Isotopic systematics point to wild origin of mummified birds in Ancient Egypt
1.
Pinch, G. Handbook of Egyptian Mythology (ABC-CLIO, Santa Barbara, 2002).
Google Scholar
2.
Ikram, S. Animals in ancient Egyptian religion: belief, identity, power, and economy. In The Oxford Handbook of Zooarchaeolog (ed. Viner-Daniels, S.) 452–465 (Oxford University Press, Oxford, 2017).
Google Scholar
3.
Ikram, S. An eternal aviary: bird mummies from ancient egypt. In Between heaven and earth: Birds in Ancient Egypt 232 (ed. Rozenn, B. L.) (Rozenn Bailleul-Le Suer, London, 2012).
Google Scholar
4.
Von den Driesch, A., Kessler, D., Steinmann, F., Berteaux, V. & Peters, J. Mummified, Deified and Buried at Hermopolis Mgna: The Sacred Birds from Tuna el-Gebel, Middle Egypt. in Ägypten und Levante vol. 15 203–44 (Manfred Bietak, Vienna, 2005).
5.
de Diodore, S. Introduction générale. in Bibliothèque historique vol. 1 74 (1993).
6.
Strabon. Le voyage en Egypte. vol. 4 (1997).
7.
Ray, J. D. The archives of Hor. Texts from Excavations 2 (Londres EES, London, 1976).
Google Scholar
8.
Martin, G. T. The Sacred Animal Necropolis at North Saqqâra: The Southern Dependencies of the Main Temple Complex Vol. 50 (Egypt Exploration Society, London, 1981).
Google Scholar
9.
Meeks, D. Les couveuses artificielles en Égypte. in Techniques et économie antiques et médiévales: le temps de l’innovation: colloque international (C.N.R.S.) Aix-en-Provence, 21–23 mai 1996, 1997, Travaux du Centre Camille Jullian 21 132–136 (Errance, Providence, 1997).
10.
de Davies, N. G. Ancient Egyptian Paintings (University Press, Cambridge, 1936).
Google Scholar
11.
Wasef, S. et al. Mitogenomic diversity in Sacred Ibis Mummies sheds light on early Egyptian practices. PLoS ONE 14, e0223964 (2019).
CAS PubMed PubMed Central Article Google Scholar
12.
Amiot, R. et al. Oxygen isotope fractionation between bird bone phosphate and drinking water. Sci. Nat. 104, 47 (2017).
Article CAS Google Scholar
13.
Craig, H. & Gordon, L. I. Deuterium and Oxygen 18 Variations in the Ocean and the Marine Atmosphere (Laboratorio di geologia nucleare, Pisa, 1965).
Google Scholar
14.
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).
ADS Article Google Scholar
15.
IAEA/WMO. Global Network of Isotopes in Precipitation. https://www.iaea.org/water (2019).
16.
IAEA/WMO. Global Network of Isotopes in Rivers. Global Network of Isotopes in Rivers https://www.iaea.org/water (2019).
17.
Stewart, M. K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 80, 1133–1146 (1975).
ADS CAS Article Google Scholar
18.
Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor Ornithol. Appl. 94, 189–197 (1992).
Google Scholar
19.
Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470 (2005).
Article Google Scholar
20.
Mizutani, H., Fukuda, M. & Kabaya, Y. 13C and 15N enrichment factors of feathers of 11 species of adult birds. Ecology 73, 1391–1395 (1992).
Article Google Scholar
21.
Angst, D. et al. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems. Naturwissenschaften 101, 313–322 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
22.
Hobson, K. A. Reconstructing Avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. The Condor 97, 752–762 (1995).
Article Google Scholar
23.
Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).
Article Google Scholar
24.
Caccamise, D. F., Reed, L. M., Castelli, P. M., Wainright, S. & Nichols, T. C. Distinguishing migratory and resident Canada geese using stable isotope analysis. J. Wildl. Manag. 64, 1084–1091 (2000).
Article Google Scholar
25.
Hebert, C. E., Bur, M., Sherman, D. & Shutt, J. L. Sulfur isotopes link overwinter habitat use and breeding condition in double-crested cormorants. Ecol. Appl. 18, 561–567 (2008).
PubMed Article PubMed Central Google Scholar
26.
Lott, C. A., Meehan, T. D. & Heath, J. A. Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base. Oecologia 134, 505–510 (2003).
ADS PubMed Article PubMed Central Google Scholar
27.
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).
ADS CAS Article Google Scholar
28.
Blum, J. D., Taliaferro, E. H. & Holmes, R. T. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern USA. Biochemistry 49, 87–101 (2000).
CAS Google Scholar
29.
Capo, R. C., Stewart, B. W. & Chadwick, O. A. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197–225 (1998).
ADS CAS Article Google Scholar
30.
Graustein, W. C. 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In Stable Isotopes in Ecological Research (eds Rundel, P. W. et al.) 491–512 (Springer, New York, 1989).
Google Scholar
31.
Blum, J. D., Taliaferro, E. H. & Holmes, R. T. Determining the sources of calcium for migratory songbirds using stable strontium isotopes. Oecologia 126, 569–574 (2001).
ADS PubMed Article PubMed Central Google Scholar
32.
Libby, W. F., Berger, R., Mead, J. F., Alexander, G. V. & Ross, J. F. Replacement rates for human tissue from atmospheric radiocarbon. Science 146, 1170–1172 (1964).
ADS CAS PubMed Article PubMed Central Google Scholar
33.
Thompson, C. & Ballou, E. Studies of metabolic turnover with tritium as a tracer IV. Metabolically inert lipide and protein fractions from the rat. J. Biol. Chem. 200, 731–743 (1953).
CAS PubMed PubMed Central Google Scholar
34.
Leeson, S. & Walsh, T. Feathering in commercial poultry II. Factors influencing feather growth and feather loss. Worlds Poult. Sci. J. World Poult. Sci J 60, 52–63 (2004).
Article Google Scholar
35.
De la Hera, I., Pérez-Tris, J. & Tellería, J. Migratory behaviour affects the trade-off between feather growth rate and feather quality in a passerine bird. Biol. J. Linn. Soc. 97, 98–105 (2009).
Article Google Scholar
36.
Bacon Wood, H. Growth bars in feathers. 3016 North Second St Harrisburd Pa. 67, (1949).
37.
Burke, W. H. et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–519 (1982).
ADS CAS Article Google Scholar
38.
Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Sci. Rev. 87, 113–133 (2008).
ADS CAS Article Google Scholar
39.
Touzeau, A. et al. Egyptian mummies record increasing aridity in the Nile valley from 5500 to 1500yr before present. Earth Planet. Sci. Lett. 375, 92–100 (2013).
ADS CAS Article Google Scholar
40.
Touzeau, A. et al. Diet of ancient Egyptians inferred from stable isotope systematics. J. Archaeol. Sci. 46, 114–124 (2014).
CAS Article Google Scholar
41.
Grimes, V. & Pellegrini, M. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite. Rapid Commun. Mass Spectrom. 27, 375–390 (2013).
CAS PubMed Article PubMed Central Google Scholar
42.
Lécuyer, C. Oxygen isotope analysis of phosphate. In Handbook of Stable Isotope Analytical Techniques 482–496 (Elsevier, 2004).
43.
Lécuyer, C., Grandjean, P., O’Neil, J. R., Cappetta, H. & Martineau, F. Thermal excursions in the ocean at the Cretaceous—Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 235–243 (1993).
Article Google Scholar
44.
Fourel, F. et al. Carbon and oxygen isotope variability among foraminifera and ostracod carbonated shells. Ann. Univ. Mariae Curie-Sklodowska Sect. Phys. 70, 133 (2015).
Google Scholar
45.
Coplen, T. B. et al. After two decades a second anchor for the VPDB δ13C scale. Rapid Commun. Mass Spectrom. 20, 3165–3166 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
46.
Friedman, I., O’neil, J. & Cebula, G. Two new carbonate stable-isotope standards. Geostand. Newsl. 6, 11–12 (1982).
CAS Article Google Scholar
47.
Hut, G. Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations. Consult. Group Meet. Stable Isot. Ref. Samples Geochem. Hydrol. Investig. (1987).
48.
Stichler, W. Interlaboratory comparison of new materials for carbon and oxygen isotope ratio measurements. Int. At. Energy Agency Vienna 825, 67–74 (1993).
Google Scholar
49.
Bondetti, M., Porcier, S., Ménager, M. & Vieillescazes, C. Analyse chimique de la composition de baumes provenant de momies animales égyptiennes. In Creatures of Earth, Water, and Sky Essays on Animals in Ancient Egypt and Nubia (ed. Pasquali, S.) (SideStone Press, Leiden, 2019).
Google Scholar
50.
De Muynck, D., Huelga-Suarez, G., Van-Heghe, L., Degryse, P. & Vanhaecke, F. Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. J. Anal. At. Spectrom. 24, 1498–1510 (2009).
Article CAS Google Scholar
51.
Richardin, P., Coudert, M., Gandolfo, N. & Vincent, J. Radiocarbon dating of mummified human remains: application to a series of coptic mummies from the Louvre Museum. Radiocarbon 55, 345–352 (2013).
CAS Article Google Scholar
52.
Richardin, P., Perraud, A., Hertzog, J., Madrigal, K. & Berthet, D. Radiocarbon dating of a series of Egyptian mummies heads from Confluences Museum. Radiocarbon 59, 609–619 (2017).
CAS Article Google Scholar
53.
Richardin, P., Porcier, S., Ikram, S., Louarn, G. & Berthet, D. Cats, Crocodiles, cattle, and more: initial steps toward establishing a chronology of ancient egyptian animal mummies. Radiocarbon 59, 595–607 (2017).
Article Google Scholar
54.
Richardin, P. & Coudert, M. Datation par le carbone 14 et restes humains. Une étude de cas: la momie dorée de Dunkerque. Techné 44, 75–78 (2016).
Google Scholar
55.
Moreau, C. et al. Research and development of the artemis 14C AMS facility: status report. Radiocarbon 55, 331–337 (2013).
CAS Article Google Scholar
56.
Bronk-Ramsey, C. Analysis of chronological information and radiocarbon calibration : the program OxCal. Archaeol. Comput. Newsl. 41, 11–16 (1994).
Google Scholar
57.
Dupras, T. L. & Schwarcz, H. P. Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis Egypt. J. Archaeol. Sci. 28, 1199–1208 (2001).
Article Google Scholar
58.
Thompson, A. H., Richards, M. P., Shortland, A. & Zakrzewski, S. R. Isotopic palaeodiet studies of Ancient Egyptian fauna and humans. J. Archaeol. Sci. 32, 451–463 (2005).
Article Google Scholar
59.
Copley, M. S. et al. Short- and long-term foraging and foddering strategies of domesticated animals from Qasr Ibrim Egypt. J. Archaeol. Sci. 31, 1273–1286 (2004).
Article Google Scholar
60.
Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. An isotopic palaeoenvironmental study of human skeletal remains from the Nile Valley. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 15–30 (1996).
Article Google Scholar
61.
Macko, S. A. et al. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 65–76 (1999).
CAS PubMed PubMed Central Article Google Scholar
62.
Blake, R. E., Oneil, J. R. & Garcia, G. A. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochim. Cosmochim. Acta 61, 4411–4422 (1997).
ADS CAS Article Google Scholar
63.
Lécuyer, C. et al. Stable isotope composition and rare earth element content of vertebrate remains from the Late Cretaceous of northern Spain (Laño): did the environmental record survive?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 457–471 (2003).
Article Google Scholar
64.
Trueman, C., Chenery, C., Eberth, D. A. & Spiro, B. Diagenetic effects on the oxygen isotope composition of bones of dinosaurs and other vertebrates recovered from terrestrial and marine sediments. J. Geol. Soc. 160, 895–901 (2003).
ADS CAS Article Google Scholar
65.
Zazzo, A., Lécuyer, C., Sheppard, S. M. F., Grandjean, P. & Mariotti, A. Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochim. Cosmochim. Acta 68, 2245–2258 (2004).
ADS CAS Article Google Scholar
66.
Zazzo, A., Lécuyer, C. & Mariotti, A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochim. Cosmochim. Acta 68, 1–12 (2004).
ADS CAS Article Google Scholar
67.
Stanton Thomas, K. J. & Carlson, S. J. Microscale δ18O and δ13C isotopic analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus: implications for physiology and ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 257–287 (2004).
Article Google Scholar
68.
Kohn, M. J., Morris, J. & Olin, P. Trace element concentrations in teeth—a modern Idaho baseline with implications for archeometry, forensics, and palaeontology. J. Archaeol. Sci. 40, 1689–1699 (2013).
CAS Article Google Scholar
69.
Balter, V. & Lécuyer, C. Determination of Sr and Ba partition coefficients between apatite and water from 5 to 60°C: a potential new thermometer for aquatic paleoenvironments. Geochim. Cosmochim. Acta 68, 423–432 (2004).
ADS CAS Article Google Scholar
70.
Buzon, M. R., Simonetti, A. & Creaser, R. A. Migration in the Nile Valley during the New Kingdom period: a preliminary strontium isotope study. J. Archaeol. Sci. 34, 1391–1401 (2007).
Article Google Scholar
71.
Meyburg, B. U., Kirwan, G. M. & Garcia, E. F. J. Greater Spotted Eagle (Clanga clanga). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
Google Scholar
72.
Orta, J., Boesman, P., Kirwan, G. M. & Marks, J. S. Long-legged Buzzard (Buteo rufinus). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
Google Scholar
73.
Svensson, L. & Madge, S. (eds) Handbook of the Middle East, and North Africa: The Birds of the Western Palearctic (Oxford University Press, Oxford, 1977).
Google Scholar
74.
Hancock, J., Kushlan, J. A. & Kahl, M. P. Storks (Ibises and Spoonbills of the World. Academic Press, Cambridge, 2010).
Google Scholar
75.
Matheu, E., del Hoyo, J., Christie, D. A., Kirwan, G. M. & Garcia, E. F. J. African Sacred Ibis (Threskiornis aethiopicus). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
Google Scholar
76.
Audouin, V. Explication sommaire des planches d’oiseaux de l’Egypte et de la Syrie, publiées par J.-C. Savigny, membre de l’Institut, offrant un exposé des caractères naturels des genres avec la distinction des espèces. in Description de l’Egypte, ou Recueil des observations et des recherches qui ont été faites en Egypte pendant l’expédition de l’armée française, publié par les ordres de sa Majesté–L’Empereur Napoléon le Grand vol. 1 251–318 (1809).
77.
Savigny, J.-C. Histoire Naturelle et Mythologique de l’Ibis. (1805).
78.
Lortet, C. E. & Gaillard, C. L. faune momifiée de l’Ancienne Egypte. Archives du Muséum d’histoire naturelle de Lyon 8, 1–205 (1903).
Google Scholar
79.
De Margerie, E. Fonction biomécanique des microstructures osseuses chez les oiseaux / Biomechanical function of bone microstructure in birds. C.R. Palevol 5, 619–628 (2006).
Article Google Scholar
80.
Kerley, E. R. The microscopic determination of age in human bone. Am. J. Phys. Anthropol. 23, 149–163 (1965).
CAS PubMed Article PubMed Central Google Scholar
81.
Peek, S. & Clementz, M. T. Sr/Ca and Ba/Ca variations in environmental and biological sources: a survey of marine and terrestrial systems. Geochim. Cosmochim. Acta 95, 36–52 (2012).
ADS CAS Article Google Scholar
82.
Zuberogoitia, I., Zabala, J. & Martínez, J. E. Moult in birds of prey: a review of current knowledge and future challenges for research. Ardeola 65, 183–207 (2018).
Article Google Scholar
83.
Kovacs, G. Occurrence of the Long-legged buzzard (Buteo rufinus) in the Hortobagy between 1976 and 1991. Aquila 99, 41–48 (1992).
Google Scholar
84.
Bloom, P. H. & Clark, W. S. Molt and sequence of plumages of Golden eagles and a technique for in-hand ageing. North Am. Bird Bander 26, 97–116 (2001).
Google Scholar
85.
Lowe, K. W., Clark, A. & Clark, R. A. Body measurements, plumage and moult of the Sacred ibis in south Africa. Ostrich 56, 111–116 (1985).
Article Google Scholar
86.
Van Neer, W. Evolution of prehistoric fishing in the Nile Valley. J. Afr. Archaeol. 2, 251–269 (2004).
Article Google Scholar
87.
Porcier, S. et al. Wild crocodiles hunted to make mummies in Roman Egypt: Evidence from synchrotron imaging. J. Archaeol. Sci. 110, 105009 (2019).
Article Google Scholar
88.
Kjellén, N. Moult in relation to migration in birds-a review. Ornis Svec. 4, 1–24 (1994).
Google Scholar
89.
Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate?. Earth Planet. Sci. Lett. 142, 1–6 (1996).
ADS CAS Article Google Scholar More