Mapping carbon accumulation potential from global natural forest regrowth
1.
Rogelj, J. et al. Paris Agreement climate proposals need boost to keep warming well below 2 °C. Nat. Clim. Chang. 534, 631–639 (2016).
CAS Google Scholar
2.
Masson-Delmotte, V. et al. (eds) Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (IPCC, 2018).
3.
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
ADS CAS PubMed Google Scholar
4.
Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).
5.
Dong, H., MacDonald, J. D., Ogle, S. M., Sanz Sanchez, M. J. & Rocha, M. T. (eds) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).
6.
Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).
ADS Google Scholar
7.
International Union for Conservation of Nature infoFLR https://infoflr.org/ (IUCN, accessed 20 June 2018).
8.
Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).
ADS CAS PubMed Google Scholar
9.
Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. Lond. B 375, 20190120 (2020).
Google Scholar
10.
Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
ADS PubMed PubMed Central Google Scholar
11.
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
ADS CAS PubMed Google Scholar
12.
Lewis, S., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Regenerate natural forests to store carbon. Nature 568, 25–28 (2019).
ADS CAS PubMed Google Scholar
13.
Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manage. 352, 109–123 (2015).
Google Scholar
14.
United Nations Adoption of the Paris Agreement https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (UN, 2015).
15.
Holl, K. D. & Brancalion, P. S. Tree planting is not a simple solution. Science 368, 580–582 (2020).
ADS CAS PubMed Google Scholar
16.
Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 4, 503–507 (2014).
ADS Google Scholar
17.
Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. Ann. Missouri Botan. Gardens 102, 251–257 (2017).
Google Scholar
18.
Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2014).
ADS Google Scholar
19.
Meli, P. et al. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS One 12, e0171368 (2017).
PubMed PubMed Central Google Scholar
20.
Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).
ADS PubMed PubMed Central Google Scholar
21.
Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. Lond. B 285, 20172577 (2018).
Google Scholar
22.
Shimamoto, C. Y., Padial, A. A., Da Rosa, C. M. & Marques, M. C. M. Restoration of ecosystem services in tropical forests: a global meta-analysis. PLoS One 13, e0208523 (2018).
PubMed PubMed Central Google Scholar
23.
Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, eaas9143 (2018).
ADS PubMed PubMed Central Google Scholar
24.
Betts, R. A. Climate science: afforestation cools more or less. Nat. Geosci. 4, 504–505 (2011).
ADS CAS Google Scholar
25.
Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl Acad. Sci. USA 115, 2776–2781 (2018).
CAS PubMed Google Scholar
26.
Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds) The Global Assessment Report on Biodiversity and Ecosystem Services https://ipbes.net/global-assessment (IPBES, 2019).
27.
Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291, 73–86 (2013).
Google Scholar
28.
Tuomisto, H. L., Ellis, M. J. & Haastrup, P. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2014).
Google Scholar
29.
Arneth, A. et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, And Greenhouse Gas Fluxes In Terrestrial Ecosystems https://www.ipcc.ch/srccl/ (IPCC, 2019).
30.
Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).
ADS Google Scholar
31.
Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).
ADS CAS PubMed Google Scholar
32.
Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).
ADS CAS Google Scholar
33.
Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
ADS CAS PubMed Google Scholar
34.
Paul, K. I. & Roxburgh, S. H. Predicting carbon sequestration of woody biomass following land restoration. For. Ecol. Manage. 460, 117838 (2020).
Google Scholar
35.
Anderson-Teixeira, K. J. et al. ForC: a global database of forest carbon stocks and fluxes. Ecology 99, 1507 (2018).
PubMed Google Scholar
36.
Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).
ADS CAS PubMed Google Scholar
37.
Stocker, T.F. et al (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).
38.
Zahawi, R. a., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).
Google Scholar
39.
Ashton, M. S. et al. Restoration of rain forest beneath pine plantations: a relay floristic model with special application to tropical South Asia. For. Ecol. Manage. 329, 351–359 (2014).
Google Scholar
40.
Teixeira, A. M. G., Soares-Filho, B. S., Freitas, S. R. & Metzger, J. P. Modeling landscape dynamics in an Atlantic rainforest region: implications for conservation. For. Ecol. Manage. 257, 1219–1230 (2009).
Google Scholar
41.
Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).
Google Scholar
42.
Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. of Chicago Press, 2014).
43.
Speed, J. D. M., Martinsen, V., Mysterud, A., Holand, O. & Austrheim, G. Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems 17, 1138–1150 (2014).
CAS Google Scholar
44.
Reid, J. L. et al. How long do restored ecosystems persist? Ann. Missouri Botan. Gardens 102, 258–265 (2017).
Google Scholar
45.
Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).
Google Scholar
46.
Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
ADS Google Scholar
47.
Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 8165 (2008).
ADS Google Scholar
48.
Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).
Google Scholar
49.
Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).
ADS CAS PubMed Google Scholar
50.
Crouzeilles, R., Ferreira, M. S. & Curran, M. Forest restoration: a global dataset for biodiversity and vegetation structure. Ecology 97, 2167 (2016).
PubMed Google Scholar
51.
Deng, L., Shangguan, Z. P. & Sweeney, S. ‘Grain for Green’ driven land use change and carbon sequestration on the Loess Plateau, China. Sci. Rep. 4, 7039 (2015).
Google Scholar
52.
Bárcena, T. G. et al. Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob. Change Biol. 20, 2393–2405 (2014).
ADS Google Scholar
53.
Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013).
Google Scholar
54.
Deng, L., Zhu, G., Tang, Z. & Shangguan, Z. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
Google Scholar
55.
Zhang, K., Dang, H., Zhang, Q. & Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Glob. Change Biol. 21, 2762–2772 (2015).
ADS Google Scholar
56.
Becknell, J. M., Kissing, L. & Powers, J. S. Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For. Ecol. Manage. 276, 88–95 (2012).
Google Scholar
57.
Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 1–15 (2016).
Google Scholar
58.
Guo, Q. & Ren, H. Productivity as related to diversity and age in planted versus natural forests. Glob. Ecol. Biogeogr. 23, 1461–1471 (2014).
Google Scholar
59.
Krankina, O. NPP Boreal Forests: Siberian Scots Pine Forests, Russia, 1968–1974, R1 http://daac.ornl.gov (Oak Ridge National Laboratory, 1995).
60.
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
PubMed PubMed Central Google Scholar
61.
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
Google Scholar
62.
Chew, S. T. & Gallagher, J. B. Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep. 8, 2553 (2018).
ADS PubMed PubMed Central Google Scholar
63.
James, J., Devine, W., Harrison, R. & Terry, T. Deep soil carbon: quantification and modeling in subsurface layers. Soil Sci. Soc. Am. J. 78, S1–S10 (2014).
Google Scholar
64.
Aalde, H. et al. Forest land. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 4 (IPCC, 2006).
65.
Aalde, H. et al. Generic methodologies applicable to multiple land-use categories. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 2 (IPCC, 2006).
66.
Russell, M. B. et al. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manage. 350, 107–128 (2015).
Google Scholar
67.
Pribyl, D. W. A critical review of the convential SOC to SOM conversion factor. Geoderma 156, 75–83 (2010).
ADS CAS Google Scholar
68.
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).
PubMed PubMed Central Google Scholar
69.
Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).
ADS Google Scholar
70.
Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
Google Scholar
71.
Swedish National Forest Inventory Sample Plot Data https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/listor/sample-plot-data/ (SNFI, 2019).
72.
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
MATH Google Scholar
73.
Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).
74.
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
MATH Google Scholar
75.
Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).
CAS PubMed Google Scholar
76.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. & Thirion, B. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
MathSciNet MATH Google Scholar
77.
Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
ADS PubMed PubMed Central Google Scholar
78.
Shono, K., Cadaweng, E. A. & Durst, P. B. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 15, 620–626 (2007).
Google Scholar
79.
Nieuwenhuis, M. Terminology of forest management. In International Union of Forest Research Organizations World Series Vol. 9-en (IUFRO, 2000).
80.
Winrock International AFOLU Carbon Calculator. The Agroforestry Tool: Underlying Data and Methods (USAID and Winrock International, 2014).
81.
Vieira, D. L. M., Holl, K. D. & Peneireiro, F. M. Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor. Ecol. 17, 451–459 (2009).
Google Scholar More