More stories

  • in

    Mapping carbon accumulation potential from global natural forest regrowth

    1.
    Rogelj, J. et al. Paris Agreement climate proposals need boost to keep warming well below 2 °C. Nat. Clim. Chang. 534, 631–639 (2016).
    CAS  Google Scholar 
    2.
    Masson-Delmotte, V. et al. (eds) Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (IPCC, 2018).

    3.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).

    5.
    Dong, H., MacDonald, J. D., Ogle, S. M., Sanz Sanchez, M. J. & Rocha, M. T. (eds) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).

    6.
    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).
    ADS  Google Scholar 

    7.
    International Union for Conservation of Nature infoFLR https://infoflr.org/ (IUCN, accessed 20 June 2018).

    8.
    Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. Lond. B 375, 20190120 (2020).
    Google Scholar 

    10.
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    11.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Lewis, S., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Regenerate natural forests to store carbon. Nature 568, 25–28 (2019).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manage. 352, 109–123 (2015).
    Google Scholar 

    14.
    United Nations Adoption of the Paris Agreement https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (UN, 2015).

    15.
    Holl, K. D. & Brancalion, P. S. Tree planting is not a simple solution. Science 368, 580–582 (2020).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 4, 503–507 (2014).
    ADS  Google Scholar 

    17.
    Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. Ann. Missouri Botan. Gardens 102, 251–257 (2017).
    Google Scholar 

    18.
    Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2014).
    ADS  Google Scholar 

    19.
    Meli, P. et al. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS One 12, e0171368 (2017).
    PubMed  PubMed Central  Google Scholar 

    20.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    21.
    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. Lond. B 285, 20172577 (2018).
    Google Scholar 

    22.
    Shimamoto, C. Y., Padial, A. A., Da Rosa, C. M. & Marques, M. C. M. Restoration of ecosystem services in tropical forests: a global meta-analysis. PLoS One 13, e0208523 (2018).
    PubMed  PubMed Central  Google Scholar 

    23.
    Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, eaas9143 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    24.
    Betts, R. A. Climate science: afforestation cools more or less. Nat. Geosci. 4, 504–505 (2011).
    ADS  CAS  Google Scholar 

    25.
    Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl Acad. Sci. USA 115, 2776–2781 (2018).
    CAS  PubMed  Google Scholar 

    26.
    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds) The Global Assessment Report on Biodiversity and Ecosystem Services https://ipbes.net/global-assessment (IPBES, 2019).

    27.
    Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291, 73–86 (2013).
    Google Scholar 

    28.
    Tuomisto, H. L., Ellis, M. J. & Haastrup, P. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2014).
    Google Scholar 

    29.
    Arneth, A. et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, And Greenhouse Gas Fluxes In Terrestrial Ecosystems https://www.ipcc.ch/srccl/ (IPCC, 2019).

    30.
    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).
    ADS  Google Scholar 

    31.
    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).
    ADS  CAS  Google Scholar 

    33.
    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Paul, K. I. & Roxburgh, S. H. Predicting carbon sequestration of woody biomass following land restoration. For. Ecol. Manage. 460, 117838 (2020).
    Google Scholar 

    35.
    Anderson-Teixeira, K. J. et al. ForC: a global database of forest carbon stocks and fluxes. Ecology 99, 1507 (2018).
    PubMed  Google Scholar 

    36.
    Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).
    ADS  CAS  PubMed  Google Scholar 

    37.
    Stocker, T.F. et al (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

    38.
    Zahawi, R. a., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).
    Google Scholar 

    39.
    Ashton, M. S. et al. Restoration of rain forest beneath pine plantations: a relay floristic model with special application to tropical South Asia. For. Ecol. Manage. 329, 351–359 (2014).
    Google Scholar 

    40.
    Teixeira, A. M. G., Soares-Filho, B. S., Freitas, S. R. & Metzger, J. P. Modeling landscape dynamics in an Atlantic rainforest region: implications for conservation. For. Ecol. Manage. 257, 1219–1230 (2009).
    Google Scholar 

    41.
    Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).
    Google Scholar 

    42.
    Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. of Chicago Press, 2014).

    43.
    Speed, J. D. M., Martinsen, V., Mysterud, A., Holand, O. & Austrheim, G. Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems 17, 1138–1150 (2014).
    CAS  Google Scholar 

    44.
    Reid, J. L. et al. How long do restored ecosystems persist? Ann. Missouri Botan. Gardens 102, 258–265 (2017).
    Google Scholar 

    45.
    Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).
    Google Scholar 

    46.
    Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
    ADS  Google Scholar 

    47.
    Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 8165 (2008).
    ADS  Google Scholar 

    48.
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).
    Google Scholar 

    49.
    Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).
    ADS  CAS  PubMed  Google Scholar 

    50.
    Crouzeilles, R., Ferreira, M. S. & Curran, M. Forest restoration: a global dataset for biodiversity and vegetation structure. Ecology 97, 2167 (2016).
    PubMed  Google Scholar 

    51.
    Deng, L., Shangguan, Z. P. & Sweeney, S. ‘Grain for Green’ driven land use change and carbon sequestration on the Loess Plateau, China. Sci. Rep. 4, 7039 (2015).
    Google Scholar 

    52.
    Bárcena, T. G. et al. Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob. Change Biol. 20, 2393–2405 (2014).
    ADS  Google Scholar 

    53.
    Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013).
    Google Scholar 

    54.
    Deng, L., Zhu, G., Tang, Z. & Shangguan, Z. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
    Google Scholar 

    55.
    Zhang, K., Dang, H., Zhang, Q. & Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Glob. Change Biol. 21, 2762–2772 (2015).
    ADS  Google Scholar 

    56.
    Becknell, J. M., Kissing, L. & Powers, J. S. Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For. Ecol. Manage. 276, 88–95 (2012).
    Google Scholar 

    57.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 1–15 (2016).
    Google Scholar 

    58.
    Guo, Q. & Ren, H. Productivity as related to diversity and age in planted versus natural forests. Glob. Ecol. Biogeogr. 23, 1461–1471 (2014).
    Google Scholar 

    59.
    Krankina, O. NPP Boreal Forests: Siberian Scots Pine Forests, Russia, 1968–1974, R1 http://daac.ornl.gov (Oak Ridge National Laboratory, 1995).

    60.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
    PubMed  PubMed Central  Google Scholar 

    61.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 

    62.
    Chew, S. T. & Gallagher, J. B. Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep. 8, 2553 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    63.
    James, J., Devine, W., Harrison, R. & Terry, T. Deep soil carbon: quantification and modeling in subsurface layers. Soil Sci. Soc. Am. J. 78, S1–S10 (2014).
    Google Scholar 

    64.
    Aalde, H. et al. Forest land. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 4 (IPCC, 2006).

    65.
    Aalde, H. et al. Generic methodologies applicable to multiple land-use categories. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 2 (IPCC, 2006).

    66.
    Russell, M. B. et al. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manage. 350, 107–128 (2015).
    Google Scholar 

    67.
    Pribyl, D. W. A critical review of the convential SOC to SOM conversion factor. Geoderma 156, 75–83 (2010).
    ADS  CAS  Google Scholar 

    68.
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).
    PubMed  PubMed Central  Google Scholar 

    69.
    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).
    ADS  Google Scholar 

    70.
    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Google Scholar 

    71.
    Swedish National Forest Inventory Sample Plot Data https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/listor/sample-plot-data/ (SNFI, 2019).

    72.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Google Scholar 

    73.
    Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

    74.
    Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
    MATH  Google Scholar 

    75.
    Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).
    CAS  PubMed  Google Scholar 

    76.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. & Thirion, B. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    MathSciNet  MATH  Google Scholar 

    77.
    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    78.
    Shono, K., Cadaweng, E. A. & Durst, P. B. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 15, 620–626 (2007).
    Google Scholar 

    79.
    Nieuwenhuis, M. Terminology of forest management. In International Union of Forest Research Organizations World Series Vol. 9-en (IUFRO, 2000).

    80.
    Winrock International AFOLU Carbon Calculator. The Agroforestry Tool: Underlying Data and Methods (USAID and Winrock International, 2014).

    81.
    Vieira, D. L. M., Holl, K. D. & Peneireiro, F. M. Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor. Ecol. 17, 451–459 (2009).
    Google Scholar  More

  • in

    Abiotic and past climatic conditions drive protein abundance variation among natural populations of the caddisfly Crunoecia irrorata

    1.
    West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, Oxford, 2003).
    Google Scholar 
    2.
    Beldade, P., Mateus, A. R. A. & Keller, R. A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 20, 1347–1363 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Dall, S. R. X., McNamara, J. M. & Leimar, O. Genes as cues: Phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends Ecol. Evol. 30, 327–333 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
    Article  Google Scholar 

    5.
    Ovaskainen, O. & Meerson, B. Stochastic models of population extinction. Trends Ecol. Evol. 25, 643–652 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Lawson, C. R., Vindenes, Y., Bailey, L. & van de Pol, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Mayr, E. The growth of biological thought: Diversity, evolution, and inheritance. Am. Biol. Teach. 46, 462–463 (1984).
    Article  Google Scholar 

    8.
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
    ADS  Article  Google Scholar 

    9.
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Riddell, E. A., Odom, J. P., Damm, J. D. & Sears, M. W. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 4, eaar5471 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Noble, D. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. 93, 16–26 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Whitehead, A. & Crawford, D. L. Variation within and among species in gene expression: Raw material for evolution. Mol. Ecol. 15, 1197–1211 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Regulatory changes underlying expression differences within and between Drosophila species. Nat. Genet. 40, 346–350 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gonzalez, E. G. et al. Population proteomics of the European hake (Merluccius merluccius). J. Proteome Res. 9, 6392–6404 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Papakostas, S. et al. A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (Coregonus lavaretus ). Mol. Ecol. 21, 3516–3530 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Chevalier, F. et al. Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 4, 1372–1381 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Mueller, R. S. et al. Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 6, 374 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12, 119–125 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. In Advances in Genetics Vol. 13 (eds Caspari, E. W. & Thoday, J. M.) 115–155 (Academic Press, New York, 1965).
    Google Scholar 

    21.
    Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Fisher, M. A. & Oleksiak, M. F. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics 8, 108 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Pujolar, J. M. et al. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel. BMC Genomics 13, 507 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Davies, S. W., Marchetti, A., Ries, J. B. & Castillo, K. D. Thermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coral. Front. Mar. Sci. 3, 112 (2016).

    25.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Bludau, I. & Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0231-2 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Lodish, H. et al. Molecular Cell Biology (W. H. Freeman, New York, 2000).
    Google Scholar 

    30.
    Watson, J. D. Molecular Biology of the Gene (Pearson Education, London, 2004).
    Google Scholar 

    31.
    Giardi, M. T., Masojídek, J. & Godde, D. Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol. Plant. 101, 635–642 (1997).
    CAS  Article  Google Scholar 

    32.
    Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135, 216–226 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: From theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Nikinmaa, M., Tiihonen, K. & Paajaste, M. Adrenergic control of red cell pH in salmonid fish: Roles of the sodium/proton exchange, Jacobs-Stewart cycle and membrane potential. J. Exp. Biol. 154, 257–271 (1990).
    CAS  Google Scholar 

    35.
    Pavlov, M. Y. & Ehrenberg, M. Optimal control of gene expression for fast proteome adaptation to environmental change. Proc. Natl. Acad. Sci. USA 110, 20527–20532 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Adams, S. M., Giesy, J. P., Tremblay, L. A. & Eason, C. T. The use of biomarkers in ecological risk assessment: recommendations from the Christchurch conference on Biomarkers in Ecotoxicology. Biomarkers 6, 1–6 (2001).
    CAS  PubMed  Article  Google Scholar 

    37.
    Diz, A. P., Truebano, M. & Skibinski, D. O. F. The consequences of sample pooling in proteomics: An empirical study. Electrophoresis 30, 2967–2975 (2009).
    CAS  PubMed  Article  Google Scholar 

    38.
    Karp, N. A. & Lilley, K. S. Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9, 388–397 (2009).
    CAS  PubMed  Article  Google Scholar 

    39.
    Bennike, T. B. et al. Comparing the proteome of snap frozen, RNAlater preserved, and formalin-fixed paraffin-embedded human tissue samples. EuPA Open Proteomics 10, 9–18 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Johnsen, I. K. et al. Evaluation of a standardized protocol for processing adrenal tumor samples: Preparation for a European adrenal tumor bank. Horm. Metab. Res. 42, 93–101 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Kruse, C. P. S., Basu, P., Luesse, D. R. & Wyatt, S. E. Transcriptome and proteome responses in RNAlater preserved tissue of Arabidopsis thaliana. PLoS ONE 12, e0175943–e0175943 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    43.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.3-13. https://CRAN.R-project.org/package=raster. (2020).

    44.
    Cox, J. et al. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Ebner, J. N., Ritz, D. & von Fumetti, S. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Mol. Ecol. 28, 4453–4469 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Jimenez-Morales, D., Campos, A.R. & Von Dollen, J. artMS: Analytical R tools for Mass Spectrometry. R package version 1.5.3. https://github.com/bioadavidjm/artMS. (2020).

    49.
    Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. R package version 1.6.20. https://CRAN.R-project.org/package=VennDiagram. (2018).

    50.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2019).

    51.
    Carrillo, B., Yanofsky, C., Laboissiere, S., Nadon, R. & Kearney, R. E. Methods for combining peptide intensities to estimate relative protein abundance. Bioinform. Oxf. Engl. 26, 98–103 (2010).
    CAS  Article  Google Scholar 

    52.
    Bolstad, B. preprocessCore: A collection of pre-processing functions. R package version 1.48.0. https://github.com/bmbolstad/proprocessCore. (2019).

    53.
    Hastie, T., Tibshirani, R., Balasubramanian, N. & Chu, G. impute: Imputation for microarray data. R package version 1.60.0. (2019).

    54.
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
    Article  Google Scholar 

    55.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. (2019).

    56.
    Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559–559 (2008).
    Article  CAS  Google Scholar 

    57.
    Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–498 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Campbell-Staton, S. C., Bare, A., Losos, J. B., Edwards, S. V. & Cheviron, Z. A. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline. Mol. Ecol. 27, 2243–2255 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Horvath, S. Weighted network analysis: Applications in genomics and systems biology (Springer, New York, 2011).
    Google Scholar 

    60.
    Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

    61.
    Smyth, G. K. limma: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds Gentleman, R. et al.) 397–420 (Springer, New York, 2005). https://doi.org/10.1007/0-387-29362-0_23.
    Google Scholar 

    62.
    Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.17.4. (Comprehensive R Archive Network (CRAN), 2018).

    63.
    Stearns, S. C. & Koella, J. C. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40, 893–913 (1986).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection (Blakiston, Philadelphia, 1949).
    Google Scholar 

    65.
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
    Article  Google Scholar 

    66.
    Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5-10. https://CRAN.R-project.org/package=geosphere. (2019).

    67.
    Rieder, V. et al. DISMS2: A flexible algorithm for direct proteome-wide distance calculation of LC-MS/MS runs. BMC Bioinform. 18, 148 (2017).

    68.
    Grüning, B. et al. Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.38.1. (2019).

    75.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Fang, H. & Gough, J. dcGO: Database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Res. 41, D536–D544 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Kuhn, N. J., Setlow, B. & Setlow, P. Manganese(II) activation of 3-phosphoglycerate mutase of Bacillus megaterium: pH-Sensitive interconversion of active and inactive forms. Arch. Biochem. Biophys. 306, 342–349 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Chander, M., Setlow, B. & Setlow, P. The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn2+ and is pH sensitive. Can. J. Microbiol. 44, 759–767 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Ferrer, M., Chernikova, T. N., Yakimov, M. M., Golyshin, P. N. & Timmis, K. N. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21, 1266–1267 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Strocchi, M., Ferrer, M., Timmis, K. N. & Golyshin, P. N. Low temperature-induced systems failure in Escherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics 6, 193–206 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Visudtiphole, V., Watthanasurorot, A., Klinbunga, S., Menasveta, P. & Kirtikara, K. Molecular characterization of Calreticulin: A biomarker for temperature stress responses of the giant tiger shrimp Penaeus monodon. Aquaculture 308, S100–S108 (2010).
    CAS  Article  Google Scholar 

    82.
    Wehrly, K. E., Wang, L. & Mitro, M. Field-based estimates of thermal tolerance limits for trout: Incorporating exposure time and temperature fluctuation. Trans. Am. Fish. Soc. 136, 365–374 (2007).
    Article  Google Scholar 

    83.
    Alberts, B. et al. Molecular Biology of the Cell (Garland Science, New York, 2002).
    Google Scholar 

    84.
    Hagner-Holler, S., Pick, C., Girgenrath, S., Marden, J. H. & Burmester, T. Diversity of stonefly hexamerins and implication for the evolution of insect storage proteins. Insect Biochem. Mol. Biol. 37, 1064–1074 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Descazeaud, V., Mestre, E., Marquet, P. & Essig, M. Calcineurin regulation of cytoskeleton organization: A new paradigm to analyse the effects of calcineurin inhibitors on the kidney. J. Cell. Mol. Med. 16, 218–227 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Urra, H. et al. IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat. Cell Biol. 20, 942–953 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Tong, M. & Jiang, Y. FK506-binding proteins and their diverse functions. Curr. Mol. Pharmacol. 9, 48–65 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    88.
    Miranti, C. K. & Brugge, J. S. Sensing the environment: A historical perspective on integrin signal transduction. Nat. Cell Biol. 4, E83–E90 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).
    CAS  Article  Google Scholar 

    90.
    Snape, J. R., Maund, S. J., Pickford, D. B. & Hutchinson, T. H. Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat. Toxicol. 67, 143–154 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Nikinmaa, M. & Rytkönen, K. T. Functional genomics in aquatic toxicology—Do not forget the function. Aquat. Toxicol. 105, 16–24 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    92.
    Kearney, E. B., Ackrell, B. A. C., Mayr, M. & Singer, T. P. Activation of succinate dehydrogenase by anions and pH. J. Biol. Chem. 249, 2016–2020 (1974).
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Bissoli, G. et al. Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J. Cell Mol. Biol. 70, 704–716 (2012).
    CAS  Article  Google Scholar 

    94.
    Simčič, T. & Brancelj, A. Effects of pH on electron transport system (ETS) activity and oxygen consumption in Gammarus fossarum, Asellus aquaticus and Niphargus sphagnicolus. Freshw. Biol. 51, 686–694 (2006).
    Article  CAS  Google Scholar 

    95.
    Kadrmas, J. L. & Beckerle, M. C. The LIM domain: From the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol. 5, 920–931 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    van der Flier, A. & Sonnenberg, A. Structural and functional aspects of filamins. Biochim. Biophys. Acta BBA Mol. Cell Res. 1538, 99–117 (2001).
    Article  Google Scholar 

    97.
    Sun, H. Q., Yamamoto, M., Mejillano, M. & Yin, H. L. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274, 33179–33182 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    98.
    Diskin, S. et al. Galectin-8 promotes cytoskeletal rearrangement in trabecular meshwork cells through activation of rho signaling. PLoS ONE 7, e44400 (2012).

    99.
    Motizuki, M., Yokota, S. & Tsurugi, K. Effect of low pH on organization of the actin cytoskeleton in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1780, 179–184 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Wang, F., Sampogna, R. V. & Ware, B. R. pH dependence of actin self-assembly. Biophys. J. 55, 293–298 (1989).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Sperelakis, N. Cell Physiology Source book (Academic Press, Amsterdam, 2012).
    Google Scholar 

    102.
    Tomanek, L. Proteomics to study adaptations in marine organisms to environmental stress. J. Proteomics 105, 92–106 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    103.
    Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E. & Sokolova, I. M. Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: Evidence for oxidative stress. J. Exp. Biol. 214, 1836–1844 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    104.
    Koritzinsky, M. et al. Two phases of disulfide bond formation have differing requirements for oxygen. J. Cell Biol. 203, 615–627 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    L’Haridon, F. et al. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog. 7, e1002148 (2011).

    106.
    Richards, A. G. Studies on arthropod cuticle—XIII: The penetration of dissolved oxygen and electrolytes in relation to the multiple barriers of the epicuticle. J. Insect Physiol. 1, 23–39 (1957).
    CAS  Article  Google Scholar 

    107.
    Wang, K. et al. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4, e537–e537 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Szablowska-Gadomska, I., Zayat, V. & Buzanska, L. Influence of low oxygen tensions on expression of pluripotency genes in stem cells. Acta Neurobiol. Exp. (Warsz.) 71, 86–93 (2011).
    Google Scholar 

    109.
    Dreffs, A., Henderson, D., Dmitriev, A. V., Antonetti, D. A. & Linsenmeier, R. A. Retinal pH and acid regulation during metabolic acidosis. Curr. Eye Res. 43, 902–912 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    110.
    Raeker, M. Ö et al. Targeted deletion of the zebrafish obscurin A RhoGEF domain affects heart, skeletal muscle and brain development. Dev. Biol. 337, 432 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    111.
    Serafim, A. et al. Application of an integrated biomarker response index (IBR) to assess temporal variation of environmental quality in two Portuguese aquatic systems. Ecol. Indic. 19, 215–225 (2012).
    CAS  Article  Google Scholar 

    112.
    Berra, E., Forcella, M., Giacchini, R., Rossaro, B. & Parenti, P. Biomarkers in Caddisfly Larvae of the Species Hydropsyche pellucidula (Curtis, 1834) (Trichoptera: Hydropsychidae) measured in natural populations and after short term exposure to fenitrothion. Bull. Environ. Contam. Toxicol. 76, 863–870 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    113.
    Wernersson, A.-S. et al. The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ. Sci. Eur. 27, 7 (2015).
    Article  CAS  Google Scholar 

    114.
    Ryan, J. A. & Hightower, L. E. Stress proteins as molecular biomarkers for environmental toxicology. In Stress-Inducible Cellular Responses (eds Feige, U. et al.) (Birkhäuser, Basel, 1996). https://doi.org/10.1007/978-3-0348-9088-5_28.
    Google Scholar 

    115.
    Sanders, B. M. Stress proteins in aquatic organisms: An environmental perspective. Crit. Rev. Toxicol. 23, 49–75 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    116.
    Barata, C. et al. Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ. Toxicol. Chem. 26, 370–379 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    117.
    Dorts, J. et al. Ecotoxicoproteomics in gills of the sentinel fish species, Cottus gobio, exposed to perfluorooctane sulfonate (PFOS). Aquat. Toxicol. 103, 1–8 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    118.
    Daborn, P. J. et al. A single P450 allele associated with insecticide resistance in Drosophila. Science 297, 2253–2256 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    119.
    Amichot, M. et al. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem. 271, 1250–1257 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Dunkov, B. C. et al. The Drosophila cytochrome P450 gene Cyp6a2: Structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol. 16, 1345–1356 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Nat. Preced. https://doi.org/10.1038/npre.2010.4282.2 (2010).
    Article  Google Scholar 

    122.
    Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform. 14, 91 (2013).
    Article  Google Scholar 

    123.
    Kim, S. & Coulombe, P. A. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat. Rev. Mol. Cell Biol. 11, 75–81 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    124.
    Parker, A. L., Kavallaris, M. & McCarroll, J. A. Microtubules and their role in cellular stress in cancer. Front. Oncol. 4, 153 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    125.
    Skelly, D. A., Ronald, J. & Akey, J. M. Inherited variation in gene expression. Annu. Rev. Genomics Hum. Genet. 10, 313–332 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    126.
    Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    127.
    Arias, M. B., Poupin, M. J. & Lardies, M. A. Plasticity of life-cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: Effect of temperature variability. J. Therm. Biol. 36, 355–362 (2011).
    CAS  Article  Google Scholar 

    128.
    Place, S. P. & Hofmann, G. E. Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish. Polar Biol. 28, 261–267 (2005).
    Article  Google Scholar 

    129.
    Hotaling, S. et al. Mountain stoneflies may tolerate warming streams: evidence from organismal physiology and gene expression. bioRxiv 2019.12.16.878926 (2019). https://doi.org/10.1101/2019.12.16.878926.

    130.
    Cuellar, J. et al. Assisted protein folding at low temperature: Evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins. Biol. Open 3, 261–270 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    131.
    Cantonati, M., Füreder, L., Gerecke, R., Jüttner, I. & Cox, E. J. Crenic habitats, hotspots for freshwater biodiversity conservation: Toward an understanding of their ecology. Freshw. Sci. 31, 463–480 (2012).
    Article  Google Scholar 

    132.
    Hofmann, G. E. & Todgham, A. E. Living in the now: Physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    133.
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: An integrative view. Philos. Trans. R. Soc. B Biol. Sci. 362, 2233–2258 (2007).
    Article  CAS  Google Scholar 

    134.
    Shah, A. A. et al. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct. Ecol. https://doi.org/10.1111/1365-2435.12906 (2018).
    Article  Google Scholar 

    135.
    Treanor, H. B., Giersch, J. J., Kappenman, K. M., Muhlfeld, C. C. & Webb, M. A. H. Thermal tolerance of meltwater stonefly Lednia tumana nymphs from an alpine stream in Waterton-Glacier International Peace Park, Montana, USA. Freshw. Sci. 32, 597–605 (2013).
    Article  Google Scholar 

    136.
    Forsman, A. & Wennersten, L. Inter-individual variation promotes ecological success of populations and species: Evidence from experimental and comparative studies. Ecography 39, 630–648 (2016).
    Article  Google Scholar 

    137.
    Cogne, Y. et al. Comparative proteomics in the wild: Accounting for intrapopulation variability improves describing proteome response in a Gammarus pulex field population exposed to cadmium. Aquat. Toxicol. 214, 105244 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    138.
    Gotelli, N. J., Ellison, A. M. & Ballif, B. A. Environmental proteomics, biodiversity statistics and food-web structure. Trends Ecol. Evol. 27, 436–442 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    139.
    Liu, F. et al. New Perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLOS Pathog. 2, e29 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    140.
    Nold, S. C. & Zwart, G. Patterns and governing forces in aquatic microbial communities. Aquat. Ecol. 32, 17–35 (1998).
    CAS  Article  Google Scholar 

    141.
    Pass, D. A. et al. The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environ. Microbiol. 17, 1884–1896 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    142.
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
    CAS  Article  Google Scholar  More

  • in

    Play fighting social networks do not predict injuries from later aggression

    1.
    Smith, P. L. Play fighting and real fighting. Perspectives on their relationship. In New Aspects of Human Ethology (eds Schmitt, A. et al.) 47–64 (Plenum Press, New York, 1997).
    Google Scholar 
    2.
    Burghardt, G. M. The Genesis of Animal Play: Testing the Limits (MIT Press, Cambridge, 2005).
    Google Scholar 

    3.
    Byers, J. A. Play in ungulates. In Play in Animals and Humans (ed. Smith, P. K.) 43–65 (Blackwell, New York, 1984).
    Google Scholar 

    4.
    Thompson, K. V. Self assessment in juvenile play. In Animal Play: Evolutionary, Comparative, and Ecological Perspectives (eds Bekoff, M. & Byers, J. A.) 183–204 (Cambridge University Press, Cambridge, 1998).
    Google Scholar 

    5.
    Špinka, M., Newberry, R. C. & Bekoff, M. Mammalian play: training for the unexpected. Q. Rev. Biol. 76, 141–168 (2001).
    PubMed  Article  Google Scholar 

    6.
    Pellis, S. M. & Pellis, V. C. What is play fighting and what is it good for?. Learn. Behav. 45, 355–366 (2017).
    PubMed  Article  Google Scholar 

    7.
    Smith, P. K. Does play matter? Functional and evolutionary aspects of animal and human play. Behav. Brain Sci. 5, 139–184 (1982).
    Article  Google Scholar 

    8.
    Rothstein, A. & Griswold, G. R. Age and sex preferences for social partners by juvenile bison bulls, Bison bison. Anim. Behav. 41, 227–237 (1991).
    Article  Google Scholar 

    9.
    Watson, D. M. & Croft, D. B. Playfighting in captive red-necked wallabies, Macropus rufogriseus banksianus. Behaviour 126, 219–245 (1993).
    Article  Google Scholar 

    10.
    Bekoff, M. Social play behaviour: cooperation, fairness, trust and the evolution of morality. J. Consciousness Stud. 8, 81–90 (2001).
    Google Scholar 

    11.
    Petit, O., Bertrand, F. & Thierry, B. Social play in crested and Japanese macaques: testing the covariation hypothesis. Dev. Psychobiol. 50, 399–407 (2008).
    PubMed  CAS  Article  Google Scholar 

    12.
    Horback, K. Nosing around: play in pigs. Anim. Behav. Cogn. 1, 186–196 (2014).
    Article  Google Scholar 

    13.
    Pellis, S. M. & Pellis, V. C. Play-fighting in the Syrian golden hamster Mesocricetus auratus Waterhouse, and its relationship to serious fighting during postweaning development. Dev. Psychobiol. 21, 323–337 (1988).
    PubMed  CAS  Article  Google Scholar 

    14.
    Sharpe, L. L. Play fighting does not affect subsequent fighting success in wild meerkats. Anim. Behav. 69, 1023–1029 (2005).
    Article  Google Scholar 

    15.
    Blumstein, D. T., Chung, L. K. & Smith, J. E. Early play may predict later dominance relationships in yellow-bellied marmots (Marmota faviventris). Proc. R. Soc. B. 280, 20130485 (2013).
    PubMed  Article  Google Scholar 

    16.
    Weller, J. E., Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. Socialisation and its effect on play behaviour and aggression in the domestic pig (Sus scrofa). Sci. Rep. 9, 4180 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Cenni, C. & Fawcett, T. W. The co-evolution of juvenile play-fighting and adult competition. Ethology 124, 290–301 (2017).
    Article  Google Scholar 

    18.
    Pellis, S. M. & Pellis, V. C. Play fighting in Visayan warty pigs (Sus cebifrons): insights on restraint and reciprocity in the maintenance of play. Behaviour 153, 727–747 (2016).
    Article  Google Scholar 

    19.
    Šilerová, J., Špinka, M., Šarova, R. & Algers, B. Playing and fighting by piglets around weaning on farms, employing individual or group housing of lactating sows. Appl. Anim. Behav. Sci. 124, 83–89 (2010).
    Article  Google Scholar 

    20.
    Mauget, R. Behavioural and reproductive strategies in wild forms of Sus scrofa (European wild boar and feral pigs). In The Welfare of Pigs (ed. Sybesma, W.) 3–13 (Martinus Nijhoff, The Hague, 1981).
    Google Scholar 

    21.
    Mendl, M. The social behaviour of non-lactating sows and its implications for managing sow aggression. Pig J. 34, 9–20 (1995).
    Google Scholar 

    22.
    Gonyou, H. W. The social behaviour of pigs. In Social Behaviour in Farm Animals (eds Keeling, L. J. & Gonyou, H. W.) 147–176 (CABI, Wallingford, 2001).
    Google Scholar 

    23.
    Turner, S. P. et al. The accumulation of skin lesions and their use as a predictor of individual aggressiveness in pigs. Appl. Anim. Behav. Sci. 96, 245–259 (2006).
    Article  Google Scholar 

    24.
    Jensen, P. & Yngvesson, J. Aggression between unacquainted pigs: sequential assessment and effects of familiarity and weight. Appl. Anim. Behav. Sci. 58, 49–61 (1998).
    Article  Google Scholar 

    25.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. The influence of experience on contest assessment strategies. Sci. Rep. 7, 14492 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Martin, J. E., Ison, S. H. & Baxter, E. M. The influence of neonatal environment on piglet play behaviour and post-weaning social and cognitive development. Appl. Anim. Behav. Sci. 163, 69–79 (2015).
    Article  Google Scholar 

    27.
    Govindarajulu, P., Hunte, W., Vermeer, L. A. & Horrocks, J. A. The ontogeny of social play in a feral troop of vervet monkeys (Cercopithecus aethiops sabaeus): the function of early play. Int. J. Primatol. 14, 701–719 (1993).
    Article  Google Scholar 

    28.
    Thompson, K. V. Play-partner preferences and the function of social play in infant sable antelope, Hippotragus niger. Anim. Behav. 52, 1143–1155 (1996).
    Article  Google Scholar 

    29.
    Llamazares-Martín, C., Scopa, C., Guillén-Salazar, F. & Palagi, E. Strong competition does not always predict play asymmetry: the case of South American sea lions (Otaria flavescens). Ethology 123, 270–282 (2017).
    Article  Google Scholar 

    30.
    Lutz, M. C., Ratsimbazafy, J. & Judge, P. G. Use of social network models to understand play partner choice strategies in three primate species. Primates https://doi.org/10.1007/s10329-018-00708-7 (2018).
    Article  Google Scholar 

    31.
    Foister, S. et al. Social network properties predict chronic aggression in commercial pig systems. PLoS ONE 13, e0205122 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Stanton, M. A. & Mann, J. Early social networks predict survival in wild bottlenose dolphins. PLoS ONE 7, e47508 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Gilby, I. C. et al. Fitness benefits of coalitionary aggression in male chimpanzees. Behav. Ecol. Sociobiol. 67, 373 (2013).
    PubMed  Article  Google Scholar 

    34.
    Cheney, D. L., Silk, J. B. & Seyfarth, R. M. Network connections, dyadic bonds and fitness in wild female baboons. R. Soc. Open Sci. 3, 160255 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Lehmann, J., Majolo, B. & McFarland, R. The effects of social network position on the survival of wild Barbary macaques, Macaca sylvanus. Behav. Ecol. 27, 20–28 (2016).
    Article  Google Scholar 

    36.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. Advantages of social skills for contest resolution. R. Soc. Open Sci. 6, 181456 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    D’Eath, R. B. & Pickup, H. E. Behaviour of young growing pigs in a resident-intruder test designed to measure aggressiveness. Aggress. Behav. 28, 401–415 (2002).
    Article  Google Scholar 

    38.
    Koolhaas, J. M. et al. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J. Vis. Exp. 77, e4367 (2013).
    Google Scholar 

    39.
    Luescher, U. A., Friendship, R. M. & McKeown, D. B. Evaluation of methods to reduce fighting among regrouped gilts. Can. J. Anim. Sci. 70, 363–370 (1990).
    Article  Google Scholar 

    40.
    Turner, S. P., Sinclair, A. G. & Edwards, S. A. The interaction of liveweight and the degree of competition on drinking behaviour of growing pigs at different group sizes. Appl. Anim. Behav. Sci. 67, 321–334 (2000).
    PubMed  CAS  Article  Google Scholar 

    41.
    Newberry, R. C., Wood-Gush, D. G. M. & Hall, J. W. Playful behaviour of piglets. Behav. Process. 17, 205–216 (1988).
    CAS  Article  Google Scholar 

    42.
    Fraser, D., Phillips, P. A., Thompson, B. K. & Tennessen, T. Effect of straw on the behavior of growing pigs. Appl. Anim. Behav. Sci. 30, 307–318 (1991).
    Article  Google Scholar 

    43.
    Brown, S. M., Peters, R., Nevison, I. M. & Lawrence, A. B. Playful pigs: evidence of consistency and change in play depending on litter and developmental stage. Appl. Anim. Behav. Sci. 198, 36–43 (2018).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    44.
    Brown, S. M., Klaffenböck, M., Nevison, I. M. & Lawrence, A. B. Evidence for litter differences in play behaviour in pre-weaned pigs. Appl. Anim. Behav. Sci. 172, 17–25 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Asher, L. et al. Recent advances in the analysis of behavioural organization and interpretation as indicators of animal welfare. J. R. Soc. Interface 6, 1103–1119 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Büttner, K., Scheffler, K., Czycholl, I. & Krieter, J. Network characteristics and development of social structure of agonistic behaviour in pigs across three repeated rehousing and mixing events. Appl. Anim. Behav. Sci. 168, 24–30 (2015).
    Article  Google Scholar 

    48.
    Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).
    Article  Google Scholar 

    49.
    Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29, 555–564 (2007).
    Article  Google Scholar 

    50.
    Madden, J. R., Drewe, J. A., Pearce, G. P. & Clutton-Brock, T. H. The social network structure of a wild meerkat population: 3. Position of individuals within networks. Behav. Ecol. Sociobiol. 65, 1857–1871 (2011).
    Article  Google Scholar 

    51.
    Farine, D. assortnet: calculate the assortativity coefficient of weighted and binary networks. R package version 0.12 (2016).

    52.
    Shizuka, D. & Farine, D. R. Measuring the robustness of network community structure using assortativity. Anim. Behav. 112, 237–246 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2(1), 74 (2007).
    Google Scholar 

    55.
    Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. Package ‘mass’. Cran R 538 (2013).

    56.
    Taylor, G. T. Fighting in juvenile rats and the ontogeny of agonistic behavior. J. Comp. Physiol. Psychol. 94, 953–961 (1980).
    Article  Google Scholar 

    57.
    Pellis, S. M., Pellis, V. C. & Kolb, B. Neonatal testosterone augmentation increases juvenile play fighting but does not influence the adult dominance relationships of male rats. Aggress. Behav. 18, 437–447 (1992).
    CAS  Article  Google Scholar 

    58.
    Chaloupková, H., Illman, G., Bartoš, L. & Špinka, M. The effect of pre-weaning housing on the play and agonistic behaviour of domestic pigs. Appl. Anim. Behav. Sci. 103, 25–34 (2007).
    Article  Google Scholar 

    59.
    Flack, J. C., Girvan, M., de Waal, F. B. M. & Krakauer, D. C. Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006).
    ADS  PubMed  CAS  Article  Google Scholar 

    60.
    Abell, J. et al. A social network analysis of social cohesion in a constructed pride: implications for ex situ reintroduction of the African lion (Panthera leo). PLoS ONE 8, e82541 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Shimada, M. & Sueur, C. Social play among juvenile wild Japanese macaques (Macaca fuscata) strengthens their social bonds. Am. J. Primatol. 80, e22728 (2018).
    Article  Google Scholar 

    62.
    Shimada, M. & Sueur, C. The importance of social play networks for wild chimpanzees at Mahale Mountains National Park, Tanzania. Am. J. Primatol. 76, 1025–1036 (2014).
    PubMed  Article  Google Scholar 

    63.
    Camerlink, I., Arnott, G., Farish, M. & Turner, S. P. Complex contests and the influence of aggressiveness in pigs. Anim. Behav. 121, 71–78 (2016).
    Article  Google Scholar 

    64.
    Antonacci, D., Norscia, I. & Palagi, E. Stranger to familiar: wild strepsirhines manage xenophobia by playing. PLoS ONE 5, e13218 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Gentsch, C., Lichtsteiner, M., Frischknecht, H. R., Feer, H. & Siegfried, B. Isolation-induced locomotor hyperactivity and hypoalgesia in rats are prevented by handling and reversed by resocialization. Physiol. Behav. 43, 13–16 (1988).
    PubMed  CAS  Article  Google Scholar 

    66.
    Potegal, M. & Einon, D. Aggressive behaviors in adult rats deprived of playfighting experience as juveniles. Dev. Psychobiol. 22, 159–172 (1989).
    PubMed  CAS  Article  Google Scholar 

    67.
    Drea, C. M., Hawk, J. E. & Glickman, S. E. Aggression decreases as play emerges in infant spotted hyaenas: preparation for joining the clan. Anim. Behav. 51, 1323–1336 (1996).
    Article  Google Scholar 

    68.
    Newberry, R. C. & Wood-Gush, D. G. M. Development of some behaviour patterns in piglets under semi-natural conditions. Anim. Prod. 46, 103–109 (1988).
    Google Scholar 

    69.
    Petersen, H. V., Vestergaard, K. & Jensen, P. Integration of piglets into social groups of free-ranging domestic pigs. Appl. Anim. Behav. Sci. 23, 223–236 (1989).
    Article  Google Scholar 

    70.
    Ellis, L. et al. Sex Differences: Summarizing More Than a Century of Scientific Research (Psychology Press, New York, 2008).
    Google Scholar 

    71.
    Carter, R. N., Romanow, C. A., Pellis, S. M. & Lingle, S. Play for prey: do deer fawns play to develop species-typical anti-predator tactics or to prepare for the unexpected?. Anim. Behav. 156, 31–40 (2019).
    Article  Google Scholar 

    72.
    Byers, J. A. Play partner preferences in Siberian ibex, Capra ibex sibirica. Z. Tierpsychol. 53, 23–40 (1980).
    Article  Google Scholar 

    73.
    Berger, J. The ecology, structure and functions of social play in bighorn sheep (Ovis canadensis). J. Zool. 192, 531–542 (1980).
    Article  Google Scholar 

    74.
    Sachs, B. D. & Harris, V. S. Sex differences and developmental changes in selected juvenile activities (play) of domestic lambs. Anim. Behav. 26, 678–684 (1978).
    Article  Google Scholar 

    75.
    Reinhardt, V., Mutiso, F. & Reinhardt, A. Social behaviour and social relationships between female and male prepubertal bovine calves (Bos indicus). Appl. Anim. Behav. Sci. 4, 43–54 (1978).
    Google Scholar 

    76.
    Crowell-Davis, S. L., Houpt, K. A. & Kane, L. Play development in Welsh pony (Equus caballus) foals. Appl. Anim. Behav. Sci. 18, 119–131 (1987).
    Article  Google Scholar 

    77.
    Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. Maternal investment results in better foal condition through increased play behaviour in horses. Anim. Behav. 76, 1511–1518 (2008).
    Article  Google Scholar 

    78.
    Dobao, M. T., Rodribanez, J. & Siliŏ, L. Choice of companions in social play in piglets. Appl. Anim. Behav. Sci. 13, 259–266 (1985).
    Article  Google Scholar 

    79.
    D’Eath, R. D. & Turner, S. P. The natural behaviour of the pig. In The Welfare of Pigs (ed. Marchant-Forde, J. N.) 13–45 (Springer, Berlin, 2007).
    Google Scholar  More

  • in

    Ethnopharmacological study of native medicinal plants and the impact of pastoralism on their loss in arid to semiarid ecosystems of southeastern Iran

    1.
    Asfaw, Z. & Tadesse, M. Prospects for sustainable use and development of wild food plants in Ethiopia. Econ. Bot. 55, 47–62 (2001).
    Article  Google Scholar 
    2.
    Della, A., Paraskeva-Hadjichambi, D. & Hadjichambis, A. C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2, 34 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    WHO. Health of Indigenous Peoples. Factsheets No 326 (World Health Organisation, Geneva, 2007).
    Google Scholar 

    4.
    Kawarty, A. M. A. M. A., Behçet, L. & Cakilcioğlu, U. An ethnobotanical survey of medicinal plants in Ballakayati (Erbil, North Iraq). Turk. J. Bot. 44, 345–357 (2020).
    Article  Google Scholar 

    5.
    Satıl, F. & Selvi, S. Ethnobotanical features of Ziziphora L. (Lamiaceae) Taxa in Turkey. Int. J. Nat. Life Sci. 4, 56–65 (2020).
    Google Scholar 

    6.
    Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present) (Nobel Medicine Publication, Istanbul, 1999).
    Google Scholar 

    7.
    Nikbakht, A., Kafi, M. & Haghighi, M. The abilities and potentials of medicinal plants production and herbal medicine in Iran. Acta Hortic. 790, 259–262. https://doi.org/10.17660/actahortic.2008.790.38 (2008).
    Article  Google Scholar 

    8.
    Zeder, M. A. & Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Rÿser, R. C. Indigenous people and traditional knowledge. Berkshire Encyclopedia of Sustainability. https://www.academia.edu/841635/Indigenous_and_Traditional_Knowledge (2011).

    10.
    Gemedo-Dalle, T., Maass, B. L. & Isselstein, J. Plant biodiversity and ethnobotany of Borana pastoralists in Southern Oromia, Ethiopia. Econ. Bot. 59, 43–65 (2005).
    Article  Google Scholar 

    11.
    Little, P. D. Pastoral ecologies: Rethinking interdisciplinary paradigms and the political ecology of pastoralism in East Africa. In African Savannas: Global Narratives and Local Knowledge of Environmental Change (eds Bassett, T. J. & Crummey, D.) 161–177 (James Currey, Oxford, 2003).
    Google Scholar 

    12.
    Boardman, J., Poesen, J. & Evans, R. Socio-economic factors in soil erosion and conservation. Environ. Sci. Policy 6, 1–6 (2003).
    Article  Google Scholar 

    13.
    Gaikwad, J. et al. Combining ethnobotany and informatics to discover knowledge from data. In Ethnomedicinal Plants: Revitalizing of Traditional Knowledge of Herbs (eds Rai, M. et al.) 447–457 (Science Publishers, Enfield, 2011).
    Google Scholar 

    14.
    Brouwer, N. et al. An ethnopharmacological study of medicinal plants in New South Wales. Molecules 10, 1252–1262 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lambert, J., Srivastava, J. P. & Vietmeyer, N. Medicinal plants. World Bank Technical Papers (1997).

    16.
    Walter, K. S. & Gillett, H. J. 1997 IUCN Red List of Threatened Plants (IUCN, World Conservation Union, Cambridge, 1998).
    Google Scholar 

    17.
    Ansari-Renani, H. R., Rischkowsky, B., Mueller, J. P., Momen, S. M. S. & Moradi, S. Nomadic pastoralism in southern Iran. Pastor. Res. Policy Pract. 3, 11 (2013).
    Article  Google Scholar 

    18.
    Tashakkori, A. & Teddlie, C. SAGE Handbook of Mixed Methods in Social & Behavioral Research (SAGE, Thousand Oaks, 2010).
    Google Scholar 

    19.
    Rechinger, K.H. (ed.) Flora Iranica (Graz, 1963–2012).

    20.
    Assadi, M. et al. (eds.). Flora of Iran: No 1-89 (Iran Research Institute of Forests and Rangelands, Tehran , 1989–2016).

    21.
    Napagoda, M. T., Sundarapperuma, T., Fonseka, D., Amarasiri, S. & Gunaratna, P. An ethnobotanical study of the medicinal plants used as anti-inflammatory remedies in Gampaha District, Western Province, Sri Lanka. Scientifica (Cairo) 2018, 9395052 (2018).
    Google Scholar 

    22.
    Bano, A. et al. Quantitative ethnomedicinal study of plants used in the skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. J. Ethnobiol. Ethnomed. 10, 43 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Reyes-García, V., Huanca, T., Vadez, V., Leonard, W. & Wilkie, D. Cultural, practical, and economic value of wild plants: A quantitative study in the Bolivian Amazon. Econ. Bot. 60, 62–74 (2006).
    Article  Google Scholar 

    24.
    Tardío, J. & Pardo-de-Santayana, M. Cultural importance indices: A comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ. Bot. 62, 24–39 (2008).
    Article  Google Scholar 

    25.
    Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38, 297–306 (1997).
    Google Scholar 

    26.
    González-Hernández, M. P., Mouronte, V., Romero, R., Rigueiro-Rodríguez, A. & Mosquera-Losada, M. R. Plant diversity and botanical composition in an Atlantic heather-gorse dominated understory after horse grazing suspension: Comparison of a continuous and rotational management. Glob. Ecol. Conserv. 23, e01134 (2020).
    Article  Google Scholar 

    27.
    Davies, K. W., Bates, J. D. & Boyd, C. S. Response of planted sagebrush seedlings to cattle grazing applied to decrease fire probability. Rangel. Ecol. Manag. https://doi.org/10.1016/j.rama.2020.05.002 (2020).
    Article  Google Scholar 

    28.
    Hailu, H. Analysis of vegetation phytosociological characteristics and soil physico-chemical conditions in Harishin Rangelands of Eastern Ethiopia. Land 6, 4 (2017).
    Article  Google Scholar 

    29.
    Spellmeier, J., Périco, E., Haetinger, C., Freitas, E. M. & Morás, A. P. B. Effect of grazing on the plant community of a southern Brazilian swamp. Floresta e Ambiente 26, e20180339 (2019).
    Article  Google Scholar 

    30.
    Curtis, J. T. & McIntosh, R. P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32, 476–496 (1951).
    Article  Google Scholar 

    31.
    Mishra, R. Ecology Workbook (IBH Publishing Company, Oxford, 1968).
    Google Scholar 

    32.
    Murphy, K. P. Machine Learning a Probabilistic Perspective (MIT Press, Cambridge, 2012).
    Google Scholar 

    33.
    Tang, C., Yi, Y., Yang, Z. & Sun, J. Risk analysis of emergent water pollution accidents based on a Bayesian network. J. Environ. Manag. 165, 199–205 (2016).
    Article  Google Scholar 

    34.
    Taylor, D., Hicks, T. & Champod, C. Using sensitivity analyses in Bayesian networks to highlight the impact of data paucity and direct future analyses: A contribution to the debate on measuring and reporting the precision of likelihood ratios. Sci. Justice 56, 402–410 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Alimirzaei, F., Mohammadi Kalayeh, A., Shahraki, M. R. & Behmanesh, B. Local knowledge of medicinal plants from the point of view of nomads in the rangelands of Chehel-Kaman, North Khorasan province. J. Indig. Knowl. 4, 156–201 (2017).
    Google Scholar 

    36.
    Hosseini, M., Forouzeh, R. & Barani, H. Identification and investigation of ethnobotany of some medicinal plants in Razavi Khorasan Province. J. Med. Plants 18, 212–231 (2019).
    Google Scholar 

    37.
    Okoye, T. C., Uzor, P. F., Onyeto, C. A. & Okereke, E. K. Safe African medicinal plants for clinical studies. In Toxicological Survey of African Medicinal Plants (ed. Kuete, V.) 535–555 (Elsevier, Amsterdam, 2014).
    Google Scholar 

    38.
    Freidin, B. & Timmermans, S. Complementary and alternative medicine for children’s asthma: Satisfaction, care provider responsiveness, and networks of care. Qual. Health Res. 18, 43–55 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Simbo, D. J. An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon. J. Ethnobiol. Ethnomed. 6, 8 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Tangjitman, K., Wongsawad, C., Kamwong, K., Sukkho, T. & Trisonthi, C. Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailand. J. Ethnobiol. Ethnomed. 11, 27 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Chen, Y. et al. Phytochemical profiles and antioxidant activities in six species of ramie leaves. PLoS ONE 9, e108140–e108140 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Bahmani, M., Baharvand-Ahmadi, B., Tajeddini, P., Rafieian-Kopaei, M. & Naghdi, N. Identification of medicinal plants for the treatment of kidney and urinary stones. J. Ren. Inj. Prev. 5, 129–133 (2016).
    PubMed  Article  Google Scholar 

    43.
    Ahmed, H. M. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J. Ethnobiol. Ethnomed. 12, 8 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Nimrouzi, M. & Zarshenas, M. M. Phytochemical and pharmacological aspects of Descurainia sophia Webb ex Prantl: Modern and traditional applications. Avicenna J. Phytomed. 6, 266–272 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Miraj, S. & Kiani, S. Pharmacological activities of Carum carvi L. Der. Pharm. Lett. 8, 135–138 (2016).
    CAS  Google Scholar 

    46.
    de Lucena, R. F. P., de Lima Araújo, E. & de Albuquerque, U. P. Does the local availability of woody Caatinga plants (Northeastern Brazil) explain their use value. Econ. Bot. 61, 347–361 (2007).
    Article  Google Scholar 

    47.
    Thomas, E., Vandebroek, I. & Van Damme, P. valuation of forests and plant species in Indigenous Territory and National Park Isiboro-Sécure, Bolivia. Econ. Bot. 63, 229–241 (2009).
    Article  Google Scholar 

    48.
    Berlin, B. The common flora = the medicinal flora: Theoretical implications of a comparison of medical ethnobotanical and general floristic surveys in the Chiapas Highlands. In Symposium “Ethnobotany of southern Mexico” (Society of Economic Botany, 2003).

    49.
    Guèze, M. et al. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon. Econ. Bot. 68, 1–15 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ouarghidi, A., Powell, B., Martin, G. J. & Abbad, A. Traditional sustainable harvesting knowledge and distribution of a vulnerable wild medicinal root (A. pyrethrum var. pyrethrum) in Ait M’hamed Valley, Morocco. Econ. Bot. 71, 83–95 (2017).
    Article  Google Scholar 

    51.
    Posthouwer, C., Verheijden, T. M. S. & van Andel, T. R. A rapid sustainability assessment of wild plant extraction on the Dutch Caribbean Island of St. Eustatius. Econ. Bot. 70, 320–331 (2016).
    Article  Google Scholar 

    52.
    Papageorgiou, D., Bebeli, P. J., Panitsa, M. & Schunko, C. Local knowledge about sustainable harvesting and availability of wild medicinal plant species in Lemnos Island, Greece. J. Ethnobiol. Ethnomed. 16, 36 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Donaghy, D. J. & Fulkerson, W. J. The importance of water-soluble carbohydrate reserves on regrowth and root growth of Lolium perenne (L.). Grass Forage Sci. 52, 401–407 (1997).
    CAS  Article  Google Scholar 

    54.
    González-Tejero, M. R. et al. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. J. Ethnopharmacol. 116, 341–357 (2008).
    PubMed  Article  Google Scholar 

    55.
    Tuttolomondo, T. et al. Ethnobotanical investigation on wild medicinal plants in the Monti Sicani Regional Park (Sicily, Italy). J. Ethnopharmacol. 153, 568–586 (2014).
    PubMed  Article  Google Scholar 

    56.
    Weber, K. T. & Horst, S. Desertification and livestock grazing: The roles of sedentarization, mobility and rest. Pastor. Res. Policy Pract. 1, 19 (2011).
    Article  Google Scholar 

    57.
    Miara, M. D., Bendif, H., Ait Hammou, M. & Teixidor-Toneu, I. Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. J. Ethnopharmacol. 219, 248–256 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Rana, D., Bhatt, A. & Lal, B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari’s) of Churah subdivision, district Chamba, Western Himalaya. J. Ethnobiol. Ethnomed. 15, 10 (2019).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota

    1.
    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 1–10 (2017).
    Article  Google Scholar 

    3.
    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Marchesi, J. R. et al. The gut microbiota and host health: A new clinical frontier. Gut 65, 330–339 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lee, W. J. & Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of microbiota in immunity and inflammation. Cell 157, 121–141 (2018).
    Article  CAS  Google Scholar 

    8.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Pickard, J. M. & Núñez, G. Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. Am. J. Pathol. 189, 1300–1310 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Rosshart, S. P. et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171, 1015–1028 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Blanga-Kanfi, S. et al. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. T. Roy. Soc. B 370, 20140295 (2015).
    Article  Google Scholar 

    14.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Weldon, L. et al. The gut microbiota of wild mice. PLoS ONE 10, 1–15 (2015).
    Article  CAS  Google Scholar 

    16.
    Lavrinienko, A., et al. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME J 12 (2018).

    17.
    Lavrinienko, A., Tukalenko, E., Mappes, T. & Watts, P. C. Skin and gut microbiomes of a wild mammal respond to different environmental cues. Microbiome 6, 209 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Lavrinienko, A. et al. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment. J. Anim. Ecol. In press, https://doi.org/10.1111/1365-2656.13342 (2020).

    19.
    Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotech. 33, 1103–1108 (2015).
    CAS  Article  Google Scholar 

    20.
    Pan, H. et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. GigaScience 7, 1–8 (2018).
    CAS  Google Scholar 

    21.
    Hutterer, R., et al. Myodes glareolus. The IUCN Red List of Threatened Species e.T4973A115070929 (2016); erratum (2017).

    22.
    Lonn, E. et al. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc. Natl. Acad. Sci. USA 114, 3690–3695 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Van Cann, J., Koskela, E., Mappes, T., Sims, A. & Watts, P. C. Intergenerational fitness effects of the early life environment in a wild rodent. J. Anim. Ecol. 88, 1355–1365 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Kohl, K. D., Sadowska, E. T., Rudolf, A. M., Dearing, M. D. & Koteja, P. Experimental evolution on a wild mammal species results in modifications of gut microbial communities. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 

    25.
    Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).
    Article  Google Scholar 

    26.
    Lagkouvardos, I. et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7, 1–15 (2019).
    Article  Google Scholar 

    27.
    Tonteri, E. J. et al. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 17, 72–75 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc Natl. Acad. Sci. USA 112, 7039–7044 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasite. Vector. 8, 13–15 (2015).
    Article  Google Scholar 

    31.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP254056 (2020).

    32.
    Didion, J. P., Martin, M. & Collins, F. S. Atropos: Specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e3720 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 1–8 (2018).
    Article  CAS  Google Scholar 

    35.
    Li, D. et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Li, W. et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Sommer, D. D. et al. Minimus: A fast, lightweight genome assembler. BMC Bioinform. 8, 1–11 (2007).
    Article  CAS  Google Scholar 

    38.
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Binsanity: Unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ 5, e3035 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Parks, D. H. et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Delmont, T. O. & Eren, A. M. Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ 4, e1839 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Campbell, J. H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. USA. 110, 5540–5545 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Chen, L.-X. et al. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
    Article  CAS  Google Scholar 

    45.
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, 501–504 (2005).
    Article  CAS  Google Scholar 

    47.
    Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Edgar, R. C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 1–19 (2004).
    Article  CAS  Google Scholar 

    50.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. figshare https://doi.org/10.6084/m9.figshare.c.4910601 (2020).

    54.
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Ecol. Evol. 27, 105–117 (2019).
    CAS  Google Scholar  More

  • in

    Crop climate suitability mapping on the cloud: a geovisualization application for sustainable agriculture

    1.
    Campbell, B. M. et al. Reducing risks to food security from climate change. Glob. Food Secur. 11, 34–43 (2016).
    Article  Google Scholar 
    2.
    Nair, P. K. R. Grand challenges in agroecology and land use systems. Front. Environ. Sci. 2, 1 (2014).
    Google Scholar 

    3.
    Connolly-Boutin, L. & Smit, B. Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Change 16, 385–399 (2016).
    Article  Google Scholar 

    4.
    Maxwell, D. The political economy of urban food security in Sub-Saharan Africa. World Dev. 27, 1939–1953 (1999).
    Article  Google Scholar 

    5.
    IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds. Shukla, P. R. et al.) (2019).

    6.
    Altieri, M. A., Nicholls, C. I., Henao, A. & Lana, M. A. Agroecology and the design of climate change-resilient farming systems. Agron. Sust. Dev. 35, 869–890 (2015).
    Article  Google Scholar 

    7.
    Tadross, M. et al. Growing-season rainfall and scenarios of future change in southeast Africa: Implications for cultivating maize. Clim. Res. 40, 147–161 (2009).
    Article  Google Scholar 

    8.
    Challinor, A., Wheeler, T., Garforth, C., Craufurd, P. & Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Clim. Change 83, 381–399 (2007).
    ADS  Article  Google Scholar 

    9.
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 114, 9326–9331 (2017).
    CAS  PubMed  Article  Google Scholar 

    11.
    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
    ADS  Article  Google Scholar 

    12.
    Hammond, S. T. et al. Food spoilage, storage, and transport: Implications for a sustainable future. Bioscience 65, 758–768 (2015).
    Article  Google Scholar 

    13.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  Google Scholar 

    14.
    Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).
    Article  Google Scholar 

    15.
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Lee, J. G. & Kang, M. Geospatial big data: Challenges and opportunities. Big Data Res. 2, 74–81 (2015).
    Article  Google Scholar 

    17.
    Serra-Diaz, J. M. & Franklin, J. What’s hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Divers. Distrib. 25, 492–498 (2019).
    Article  Google Scholar 

    18.
    Snyder, K. A., Miththapala, S., Sommer, R. & Braslow, J. The yield gap: Closing the gap by widening the approach. Exp. Agric. 53, 445–459 (2017).
    Article  Google Scholar 

    19.
    Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Fernández, M., Hamilton, H. & Kueppers, L. M. Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere 4, 1–17 (2013).
    Article  Google Scholar 

    21.
    Grabowski, P. et al. Assessing adoption potential in a risky environment: The case of perennial pigeonpea. Agric. Syst. 171, 89–99 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Habib-Mintz, N. Biofuel investment in Tanzania: Omissions in implementation. Energy Policy 38, 3985–3997 (2010).
    Article  Google Scholar 

    23.
    Shiferaw, B. A., Okello, J. & Reddy, R. V. Adoption and adaptation of natural resource management innovations in smallholder agriculture: Reflections on key lessons and best practices. Environ. Dev. Sustain. 11, 601–619 (2009).
    Article  Google Scholar 

    24.
    Kwesiga, F., Akinnifesi, F. K., Mafongoya, P. L., McDermott, M. H. & Agumya, A. Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agrofor. Syst. 59, 173–186 (2003).
    Article  Google Scholar 

    25.
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).
    Article  Google Scholar 

    26.
    Fischer, G. et al. Global agro-ecological zones (GAEZ v3. 0)-model documentation. In International Institute for Applied Systems Analysis/Food and Agriculture Organization of the United Nations (2012).

    27.
    Heal, G. & Millner, A. Reflections: Uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy 8, 120–137 (2014).
    Article  Google Scholar 

    28.
    Harth, A., Knoblock, C. A., Stadtmüller, S., Studer, R. & Szekely, P. On-the-fly integration of static and dynamic linked data. In Proceedings of the Fourth International Workshop on Consuming Linked Data (2013).

    29.
    Ginige, A., Javadi, B., Calheiros, R. N. & Hendriks, S. L. A smart computing framework centered on user and societal empowerment to achieve the sustainable development goals. In International Conference on Innovations and Interdisciplinary Solutions for Underserved Areas (eds. Bassioni, G., Kebe, C. M. F., Gueye, A. & Ndiaye, A.) 158–172 (Springer, Cham, 2019).

    30.
    Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteorol. 218, 102–113 (2016).
    ADS  Article  Google Scholar 

    31.
    Mejias, P., & Piraux, M. AquaCrop, the crop water productivity model. In Food and Agriculture Organization of the United Nations (2017).

    32.
    Hijmans, R. J., Guarino, L., Cruz, M. & Rojas, E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 127, 15–19 (2001).
    Google Scholar 

    33.
    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).
    Article  Google Scholar 

    34.
    McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P. & Freebairn, D. M. APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research. Agric. Syst. 50, 255–271 (1996).
    Article  Google Scholar 

    35.
    Dragićević, S. The potential of Web-based GIS. J. Geogr. Syst. 6, 79–81 (2004).
    Article  Google Scholar 

    36.
    Kraak, M. J. The role of the map in a Web-GIS environment. J. Geogr. Syst. 6, 83–93 (2004).
    Article  Google Scholar 

    37.
    Moore, R. Introducing Google Earth Engine. The Official google.org blog https://blog.google.org/2010/12/introducing-google-earth-engine_57.html (2010).

    38.
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar 

    39.
    Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth. 10, 82–102 (2017).
    Article  Google Scholar 

    40.
    HarvestChoice-International Food Policy Research Institute (IFPRI). Agro-Ecological Zones for Africa South of the Sahara V3. Harvard Dataverse https://doi.org/10.7910/DVN/M7XIUB (2015).

    41.
    Kane, D. A., Roge, P. & Snapp, S. S. A systematic review of perennial staple crops literature using topic modeling and bibliometric analysis. PLoS ONE 11, e0155788 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Thornton, P. K. & Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change. 5, 830–836 (2015).
    ADS  Article  Google Scholar 

    43.
    Mayes, S. et al. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 63, 1075–1079 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Peter, B. G., Mungai, L. M., Messina, J. P. & Snapp, S. S. Nature-based agricultural solutions: Scaling perennial grains across Africa. Environ. Res. 159, 283–290 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Hannah, L. et al. Global climate change adaptation priorities for biodiversity and food security. PLoS ONE 8, e72590 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R. & Kanyama-Phiri, G. Y. Biodiversity can support a greener revolution in Africa. Proc. Natl. Acad. Sci. USA 107, 20840–20845 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).
    CAS  PubMed  Article  Google Scholar 

    48.
    Foyer, C. H. et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2, 16112 (2016).
    PubMed  Article  Google Scholar 

    49.
    Kole, C. et al. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Front. Plant Sci. 6, 563 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Sinha, P. et al. 2016 Identification and validation of selected universal stress protein domain containing drought-responsive genes in Pigeonpea (Cajanus cajan L.). Front. Plant Sci. 6, 1065 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Choudhary, A. K., Sultana, R., Pratap, A., Nadarajan, N. & Jha, U. C. Breeding for abiotic stresses in pigeonpea. J. Food Legum. 24, 165–174 (2011).
    Google Scholar 

    52.
    Ehlers, J. D. & Hall, A. E. Cowpea (Vigna unguiculata L. walp.). Field Crops Res. 53, 187–204 (1997).
    Article  Google Scholar 

    53.
    De Ron, A. M. et al. 2019 Common bean genetics, breeding, and genomics for adaptation to changing to new agri-environmental conditions. In Genomic Designing of Climate-Smart Pulse Crops (ed. Kole, C.) 1–106 (Springer, Cham, 2019).
    Google Scholar 

    54.
    Smýkal, P. et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43–104 (2015).
    Article  Google Scholar 

    55.
    Snapp, S. S., Cox, C. M. & Peter, B. G. Multipurpose legumes for smallholders in sub-Saharan Africa: Identification of promising ‘scale out’ options. Glob. Food Secur. 23, 22–32 (2019).
    Article  Google Scholar 

    56.
    Ramírez-Villegas, J. & Thornton, P. K. Climate change impacts on African crop production. In CCAFS Working Paper No. 119. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) (2015).

    57.
    Robertson, C. C. Black, white, and red all over: Beans, women, and agricultural imperialism in twentieth-century Kenya. Agric. Hist. 71, 259–299 (1997).
    Google Scholar 

    58.
    Rusinamhodzi, L., Corbeels, M., Nyamangara, J. & Giller, K. E. Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 136, 12–22 (2012).
    Article  Google Scholar 

    59.
    Bezner-Kerr, R., Snapp, S., Chirwa, M., Shumba, L. & Msachi, R. Participatory research on legume diversification with Malawian smallholder farmers for improved human nutrition and soil fertility. Exp. Agric. 43, 437–453 (2007).
    Article  Google Scholar 

    60.
    Jones, A. D., Shrinivas, A. & Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data. Food Policy 46, 1–12 (2014).
    Article  Google Scholar 

    61.
    Ojiewo, C. et al. The role of vegetables and legumes in assuring food, nutrition, and income security for vulnerable groups in Sub-Saharan Africa. World Med. Health Policy 7, 187–210 (2015).
    Article  Google Scholar 

    62.
    Wood, S., Sebastian, K., Nachtergaele, F., Nielsen, D. & Dai, A. Spatial aspects of the design and targeting of agricultural development strategies. In Environment and Production Technology Division, International Food Policy Research Institute, Washington, DC, EPTD Discussion Paper No. 44 (1999).

    63.
    Chivenge, P., Mabhaudhi, T., Modi, A. T. & Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health 12, 5685–5711 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Dakora, F. D. Biogeographic distribution, nodulation and nutritional attributes of underutilized indigenous African legumes. In II International Symposium on Underutilized Plant Species: Crops for the Future-Beyond Food Security, 53–64 International Society for Horticultural Science, ISHS Acta Horticulturae 979 (2011).

    65.
    Traub, J. et al. Screening for heat tolerance in Phaseolus spp. using multiple methods. Crop Sci. 58, 2459–2469 (2018).
    CAS  Article  Google Scholar 

    66.
    Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research–implementation gap. Conserv. Biol. 22, 610–617 (2008).
    PubMed  Article  Google Scholar 

    67.
    Funk, C. et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
    Article  Google Scholar 

    68.
    Vizy, E. K., Cook, K. H., Chimphamba, J. & McCusker, B. Projected changes in Malawi’s growing season. Clim. Dyn. 45, 1673–1698 (2015).
    Article  Google Scholar 

    69.
    Jayanthi, H. et al. Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite estimated rainfall—Southern Malawi case study. Int. J. Disast. Risk Res. 4, 71–81 (2013).
    Google Scholar 

    70.
    FAO. ECOCROP, Crop Environmental Requirements Database. Food and Agriculture Organization of the United Nations (1991).

    71.
    Peter, B. G., Messina, J. P. & Lin, Z. Web-based GIS for spatiotemporal crop climate niche mapping https://doi.org/10.7910/DVN/UFC6B5,HarvardDataverse,V2 (2019).
    Article  Google Scholar 

    72.
    Beebe, S. et al. Genetic improvement of common beans and the challenges of climate change. In Crop Adaptation to Climate Change (eds. Yadav, S. S., Redden, R. J., Hatfield, J. L., Lotze-Campen, H. & Hall, A. E.) Ch. 16, 356–369 (Wiley-Blackwell, 2011).

    73.
    de Jong, R. & de Bruin, S. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 9, 71–77 (2012).
    ADS  Article  Google Scholar 

    74.
    Swist, T. & Magee, L. Academic publishing and its digital binds: Beyond the paywall towards ethical executions of code. Cult.s Unbound J. Curr. Cult. Res. 9, 240–259 (2018).
    Article  Google Scholar 

    75.
    Hedding, D. W. Comments on “Factors affecting global flow of scientific knowledge in environmental sciences” by Sonne et al. (2020). Sci. Total Environ. 705, 135933 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    76.
    Rippke, U. et al. Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat. Clim. Change 6, 605–609 (2016).
    ADS  Article  Google Scholar 

    77.
    Sinclair, T. R., Marrou, H., Soltani, A., Vadez, V. & Chandolu, K. C. Soybean production potential in Africa. Glob. Food Secur. 3, 31–40 (2014).
    Article  Google Scholar 

    78.
    Hajjarpoor, A. et al. Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Res. 223, 93–104 (2018).
    Article  Google Scholar 

    79.
    Ortega, D. L., Waldman, K. B., Richardson, R. B., Clay, D. C. & Snapp, S. Sustainable intensification and farmer preferences for crop system attributes: Evidence from Malawi’s central and southern regions. World Dev. 87, 139–151 (2016).
    Article  Google Scholar 

    80.
    Simtowe, F., Asfaw, S. & Abate, T. Determinants of agricultural technology adoption under partial population awareness: The case of pigeonpea in Malawi. Agric. Food Econ. 4, 7 (2016).
    Article  Google Scholar 

    81.
    Norris, K. Agriculture and biodiversity conservation: Opportunity knocks. Conservation Letters 1, 2–11 (2008).
    Article  Google Scholar 

    82.
    Donchyts, G. et al. Earth’s surface water change over the past 30 years. Nat. Clim. Change 6, 810–813 (2016).
    ADS  Article  Google Scholar 

    83.
    Pekel, J., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Allen, R. G. et al. EEFlux: A Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation-A Tribute to the Career of Terry Howell, Sr. Conference Proceedings, 1–11. American Society of Agricultural and Biological Engineers (2015).

    85.
    Wan, Z., Hook, S. & Hulley, G. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD11A2.006 (2015).
    Article  Google Scholar 

    86.
    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Process.. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
    Article  Google Scholar 

    87.
    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+aqua land cover type yearly L3 global 500m SIN grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).
    Article  Google Scholar 

    88.
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
    ADS  Article  Google Scholar 

    89.
    Teluguntla, P. G. et al. Global cropland area database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. In Remote Sensing Handbook, Land Resources: Monitoring, Modelling, and Mapping Vol 2, Ch. 7 (CRC Press, 2015).

    90.
    Arino, O., Ramos, J. R., Kalogirou, V., Defourny, P. & Achard, F. GlobCover 2009. In ESA Living Planet Symposium 1–3. European Space Agency (2010).

    91.
    Hengl, T. & MacMillan, R. A. Predictive Soil Mapping with R, https://www.soilmapper.org (OpenGeoHub foundation, Wageningen, The Netherlands, 2019).

    92.
    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).
    ADS  Article  Google Scholar 

    93.
    Rossel, R. A. V. & Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).
    Article  Google Scholar 

    94.
    Herrick, J. E. et al. The global Land-Potential Knowledge System (LandPKS): Supporting evidence-based, site-specific land use and management through cloud computing, mobile applications, and crowdsourcing. J. Soil Water Conserv. 68, 5A-12A (2013).
    Article  Google Scholar 

    95.
    Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change. 9, 758–763 (2019).
    ADS  Article  Google Scholar 

    96.
    ESRI. ArcGIS Desktop: Release 10.8. (Environmental Systems Research Institute, CAs, 2020). More

  • in

    A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus

    1.
    Garcia-Pichel F. Desert environments: biological soil crusts. encycl environ microbiol vol 6. New York, NY, USA: Set. Wiley-Interscience; 2003. p. 1019–23.
    Google Scholar 
    2.
    Belnap J, Büdel B, Lange OL. Biological soil crusts: characteristics and distribution. biological soil crust: structure, function, and management. Berlin: Springer-Verlag; 2001. p. 3–30.
    Google Scholar 

    3.
    Prăvălie R. Drylands extent and environmental issues. A global approach. Earth Sci Rev. 2016;161:259–78.
    Article  CAS  Google Scholar 

    4.
    Garcia-Pichel F, Pringault O. Cyanobacteria track water in desert soils. Nature. 2001;413:380–1.
    CAS  PubMed  Article  Google Scholar 

    5.
    Pringault O, Garcia-Pichel F. Hydrotaxis of cyanobacteria in desert crusts. Microb Ecol. 2004;47:366–73.
    CAS  PubMed  Article  Google Scholar 

    6.
    Soule T, Anderson IJ, Johnson SL, Bates ST, Garcia-Pichel F. Archaeal populations in biological soil crusts from arid lands in North America. Soil Biol Biochem. 2009;41:2069–74.
    CAS  Article  Google Scholar 

    7.
    Nunes da Rocha U, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, Dunn S, et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front Microbiol. 2015;6:1–14.
    Article  Google Scholar 

    8.
    Hu C, Zhang D, Huang Z, Liu Y. The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil. 2003;257:97–111.
    CAS  Article  Google Scholar 

    9.
    Bates ST, Nash TH, Garcia-Pichel F. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia. 2012;104:353–61.
    CAS  PubMed  Article  Google Scholar 

    10.
    Ullmann I, Büdel B. Ecological determinants of species composition of biological soil crusts on a landscape scale. In: Belnap J, Lange OL, editors. Biological soil crusts: structure, function, and management, 1st ed. Berlin: Springer-Verlag; 2001. p. 203–13.
    Google Scholar 

    11.
    Lange OL, Belnap J, Reichenberger H, Meyer A. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora. 1997;192:1–15.
    Article  Google Scholar 

    12.
    Garcia-Pichel F, López-Cortés A, Nübel U. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol. 2001;67:1902–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Couradeau E, Karaoz U, Lim HC, Nunes Da Rocha U, Northen T, Brodie E, et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat Commun. 2016;7:1–7.
    Article  CAS  Google Scholar 

    14.
    Yeager C, Kornosky J, Housman DC, Grote EE, Belnap J, Kuske CR. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol. 2004;70:973–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol. 2007;60:85–97.
    CAS  PubMed  Article  Google Scholar 

    16.
    Yeager CM, Kuske CR, Carney TD, Johnson SL, Ticknor LO, Belnap J. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA. Front Microbiol. 2012;3:1–14.
    Article  Google Scholar 

    17.
    Garcia-Pichel F. Cyanobacteria. In: Schaechter M, editor. Encyclopedia of microbiology. 3rd ed. 2009. New York: Elsevier Inc.; 2009. p. 107–24.

    18.
    Fernandes VMC, Machado de Lima NM, Roush D, Rudgers J, Collins SL, Garcia-Pichel F. Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert. Environ Microbiol. 2018;20:259–69.
    PubMed  Article  Google Scholar 

    19.
    Garcia-Pichel F, Wojciechowski MF. The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS ONE. 2009;4:4–9.
    Article  CAS  Google Scholar 

    20.
    Belnap J, Gardner J. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. West N Am Nat. 1993;53:40–7.
    Google Scholar 

    21.
    Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Piche F, et al. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol. 2011;193:4569–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Rajeev L, Nunes U, Klitgord N, Luning EG, Fortney J, Axen SD, et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 2013;7:2178–91.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Hooper DU, Johnson L. Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry. 1999;46:247–93.
    CAS  Google Scholar 

    24.
    James JJ, Tiller RL, Richards JH. Multiple resources limit plant growth and function in a saline-alkaline desert community. J Ecol. 2005;93:113–26.
    CAS  Article  Google Scholar 

    25.
    Neff JC, Reynolds RL, Belnap J, Lamothe P. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl. 2005;15:87–95.
    Article  Google Scholar 

    26.
    Schlesinger WH, Raikks JA, Hartley AE, Cross AF. On the spatial pattern of soil nutrients in desert ecosystems. Ecology. 1996;77:364–74.
    Article  Google Scholar 

    27.
    Beraldi-Campesi H, Hartnett HE, Anbar A, Gordon GW, Garcia-Pichel F. Effect of biological soil crusts on soil elemental concentrations: Implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology. 2009;7:348–59.
    CAS  PubMed  Article  Google Scholar 

    28.
    Johnson SL, Budinoff CR, Belnap J, Garcia-pichel F. Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol. 2005;7:1–12.
    CAS  PubMed  Article  Google Scholar 

    29.
    Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, et al. Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J. 2016;10:287–98.
    CAS  PubMed  Article  Google Scholar 

    30.
    Couradeau E, Giraldo-Silva A, De Martini F, Garcia-Pichel F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome. 2019;7:111–22.
    Article  Google Scholar 

    31.
    Baran R, Brodie EL, Mayberry-lewis J, Hummel E, Nunes U, Rocha D, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:1–9.
    Article  CAS  Google Scholar 

    32.
    Baran R, Ivanova N, Jose N, Garcia-Pichel F, Kyrpides N, Gugger M, et al. Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. Mar Drugs. 2013;11:3617–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Velasco Ayuso S, Giraldo-Silva A, Nelson C, Barger NN, Garcia-pichel F. Microbial nursery production of high quality biological soil crust biomass for restoration of degraded dryland soils. Appl Environ Microbiol. 2017;83:1–16.
    Article  Google Scholar 

    34.
    Giraldo-Silva A, Nelson C, Barger N, Garcia-Pichel F. Nursing biocrusts: isolation, cultivation and fitness test of indigenous cyanobacteria. Restor Ecol. 2019;27:793–803.
    Article  Google Scholar 

    35.
    Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, et al. Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol. 2009;57:229–47.
    PubMed  Article  Google Scholar 

    36.
    Ferreira D, Garcia-Pichel F. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133. Front Microbiol. 2016;7:1–10.
    Article  Google Scholar 

    37.
    Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science. 2013;340:1574–77.
    CAS  PubMed  Article  Google Scholar 

    38.
    Caporaso JG, Lauber CL, Walters WA, Berg-lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Gilbert JA, Meyer F, Jansson J, Gordon J, Pace N, Tiedje J, et al. The Earth Microbiome Project: meeting report of the ‘1 EMP meeting on sample selection and acquisition’ at Argonne National Laboratory October 6 2010. Stand Genom Sci. 2010;3:249–53.

    40.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.
    CAS  PubMed  Article  Google Scholar 

    43.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:1–10.
    Google Scholar 

    45.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:242–5.
    Article  CAS  Google Scholar 

    48.
    Clarke KR, Gorley RN. PRIMER v6: user manual/tutorial. Prim Plymouth UK. 2006;7:192.
    Google Scholar 

    49.
    Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol. 1997;63:3327–32.
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, et al. Detection of nifH Sequences in Sugarcane (Saccharum officinarum L.) and Pineapple (Ananas comosus [L.] Merr.). Soil Sci Plant Nutr. 2005;51:303–8.
    CAS  Article  Google Scholar 

    51.
    Van Dorst J, Siciliano SD, Winsley T, Snape I, Ferrari BC. Bacterial targets as potential indicators of diesel fuel toxicity in subantarctic soils. Appl Environ Microbiol. 2014;80:4021–33.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. http://www.R-project.org/.
    Google Scholar 

    53.
    Mirza BS, Rodrigues JLM. Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol. 2012;78:5542–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Döbereiner J, Marriel IE, Nery M. Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol. 1976;22:1464–73.
    PubMed  Article  Google Scholar 

    55.
    Dobereiner J, Urquiaga S, Boddey RM. Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertil Res. 1995;42:339–46.
    CAS  Article  Google Scholar 

    56.
    Wilson PW, Knight SG. Experiments in Bacterial Physiology, 3rded. Minneapolis, Minnesota: Burgess; 1952 p. 62.

    57.
    Stanier RY, Kunisawa R, Mandel M. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews. 1971;35:171–205.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008;8:1–8.
    Article  CAS  Google Scholar 

    59.
    Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007;4:283–90.
    Article  CAS  Google Scholar 

    60.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–14.
    CAS  Article  Google Scholar 

    62.
    Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS ONE. 2012;7:1–12.
    Article  CAS  Google Scholar 

    63.
    De Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, Da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:1–15.
    Article  CAS  Google Scholar 

    64.
    Jones D, Keddie RM. The Genus Arthrobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes: volume 3: archaea. bacteria: firmicutes, actinomycetes. New York, NY: Springer New York; 2006. p. 945–60.
    Google Scholar 

    65.
    Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M, Hartmann A. The family oxalobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: alphaproteobacteria and betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 919–74.
    Google Scholar 

    66.
    Mayilraj S, Stackebrandt E. The family paenibacillaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: firmicutes and tenericutes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 267–80.
    Google Scholar 

    67.
    Slepecky RA, Hemphill HE. The Genus Bacillus–Nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes: volume 4: bacteria: firmicutes, cyanobacteria. New York, NY: Springer US; 2006. p. 530–62.
    Google Scholar 

    68.
    Carareto Alves LM, de Souza JAM, Varani A, de M, Lemos EG, de M. The family rhizobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: alphaproteobacteria and betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 419–37.
    Google Scholar 

    69.
    Normand P, Daffonchio D, Gtari M. The family geodermatophilaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: actinobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 361–79.
    Google Scholar 

    70.
    Kämpfer P, Glaeser SP, Parkes L, van Keulen G, Dyson P. The family streptomycetaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: actinobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 889–1010.
    Google Scholar 

    71.
    Octavia S, Lan R. The family enterobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: gammaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 225–86.
    Google Scholar 

    72.
    Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol. 2001;152:95–103.
    CAS  PubMed  Article  Google Scholar 

    73.
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12:1252–62.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.
    CAS  PubMed  Article  Google Scholar 

    76.
    Garcia-Pichel F. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr. 1994;39:1704–17.
    Article  Google Scholar 

    77.
    Garcia-Pichel F, Belnap J. Small-scale environments and distribution of biological soil crusts. biological soil crusts: structure, function, and management. Berlin Heidelberg: Springer; 2001. p. 193–201.
    Google Scholar 

    78.
    Paerl HW, Bebout BM. Direct measurement of O2-depleted microzones in marine oscillatoria: relation to N2 fixation. Science. 1988;241:442–5.
    CAS  PubMed  Article  Google Scholar 

    79.
    Barger NN, Webber B, Garcia-Pichel F, Zaady E, Belnap J. Patterns and controls on nitrogen cycling of biological soil crusts. In: Weber B, Caldwell MM, Jayne B, Bettina W, Büdel B, Belnap J, et al. editors. Biological soil crusts: an organizing principle in drylands, 2nd ed. Switzerland: Springer; 2016. p. 257–85.

    80.
    Sancho L, Belnap J, Colesie C, Raggio J. Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In: Belnap J, Weber B, Burkhard B, editors. Biological soil crusts: an organizing principle in drylands. Switzerland: Springer; 2016. p. 287–304.

    81.
    Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-Caballero E, Steinkamp J, et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci USA. 2015;112:15384–9.
    CAS  PubMed  Article  Google Scholar 

    82.
    Garcia-Pichel F, Belnap J, Neuer S, Schanz F. Estimates of global cyanobacterial biomass and its distribution. Arch Hydrobiol Suppl Algol Stud. 2003;109:213–27.
    Google Scholar 

    83.
    Belnap J, Eldridge D. Disturbance and recovery of biological soil crusts. In: Belnap J, Lange O, editors. Biological soil crusts: structure, function and management. Berlin: Springer; 2001. p. 363–83.
    Google Scholar 

    84.
    Zaady E, Eldridge DJ, Bowker MA. Effect of local-scale disturbance on biocrusts. In: Weber B, Büdel B, Belnap J, editors. Biological soil crusts: an organizing principle in drylands. Cham: Springer International Publishing; 2016. p. 429–50.
    Google Scholar 

    85.
    Williams WJ, Eldridge DJ, Alchin BM. Grazing and drought reduce cyanobacterial soil crusts in an Australian Acacia woodland. J Arid Environ. 2008;72:1064–75.
    Article  Google Scholar  More

  • in

    Population genetic structure of the great star coral, Montastraea cavernosa, across the Cuban archipelago with comparisons between microsatellite and SNP markers

    1.
    Carson, H. S., Cook, G. S., López-Duarte, P. C. & Levin, L. A. Evaluating the importance of demographic connectivity in a marine metapopulation. Ecology 92, 1972–1984. https://doi.org/10.1890/11-0488.1 (2011).
    PubMed  Article  Google Scholar 
    2.
    Jackson, J. B. C., Donovan, M. K., Cramer, K. L., Lam, V. & Lam, W. Status and trends of Caribbean coral reefs: 1970–2012. Glob. Coral Reef Monit. Network, IUCN, Gland. Switz. 306 (2014).

    3.
    Palumbi, S. R. Population genetics, demographic connectivity, and the design of marine reserves. 13, 146–158, https://doi.org/10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2 (2003).

    4.
    Botsford, L. W. et al. Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28, 327–337. https://doi.org/10.1007/s00338-009-0466-z (2009).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    5.
    Galindo, H. M., Olson, D. B. & Palumbi, S. R. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr. Biol. 16, 1622–1626. https://doi.org/10.1016/j.cub.2006.06.052 (2006).
    PubMed  CAS  Article  Google Scholar 

    6.
    Rippe, J. P. et al. Population structure and connectivity of the mountainous star coral, Orbicella faveolata, throughout the wider Caribbean region. Ecol. Evol. 7, 9234–9246. https://doi.org/10.1002/ece3.3448 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Studivan, M. S. & Voss, J. D. Population connectivity among shallow and mesophotic Montastraea cavernosa corals in the Gulf of Mexico identifies potential for refugia. Coral Reefs 37, 1183–1196. https://doi.org/10.1007/s00338-018-1733-7 (2018).
    ADS  Article  Google Scholar 

    8.
    Baums, I. B., Johnson, M. E., Devlin-Durante, M. K. & Miller, M. W. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean. Coral Reefs 29, 835–842. https://doi.org/10.1007/s00338-010-0645-y (2010).
    ADS  Article  Google Scholar 

    9.
    Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619. https://doi.org/10.1038/srep21619 (2016).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    10.
    Serrano, X. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240. https://doi.org/10.1111/mec.12861 (2014).
    PubMed  CAS  Article  Google Scholar 

    11.
    Bongaerts, P. et al. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373. https://doi.org/10.1126/sciadv.1602373 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 7200. https://doi.org/10.1038/s41598-019-43479-x (2019).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    13.
    Goodbody-Gringley, G., Vollmer, S. V., Woollacott, R. M. & Giribet, G. Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Mar. Biol. 157, 2591–2602. https://doi.org/10.1007/s00227-010-1521-6 (2010).
    Article  Google Scholar 

    14.
    Goodbody-Gringley, G., Woollacott, R. M. & Giribet, G. Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar. Ecol. 33, 32–48. https://doi.org/10.1111/j.1439-0485.2011.00452.x (2012).
    ADS  CAS  Article  Google Scholar 

    15.
    Nunes, F. L. D., Norris, R. D. & Knowlton, N. Long distance dispersal and connectivity in Amphi-Atlantic corals at regional and basin scales. PLoS ONE 6, e22298. https://doi.org/10.1371/journal.pone.0022298 (2011).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    16.
    Brazeau, D. A., Lesser, M. P. & Slattery, M. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS ONE 8, e65845. https://doi.org/10.1371/journal.pone.0065845 (2013).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    17.
    Foster, N. L. et al. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol. Ecol. 21, 1143–1157. https://doi.org/10.1111/j.1365-294X.2012.05455.x (2012).
    PubMed  Article  Google Scholar 

    18.
    García-Machado, E., Ulmo-Díaz, G., Castellanos-Gell, J. & Casane, D. Patterns of population connectivity in marine organisms of Cuba. Bull. Mar. Sci. 94, 193–211. https://doi.org/10.5343/bms.2016.1117 (2018).
    Article  Google Scholar 

    19.
    Ulmo-Díaz, G. et al. Genetic differentiation in the mountainous star coral Orbicella faveolata around Cuba. Coral Reefs 37, 1217–1227. https://doi.org/10.1007/s00338-018-1722-x (2018).
    ADS  Article  Google Scholar 

    20.
    Creary, M. et al. Status of coral reefs in the northern Caribbean and western Atlantic GCRMN node in 2008. in Status of Coral Reefs of the World (ed. Wilkinson, C.) 239–252 (2008).

    21.
    Claro, R., Reshetnikov, Y. S. & Alcolado, P. M. Physical attributes of coastal Cuba. Ecol. Mar. fishes Cuba 1–20 (2001).

    22.
    Whittle, D. & Rey Santos, O. Protecting Cuba’s environment: efforts to design and implement effective environmental laws and policies in Cuba. Cuban Stud. 37, 73–103. https://doi.org/10.1353/cub.2007.0018 (2006).
    Article  Google Scholar 

    23.
    Caballero, H., Alcolado, P. M. & Semidey, A. Condición de los arrecifes de coral frente a costas con asentamientos humanos y aportes terrígenos: el caso del litoral habanero. Cuba. Rev. Ciencias Mar. y Costeras 1, 49. https://doi.org/10.15359/revmar.1.3 (2009).
    Article  Google Scholar 

    24.
    González-Díaz, P. et al. Status of Cuban coral reefs. Bull. Mar. Sci. 94, 229–247. https://doi.org/10.5343/bms.2017.1035 (2018).
    Article  Google Scholar 

    25.
    Alcolado, P. M., Caballero, H. & Perera, S. Tendencia del cambio en el cubrimiento vivo por corales pétreos en los arrecifes coralinos de Cuba. Ser. Ocean. 5, 1–14 (2009).
    Google Scholar 

    26.
    Toth, L. T. et al. Do no-take reserves benefit Florida’s corals? 14 years of change and stasis in the Florida Keys National Marine Sanctuary. Coral Reefs 33, 565–577. https://doi.org/10.1007/s00338-014-1158-x (2014).
    ADS  Article  Google Scholar 

    27.
    Zlatarski, V. N. & Estalella, N. M. Los esclaractinios de Cuba. (2017).

    28.
    Zlatarski, V. N. Investigations on mesophotic coral ecosystems in Cuba (1970–1973) and Mexico (1983–1984). CICIMAR Oceánides 33, 27–43 (2018).
    Google Scholar 

    29.
    Reed, J. et al. Cuba’s mesophotic coral reefs and associated fish communities. Rev. Investig. Mar. 38, 56–125 (2018).
    Google Scholar 

    30.
    Baisre, J. A. An overview of Cuban commercial marine fisheries: the last 80 years. Bull. Mar. Sci. 94, 359–375. https://doi.org/10.5343/bms.2017.1015 (2018).
    Article  Google Scholar 

    31.
    Gil-Agudelo, D. L. et al. Coral reefs in the Gulf of Mexico large marine ecosystem: conservation status, challenges, and opportunities. Front. Mar. Sci. 6, 807. https://doi.org/10.3389/fmars.2019.00807 (2020).
    Article  Google Scholar 

    32.
    Perera Valderrama, S. et al. Marine protected areas in Cuba. Bull. Mar. Sci. 94, 423–442. https://doi.org/10.5343/bms.2016.1129 (2018).
    Article  Google Scholar 

    33.
    NOAA. Sister Sanctuary: Memorandum of Understanding. (2015).

    34.
    Budd, A. F., Nunes, F. L. D., Weil, E. & Pandolfi, J. M. Polymorphism in a common Atlantic reef coral (Montastraea cavernosa) and its long-term evolutionary implications. Evol. Ecol. 26, 265–290. https://doi.org/10.1007/s10682-010-9460-8 (2012).
    Article  Google Scholar 

    35.
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the `deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29, 309–327. https://doi.org/10.1007/s00338-009-0581-x (2010).
    Article  Google Scholar 

    36.
    Reed, J. K. Deepest distribution of Atlantic hermaptypic corals discovered in the Bahamas. Proc. Fifth Int. Coral Reef Congr. 6, 249–254 (1985).
    Google Scholar 

    37.
    Szmant, A. M. Sexual reproduction by the Caribbean reef corals Montastrea annularis and M. cavernosa. Mar. Ecol. Prog. Ser. 74, 13–25. https://doi.org/10.3354/meps074013 (1991).
    ADS  Article  Google Scholar 

    38.
    Highsmith, R. C., Lueptow, R. L. & Schonberg, S. C. Growth and bioerosion of three massive corals on the Belize barrier reef. Mar. Ecol. Prog. Ser. 13, 261–271 (1983).
    ADS  Article  Google Scholar 

    39.
    Kitchen, S. A., Crowder, C. M., Poole, A. Z., Weis, V. M. & Meyer, E. De novo assembly and characterization of four anthozoan (Phylum Cnidaria) transcriptomes. G3 (Genes|Genomes|Genetics). 5, 2441–2452, https://doi.org/10.1534/g3.115.020164 (2015).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    40.
    Matz Lab. Montastraea cavernosa annotated genome. (2018).

    41.
    Drury, C., Pérez Portela, R., Serrano, X. M., Oleksiak, M. & Baker, A. C. Fine-scale structure among mesophotic populations of the great star coral Montastraea cavernosa revealed by SNP genotyping. Ecol. Evol. 1–11, https://doi.org/10.1002/ece3.6340 (2020).

    42.
    Ellegren, H. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445. https://doi.org/10.1038/nrg1348 (2004).
    PubMed  CAS  Article  Google Scholar 

    43.
    Joshi, D., Ram, R. N. & Lohani, P. Microsatellite markers and their application in fisheries. Int. J. Adv. Agric. Sci. Technol. 4, 67–104 (2017).
    Google Scholar 

    44.
    Jarne, P. & Lagoda, P. J. L. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424–429. https://doi.org/10.1016/0169-5347(96)10049-5 (1996).
    PubMed  CAS  Article  Google Scholar 

    45.
    Flores-Rentería, L. & Krohn, A. Scoring microsatellite loci. in Methods in molecular biology (ed. Kantartzi, S. K.) 319–336, https://doi.org/10.1007/978-1-62703-389-3_21 (Elsevier, 2013).

    46.
    Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92. https://doi.org/10.1038/nrg.2015.28 (2016).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    47.
    Davey, J. L. & Blaxter, M. W. RADseq: next-generation population genetics. Brief. Funct. Genomics 9, 416–423. https://doi.org/10.1093/bfgp/elq031 (2010).
    PubMed  CAS  Article  Google Scholar 

    48.
    Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810. https://doi.org/10.1038/nmeth.2023 (2012).
    PubMed  CAS  Article  Google Scholar 

    49.
    Bradbury, I. R. et al. Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol. Ecol. 24, 5130–5144. https://doi.org/10.1111/mec.13395 (2015).
    PubMed  CAS  Article  Google Scholar 

    50.
    Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius. L. Mol. Ecol. 25, 2997–3018. https://doi.org/10.1111/mec.13613 (2016).
    PubMed  Article  Google Scholar 

    51.
    Bohling, J., Small, M., Von Bargen, J., Louden, A. & DeHaan, P. Comparing inferences derived from microsatellite and RADseq datasets: a case study involving threatened bull trout. Conserv. Genet. 20, 329–342. https://doi.org/10.1007/s10592-018-1134-z (2019).
    CAS  Article  Google Scholar 

    52.
    Thornhill, D. J., Xiang, Y., Fitt, W. K. & Santos, S. R. Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS ONE https://doi.org/10.1371/journal.pone.0006262 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Eckert, R. J., Reaume, A. M., Sturm, A. B., Studivan, M. S. & Voss, J. D. Depth influences Symbiodiniaceae associations among Montastraea cavernosa corals on the Belize Barrier Reef. Front. Microbiol. 11, 1–13. https://doi.org/10.3389/fmicb.2020.00518 (2020).
    Article  Google Scholar 

    54.
    Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080. https://doi.org/10.1111/1755-0998.13004 (2019).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    55.
    Pochon, X., Putnam, H. M., Burki, F. & Gates, R. D. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS ONE https://doi.org/10.1371/journal.pone.0029816 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    LaJeunesse, T. C. & Thornhill, D. J. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE https://doi.org/10.1371/journal.pone.0029013 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Manzello, D. P. et al. Role of host genetics and heat-tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob. Change Biol. 25, 1016–1031. https://doi.org/10.1111/gcb.14545 (2018).
    ADS  Article  Google Scholar 

    58.
    Warner, M. E., LaJeunesse, T. C., Robison, J. D. & Thur, R. M. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Ocean. https://doi.org/10.4319/lo.2006.51.4.1887 (2006).
    Article  Google Scholar 

    59.
    Finney, J. C. et al. The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb. Ecol. 60, 250–263. https://doi.org/10.1007/s00248-010-9681-y (2010).
    PubMed  Article  Google Scholar 

    60.
    Bongaerts, P. et al. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci. Rep. https://doi.org/10.1038/srep07652 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Reed, J. et al. Cruise report Cuba’s twilight zone reefs: Remotely Operated Vehicle surveys of deep/mesophotic coral reefs and associated fish communities of Cuba. (2017).

    62.
    Arriaza, L. et al. Modelación numérica de corrientes marinas alrededor del occidente de Cuba. Serie Oceanológica. 10, 11–22. (2012).
    Google Scholar 

    63.
    Gordon, A. & Hannon, G. FASTX-Toolkit. FASTQ/A short-reads pre-processing tools. (2010). Available at: https://hannonlab.cshl.edu/fastx_toolkit/.

    64.
    Bayer, T. et al. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS ONE https://doi.org/10.1371/journal.pone.0035269 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Davies, S. W., Ries, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the coral Siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification. Front. Mar. Sci. 5, 1–14. https://doi.org/10.3389/fmars.2018.00150 (2018).
    Article  Google Scholar 

    66.
    Ladner, J. T., Barshis, D. J. & Palumbi, S. R. Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evol. Biol. 12, 217. https://doi.org/10.1186/1471-2148-12-217 (2012).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    67.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    68.
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356. https://doi.org/10.1186/s12859-014-0356-4 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Peakall, R. & Smouse, P. E. GenALEx 65: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    70.
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of Molecular Variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
    PubMed  PubMed Central  CAS  Google Scholar 

    71.
    Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
    MathSciNet  MATH  Article  Google Scholar 

    72.
    Prevosti, A., Ocaña, J. & Alonso, G. Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theor. Appl. Genet. 45, 231–241. https://doi.org/10.1007/BF00831894 (1975).
    PubMed  CAS  Article  Google Scholar 

    73.
    Kamvar, Z. N., Tabima, J. F. & Gr̈unwald, N. J. ,. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 1–14. https://doi.org/10.7717/peerj.281 (2014).
    Article  Google Scholar 

    74.
    R Core Team. R: A language and environment for statistical computing. (2019).

    75.
    Jombart, T. & Ahmed, I. adegenet 13–1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    76.
    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).
    PubMed  CAS  Google Scholar 

    77.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    PubMed  PubMed Central  CAS  Google Scholar 

    78.
    Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8, 1–5. https://doi.org/10.1371/journal.pone.0070651 (2013).
    CAS  Article  Google Scholar 

    79.
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
    Article  Google Scholar 

    80.
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140. https://doi.org/10.1111/mec.12354 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952. https://doi.org/10.1111/1755-0998.12129 (2013).
    PubMed  CAS  Article  Google Scholar 

    82.
    Oksanen, J. et al. Vegan: community ecology package. (2019).

    83.
    Alexander, D. H. D., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    84.
    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702. https://doi.org/10.1534/genetics.113.154138 (2013).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    85.
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993. https://doi.org/10.1534/genetics.108.092221 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
    PubMed  CAS  Article  Google Scholar 

    87.
    Centurioni, L. R. & Niiler, P. P. On the surface currents of the Caribbean Sea. Geophys. Res. Lett. 30, 10–13. https://doi.org/10.1029/2002GL016231 (2003).
    Article  Google Scholar 

    88.
    Candela, J. et al. The flow through the gulf of Mexico. J. Phys. Oceanogr. 49, 1381–1401. https://doi.org/10.1175/JPO-D-18-0189.1 (2019).
    ADS  Article  Google Scholar 

    89.
    Kourafalou, V., Androulidakis, Y., Le Hénaff, M. & Kang, H. S. The Dynamics of Cuba Anticyclones (CubANs) and interaction with the Loop Current/Florida Current system. J. Geophys. Res. Ocean. 122, 7897–7923. https://doi.org/10.1002/2017JC012928 (2017).
    ADS  Article  Google Scholar 

    90.
    Arriaza, L. et al. Marine current estimations in southeast Cuban shelf. Ser. Ocean. 4, 1–10 (2008).
    Google Scholar 

    91.
    Carracedo-Hidalgo, D., Reyes-Perdomo, D., Calzada-estrada, A., Chang-Domínguez, D. & Rodríguez-Pupo, A. Characterization of sea currents in sea adjacent to Cuba . Main trends in the last years. Rev. Cuba. Meteorol. 25, (2019).

    92.
    Frys, C. et al. Fine-scale coral connectivity pathways in the Florida Reef Tract: implications for conservation and restoration. Front. Mar. Sci. 7, 1–42. https://doi.org/10.3389/fmars.2020.00312 (2020).
    Article  Google Scholar 

    93.
    Kuba, A. Transgenerational effects of thermal stress: impacts on and beyond coral reproduction. (Nova Southeastern University, 2016).

    94.
    Claro, R., Lindeman, K. C., Kough, A. S. & Paris, C. B. Biophysical connectivity of snapper spawning aggregations and marine protected area management alternatives in Cuba. Fish. Oceanogr. 28, 33–42. https://doi.org/10.1111/fog.12384 (2019).
    Article  Google Scholar 

    95.
    Holstein, D. M., Paris, C. B. & Mumby, P. J. Consistency and inconsistency in multispecies population network dynamics of coral reef ecosystems. Mar. Ecol. Prog. Ser. 499, 1–18. https://doi.org/10.3354/meps10647 (2014).
    ADS  Article  Google Scholar 

    96.
    Szmant, A. M. Reproductive ecology of Caribbean reef corals. Coral Reefs 5, 43–53. https://doi.org/10.1007/BF00302170 (1986).
    ADS  Article  Google Scholar 

    97.
    Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286. https://doi.org/10.1186/s12864-016-2583-8 (2016).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    98.
    Devlin-Durante, M. K. & Baums, I. B. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral. Acropora palmata. PeerJ 5, e4077. https://doi.org/10.7717/peerj.4077 (2017).
    PubMed  CAS  Article  Google Scholar 

    99.
    Wang, J., Feng, C., Jiao, T., Von Wettberg, E. B. & Kang, M. Genomic signature of adaptive divergence despite strong nonadaptive forces on Edaphic Islands: a case study of Primulina juliae. Genome Biol. Evol. 9, 3495–3508. https://doi.org/10.1093/gbe/evx263 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    100.
    Ramos-Silva, P. et al. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol. Biol. Evol. 30, 2099–2112. https://doi.org/10.1093/molbev/mst109 (2013).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    101.
    Takeuchi, T., Yamada, L., Shinzato, C., Sawada, H. & Satoh, N. Stepwise evolution of coral biomineralization revealed with genome-wide proteomics and transcriptomics. PLoS ONE https://doi.org/10.1371/journal.pone.0156424 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    102.
    Aranda, M. et al. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol. Ecol. 20, 2955–2972. https://doi.org/10.1111/j.1365-294X.2011.05153.x (2011).
    PubMed  CAS  Article  Google Scholar 

    103.
    Reynolds, W. S., Schwarz, J. A. & Weis, V. M. Symbiosis-enhanced gene expression in cnidarian-algal associations: cloning and characterization of a cDNA, sym32, encoding a possible cell adhesion protein. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 33–44. https://doi.org/10.1016/S0742-8413(00)00099-2 (2000).
    CAS  Article  Google Scholar 

    104.
    Iguchi, A. et al. Apparent involvement of a β1 type integrin in coral fertilization. Mar. Biotechnol. 9, 760–765. https://doi.org/10.1007/s10126-007-9026-0 (2007).
    PubMed  CAS  Article  Google Scholar 

    105.
    Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91, 990–1003. https://doi.org/10.1890/09-0313.1 (2010).
    PubMed  Article  Google Scholar 

    106.
    Klepac, C. et al. Seasonal stability of coral-Symbiodinium associations in the subtropical coral habitat of St. Lucie Reef, Florida. Mar. Ecol. Prog. Ser. 532, 137–151. https://doi.org/10.3354/meps11369 (2015).
    ADS  Article  Google Scholar 

    107.
    Polinski, J. M. & Voss, J. D. Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank. Coral Reefs 37, 779–789. https://doi.org/10.1007/s00338-018-1701-2 (2018).
    ADS  Article  Google Scholar 

    108.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 1–11. https://doi.org/10.1016/j.cub.2018.07.008 (2018).
    CAS  Article  Google Scholar 

    109.
    Swain, T. D., Chandler, J., Backman, V. & Marcelino, L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct. Ecol. 31, 172–183. https://doi.org/10.1111/1365-2435.12694 (2017).
    Article  Google Scholar 

    110.
    Hodel, R. G. J. et al. Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Sci. Rep. 7, 1–14. https://doi.org/10.1038/s41598-017-16810-7 (2017).
    CAS  Article  Google Scholar 

    111.
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness — implications for brown trout conservation. Ecol. Evol. 9, 2106–2120. https://doi.org/10.1002/ece3.4905 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    112.
    Puckett, E. E. Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. Conserv. Genet. Resour. 9, 289–304. https://doi.org/10.1007/s12686-016-0643-7 (2017).
    Article  Google Scholar 

    113.
    Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170. https://doi.org/10.1371/journal.pone.0045170 (2012).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    114.
    Luikart, G., Sherwin, W. B., Steele, B. M. & Allendorf, F. W. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 7, 963–974. https://doi.org/10.1046/j.1365-294x.1998.00414.x (1998).
    PubMed  CAS  Article  Google Scholar 

    115.
    Willing, E.-M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS ONE 7, e42649. https://doi.org/10.1371/journal.pone.0042649 (2012).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    116.
    Nazareno, A. G., Bemmels, J. B., Dick, C. W. & Lohmann, L. G. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol. Ecol. Resour. 17, 1136–1147. https://doi.org/10.1111/1755-0998.12654 (2017).
    PubMed  CAS  Article  Google Scholar  More