The use of light spectrum blocking films to reduce populations of Drosophila suzukii Matsumura in fruit crops
1.
Asplen, M. K. et al. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).
Google Scholar
2.
Lee, J. C. et al. In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag. Sci. 67, 1349–1351 (2011).
CAS PubMed Google Scholar
3.
Bolda, M. P., Goodhue, R. E. & Zalom, F. G. Spotted wing drosophila: potential economic impact of a newly established pest. Agric. Resour. Econ. Updat. 13, 5–8 (2010).
Google Scholar
4.
Haviland, D. R. & Beers, E. H. Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integr. Pest Manag. 3, F1–F6 (2012).
Google Scholar
5.
Van Timmeren, S., Mota-Sanchez, D., Wise, J. C. & Isaacs, R. Baseline susceptibility of spotted wing drosophila (Drosophila suzukii) to four key insecticide classes. Pest Manag. Sci. 74, 78–87 (2018).
PubMed Google Scholar
6.
Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 75, 1270–1276 (2019).
CAS PubMed Google Scholar
7.
Bale, J., Van Lenteren, J. & Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B: Biol. Sci. 363, 761–776 (2008).
8.
Iglesias, L. E., Nyoike, T. W. & Liburd, O. E. Effect of trap design, bait type, and age on captures of Drosophila suzukii (Diptera: Drosophilidae) in berry crops. J. Econ. Entomol. 107, 1508–1518 (2014).
PubMed Google Scholar
9.
Tonina, L. et al. Comparison of attractants for monitoring Drosophila suzukii in sweet cherry orchards in Italy. J. Appl. Entomol. 142, 18–25 (2018).
CAS Google Scholar
10.
Rajapakse, N. C. & Kelly, J. W. Regulation of chrysanthemum growth by spectral filters. J. Am. Soc. for Hortic. Sci. 117, 481–485 (1992).
Google Scholar
11.
Van Haeringen, C. et al. The development of solid spectral filters for the regulation of plant growth. Photochem. Photobiol. 67, 407–413 (1998).
Google Scholar
12.
West, J. et al. Spectral filters for the control of Botrytis cinerea. Ann. Appl. Biol. 136, 115–120 (2000).
ADS Google Scholar
13.
Antignus, Y., Mor, N., Ben Joseph, R., Lapidot, M. & Cohen, S. Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environ. Entomol. 25, 919–924 (1996).
Google Scholar
14.
Fennell, J. T., Fountain, M. T. & Paul, N. D. Direct effects of protective cladding material on insect pests in crops. Crop. Prot. (2019).
15.
Doukas, D. & Payne, C. The use of ultraviolet-blocking films in insect pest management in the UK; effects on naturally occurring arthropod pest and natural enemy populations in a protected cucumber crop. Ann. Appl. Biol. 151, 221–231 (2007).
Google Scholar
16.
Solaiman, A. H. M., Nishizawa, T., Arefin, S. A., Sarkar, M. D. & Shahjahan, M. Effect of partially UV-blocking films on the growth, yield, pigmentation, and insect control of red amaranth (Amaranthus tricolor). Curr. J. Appl. Sci. Technol. 1–11 (2016).
17.
Hardie, R. C. Functional organization of the fly retina. In Progress in Sensory Physiology, 1–79 (Springer, New York, 1985).
18.
Schnaitmann, C., Pagni, M. & Reiff, D. F. Color vision in insects: insights from drosophila. J. Comp. Physiol. A 206, 1–16 (2020).
Google Scholar
19.
Schnaitmann, C., Garbers, C., Wachtler, T. & Tanimoto, H. Color discrimination with broadband photoreceptors. Curr. Biol. 23, 2375–2382 (2013).
CAS PubMed Google Scholar
20.
Wardill, T. J. et al. Multiple spectral inputs improve motion discrimination in the drosophila visual system. Science 336, 925–931 (2012).
ADS CAS PubMed PubMed Central Google Scholar
21.
Schümperli, R. A. Evidence for colour vision in Drosophila melanogaster through spontaneous phototactic choice behaviour. J. Comp. Physiol. A 86, 77–94 (1973).
Google Scholar
22.
Bernard, G. D. & Stavenga, D. G. Spectral sensitivities of retinular cells measured in intact, living flies by an optical method. J. Comp. Physiol. 134, 95–107 (1979).
Google Scholar
23.
Hardie, R. C. Polarization vision: Drosophila enters the arena. Curr. Biol. 22, R12–R14 (2012).
CAS PubMed Google Scholar
24.
Zhu, E. Y., Guntur, A. R., He, R., Stern, U. & Yang, C.-H. Egg-laying demand induces aversion of UV light in drosophila females. Curr. Biol. 24, 2797–2804 (2014).
CAS PubMed PubMed Central Google Scholar
25.
Kane, E. A. et al. Sensorimotor structure of drosophila larva phototaxis. Proc. Natl. Acad. Sci. 110, E3868–E3877 (2013).
ADS CAS PubMed Google Scholar
26.
Kelber, A. & Henze, M. J. Colour vision: parallel pathways intersect in drosophila. Curr. Biol. 23, R1043–R1045 (2013).
CAS PubMed Google Scholar
27.
Rice, K. B., Short, B. D., Jones, S. K. & Leskey, T. C. Behavioral responses of Drosophila suzukii (Diptera: Drosophilidae) to visual stimuli under laboratory, semifield, and field conditions. Environ. Entomol. 45, 1480–1488 (2016).
PubMed Google Scholar
28.
Kirkpatrick, D., McGhee, P., Hermann, S., Gut, L. & Miller, J. Alightment of spotted wing drosophila (Diptera: Drosophilidae) on odorless disks varying in color. Environ. Entomol. 45, 185–191 (2016).
CAS PubMed Google Scholar
29.
Little, C. M., Chapman, T. W. & Hillier, N. K. Effect of color and contrast of highbush blueberries to host-finding behavior by drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 47, 1242–1251 (2018).
CAS PubMed Google Scholar
30.
Little, C. M., Rizzato, A. R., Charbonneau, L., Chapman, T. & Hillier, N. K. Color preference of the spotted wing drosophila. Drosophila suzukii. Sci. Rep. 9, 1–12 (2019).
Google Scholar
31.
Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of color in drosophila. Proc. Natl. Acad. Sci. 105, 4910–4915 (2008).
ADS CAS PubMed Google Scholar
32.
Paulk, A., Millard, S. S. & van Swinderen, B. Vision in drosophila: seeing the world through a model’s eyes. Annu. Rev. Entomol. 58, 313–332 (2013).
CAS PubMed Google Scholar
33.
Humberg, T.-H. & Sprecher, S. G. Age-and wavelength-dependency of drosophila larval phototaxis and behavioral responses to natural lighting conditions. Front. Behav. Neurosci. 11, 66 (2017).
PubMed PubMed Central Google Scholar
34.
Cronin, T. W. & Bok, M. J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 219, 2790–2801 (2016).
PubMed Google Scholar
35.
Stone, T., Mangan, M., Ardin, P., Webb, B. et al. Sky segmentation with ultraviolet images can be used for navigation. In Robotics: Science and Systems (2014).
36.
Kirk, R., Cielniak, G. & Mangan, M. L* a* b* fruits: A rapid and robust outdoor fruit detection system combining bio-inspired features with one-stage deep learning networks. Sensors 20, 275 (2020).
Google Scholar
37.
Clymans, R. et al. Olfactory preference of Drosophila suzukii shifts between fruit and fermentation cues over the season: effects of physiological status. Insects 10, 200 (2019).
PubMed Central Google Scholar
38.
Keesey, I. W., Knaden, M. & Hansson, B. S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41, 121–128 (2015).
CAS PubMed PubMed Central Google Scholar
39.
Kumar, P. & Poehling, H.-M. UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ. Entomol. 35, 1069–1082 (2006).
Google Scholar
40.
Legarrea, S., Karnieli, A., Fereres, A. & Weintraub, P. G. Comparison of UV-absorbing nets in pepper crops: Spectral properties, effects on plants and pest control. Photochem. Photobiol. 86, 324–330 (2010).
CAS PubMed Google Scholar
41.
Costa, H. S. & Robb, K. L. Effects of ultraviolet-absorbing greenhouse plastic films on flight behavior of Bemisia argentifolii (homoptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae). J. Econ. Entomol. 92, 557–562 (1999).
Google Scholar
42.
Chyzik, R., Dobrinin, S. & Antignus, Y. Effect of a UV-deficient environment on the biology and flight activity of Myzus persicae and its hymenopterous parasite Aphidius matricariae. Phytoparasitica 31, 467–477 (2003).
Google Scholar
43.
Costa, H., Robb, K. & Wilen, C. Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. J. Econ. Entomol. 95, 113–120 (2002).
CAS PubMed Google Scholar
44.
Dáder, B., Gwynn-Jones, D., Moreno, A., Winters, A. & Fereres, A. Impact of uv-a radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants. J. Photochem. Photobiol. B: Biol. 138, 307–316 (2014).
Google Scholar
45.
Díaz, B. M., Biurrún, R., Moreno, A., Nebreda, M. & Fereres, A. Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infesting crisp lettuce. HortScience 41, 711–716 (2006).
Google Scholar
46.
Kuhlmann, F. & Müller, C. Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects. Environ. Exp. Bot. 66, 61–68 (2009).
CAS Google Scholar
47.
Paul, N. D. et al. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. Physiol. Plantarum 145, 565–581 (2012).
CAS Google Scholar
48.
Sal, J. et al. Influence of UV-absorbing nets in the population of Macrosiphum euphorbiae Thomas (Homoptera: Aphididae) and the parasitoid Aphidius ervi (Haliday) (Hymenoptera: Aphidiidae) in lettuce crops. In Proceedings of Third International Symposium Biological Control Arthropods, Christ Church, New Zealand, 329–337 (2009).
49.
Legarrea, S., Weintraub, P., Plaza, M., Viñuela, E. & Fereres, A. Dispersal of aphids, whiteflies and their natural enemies under photoselective nets. Biocontrol 57, 523–532 (2012).
Google Scholar
50.
Legarrea, S. et al. Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets. Virus Res. 165, 1–8 (2012).
CAS PubMed Google Scholar
51.
Legarrea, S. et al. Diminished uv radiation reduces the spread and population density of Macrosiphum euphorbiae (Thomas) [Hemiptera: Aphididae] in lettuce crops. Hortic. Sci. 39, 74–80 (2012).
Google Scholar
52.
Dáder, B., Moreno, A., Gwynn-Jones, D., Winters, A. & Fereres, A. Aphid orientation and performance in glasshouses under different UV-a/UV-b radiation regimes. Entomol. Exp. et Appl. 163, 344–353 (2017).
Google Scholar
53.
El-Aal, H. A. A., Rizk, A. M. & Mousa, I. E. Evaluation of new greenhouse covers with modified light regime to control cotton aphid and cucumber (Cucumis sativus L.) productivity. Crop. Prot. 107, 64–70 (2018).
Google Scholar
54.
Kigathi, R. & Poehling, H.-M. UV-absorbing films and nets affect the dispersal of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). J. Appl. Entomol. 136, 761–771 (2012).
Google Scholar
55.
Bueno, E. et al. Response of wild spotted wing drosophila (Drosophila suzukii) to microbial volatiles. J. Chem. Ecol. 1–11 (2019).
56.
Renkema, J. M., Buitenhuis, R. & Hallett, R. H. Reduced Drosophila suzukii infestation in berries using deterrent compounds and laminate polymer flakes. Insects 8, 117 (2017).
PubMed Central Google Scholar
57.
Erland, L. A., Rheault, M. R. & Mahmoud, S. S. Insecticidal and oviposition deterrent effects of essential oils and their constituents against the invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Crop. Prot. 78, 20–26 (2015).
CAS Google Scholar
58.
Wallingford, A. K., Cha, D. H. & Loeb, G. M. Evaluating a push–pull strategy for management of Drosophila suzukii Matsumura in red raspberry. Pest Manag. Sci. 74, 120–125 (2018).
CAS PubMed Google Scholar
59.
Smirle, M. J., Zurowski, C. L., Ayyanath, M.-M., Scott, I. M. & MacKenzie, K. E. Laboratory studies of insecticide efficacy and resistance in Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) populations from British Columbia, Canada. Pest Manag. Sci. 73, 130–137 (2017).
CAS PubMed Google Scholar
60.
Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Implications of sub-lethal rates of insecticides and daily time of application on Drosophila suzukii lifecycle. Crop. Prot. 121, 182–194 (2019).
CAS Google Scholar
61.
van der Blom, J. Applied entomology in spanish greenhouse horticulture. Proc. Neth. Entomol. Soc. Meet 21, 9–17 (2010).
Google Scholar
62.
Fingerman, M. & Brown, F. A. A “purkinje shift” in insect vision. Science 116, 171–172 (1952).
ADS CAS PubMed Google Scholar
63.
Meier, U. Phenological growth stages. In Phenology: An Integrative Environmental Science, 269–283 (Springer, New York, 2003).
64.
Doukas, D. & Payne, C. C. Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments. J. Econ. Entomol. 100, 389–397 (2014).
Google Scholar
65.
Palanca, L., Gaskett, A. C., Günther, C. S., Newcomb, R. D. & Goddard, M. R. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS ONE 8 (2013). More