., Akinnifesi, F. K., Mafongoya, P. L., McDermott, M. H. & Agumya, A. Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agrofor. Syst. 59, 173–186 (2003).
    Article  Google Scholar 

    25.
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).
    Article  Google Scholar 

    26.
    Fischer, G. et al. Global agro-ecological zones (GAEZ v3. 0)-model documentation. In International Institute for Applied Systems Analysis/Food and Agriculture Organization of the United Nations (2012).

    27.
    Heal, G. & Millner, A. Reflections: Uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy 8, 120–137 (2014).
    Article  Google Scholar 

    28.
    Harth, A., Knoblock, C. A., Stadtmüller, S., Studer, R. & Szekely, P. On-the-fly integration of static and dynamic linked data. In Proceedings of the Fourth International Workshop on Consuming Linked Data (2013).

    29.
    Ginige, A., Javadi, B., Calheiros, R. N. & Hendriks, S. L. A smart computing framework centered on user and societal empowerment to achieve the sustainable development goals. In International Conference on Innovations and Interdisciplinary Solutions for Underserved Areas (eds. Bassioni, G., Kebe, C. M. F., Gueye, A. & Ndiaye, A.) 158–172 (Springer, Cham, 2019).

    30.
    Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteorol. 218, 102–113 (2016).
    ADS  Article  Google Scholar 

    31.
    Mejias, P., & Piraux, M. AquaCrop, the crop water productivity model. In Food and Agriculture Organization of the United Nations (2017).

    32.
    Hijmans, R. J., Guarino, L., Cruz, M. & Rojas, E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 127, 15–19 (2001).
    Google Scholar 

    33.
    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).
    Article  Google Scholar 

    34.
    McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P. & Freebairn, D. M. APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research. Agric. Syst. 50, 255–271 (1996).
    Article  Google Scholar 

    35.
    Dragićević, S. The potential of Web-based GIS. J. Geogr. Syst. 6, 79–81 (2004).
    Article  Google Scholar 

    36.
    Kraak, M. J. The role of the map in a Web-GIS environment. J. Geogr. Syst. 6, 83–93 (2004).
    Article  Google Scholar 

    37.
    Moore, R. Introducing Google Earth Engine. The Official google.org blog https://blog.google.org/2010/12/introducing-google-earth-engine_57.html (2010).

    38.
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar 

    39.
    Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth. 10, 82–102 (2017).
    Article  Google Scholar 

    40.
    HarvestChoice-International Food Policy Research Institute (IFPRI). Agro-Ecological Zones for Africa South of the Sahara V3. Harvard Dataverse https://doi.org/10.7910/DVN/M7XIUB (2015).

    41.
    Kane, D. A., Roge, P. & Snapp, S. S. A systematic review of perennial staple crops literature using topic modeling and bibliometric analysis. PLoS ONE 11, e0155788 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Thornton, P. K. & Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change. 5, 830–836 (2015).
    ADS  Article  Google Scholar 

    43.
    Mayes, S. et al. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 63, 1075–1079 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Peter, B. G., Mungai, L. M., Messina, J. P. & Snapp, S. S. Nature-based agricultural solutions: Scaling perennial grains across Africa. Environ. Res. 159, 283–290 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Hannah, L. et al. Global climate change adaptation priorities for biodiversity and food security. PLoS ONE 8, e72590 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R. & Kanyama-Phiri, G. Y. Biodiversity can support a greener revolution in Africa. Proc. Natl. Acad. Sci. USA 107, 20840–20845 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).
    CAS  PubMed  Article  Google Scholar 

    48.
    Foyer, C. H. et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2, 16112 (2016).
    PubMed  Article  Google Scholar 

    49.
    Kole, C. et al. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Front. Plant Sci. 6, 563 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Sinha, P. et al. 2016 Identification and validation of selected universal stress protein domain containing drought-responsive genes in Pigeonpea (Cajanus cajan L.). Front. Plant Sci. 6, 1065 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Choudhary, A. K., Sultana, R., Pratap, A., Nadarajan, N. & Jha, U. C. Breeding for abiotic stresses in pigeonpea. J. Food Legum. 24, 165–174 (2011).
    Google Scholar 

    52.
    Ehlers, J. D. & Hall, A. E. Cowpea (Vigna unguiculata L. walp.). Field Crops Res. 53, 187–204 (1997).
    Article  Google Scholar 

    53.
    De Ron, A. M. et al. 2019 Common bean genetics, breeding, and genomics for adaptation to changing to new agri-environmental conditions. In Genomic Designing of Climate-Smart Pulse Crops (ed. Kole, C.) 1–106 (Springer, Cham, 2019).
    Google Scholar 

    54.
    Smýkal, P. et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43–104 (2015).
    Article  Google Scholar 

    55.
    Snapp, S. S., Cox, C. M. & Peter, B. G. Multipurpose legumes for smallholders in sub-Saharan Africa: Identification of promising ‘scale out’ options. Glob. Food Secur. 23, 22–32 (2019).
    Article  Google Scholar 

    56.
    Ramírez-Villegas, J. & Thornton, P. K. Climate change impacts on African crop production. In CCAFS Working Paper No. 119. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) (2015).

    57.
    Robertson, C. C. Black, white, and red all over: Beans, women, and agricultural imperialism in twentieth-century Kenya. Agric. Hist. 71, 259–299 (1997).
    Google Scholar 

    58.
    Rusinamhodzi, L., Corbeels, M., Nyamangara, J. & Giller, K. E. Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 136, 12–22 (2012).
    Article  Google Scholar 

    59.
    Bezner-Kerr, R., Snapp, S., Chirwa, M., Shumba, L. & Msachi, R. Participatory research on legume diversification with Malawian smallholder farmers for improved human nutrition and soil fertility. Exp. Agric. 43, 437–453 (2007).
    Article  Google Scholar 

    60.
    Jones, A. D., Shrinivas, A. & Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data. Food Policy 46, 1–12 (2014).
    Article  Google Scholar 

    61.
    Ojiewo, C. et al. The role of vegetables and legumes in assuring food, nutrition, and income security for vulnerable groups in Sub-Saharan Africa. World Med. Health Policy 7, 187–210 (2015).
    Article  Google Scholar 

    62.
    Wood, S., Sebastian, K., Nachtergaele, F., Nielsen, D. & Dai, A. Spatial aspects of the design and targeting of agricultural development strategies. In Environment and Production Technology Division, International Food Policy Research Institute, Washington, DC, EPTD Discussion Paper No. 44 (1999).

    63.
    Chivenge, P., Mabhaudhi, T., Modi, A. T. & Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health 12, 5685–5711 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Dakora, F. D. Biogeographic distribution, nodulation and nutritional attributes of underutilized indigenous African legumes. In II International Symposium on Underutilized Plant Species: Crops for the Future-Beyond Food Security, 53–64 International Society for Horticultural Science, ISHS Acta Horticulturae 979 (2011).

    65.
    Traub, J. et al. Screening for heat tolerance in Phaseolus spp. using multiple methods. Crop Sci. 58, 2459–2469 (2018).
    CAS  Article  Google Scholar 

    66.
    Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research–implementation gap. Conserv. Biol. 22, 610–617 (2008).
    PubMed  Article  Google Scholar 

    67.
    Funk, C. et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
    Article  Google Scholar 

    68.
    Vizy, E. K., Cook, K. H., Chimphamba, J. & McCusker, B. Projected changes in Malawi’s growing season. Clim. Dyn. 45, 1673–1698 (2015).
    Article  Google Scholar 

    69.
    Jayanthi, H. et al. Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite estimated rainfall—Southern Malawi case study. Int. J. Disast. Risk Res. 4, 71–81 (2013).
    Google Scholar 

    70.
    FAO. ECOCROP, Crop Environmental Requirements Database. Food and Agriculture Organization of the United Nations (1991).

    71.
    Peter, B. G., Messina, J. P. & Lin, Z. Web-based GIS for spatiotemporal crop climate niche mapping https://doi.org/10.7910/DVN/UFC6B5,HarvardDataverse,V2 (2019).
    Article  Google Scholar 

    72.
    Beebe, S. et al. Genetic improvement of common beans and the challenges of climate change. In Crop Adaptation to Climate Change (eds. Yadav, S. S., Redden, R. J., Hatfield, J. L., Lotze-Campen, H. & Hall, A. E.) Ch. 16, 356–369 (Wiley-Blackwell, 2011).

    73.
    de Jong, R. & de Bruin, S. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 9, 71–77 (2012).
    ADS  Article  Google Scholar 

    74.
    Swist, T. & Magee, L. Academic publishing and its digital binds: Beyond the paywall towards ethical executions of code. Cult.s Unbound J. Curr. Cult. Res. 9, 240–259 (2018).
    Article  Google Scholar 

    75.
    Hedding, D. W. Comments on “Factors affecting global flow of scientific knowledge in environmental sciences” by Sonne et al. (2020). Sci. Total Environ. 705, 135933 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    76.
    Rippke, U. et al. Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat. Clim. Change 6, 605–609 (2016).
    ADS  Article  Google Scholar 

    77.
    Sinclair, T. R., Marrou, H., Soltani, A., Vadez, V. & Chandolu, K. C. Soybean production potential in Africa. Glob. Food Secur. 3, 31–40 (2014).
    Article  Google Scholar 

    78.
    Hajjarpoor, A. et al. Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Res. 223, 93–104 (2018).
    Article  Google Scholar 

    79.
    Ortega, D. L., Waldman, K. B., Richardson, R. B., Clay, D. C. & Snapp, S. Sustainable intensification and farmer preferences for crop system attributes: Evidence from Malawi’s central and southern regions. World Dev. 87, 139–151 (2016).
    Article  Google Scholar 

    80.
    Simtowe, F., Asfaw, S. & Abate, T. Determinants of agricultural technology adoption under partial population awareness: The case of pigeonpea in Malawi. Agric. Food Econ. 4, 7 (2016).
    Article  Google Scholar 

    81.
    Norris, K. Agriculture and biodiversity conservation: Opportunity knocks. Conservation Letters 1, 2–11 (2008).
    Article  Google Scholar 

    82.
    Donchyts, G. et al. Earth’s surface water change over the past 30 years. Nat. Clim. Change 6, 810–813 (2016).
    ADS  Article  Google Scholar 

    83.
    Pekel, J., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Allen, R. G. et al. EEFlux: A Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation-A Tribute to the Career of Terry Howell, Sr. Conference Proceedings, 1–11. American Society of Agricultural and Biological Engineers (2015).

    85.
    Wan, Z., Hook, S. & Hulley, G. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD11A2.006 (2015).
    Article  Google Scholar 

    86.
    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Process.. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
    Article  Google Scholar 

    87.
    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+aqua land cover type yearly L3 global 500m SIN grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).
    Article  Google Scholar 

    88.
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
    ADS  Article  Google Scholar 

    89.
    Teluguntla, P. G. et al. Global cropland area database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. In Remote Sensing Handbook, Land Resources: Monitoring, Modelling, and Mapping Vol 2, Ch. 7 (CRC Press, 2015).

    90.
    Arino, O., Ramos, J. R., Kalogirou, V., Defourny, P. & Achard, F. GlobCover 2009. In ESA Living Planet Symposium 1–3. European Space Agency (2010).

    91.
    Hengl, T. & MacMillan, R. A. Predictive Soil Mapping with R, https://www.soilmapper.org (OpenGeoHub foundation, Wageningen, The Netherlands, 2019).

    92.
    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).
    ADS  Article  Google Scholar 

    93.
    Rossel, R. A. V. & Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).
    Article  Google Scholar 

    94.
    Herrick, J. E. et al. The global Land-Potential Knowledge System (LandPKS): Supporting evidence-based, site-specific land use and management through cloud computing, mobile applications, and crowdsourcing. J. Soil Water Conserv. 68, 5A-12A (2013).
    Article  Google Scholar 

    95.
    Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change. 9, 758–763 (2019).
    ADS  Article  Google Scholar 

    96.
    ESRI. ArcGIS Desktop: Release 10.8. (Environmental Systems Research Institute, CAs, 2020). More