More stories

  • in

    Potential utility of reflectance spectroscopy in understanding the paleoecology and depositional history of different fossils

    1.
    Kortüm, G. Reflectance Spectroscopy: Principles, Methods, Applications (Springer Science & Business Media, New York, 2012).
    Google Scholar 
    2.
    Hunt, G. R., Salisbury, J. W. & Lenhoff, C. J. Visible and near infrared spectra of minerals and rocks. VI. Additional silicates. Modern Geol. 4, 85–106 (1973).
    ADS  CAS  Google Scholar 

    3.
    Johnson, P. E., Smith, M. O., Taylor-George, S. & Adams, J. B. A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures. J. Geophys. Res. Solid Earth 88, 3557–3561 (1983).
    Article  Google Scholar 

    4.
    Clark, R. N. & Lucey, P. G. Spectral properties of ice-particulate mixtures and implications for remote sensing: 1. Intimate mixtures. J. Geophys. Res. Solid Earth 89, 6341–6348 (1984).
    CAS  Article  Google Scholar 

    5.
    Clark, R. N. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual Remote Sensing 3, 2–2 (1999).
    CAS  Google Scholar 

    6.
    Cloutis, E. A. Review article hyperspectral geological remote sensing: Evaluation of analytical techniques. Int. J. Remote Sensing 17, 2215–2242 (1996).
    ADS  Article  Google Scholar 

    7.
    Clark, R. N., King, T. V., Klejwa, M., Swayze, G. A. & Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 95, 12653–12680 (1990).
    Article  Google Scholar 

    8.
    Hunt, J. M. & Turner, D. S. Determination of mineral constituents of rocks by infrared spectroscopy. Anal. Chem. 25, 1169–1174 (1953).
    CAS  Article  Google Scholar 

    9.
    Soderblom, L. A. The composition and mineralogy of the martian surface from spectroscopic observations: 0.3 pm to 50 pm. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 557–593 (Univ. Arizona Press, Tucson, Arizona, 1992).
    Google Scholar 

    10.
    Bell, J. F. III. & Crisp, D. Groundbased imaging spectroscopy of Mars in the near-infrared: Preliminary results. Icarus 104, 2–19 (1993).
    ADS  Article  Google Scholar 

    11.
    Sabins, F. F. Remote sensing for mineral exploration. Ore Geol. Rev. 14, 157–183 (1999).
    Article  Google Scholar 

    12.
    Crosta, A. P., Sabine, C. & Taranik, J. V. Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data. Remote Sens. Environ. 65, 309–319 (1998).
    ADS  Article  Google Scholar 

    13.
    Guha, A. et al. Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of Paleoproterozoic sequences of Aravalli group of rocks, Rajasthan, India. Ore Geol. Rev. 108, 73–87 (2019).
    Article  Google Scholar 

    14.
    Guha, A., Ghosh, B., Kumar, K. V. & Chaudhury, S. Implementation of reflection spectroscopy based new ASTER indices and principal components to delineate chromitite and associated ultramafic–mafic complex in parts of Dharwar Craton, India. Adv. Space Res. 56, 1453–1468 (2015).
    ADS  CAS  Article  Google Scholar 

    15.
    Guha, A. et al. Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India. Int. J. Appl. Earth Obs. Geoinf. 21, 184–194 (2013).
    ADS  Article  Google Scholar 

    16.
    Green, R. O. et al. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res. Planets 116, E00G19. https://doi.org/10.1029/2011JE003797 (2011).
    Article  Google Scholar 

    17.
    van der Meer, F. D. et al. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
    Article  Google Scholar 

    18.
    Cloutis, E. A. et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184, 121–157 (2006).
    ADS  CAS  Article  Google Scholar 

    19.
    Malakhov, D. V., Dyke, G. J. & King, C. Remote sensing applied to paleontology: Exploration of Upper Cretaceous sediments in Kazakhstan for potential fossil sites. Palaeontol. Electron. 12, 1935–3952 (2009).
    Google Scholar 

    20.
    Wills, S., Choiniere, J. N. & Barrett, P. M. Predictive modelling of fossil-bearing locality distributions in the Elliot Formation (Upper Triassic-Lower Jurassic), South Africa, using a combined multivariate and spatial statistical analyses of present-day environmental data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 489, 186–197 (2018).
    Article  Google Scholar 

    21.
    Clark, R. N. & Roush, T. L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 89, 6329–6340 (1984).
    CAS  Article  Google Scholar 

    22.
    Ramsey, J., Gazis, P., Roush, T., Spirtes, P. & Glymour, C. Automated remote sensing with near infrared reflectance spectra: Carbonate recognition. Data Min. Knowl. Disc. 6, 277–293 (2002).
    MathSciNet  Article  Google Scholar 

    23.
    Mulder, V. L., de Bruin, S., Schaepman, M. E. & Mayr, T. R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 162, 1–19 (2011).
    ADS  CAS  Article  Google Scholar 

    24.
    Anemone, R. L., Conroy, G. C. & Emerson, C. W. GIS and paleoanthropology: Incorporating new approaches from the geospatial sciences in the analysis of primate and human evolution. Am. J. Phys. Anthropol. 146, 19–46 (2011).
    PubMed  Article  Google Scholar 

    25.
    Haley, B. A., Klinkhammer, G. P. & Mix, A. C. Revisiting the rare earth elements in foraminiferal tests. Earth Planet. Sci. Lett. 239, 79–97 (2005).
    ADS  CAS  Article  Google Scholar 

    26.
    Pena, L. D. et al. Characterization of contaminant phases in foraminifera carbonates by electron microprobe mapping. Geochem. Geophys. Geosyst. 9(7), Q07012. https://doi.org/10.1029/2008GC002018 (2008).
    ADS  CAS  Article  Google Scholar 

    27.
    Ries, J. B. Review: Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795–2849 (2010).
    ADS  CAS  Article  Google Scholar 

    28.
    Todd, R. & Blackmon, P. Calcite and aragonite in foraminifera. J. Paleontol. 30, 217–219 (1956).
    Google Scholar 

    29.
    Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).
    ADS  Article  Google Scholar 

    30.
    Armstrong, H. & Brasier, M. Microfossils (Wiley, New York, 2013).
    Google Scholar 

    31.
    Gaffey, S. J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 μm): Anhydrous carbonate minerals. J. Geophys. Res. Solid Earth 92, 1429–1440 (1987).
    CAS  Article  Google Scholar 

    32.
    Gaffey, S. J. Reflectance spectroscopy in the visible and near-infrared (0.35–2.55 μm): Applications in carbonate petrology. Geology 13, 270–273 (1985).
    ADS  CAS  Article  Google Scholar 

    33.
    Rossel, R. A. V., Bui, E. N., De Caritat, P. & McKenzie, N. J. Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra. J. Geophys. Res. 115, F04031. https://doi.org/10.1029/2009JF001645 (2010).
    ADS  CAS  Article  Google Scholar 

    34.
    Longhi, I., Sgavetti, M., Chiari, R. & Mazzoli, C. Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4–2.5 μm interval: A tool for hyperspectral data interpretation. Int. J. Remote Sensing 22, 3763–3782 (2001).
    ADS  Article  Google Scholar 

    35.
    Boudaugher-Fadel, M. K. Evolution and Geological Significance of Larger Benthic Foraminifera (UCL Press, London, 2018).
    Google Scholar 

    36.
    Clarkson, E. N. K. Invertebrate Palaeontology and Evolution (Wiley, New York, 2009).
    Google Scholar 

    37.
    Prazeres, M., Roberts, T. E. & Pandolfi, J. M. Variation in sensitivity of large benthic Foraminifera to the combined effects of ocean warming and local impacts. Sci. Rep. 7, 45227 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hohenegger, J., Kinoshita, S., Briguglio, A., Eder, W. & Wöger, J. Lunar cycles and rainy seasons drive growth and reproduction in nummulitid foraminifera, important producers of carbonate buildups. Sci. Rep. 9, 8286 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Zachos, J. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    BouDagher-Fadel, M. K. Biostratigraphic and Geological Significance of Planktonic Foraminifera (UCL Press, London, 2015).
    Google Scholar 

    41.
    Brett, C. E. & Baird, G. C. Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios 1, 207–227 (1986).
    ADS  Article  Google Scholar 

    42.
    Biswas, S. K. Tertiary stratigraphy of Kutch. J. Palaeontol. Society India 37, 1–29 (1992).
    Google Scholar 

    43.
    Banerjee, S., Khanolkar, S. & Saraswati, P. K. Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch. Geodin. Acta 30, 119–136 (2018).
    Article  Google Scholar 

    44.
    Srivastava, V. K. & Singh, B. P. Depositional environments and sources for the middle Eocene Fulra Limestone Formation, Kachchh Basin, western India: Evidences from facies analysis, mineralogy, and geochemistry. Geol. J. 54, 62–82 (2019).
    CAS  Article  Google Scholar 

    45.
    Chaudhuri, A., Banerjee, S. & Le Pera, E. Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution. J. Palaeogeogr. 7, 2 (2018).
    Article  Google Scholar 

    46.
    Biswas, S. K. Mesozoic and tertiary stratigraphy of Kutch*(Kachchh)—A review. in Conference GSI 1–24 (2016).

    47.
    Srivastava, H., Bhaumik, A. K., Tiwari, D., Mohanty, S. P. & Patil, D. J. Characterization of organic carbon in black shales of the Kachchh basin, Gujarat, India. J. Earth Syst. Sci. 127, 93 (2018).
    ADS  Article  CAS  Google Scholar 

    48.
    Rao, G. N. Sedimentation, stratigraphy, and petroleum potential of Krishna–Godavari basin, east coast of India. AAPG Bull. 85, 1623–1643 (2001).
    CAS  Google Scholar 

    49.
    Mazumdar, A. et al. Geochemical characterization of the Krishna–Godavari and Mahanadi offshore basin (Bay of Bengal) sediments: A comparative study of provenance. Mar. Pet. Geol. 60, 18–33 (2015).
    CAS  Article  Google Scholar 

    50.
    Torrent, J. & Barrón, V. Diffuse reflectance spectroscopy of iron oxides. Encyclopedia Surface Colloid Sci. 1, 1438–1446 (2002).
    Google Scholar 

    51.
    Clark, R. N. et al.USGS digital spectral library splib06a. Data Series 231. (US Geological Survey, 2007). https://doi.org/10.3133/ds231.

    52.
    Small, C. et al. Spectroscopy of sediments in the Ganges–Brahmaputra delta: Spectral effects of moisture, grain size and lithology. Remote Sens. Environ. 113, 342–361 (2009).
    ADS  Article  Google Scholar 

    53.
    Edgar, K. M., Pälike, H. & Wilson, P. A. Testing the impact of diagenesis on the δ18O and δ13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial Pacific. Paleoceanography 28, 468–480 (2013).
    ADS  Article  Google Scholar 

    54.
    Bao, H., Koch, P. L. & Hepple, R. P. Hematite and calcite coatings on fossil vertebrates. J. Sediment. Res. 68, 727–738 (1998).
    ADS  Article  Google Scholar 

    55.
    Borrelli, C., Panieri, G., Dahl, T. M. & Neufeld, K. Novel biomineralization strategy in calcareous foraminifera. Sci. Rep. 8, 10201 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Welton, J. E. SEM Petrology Atlas (American Association of Petroleum Geologists, Tulsa, 1984). https://doi.org/10.1306/Mth4442.
    Google Scholar 

    57.
    Boyle, E. A., Berry, J. N., Erez, J. & Tishler, C. Sulfur in foraminifera shells, a new paleoceanographic proxy for carbonate ion in seawater. in AGU Fall Meeting Abstracts (2002).

    58.
    de Nooijer, L. J. et al. Copper incorporation in foraminiferal calcite: Results from culturing experiments. Biogeosci. Discuss. 4, 961–991 (2007).
    ADS  Article  Google Scholar 

    59.
    Geider, R. J. & La Roche, J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth. Res. 39, 275–301 (1994).
    CAS  PubMed  Article  Google Scholar 

    60.
    van Hulten, M. M. P. et al. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises. J. Mar. Syst. 126, 3–23 (2013).
    Article  Google Scholar 

    61.
    Boström, K., Kraemer, T. & Gartner, S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chem. Geol. 11, 123–148 (1973).
    ADS  Article  Google Scholar 

    62.
    Immenhauser, A., Schoene, B. R., Hoffmann, R. & Niedermayr, A. Mollusc and brachiopod skeletal hard parts: intricate archives of their marine environment. Sedimentology 63, 1–59 (2016).
    CAS  Article  Google Scholar 

    63.
    Frankel, R. B. Iron biominerals: an overview. in Iron Biominerals (Frankel, R. B., Blakemore, R. P.) 1–6 (Springer, Boston, MA, 1991).
    Google Scholar 

    64.
    Jenkins, S. R. et al. Regional scale differences in the determinism of grazing effects in the rocky intertidal. Mar. Ecol. Prog. Ser. 287, 77–86 (2005).
    ADS  Article  Google Scholar 

    65.
    Smoothey, A. F. Habitat-associations of turban snails on intertidal and subtidal rocky reefs. PLoS ONE 8, e61257 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Van der Meer, F. D. & De Jong, S. M. Imaging Spectrometry: Basic Principles and Prospective Applications Vol. 4 (Springer Science & Business Media, New York, 2011).
    Google Scholar 

    67.
    Khanolkar, S., Saraswati, P. K. & Rogers, K. Ecology of foraminifera during the middle Eocene climatic optimum in Kutch, India. Geodin. Acta 29, 181–193 (2017).
    Article  Google Scholar 

    68.
    Sen, G. et al. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth Planetary Sci. Lett. 277, 101–111 (2009).
    ADS  CAS  Article  Google Scholar 

    69.
    Gilbert, P. U. P. A. et al. Biomineralization by particle attachment in early animals. PNAS 116, 17659–17665 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Gaffey, S. J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns); calcite, aragonite, and dolomite. Am. Mineral. 71, 151–162 (1986).
    CAS  Google Scholar 

    71.
    Carli, C. & Sgavetti, M. Spectral characteristics of rocks: Effects of composition and texture and implications for the interpretation of planet surface compositions. Icarus 211, 1034–1048 (2011).
    ADS  CAS  Article  Google Scholar 

    72.
    Guha, A. et al. Spectroscopic study of rocks of Hutti-Maski schist belt, Karnataka. J. Geol. Soc. India 79, 335–344 (2012).
    CAS  Article  Google Scholar 

    73.
    Milton, E. J., Schaepman, M. E., Anderson, K., Kneubühler, M. & Fox, N. Progress in field spectroscopy. Remote Sens. Environ. 113, S92–S109 (2009).
    ADS  Article  Google Scholar 

    74.
    Bish, D. L. & Post, J. E. Modern Powder Diffraction Vol. 20 (Walter de Gruyter GmbH & Co KG, Washington, 2018).
    Google Scholar 

    75.
    Al-Jaroudi, S. S., Ul-Hamid, A., Mohammed, A.-R.I. & Saner, S. Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technol. 175, 115–121 (2007).
    CAS  Article  Google Scholar 

    76.
    Pownceby, M. I., MacRae, C. M. & Wilson, N. C. Mineral characterisation by EPMA mapping. Miner. Eng. 20, 444–451 (2007).
    CAS  Article  Google Scholar 

    77.
    Reed, S. J. B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology (Cambridge University Press, Cambridge, 2005).
    Google Scholar  More

  • in

    Sedimentary DNA tracks decadal-centennial changes in fish abundance

    DNA concentration in core sediments
    qPCR analyses for each core (Experiment (a) in Fig. 1) showed that the mean DNA copies for anchovy ranged from 233 ± 215 copies g−1 dry sediment (hereafter, copies g−1, mean ± 1 SD) to 3075 ± 781 copies g−1 (Supplementary Table 1). For all data, anchovy had 1067 ± 968 mean DNA copies g−1. Anchovy DNA copies were detected in all samples, except three (13 cm depth in BG17-1, 41 and 45 cm in BMC18-6). For most samples, DNA was detected in more than three out of four replicates. In each core, the mean DNA copies for sardines ranged from 1.7 ± 4.0 to 12.0 ± 29.2 copies g−1. For all data, sardine had 5.1 ± 3.8 mean DNA copies g−1. This concentration was 0.5% that of anchovy. Sardine DNA copies were not detected in many of the samples from each core. One or two replicates were detected in most samples, while a few samples had more than three out of four replicates for sardines. Jack mackerel DNA copies were also not detected for many samples from each core. Mean DNA copies for each core ranged from 0 to 55.9 ± 127.2 copies g−1. For all data, Jack mackerel had 14.8 ± 19.1 mean DNA copies g−1. This concentration was 1.4% that of anchovy. Few samples had more than three out of four replicates, with most samples having one or two replicates.
    For the negative control for sectioning, subsampling, DNA extraction, and PCR processes (Experiment (a) in Fig. 1), DNA of the three marine species was not detected in any of the core sediment samples from Lake Biwa (LBHR18-1) (Supplementary Table 1). DNA was not detected on the PCR blanks either (Supplementary Table 1). Thus, contamination was not an issue during sampling, extraction, purification, and the PCR processes. Also, through the direct sequencing of PCR amplicons by the qPCR assay of Japanese sardine, we confirmed that only the DNA was amplified.
    We performed spike test to evaluate the effect of PCR inhibition (Experiment (a) in Fig. 1). All ΔCt values were less than three (ΔCt: −2.4–2.9) (Supplementary Table 2), providing no evidence of inhibition31.
    Down-core changes in DNA concentration
    Down-core changes in DNA concentration for anchovy showed different patterns between each core (Supplementary Figs. 2 and 3) (Experiment (a) in Supplementary Fig. 1). For 50-cm-long core samples, peaks in DNA occurred at around 5 and 20 cm in BMC18-6, but occurred at around 0 cm in BMC17 S1-7 (Supplementary Fig. 2). There was no noticeable peak in BMC17 S1-10 (Supplementary Fig. 2). For 110-cm-long core samples, there was no consistent vertical pattern, except for the uppermost layers, with the highest values being detected for BG18-6W and BG18-8A (Supplementary Fig. 3). For sardine and jack mackerel, there were no consistent vertical patterns in DNA for the short cores. In contrast, the 1.1-m-long cores had peaks centered at around 16 and 57 cm deep for sardine and at around 20 cm for jack mackerel. Comparison between short and long cores (Supplementary Figs. 2 and 3) showed that anchovy and jack mackerel had the highest DNA concentrations in the uppermost layers in the short cores. The long cores did not show a similar trend, due to loss of surface layers (approximately 20 cm) during core collection. In contrast, the highest DNA concentrations for sardine occurred at 57–58 cm depth in the long cores, not in the uppermost layers of the short cores.
    There was no clear evidence that DNA concentrations were higher in core samples that were instantly frozen after core collection (core BMC17 S1-7) compared to samples that were frozen 6 days or 4 weeks after core collection (Supplementary Figs. 2 and 3) (Experiment (a) in Fig. 1). Thus, chilled storage for 4 weeks only caused minor degradation of DNA in core samples.
    Temporal changes in DNA concentration
    General additive models (GAMs) showed that the decadal–centennial dynamics of the inter-core, seven-year averaged, and sedDNA concentrations for the last 300 years significantly varied non-linearly (Japanese anchovy, s = 7.22, P = 2.96 × 10−7; Japanese sardine, s = 12.61, P = 1.10 × 10−4; jack mackerel, s = 8.831, P = 2.84 × 10−9, Fig. 2). DNA concentrations for Japanese anchovy were high after 2010 CE (BMC18-6, BMC17 S1-7, and BMC17 S1-10) (Fig. 3). While there was no consistent pattern in the time series of the cores before 2000 CE, one or two of the time series showed high values around the 1960s CE and the 2000 CE. These periods with high values showed large scatters between the cores, indicating spatial heterogeneity in DNA deposition.
    Fig. 2: The results of general additive models (GAM) from inter-core, seven-year averaged sedDNA concentrations.

    a Engraulis japonicus (Japanese anchovy); b Sardinops melanostictus (Japanese sardine); c Tranchurus japonicus (jack mackerel). Blue line denotes a regression line of GAM with the 95% confidence interval (gray zone).

    Full size image

    Fig. 3: Temporal changes in mean DNA concentrations for all cores.

    a Japanese anchovy; b Japanese sardine; c jack mackerel. Error bar of each data point denotes 1 SD (n = 4 or 8). The horizontal bar in panel b represents historical good (solid) and poor (gray) catch periods (open: no data). Translucent colored plots denote each data point in qPCR replicates.

    Full size image

    These high values were not obtained in the anchovy fish scale concentrations during the same periods17 (Supplementary Fig. 4). There was also no significant relationship in the Type II regression model for the inter-core, seven-year averaged, concentrations in DNA (Fig. 4a) with those of fish scale concentrations (Fig. 4c) for the 300 years (R2 = 0.0157, P = 0.429, n = 42, Fig. 5a, also see Supplementary Fig. 5 for the log-transformed model). In contrast, the two DNA peaks in the 1960s and 2000 were temporally consistent with those of the catch record in Japan (Statistics of Agriculture, Forestry and Fisheries, with the landing data being updated from previous studies32,33) (Fig. 4b). This result was supported by a Type II regression model, with a significant correlation existing between inter-core, seven-year averaged concentrations in DNA (Fig. 4a) and seven-year averaged catches in Japan (Fig. 4b) (R2 = 0.255, P = 0.0459, n = 16, Fig. 6a, also see Supplementary Fig. 6a for the log-transformed model). Anchovy sedDNA and landings in Japan before 1990 showed a positive-phase relationship with the Bungo Channel (Supplementary Fig. 7, see Supplementary Fig. 1a for the location), but a negative-phase relationship with the central Seto Inland Sea (Supplementary Fig. 7c). A decadal peak around 2000, as shown by the sedDNA and landings in Japan, was not obtained in the landings from the Bungo Channel and Beppu Bay, Iyo-nada, and Suo-nada (Supplementary Fig 7a, b, see Supplementary Fig. 1 for the locations and see Supplementary Discussion for the reasons). An abnormally high value in 2014–2017 was not found in the landing records (Supplementary Fig 7a, b). This inconsistency indicates the presence of enriched DNA in the surface layer that is susceptible to rapid decomposition due to early diagenesis in a few years.
    Fig. 4: Comparison between temporal changes in sedDNA concentrations, landings, and fish scales.

    a, d, and g: inter-core, seven-year averaged concentrations of DNA for anchovy (left), sardine (middle), and jack mackerel (right). b, e, and h: total landings in Japan. c and f: fish scales. Of note, the landings of Caranginae (jack mackerel plus amberstripe scad, Decapterus muroadsi) consist mostly of those of jack mackerel. Error bar of each data point denotes 1 SD. Translucent colored plots denote annual data points for each core.

    Full size image

    Fig. 5: Relationships between sedDNA and fish scale concentrations.

    a: Japanese anchovy; and b: Japanese sardine. Inter-core, 7-year average data were used for the models. Red line denotes a regression line of Gaussian Type II regression model with the 95% confidence interval (gray zone).

    Full size image

    Fig. 6: Relationships between sedDNA concentrations and the total landings in Japan.

    a: Japanese anchovy; b: Japanese sardine; c: jack mackerel; and d: Caranginae (jack mackerel and amberstripe scad). Inter-core, 7-year average data for eDNA and 7-year average data for landing were used in the models. Red line denotes a regression line of Gaussian Type II regression model with the 95% confidence interval (gray zone).

    Full size image

    DNA concentrations for Japanese sardine showed large scatters of contemporary values between the cores (Fig. 3b), indicating spatial heterogeneity in DNA depositions. The concentrations were high ( >20 copies g−1) during the 1840s to 1850s and 1970s to 1980s for the time series of the three cores, and were low (0.25 g−1) recorded for sardine fish scale concentrations (Supplementary Fig. 4b, f); however, there was no noticeable peak during the 1920s and 1930s (Figs. 3b and 4b), despite a peak occurring in the fish scale record (Fig. 4f and Supplementary Fig. 4b). The peak in DNA during the1970s to 1980s corresponded to a distinct peak in sardine catches during the twentieth century (Fig. 4e). The DNA peak in the 1840s to 1850s was consistent with good catch periods recorded by historical documents in and around the Bungo Channel34,35 (Fig. 3b). Sardine DNA was detected during ~1700 CE (14 copies g−1), which was consistent with a good catch period recorded in the historical documents (Fig. 3b), and a minor peak in the fish scale record (Fig. 4f and Supplementary Fig. 4b). Type II regression for sardine showed a significant correlation between inter-core, seven-year averaged concentrations of DNA (Fig. 4d) and fish scale concentrations (Fig. 4f) for the last 300 years (R2 = 0.436, P = 1.93 × 10−6, n = 42, Fig. 5b, also see Supplementary Fig. 5b for the log-transformed model). It also showed a significant correlation between inter-core, seven-year averaged concentrations of DNA and seven-year averaged catches in Japan (R2 = 0.269, P = 0.0395, n = 16, Fig. 6b, also see Supplementary Fig. 6b for the log-transformed model). sedDNA and landings in Japan showed a positive-phase relationship with Bungo Channel. However, a clear relationship was not detected with the landings in Beppu Bay, Iyo-nada, and Suo-nada or the central Seto Inland Sea (Supplementary Fig. 8, see Supplementary Discussion for the reasons). There was a negative phase relationship between sardine and anchovy in sedDNA after the 1950 CE (Fig. 2a, b).
    Jack mackerel DNA concentrations for each core (Fig. 3c) were high, exceeding 50 copies g−1 around 1970 and 1990 for the two core time series, and exceeding 100 copies g−1 after 2005, with low values ( 0.05, Supplementary Table 3). In the lower massive layers (Supplementary Figs. 11 and 12), anchovy DNA showed a significant positive correlation with TOC (r = −0.50, P = 0.029) and biogenic opal (r = 0.47, P = 0.044), and a negative correlation with C/N (r = −0.48, P = 0.040). It showed no correlation with Ti and sedimentation rate.
    Source materials of DNA in marine sediments
    The DNA in the pore water of each sample (Experiment (c) in Fig. 1) was not detected by qPCR assays for any of the species (Table 1). In contrast, anchovy DNA was detected in the residual bulk sediments of all samples (range: 367–6423 copies g−1, mean: 2704 ± 2233 copies g−1), while sardine DNA was detected in two samples (range: 12.4–283.5 copies g−1, mean: 51.6 ± 113 copies g−1) and jack mackerel was detected in one sample (84.6 copies g−1) (Table 1, Experiment (c) in Fig. 1). DNA was only detected in the fish scales of anchovy (1.5 ± 4.2 copies scale−1) (Table 2) (Experiment (b) in Fig. 1). DNA from bones was not detected in any of the species (Table 2) (Experiment (b) in Fig. 1). DNA was detected in the 63–180 μm size fractions of one sample for sardine (0.9 ± 1.7 copies g−1 dry sediment before sieved) and jack mackerel (0.3 ± 0.6 copies g−1 dry sediment before sieved), but was not detected for anchovy (Table 2). DNA was not detected in the 180–500 μm fractions for any of the species (Table 2).
    Table 1 DNA copies for each species for pore water and pore water-free sediment samples.
    Full size table

    Table 2 DNA copies for each species for fish scales, bones, and fine (63–180 μm) and coarse (180–500 μm) particle size fraction of sediment samples.
    Full size table More

  • in

    Evidence for signatures of ancient microbial life in paleosols

    1.
    Kehl, M. Quaternary Loesses, Loess-Like Sediments, Soils and Climate Change in Iran (Gebrüder Borntraeger Verlagsbuchhandlung, 2010).
    2.
    Kehl, M., Sarvati, R., Ahmadi, H., Frechen, M. & Skowronek, A. Loess paleosol-sequences along a climatic gradient in Northern Iran. Eiszeitalt. Ggw. 55, 149–173 (2005).
    Google Scholar 

    3.
    Bradley, R. S. Paleoclimatology: Reconstructing Climates of the Quaternary Vol. 68 (Academic Press, Cambridge, 1999).
    Google Scholar 

    4.
    Vlaminck, S. et al. Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia—Detailed insights from the loess profile Toshan (NE Iran). Quat. Sci. Rev. 180, 75–95 (2018).
    ADS  Article  Google Scholar 

    5.
    Schulz, S. et al. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10, 3983–3996 (2013).
    ADS  Article  Google Scholar 

    6.
    Tscherko, D., Rustemeier, J., Richter, A., Wanek, W. & Kandeler, E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur. J. Soil Sci. 54, 685–696 (2003).
    Article  Google Scholar 

    7.
    Nemergut, D. R. et al. Microbial community succession in an unvegetated, recently deglaciated soil. Microb. Ecol. 53, 110–122 (2007).
    PubMed  Article  Google Scholar 

    8.
    Turner, S. et al. Microbial community dynamics in soil depth profiles over 120,000 years of ecosystem development. Front. Biol. 8, 1–17 (2017).
    Google Scholar 

    9.
    Chaopricha, N. T. & Marín-Spiotta, E. Soil burial contributes to deep soil organic carbon storage. Soil Biol. Biochem. 69, 251–264 (2014).
    CAS  Article  Google Scholar 

    10.
    Shahriari, A. et al. Biomarkers in modern and buried soils of semi-desert and forest ecosystems of northern Iran. Quat. Int. 429, 62–73 (2017).
    Article  Google Scholar 

    11.
    Svirčev, Z. et al. Importance of biological loess crusts for loess formation in semi-arid environments. Quat. Int. 296, 206–215 (2013).
    Article  Google Scholar 

    12.
    Dulić, T. et al. Cyanobacterial diversity and toxicity of biocrusts from the Caspian Lowland loess deposits, North Iran. Quat. Int. 429, 74–85 (2017).
    Article  Google Scholar 

    13.
    Demkina, T. S., Khomutova, T. E., Kashirskaya, N. N., Stretovich, I. V. & Demkin, V. A. Characteristics of microbial communities in steppe paleosols buried under kurgans of the Sarmatian time (I-IV centuries AD). Eurasian Soil Sci. 42, 778–787 (2009).
    ADS  Article  Google Scholar 

    14.
    Khomutova, T. E. et al. An assessment of changes in properties of steppe kurgan paleosoils in relation to prevailing climates over recent millennia. Quat. Res. 67, 328–336 (2007).
    Article  Google Scholar 

    15.
    Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
    Article  Google Scholar 

    16.
    Pedersen, M. W. et al. Ancient and modern environmental DNA. Philos. Trans. R. Soc. B 370, 20130383 (2015).
    Article  CAS  Google Scholar 

    17.
    Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Coolen, M. J. L. et al. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet. Sci. Lett. 223, 225–239 (2004).
    ADS  CAS  Article  Google Scholar 

    19.
    Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Belle, S. et al. Temporal changes in the contribution of methane-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. J. Paleolimnol. 52, 215–228 (2014).
    ADS  Article  Google Scholar 

    21.
    Bellemain, E. et al. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ. Microbiol. 15, 1176–1189 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Zhang, D. C., Brouchkov, A., Griva, G., Schinner, F. & Margesin, R. Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology (Basel) 2, 85–106 (2013).
    Google Scholar 

    23.
    Gilichinsky, D. et al. Bacteria in permafrost. In Psychrophiles: From Biodiversity to Biotechnology (eds Margesin, R. et al.) 83–102 (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-74335-4_6
    Google Scholar 

    24.
    Willerslev, E. et al. Long-term persistence of bacterial DNA. Curr. Biol. 14, 13–14 (2004).
    Article  CAS  Google Scholar 

    25.
    Vlaminck, S. et al. Loess-soil sequence at Toshan (Northern Iran): insights into late Pleistocene climate change. Quat. Int. 399, 122–135 (2016).
    Article  Google Scholar 

    26.
    Lauer, T. et al. Luminescence-chronology of the loess palaeosol sequence Toshan, Northern Iran: a highly resolved climate archive for the last glacial-interglacial cycle. Quat. Int. 429, 3–12 (2017).
    Article  Google Scholar 

    27.
    Khormali, F. & Kehl, M. Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. Quat. Int. 234, 109–123 (2011).
    Article  Google Scholar 

    28.
    Khormali, F., Ghergherechi, S., Kehl, M. & Ayoubi, S. Soil formation in loess-derived soils along a subhumid to humid climate gradient, Northeastern Iran. Geoderma 179–180, 113–122 (2012).
    ADS  Article  CAS  Google Scholar 

    29.
    Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176 (2003).
    CAS  Article  Google Scholar 

    30.
    Eilers, K. G., Debenport, S., Anderson, S. & Fierer, N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 50, 58–65 (2012).
    CAS  Article  Google Scholar 

    31.
    Helgason, B. L., Konschuh, H. J., Bedard-Haughn, A. & VandenBygaart, A. J. Microbial distribution in an eroded landscape: Buried A horizons support abundant and unique communities. Agric. Ecosyst. Environ. 196, 94–102 (2014).
    Article  Google Scholar 

    32.
    Liu, G. et al. Vertical changes in bacterial community composition down to a depth of 20 m on the degraded Loess Plateau in China. Land Degrad. Dev. 31, 1300–1313.
    Article  Google Scholar 

    33.
    Lauer, T. et al. The Agh Band loess-palaeosol sequence—A terrestrial archive for climatic shifts during the last and penultimate glacial–interglacial cycles in a semiarid region in northern Iran. Quat. Int. 439, 13–30 (2017).
    Article  Google Scholar 

    34.
    Mitzscherling, J. et al. Microbial community composition and abundance after millennia of submarine permafrost warming. Biogeosci. Discuss. 16, 3941–3958 (2019).
    ADS  CAS  Article  Google Scholar 

    35.
    Vuillemin, A., Ariztegui, D., Leavitt, P. R. & Bunting, L. Recording of climate and diagenesis through sedimentary DNA and fossil pigments at Laguna Potrok Aike, Argentina. Biogeosciences 13, 2475–2492 (2016).
    ADS  CAS  Article  Google Scholar 

    36.
    Ciobanu, M.-C. et al. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments. Biogeosciences 9, 3491–3512 (2012).
    ADS  CAS  Article  Google Scholar 

    37.
    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).
    PubMed  Article  CAS  Google Scholar 

    38.
    Drancourt, M. & Raoult, D. Paleomicrobiology: Current issues and perspectives. Nat. Rev. Microbiol. 3, 23–35 (2005).
    CAS  PubMed  Article  Google Scholar 

    39.
    Stevenson, A. et al. Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ. Microbiol. 17, 257–277 (2015).
    PubMed  Article  Google Scholar 

    40.
    Schimel, J. P. Life in dry soils: Effects of drought on soil microbial ommunities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Article  Google Scholar 

    41.
    Lebre, P. H., De Maayer, P. & Cowan, D. A. Xerotolerant bacteria: Surviving through a dry spell. Nat. Rev. Microbiol. 15, 285–296 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Joergensen, R. G. & Wichern, F. Alive and kicking: Why dormant soil microorganisms matter. Soil Biol. Biochem. 116, 419–430 (2018).
    CAS  Article  Google Scholar 

    43.
    Aslam, S. N. et al. Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota. Environ. Microbiol. 18, 5048–5062 (2016).
    CAS  PubMed  Article  Google Scholar 

    44.
    Armstrong, A. et al. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 

    45.
    Knief, C. et al. Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert. Glob. Planet. Change 184, 103078 (2020).
    Article  Google Scholar 

    46.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 1–16 (2016).
    Google Scholar 

    47.
    Chernov, T. I. et al. Comparative analysis of the structure of buried and surface soils by analysis of microbial DNA. Microbiology 87, 833–841 (2018).
    CAS  Article  Google Scholar 

    48.
    Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C. & Vorholt, J. A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728 (2010).
    CAS  PubMed  Article  Google Scholar 

    49.
    Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Glob. Biogeochem. Cycles 20, GB3026 (2006).
    ADS  Article  CAS  Google Scholar 

    50.
    Baldani, J. I. et al. The family Oxalobacteraceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Rosenberg, E. et al.) 919–974 (Springer, Berlin, 2014).
    Google Scholar 

    51.
    Li, J. et al. Phytomonospora endophytica gen. nov., sp. nov., isolated from the roots of Artemisia annua L. Int. J. Syst. Evol. Microbiol. 61, 2967–2973 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Eyice, Ö et al. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J. 9, 2336–2348 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Liu, D., Yang, Y., An, S., Wang, H. & Wang, Y. The biogeographical distribution of soil bacterial communities in the Loess Plateau as revealed by high-throughput sequencing. Front. Microbiol. 9, 2456 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Trujillo, M. E. et al. Pseudonocardia nigra sp. nov., isolated from Atacama desert rock. Int. J. Syst. Evol. Microbiol. 67, 2980–2985 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Mohammadipanah, F. & Wink, J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front. Microbiol. 6, 1541 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Goodfellow, M., Nouioui, I., Sanderson, R., Xie, F. & Bull, A. T. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 111, 1315–1332 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Bull, A. T. et al. High altitude, hyper-arid soils of the Central-Andes harbor mega-diverse communities of actinobacteria. Extremophiles 22, 47–57 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Polymenakou, P. N., Mandalakis, M., Stephanou, E. G. & Tselepides, A. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ. Health Perspect. 116, 292–296 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Wang, X. et al. Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications. Quat. Int. 429, 41–51 (2017).
    Article  Google Scholar 

    60.
    Spring, S., Kämpfer, P. & Schleifer, K. H. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 51, 1463–1470 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Makhdoumi, A. Bacterial diversity in south coast of Caspian Sea: culture-dependent and culture-independent survey. Casp. J. Environ. Sci. 16, 259–269 (2018).
    Google Scholar 

    62.
    Lindh, M. V. et al. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities. Front. Microbiol. 6, 1–18 (2015).
    Article  Google Scholar 

    63.
    Shifteh Some’e, B., Ezani, A. & Tabari, H. Spatiotemporal trends and change point of precipitation in Iran. Atmos. Res. 113, 1–12 (2012).
    Article  Google Scholar 

    64.
    Mansouri Daneshvar, M. R., Ebrahimi, M. & Nejadsoleymani, H. An overview of climate change in Iran: facts and statistics. Environ. Syst. Res. 8, 7 (2019).
    Article  Google Scholar 

    65.
    Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Takai, K. & Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Edgar, R. C. & Flyvbjerg, H. Sequence analysis error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Maarastawi, S. A., Frindte, K., Linnartz, M. & Knief, C. Crop rotation and straw application impact microbial communities in Italian and Philippine soils and the rhizosphere of Zea mays. Front. Microbiol. 9, 1295 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    R Core Team. R: A language and environment for statistical computing version 3.2.5. Vienna: R Foundation for Statistical Computing. (2016).

    71.
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.0-10 (2013). More

  • in

    Widespread Torix Rickettsia in New Zealand amphipods and the use of blocking primers to rescue host COI sequences

    1.
    Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 101, 14812–14817 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N. & Hickey, D. A. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23, 167–172 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Bucklin, A., Steinke, D. & Blanco-Bercial, L. DNA Barcoding of Marine Metazoa. Ann. Rev. Mar. Sci. 3, 471–508 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321 (2003).
    CAS  Article  Google Scholar 

    6.
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Porter, T. M. & Hajibabaei, M. Over 25 million COI sequences in GenBank and growing. PLoS ONE 13, e0200177 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Buhay, J. E. “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J. Crustac. Biol. 29, 96–110 (2009).
    Article  Google Scholar 

    10.
    Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Smith, M. A. et al. Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLoS ONE 7, e36514 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Mioduchowska, M., Czyz, M. J., Gołdyn, B., Kur, J. & Sell, J. Instances of erroneous DNA barcoding of metazoan invertebrates: Are universal cox1 gene primers too “universal”?. PLoS ONE 13, e0199609 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Parola, P., Paddock, C. D. & Raoult, D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin. Microbiol. Rev. 18, 719–756 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Perlman, S. J., Hunter, M. S. & Zchori-Fein, E. The emerging diversity of Rickettsia. Proc. R. Soc. B Biol. Sci. 273, 2097–2106 (2006).
    Article  Google Scholar 

    15.
    Weinert, L. A. The diversity and phylogeny of Rickettsia. in Parasite diversity and diversification: evolutionary ecology meets phylogenetics (eds. Morand, S., Krasnov, B. R. & Littlewood, D. T. J.) 150–181 (Cambridge University Press, 2015). doi:https://doi.org/10.1017/CBO9781139794749.010.

    16.
    Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 1–15 (2009).
    Article  CAS  Google Scholar 

    17.
    Hajduskova, E. et al. “Candidatus Rickettsia mendelii”, a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic. Ticks Tick. Borne. Dis. 7, 482–486 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Binetruy, F., Buysse, M., Barosi, R. & Duron, O. Novel Rickettsiagenotypes in ticks in French Guiana. South America. Sci. Rep. 10, 1 (2020).
    Google Scholar 

    19.
    Kikuchi, Y., Sameshima, S., Kitade, O., Kojima, J. & Fukatsu, T. Novel clade of Rickettsia spp. from leeches. Appl. Environ. Microbiol. 68, 999–1004 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Kikuchi, Y. & Fukatsu, T. Rickettsia infection in natural leech populations. Microb. Ecol. 49, 265–271 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Galindo, L. J. et al. Combined cultivation and single-cell approaches to the phylogenomics of nucleariid amoebae, close relatives of fungi. Philos Trans R Soc B Biol Sci 374, 2019 (2019).
    Article  CAS  Google Scholar 

    22.
    Küchler, S. M., Kehl, S. & Dettner, K. Characterization and localization of Rickettsia sp in water beetles of genus Deronectes (Coleoptera: Dytiscidae). FEMS Microbiol. Ecol. 68, 201–211 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    23.
    Pilgrim, J. et al. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ. Microbiol. 19, 4238–4255 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Gollas-Galván, T., Avila-Villa, L. A., Martínez-Porchas, M. & Hernandez-Lopez, J. Rickettsia-like organisms from cultured aquatic organisms, with emphasis on necrotizing hepatopancreatitis bacterium affecting penaeid shrimp: An overview on an emergent concern. Rev. Aquac. 6, 2014 (2014).
    Article  Google Scholar 

    25.
    Larsson, R. A rickettsial pathogen of the amphipod Rivulogammarus pulex. J. Invertebr. Pathol. 40, 28–35 (1982).
    Article  Google Scholar 

    26.
    Graf, F. Presence of bacteria in the posterior caecum in the intestinal lumen of the hypogean Crustacean Niphargus virei (Gammaridae: Amphipoda). Can. J. Zool. Can. Zool. 62, 1829–1833 (1984).
    Article  Google Scholar 

    27.
    Messick, G. A., Overstreet, R. M., Nalepa, T. F. & Tyler, S. Prevalence of parasites in amphipods Diporeia spp from Lakes Michigan and Huron. USA. Dis. Aquat. Organ. 59, 159–170 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Winters, A. D., Marsh, T. L., Brenden, T. O. & Faisal, M. Analysis of bacterial communities associated with the benthic amphipod Diporeia in the Laurentian great lakes basin. Can. J. Microbiol. 61, 72–81 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Bojko, J. et al. Parasites, pathogens and commensals in the “low-impact” non-native amphipod host Gammarus roeselii. Paras. Vect. 10, 193 (2017).
    Article  Google Scholar 

    30.
    Park, E., Jorge, F. & Poulin, R. Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Mol. Ecol. https://doi.org/10.1111/mec.15562 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Lagrue, C., Joannes, A., Poulin, R. & Blasco-Costa, I. Genetic structure and host-parasite co-divergence: Evidence for trait-specific local adaptation. Biol. J. Linn. Soc. 118, 344–358 (2016).
    Article  Google Scholar 

    32.
    Řezáč, M., Gasparo, F., Král, J. & Heneberg, P. Integrative taxonomy and evolutionary history of a newly revealed spider Dysdera ninnii complex (Araneae: Dysderidae). Zool. J. Linn. Soc. 172, 764 (2014).
    Article  Google Scholar 

    33.
    Ceccarelli, F. S., Haddad, C. R. & Ramírez, M. J. Endosymbiotic Rickettsiales (Alphaproteobacteria) from the spider genus Amaurobioides (Araneae: Anyphaenidae). J. Arachnol. https://doi.org/10.1636/joa-s-15-009 (2016).
    Article  Google Scholar 

    34.
    Pilgrim, J. et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Authorea https://doi.org/10.22541/au.159534851.19125003 (2020).
    Article  Google Scholar 

    35.
    Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples: a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Vestheim, H., Deagle, B. E. & Jarman, S. N. Application of blocking oligonucleotides to improve signal-to-noise ratio in a PCR. Methods Mol. Biol. 687, 265–274 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Boessenkool, S. et al. Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA. Mol. Ecol. 21, 1806–1815 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Myers, A. A. Dispersal and endemicity in gammaridean Amphipoda. J. Nat. Hist. 27, 901–908 (1993).
    Article  Google Scholar 

    39.
    Duron, O. et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol. Ecol. 23, 2105–2117 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    López, J. ÁR., Husemann, M., Schmitt, T., Kramp, K. & Habel, J. C. Mountain barriers and trans-Saharan connections shape the genetic structure of Pimelia darkling beetles (Coleoptera: Tenebrionidae). Biol. J. Linn. Soc. https://doi.org/10.1093/biolinnean/bly053 (2018).
    Article  Google Scholar 

    41.
    Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 2015 (2015).
    Article  CAS  Google Scholar 

    42.
    Dyková, I., Veverková, M., Fiala, I., Macháčková, B. & Pecková, H. Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. Folia Parasitol. (Praha).50, 161–170 (2003).

    43.
    Wang, H. L. et al. A newly recorded Rickettsia of the Torix group is a recent intruder and an endosymbiont in the whitefly Bemisia tabaci. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14927 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Azad, A. F. & Beard, C. B. Rickettsial pathogens and their arthropod vectors. Emerg. Infect. Dis. 4, 179–186 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Raoult, D. et al. A flea-associated Rickettsia pathogenic for humans. Emerg. Infect. Dis. 7, 73–81 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Castelli, M., Sassera, D. & Petroni, G. Biodiversity of “non-model” Rickettsiales and their association with aquatic organisms. in Rickettsiales: Biology, Molecular Biology, Epidemiology, and Vaccine Development (ed. Thomas, S.) 59–91 (Springer International Publishing, 2016). doi:https://doi.org/10.1007/978-3-319-46859-4_3.

    47.
    Sabaneyeva, E. et al. Host and symbiont intraspecific variability: the case of Paramecium calkinsi and “Candidatus Trichorickettsia mobilis”. Eur. J. Protistol. 62, 79–94 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Schrallhammer, M. et al. “Candidatus Megaira polyxenophila” gen. nov., sp. Nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae. PLoS ONE 8, 2013 (2013).
    Article  CAS  Google Scholar 

    49.
    MacHtelinckx, T. et al. Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC Microbiol. 12, S9 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Gerth, M. et al. Green lacewings (Neuroptera: Chrysopidae) are commonly associated with a diversity of rickettsial endosymbionts. Zool. Lett. 3, 51 (2017).
    Article  Google Scholar 

    51.
    Reeves, W. K., Kato, C. Y. & Gilchriest, T. Pathogen screening and bionomics of Lutzomyia apache (Diptera: Psychodidae) in wyoming, USA. J. Am. Mosq. Control Assoc. 24, 444–447 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Noda, H. et al. Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl. Entomol. Zool. 47, 217–225 (2012).
    CAS  Article  Google Scholar 

    53.
    Goodacre, S. L., Martin, O. Y., Thomas, C. F. G. & Hewitt, G. M. Wolbachia and other endosymbiont infections in spiders. Mol. Ecol. 15, 517–527 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Gualtieri, L., Nugnes, F., Nappo, A. G., Gebiola, M. & Bernardo, U. Life inside a gall: closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid. FEMS Microbiol. Ecol. 93, 2017 (2017).
    Article  CAS  Google Scholar 

    55.
    Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. B Biol. Sci. 250, 91–98 (1992).
    ADS  CAS  Article  Google Scholar 

    56.
    White, J. A., Giorgini, M., Strand, M. R. & Pennacchio, F. Arthropod endosymbiosis and evolution. in Arthropod biology and evolution: molecules, development, morphology (eds. Minelli, A., Boxshall, G. & Fusco, G.) 441–477 (Springer, Berlin, Heidelberg, 2013). doi:https://doi.org/10.1007/978-3-642-36160-9_17.

    57.
    Minard, G., Mavingui, P. & Moro, C. V. Diversity and function of bacterial microbiota in the mosquito holobiont. Paras. Vect. 6, 146 (2013).
    Article  Google Scholar 

    58.
    Thompson, J. R., Rivera, H. E., Closek, C. J. & Medina, M. Microbes in the coral holobiont: Partners through evolution, development, and ecological interactions. Front. Cell. Infect. Microbiol. 4, 176 (2014).
    PubMed  PubMed Central  Google Scholar 

    59.
    Siddall, M. E., Fontanella, F. M., Watson, S. C., Kvist, S. & Erséus, C. Barcoding bamboozled by bacteria: Convergence to metazoan mitochondrial primer targets by marine microbes. Syst. Biol. 58, 445–451 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 1 (2013).
    Article  CAS  Google Scholar 

    61.
    Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, 1177–1192 (2017).
    Article  CAS  Google Scholar 

    62.
    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 360, 1847–1857 (2005).
    CAS  Article  Google Scholar 

    63.
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Thongprem, P., Davison, H. R., Thompson, D. J., Lorenzo-Carballa, M. O. & Hurst, G. D. D. Incidence and diversity of torix Rickettsia-odonata symbioses. Microb. Ecol. https://doi.org/10.1007/s00248-020-01568-9 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2011). doi:https://doi.org/10.1007/978-3-540-74686-7.

    67.
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Darriba, D., Taboada, G., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 gateway computing environments workshop (GCE) 1–8 (IEEE, 2010). doi:https://doi.org/10.1109/GCE.2010.5676129.

    70.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Chun, J. Y. et al. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene. Nucleic Acids Res. 35, e40 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Beaver dam capacity of Canada’s boreal plain in response to environmental change

    1.
    Novakowski, N. S. Population dynamics of a beaver population in northern latitudes. Doctoral dissertation, University of Saskatchewan (1965).
    2.
    Naiman, R. J., Johnston, C. A. & Kelley, J. C. Alteration of North American streams by beaver. BioSci. 38, 753–762 (1988).
    Article  Google Scholar 

    3.
    Jenkins, S. H. & Busher, P. E. Castor canadensis. Mamm. Species 120, 1–8 (1979).
    Article  Google Scholar 

    4.
    Kassi, N. An Indigenous perspective on protecting the Canadian boreal zone. Environ. Rev. 27, 422–423 (2019).
    Article  Google Scholar 

    5.
    Randazzo, M. L. & Robidoux, M. A. The costs of local food procurement in a Northern Canadian First Nation community: An affordable strategy to food security?. J. Hunger Environ. Nutr. 14, 662–682 (2019).
    Article  Google Scholar 

    6.
    Willby, N.J., Law, A., Levanoni, O., Foster, G. & Ecke, F. Rewilding wetlands: beaver as agents of within-habitat heterogeneity and the responses of contrasting biota. Phil. Trans. Royal Soc. B. 373, 2017044. https://doi.org/10.1098/rstb.2017.0444 (2018).
    Article  Google Scholar 

    7.
    Rosell, F., Bozser, O., Collen, P. & Parker, H. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mamm. Rev. 35, 248–276 (2005).
    Article  Google Scholar 

    8.
    Westbrook, C. J., Cooper, D. J. & Butler, D. R. Beaver hydrology and geomorphology. In Treatise on Geomorphology—Ecogeomorphology, (ed. Shroder, J.) 293–306. (Academic Press, San Diego, 2013).
    Google Scholar 

    9.
    Westbrook, C. J., Cooper, D. J. & Baker, B. W. Beaver dams and overbank floods influence groundwater–surface water interactions of a Rocky Mountain riparian area. Water Resour. Res., 42, W06404. https://doi.org/10.1029/2005wr004560 (2006).
    ADS  Article  Google Scholar 

    10.
    Karran, D.J., Westbrook, C.J. & Bedard-Haughn, A. Beaver-mediated water table dynamics in a Rocky Mountain fen. Ecohydrology 11, e1923. https://doi.org/10.1002/eco.1923 (2018).
    Article  Google Scholar 

    11.
    Woo, M. K. & Waddington, J. M. Effects of beaver dams on subarctic wetland hydrology. Arctic 43, 223–230 (1990).
    Article  Google Scholar 

    12.
    Nyssen, J., Pontzeele, J. & Billi, P. Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium. J. Hydrol. 402, 92–102 (2011).
    ADS  Article  Google Scholar 

    13.
    Butler, D. R. & Malanson, G. P. The geomorphic influences of beaver dams and failures of beaver dams. Geomorphology 71, 48–60 (2005).
    ADS  Article  Google Scholar 

    14.
    Polvi, L. E. & Wohl, E. The beaver meadow complex revisited—The role of beavers in post-glacial floodplain development. Earth Surf. Proc. Land. 37, 332–346 (2012).
    ADS  Article  Google Scholar 

    15.
    Puttock, A., Graham, H. A., Cunliffe, A. M., Elliott, M. & Brazier, R. E. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands. Sci. Total Environ. 576, 430–443 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Wohl, E., Lininger, K. B. & Scott, D. N. River beads as a conceptual framework for building carbon storage and resilience to extreme climate events into river management. Biogeochemistry 141, 365–383 (2018).
    CAS  Article  Google Scholar 

    17.
    Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Let. 13, 014007. https://doi.org/10.1088/1748-9326/aa9b88 (2018).
    Article  Google Scholar 

    18.
    Ireson, A. M. et al. The changing water cycle: The boreal plains ecozone of western Canada. Wiley Interdiscip. Rev. Water 2, 505–521 (2015).
    Article  Google Scholar 

    19.
    Hood, G. A. & Bayley, S. E. Beaver (Castor canadensis) mitigate the effects of climate on the area of open water in boreal wetlands in western Canada. Biol. Conserv. 141, 556–567 (2008).
    Article  Google Scholar 

    20.
    Dittbrenner, B. J. et al. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation. PloS ONE 13, e0192538. https://doi.org/10.1371/journal.pone.0192538 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Thompson, I. D. Habitat needs of furbearers in relation to logging in boreal Ontario. For. Chron. 64, 251–261 (1988).
    Article  Google Scholar 

    23.
    Boulanger, Y. et al. Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone. Land. Ecol. 32, 1415–1431 (2017).
    Article  Google Scholar 

    24.
    Hood, G. A., Bayley, S. E. & Olson, W. Effects of prescribed fire on habitat of beaver (Castor canadensis) in Elk Island National Park, Canada. For. Ecol. Manage. 239, 200–209 (2007).
    Article  Google Scholar 

    25.
    Fairfax, E. & Small, E. E. Using remote sensing to assess the impact of beaver damming on riparian evapotranspiration in an arid environment. Ecohydrology 11, e1993 (2018).
    Article  Google Scholar 

    26.
    Creed, I. F., Duinker, P. N., Serran, J. N. & Steenberg, J. W. Managing risks to Canada’s boreal zone: Transdisciplinary thinking in pursuit of sustainability. Environ. Rev. 27, 407–418 (2019).
    Article  Google Scholar 

    27.
    Eaton, B., T. Muhly, J.T. Fisher & S-L. Potential Impacts of Beaver on Oil Sands Reclamation Success—An Analysis of Available Literature. Oil Sands Research and Information Network, University of Alberta, School of Energy and the Environment, Edmonton, Alberta. OSRIN Report No. TR-37. (2013)

    28.
    Tape, K. D., Jones, B. M., Arp, C. D., Nitze, I. & Grosse, G. Tundra be dammed: Beaver colonization of the Arctic. Glob. Change Biol. 24, 4478–4488 (2018).
    ADS  Article  Google Scholar 

    29.
    Jarema, S. I., Samson, J., McGill, B. J. & Humphries, M. M. Variation in abundance across a species’ range predicts climate change responses in the range interior will exceed those at the edge: A case study with North American beaver. Glob. Change Biol. 15, 508–522 (2009).
    ADS  Article  Google Scholar 

    30.
    Smeraldo, S. et al. Species distribution models as a tool to predict range expansion after reintroduction: A case study on Eurasian beavers (Castor fiber). J. Nat. Conserv. 37, 12–20 (2017).
    Article  Google Scholar 

    31.
    Scrafford, M. A., Avgar, T., Abercrombie, B., Tigner, J. & Boyce, M. S. Wolverine habitat selection in response to anthropogenic disturbance in the western Canadian boreal forest. For. Ecol. Manage. 395, 27–36 (2017).
    Article  Google Scholar 

    32.
    Sinkins, P. Ecological and hydrological consequences of beaver activity in Riding Mountain National Park, Manitoba. Masters of Science Thesis, University of Manitoba (2008).

    33.
    Trottier, G. C. Aerial Beaver Censuses in Riding Mountain National Park, 1973–1980. Large Mamm. Syst. Stud. Rep. 11, Canadian Wildlife Service (1980).

    34.
    Macfarlane, W. W. et al. Modeling the capacity of riverscapes to support beaver dams. Geomorphology 277, 72–99 (2017).
    ADS  Article  Google Scholar 

    35.
    Karran, D. J., Westbrook, C. J., Wheaton, J. M., Johnston, C. A. & Bedard-Haughn, A. Rapid surface water volume estimations in beaver ponds. Hydrol. Earth Syst. Sci. 352, 1039–1050. https://doi.org/10.5194/hess-21-1039-2017 (2017).
    ADS  Article  Google Scholar 

    36.
    Wang, G., McClintic, L. F. & Taylor, J. D. Habitat selection by American beaver at multiple spatial scales. Animal Biotel. 7, 10. https://doi.org/10.1186/s40317-019-0172-8 (2019).
    Article  Google Scholar 

    37.
    Touihri, M., Labbé, J., Imbeau, L. & Darveau, M. North American beaver (Castor canadensis Kuhl) key habitat characteristics: Review of the relative effects of geomorphology, food availability and anthropogenic infrastructure. Ecoscience 25, 9–23 (2018).
    Article  Google Scholar 

    38.
    Whitfield, P. H., Shook, K. R. & Pomeroy, J. W. Spatial patterns of temporal changes in Canadian prairie streamflow using an alternative trend assessment approach. J. Hydrol. 582, 124541. https://doi.org/10.1016/j.jhydrol.2020.124541 (2020).
    Article  Google Scholar 

    39.
    Johnston, C. A. & Naiman, R. J. Aquatic patch creation in relation to beaver population trends. Ecology 1, 1617–1621 (1990).
    Article  Google Scholar 

    40.
    Whitfield, C. J., Baulch, H. M., Chun, K. P. & Westbrook, C. J. Beaver-mediated methane emission: The effects of population growth in Eurasia and the Americas. Ambio 44, 7–15 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Burchsted, D. & Daniels, M. D. Classification of the alterations of beaver dams to headwater streams in northeastern Connecticut, USA. Geomorphology 205, 36–50 (2014).
    ADS  Article  Google Scholar 

    42.
    Breck, S. W., Wilson, K. R. & Andersen, D. C. Beaver herbivory and its effect on cottonwood trees: Influence of flooding along matched regulated and unregulated rivers. River Res. Appl. 19, 43–58 (2003).
    Article  Google Scholar 

    43.
    Martell, K. A., Foote, A. L. & Cumming, S. G. Riparian disturbance due to beavers (Castor canadensis) in Alberta’s boreal mixedwood forests: Implications for forest management. Ecoscience 13, 164–171 (2006).
    Article  Google Scholar 

    44.
    Hood, G. A. & Bayley, S. E. The effects of high ungulate densities on foraging choices by beaver (Castor canadensis) in the mixed-wood boreal forest. Can. J. Zool. 86, 484–496 (2008).
    Article  Google Scholar 

    45.
    Caners, R. T. & Kenkel, N. C. Forest stand structure and dynamics at Riding Mountain National Park, Manitoba, Canada. Commun. Ecol. 4, 185–204 (2003).
    Article  Google Scholar 

    46.
    Noble, B., Liu, J. & Hackett, P. The contribution of project environmental assessment to assessing and managing cumulative effects: Individually and collectively insignificant?. Environ. Manage. 59, 531–545 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Thompson, C., Mendoza, C. A. & Devito, K. J. Potential influence of climate change on ecosystems within the Boreal Plains of Alberta. Hydrol. Proc. 31, 2110–2124 (2017).
    Article  Google Scholar 

    48.
    Lapointe St-Pierre, M., Labbé, J., Darveau, M., Imbeau, L. & Mazerolle, M. J. Factors affecting abundance of beaver dams in forested landscapes. Wetlands 37, 941–949 (2017).
    Article  Google Scholar 

    49.
    Hillman, G. R. Flood wave attenuation by a wetland following a beaver dam failure on a second order boreal stream. Wetlands 18, 21–34 (1998).
    Article  Google Scholar 

    50.
    Sallows, T. Beaver abundance—riding mountain dataset. Open Government, Government of Canada. https://open.canada.ca/data/en/dataset/36228fda-d442-4364-9810-cd77c376a851 (2018).

    51.
    Petro, V. M., Taylor, J. D., Sanchez, D. M. & Burnett, K. M. Methods to predict beaver dam occurrence in coastal Oregon. Northw. Sci. 92, 278–289 (2018).
    Article  Google Scholar 

    52.
    Graham, H. A. et al. Modelling Eurasian beaver foraging habitat and dam suitability, for predicting the location and number of dams throughout catchments in Great Britain. Eur. J. Wildlife Res. 66, 42 (2020).
    Article  Google Scholar 

    53.
    Richards, L.K. Elk/moose population dynamics in the Riding Mountain National Park region. Masters Thesis, University of Manitoba (1997).

    54.
    Morrison, A., Westbrook, C. J. & Bedard-Haughn, A. Distribution of Canadian Rocky Mountain wetlands impacted by beaver. Wetlands 35, 95–104 (2015).
    Article  Google Scholar 

    55.
    Devito, K. J. et al. Landscape controls on long-term runoff in subhumid heterogeneous Boreal Plains catchments. Hydrol. Proc. 31, 2737–2751 (2017).
    Article  Google Scholar 

    56.
    Westbrook, C. J., Cooper, D. J. & Anderson, C. B. Alteration of hydrogeomorphic processes by invasive beavers in southern South America. Sci. Total Environ. 574, 183–190 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. III. & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).
    ADS  Article  Google Scholar 

    58.
    Walker, D.J. Landscape complexity and vegetation dynamics in Riding Mountain National Park, Canada. Doctoral dissertation, University of Manitoba (2002).

    59.
    Doucet, R. Regeneration silviculture of aspen. For. Chron. 65, 23–27 (1989).
    Article  Google Scholar 

    60.
    McMaster, R. T. & McMaster, N. D. Composition, structure, and dynamics of vegetation in 15 beaver-impacted wetlands in western Massachusetts. Rhodora 103, 293–320 (2001).
    Google Scholar 

    61.
    Green, K. C. & Westbrook, C. J. Changes in riparian area structure, channel hydraulics, and sediment yield following loss of beaver dams. J. Ecosyst. Manage. 10, 68–78 (2009).
    Google Scholar 

    62.
    Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).
    Article  Google Scholar 

    63.
    Dumanski, S., Pomeroy, J. W. & Westbrook, C. J. Hydrological regime changes in a Canadian Prairie basin. Hydrol. Proc. 29, 3893–3904 (2015).
    Article  Google Scholar 

    64.
    Neumayer, M., Teschemacher, S., Schloemer, S., Zahner, V. & Rieger, W. Hydraulic modelling of beaver dams and evaluation of their impacts on flood events. Water 12, 300 (2020).
    Article  Google Scholar 

    65.
    Westbrook, C. J., Ronnquist, A. & Bedard-Haughn, A. Hydrological functioning of a beaver dam sequence and regional dam persistence during an extreme rainstorm. Hydrol. Proc. 34, 3726–3737 (2020).
    Article  Google Scholar 

    66.
    Andersen, D. C. & Shafroth, P. B. Beaver dams, hydrological thresholds, and controlled floods as a management tool in a desert riverine ecosystem, Bill Williams River, Arizona. Ecohydrology 3, 325–338 (2010).
    Article  Google Scholar 

    67.
    Bailey, R. H. Notes on the Vegetation in Riding Mountain National Park Manitoba. Forest Management Institute (1968).

    68.
    Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910 (2010).
    ADS  Article  Google Scholar  More

  • in

    Circadian regulation of diel vertical migration (DVM) and metabolism in Antarctic krill Euphausia superba

    Vertical migration
    We performed two separate vertical migration experiments (Fig. 1A,B). In the first one (Fig. 1A) a group of 45 krill was exposed to LD for 48 h. In the second one (Fig. 1B) a group of 41 krill was exposed to LD for 24 h followed by constant darkness (DD) for 48 h. During LD, lights were turned on at 6:00 (corresponding to Zeitgeber Time 0 or ZT0). Light intensity gradually increased until 12:00 (ZT6) and then decreased gradually until 18:00 (ZT12), when the lights were turned off. During DD, lights were turned off at all times. In both experiments, krill could move freely within a vertical column tank (200 cm height × 50 cm diameter) filled with chilled and filtered seawater (Supplementary Fig. S1). No food was offered at any time during the experiments and an acclimation period of three days (LD, no food) was provided before each experiment. We used an infrared (IR) camera system to monitor DVM during light and dark phases and estimated the variation in mean krill depth over time. We tested the presence of rhythmic patterns using the RAIN algorithm, which allows the detection of rhythms of any period and waveform23.
    Figure 1

    Vertical migration patterns of krill exposed to LD and LD-DD. (A) Vertical migration patterns of krill exposed to LD for 48 h. X-axis indicate the Zeitgeber Time (ZT) given in hours from each event of lights-on (6:00), corresponding to ZT0. Y-axis indicate the mean krill depth in cm (n = 45). Error bars represent SEMs. White and grey rectangles represent alternation of light and dark phases. For each experimental day, results of the RAIN analysis test for the presence of rhythmic oscillations are reported (T = period of oscillation; p = p-value). (B) Vertical migration patterns of krill exposed to LD for 24 h followed by 48 h in DD. X-axis represent the time in hours from the beginning of the run. For the first 24 h, time is given in ZT, with ZT0 corresponding to lights-on (6:00). For the following 48 h, time is given in Circadian Time or CT, with CT0 corresponding to subjective lights-on in DD (6:00). Y-axis indicate the mean krill depth in cm (n = 41). Error bars represent SEMs. White, grey and light grey rectangles represent alternation of light, dark and subjective light phases respectively. For each experimental day, results of the RAIN analysis test for the presence of rhythmic oscillations are reported (T = period of oscillation; p = p-value). The figure was generated using the plot function in the “graphics” package (version 3.6.3, https://www.rdocumentation.org/packages/graphics) in R (RStudio version 1.0.136, RStudio Team 2016).

    Full size image

    Clear rhythmic oscillations were detected in both experiments. When krill were exposed to LD, they displayed rhythmic vertical migration with a period of about 24 h. Peak upward migration occurred towards the second half of the light phase. In the first experiment (Fig. 1A), RAIN detected a period of oscillation of 24 h (p-value = 3.5e−07) in day 1 and a period of 23 h (p-value = 5.4e−08) in day 2, with peak upward migration at ZT9 in both days. In the second experiment (Fig. 1B), RAIN detected a period of 24 h (p-value = 4.2e−04) in day 1, when krill were exposed to LD, with peak upward migration at ZT8.
    Krill DVM in the field displays mostly a nocturnal migratory pattern, characterized by upward migration during the night and downward migration during the day6,11. Therefore, we were at first surprised to observe the opposite DVM pattern in the lab, with upward migration during the day (i.e. light phase) and downward migration during the night (i.e. dark phase). However, previous studies on Drosophila already revealed that circadian behaviors might differ significantly between wild and laboratory populations of the same species24. Physical constriction, exposure to artificial light regimes and feeding schedules and deprivation of ecological interactions may have a profound impact on the behavior of captured animals25. In the aquarium, krill are fed mostly during the day. This, in association with the absence of predators, might have led to the reversal of the DVM rhythm. In addition, in order to avoid interaction with rhythmic cues related to food, krill were briefly starved before and during the experiment. Previous studies suggested that starved zooplankton might become more attracted towards light sources26,27. This may have contributed to stimulate the upward movement observed during the light phases. Additional observations of DVM with (A) krill accustomed to different feeding schedules (e.g. krill fed during the night) and (B) starved krill exposed to illuminated dark phases (DL or LL) might help to clarify these points.
    After we switched to DD conditions (Fig. 1B), during the first day we did not observe any significant rhythm. This might not necessarily imply that no rhythmic migration occurred. In fact, individual krill might have been still rhythmic, but they might have not been synchronized with each other due to the absence of the LD entraining cue or Zeitgeber. A similar phenomenon has already been reported for wild zooplankton in the Arctic and Antarctic during periods of continuous illumination in summer (i.e. during midnight sun)28,29. At that time of the year, in the Arctic, the local populations of Calanus finmarchicus and C. glacialis did not display any net DVM as revealed by backscatter data, but unsynchronized individual migrations were registered instead29. Implementation of individual tracking methods to apply in the lab during DVM monitoring under extreme photoperiodic conditions including constant darkness (DD) and constant light (LL) would allow further insight into this aspect.
    During the second day of DD exposure, RAIN detected a period of 12 h (p-value = 2.3e−02), with a first peak of migration in the early subjective light phase (CT29) and a second peak in the early dark phase (CT41). This suggested that in free-running conditions an endogenous rhythm of vertical migration might emerge with a period of about 12 h. This is in agreement with previous studies of swimming activity, oxygen consumption, enzyme activity and transcription in krill exposed to DD16,18,22 and strongly suggests that the endogenous clock in krill is characterized by a free-running period significantly shorter than 24 h.
    Oxygen consumption
    An endogenous rhythm of activity occurring at the organismic level might contribute to the occurrence of DVM in zooplankton19,30. This might apply to krill as well, since they are known to display daily rhythms in metabolism and physiology15,16. Therefore, we monitored daily rhythms of oxygen consumption in krill exposed to LD and DD and associated them with the observed DVM patterns. Due to technical limitations, we could not monitor oxygen consumption directly within the vertical migration tank. We used individual krill incubated in 2 L Schott bottles filled with oxygen-saturated chilled and filtered seawater instead. We followed the decrease in pO2 over a period of 48 h and tested the presence of rhythmic consumption patterns using the RAIN algorithm. Clear rhythmic oscillations were detected in both conditions.
    In LD, two out of six tested animals (33%) displayed rhythmic oxygen consumption (Fig. 2A,B). Both individuals displayed clear oscillations in the circadian range (i.e., approx. 24 h period): the first one (krill#4, Fig. 2A) displayed a period of 21 h in day 1 (p-value = 1.9e−04) and 24 h in day 2 (p-value = 3.7e−02), while the second one (krill#6, Fig. 2B) displayed a period of 24 h in both days (day 1, p-value = 5.3e−11; day 2, p-value = 3.9e−11). The oscillation was always strongly synchronized to the LD cycle, with peak oxygen consumption occurring at ZT11 (day 1) and ZT12 (day 2) in krill#4 (Fig. 2A) and ZT12 (day 1) and ZT13 (day 2) in krill#6 (Fig. 2B), corresponding to the light/dark transitions. Considering that the animals were incubated within a small volume of water (2 L) and their ability of swim freely might have been severely reduced, changes in swimming activity might not have greatly contributed to the oxygen uptake oscillation. Therefore, this could be interpreted as the result of an internal metabolic oscillation instead. This would support the hypothesis that an internal rhythm of activity might contribute to DVM in krill, even if the mechanisms still remain unknown. In the Calanoid copepod Calanus finmarchicus similar oscillations of oxygen consumption were interpreted as a metabolic anticipation of DVM19.
    Figure 2

    Oxygen consumption patterns of krill exposed to LD. (A,B) In both panels, X-axis represents time given as Zeitgeber Time or ZT measured in hours. ZT0 corresponds to each event of lights-on (6:00). Y-axis represents residual oxygen consumption expressed in mg/L. Positive values indicate increase of oxygen consumption, whereas negative values indicate decrease of oxygen consumption. Black points represent raw data points. Black solid line represents the model fit obtained by applying a GAM to the residual oxygen consumption over time. Red-shaded areas represent the 95% confidence interval around the GAM model’s fit. White and grey rectangles represent alternation of light and dark phases. For each experimental day, results of the RAIN analysis test for the presence of rhythmic oscillations are reported (T = period of oscillation; p = p-value). The figure was generated using the plot function in the “graphics” package (version 3.6.3, https://www.rdocumentation.org/packages/graphics) in R (RStudio version 1.0.136, RStudio Team 2016).

    Full size image

    In DD, four out of seven tested animals (57%) displayed rhythmic oxygen consumption (Fig. 3A–D). Three of them (krill#3, #4 and #7, Fig. 3B–D) showed a period of about 24 h. The peak of oxygen uptake was advanced compared to LD and occurred during the subjective light phase. Krill#3 (Fig. 3B) displayed a period of 23 h in day 1 (p-value = 1.0e−07) and 24 h in day 2 (p-value = 4.2e−06), with peak oxygen consumption at CT11 and CT34. Krill#4 (Fig. 3C) displayed a period of 21 h in day 1 (p-value = 2.0e−05) and 24 h in day 2 (p-value = 1.6e−06), with peak consumption at CT9 and CT28. Krill#7 (Fig. 3D) displayed a period of 24 h in day 2 (p-value = 2.2e−07), with peak consumption at CT28. A fourth individual (krill#2, Fig. 3A) displayed a period of 12 h in day 1 (p-value = 1.7e−03), with a first peak of consumption at CT3 during the early subjective light phase and a second peak 12 h later (CT15) during the early dark phase. The general advance of the oxygen uptake peak observed in krill#3, 4 and 7 together with the 12 h rhythm displayed by krill#2 suggested that in free-running DD conditions a process of period shortening similar to the one observed for DVM might occur also for oxygen consumption. Previous studies suggested that in krill similar 12 h free-running endogenous rhythms might occur also at the level of metabolic gene expression and enzymatic activity16. This, together with the recent analysis of krill circadian transcriptome revealing a significant 12 h free-running oscillation at the molecular level, strongly suggests that a short endogenous period of oscillation might characterize the circadian clock of Antarctic krill.
    Figure 3

    Oxygen consumption patterns of krill exposed to DD. (A–D) In all panels, X-axis represents time given as Circadian Time or CT measured in hours. CT0 corresponds to first subjective lights-on event (6:00). Y-axis represents residual oxygen consumption expressed in mg/L. Positive values indicate increase of oxygen consumption, whereas negative values indicate decrease of oxygen consumption. Black points represent raw data points. Black solid line represents the model fit obtained by applying a GAM to the residual oxygen consumption over time. Red-shaded areas represent the 95% confidence interval around the GAM model’s fit. Light grey and grey rectangles represent alternation of subjective light and dark phases respectively. For each experimental day, results of the RAIN analysis test for the presence of rhythmic oscillations are reported (T = period of oscillation; p = p-value). The figure was generated using the plot function in the “graphics” package (version 3.6.3, https://www.rdocumentation.org/packages/graphics) in R (RStudio version 1.0.136, RStudio Team 2016).

    Full size image

    The relatively small percentages (33% in LD and 57% in DD) of individual krill showing significant rhythmic oxygen consumption might have been related to the small sample size in our experiment (n = 6 in LD and n = 7 in DD). However, additional measurements of krill oxygen consumption performed using the same methods in LD and DD on larger samples (n = 10), on board of RV Polarstern during Antarctic expedition PS 112 (March to May 2018), displayed similar percentages of rhythmic individuals (3 out of 10 or 30% in LD, and 4 out of 10 or 40% in DD) (Supplementary Figs. S2A–C and S3A–D). Interestingly, the on-board analyses revealed the same tendency to develop shorter periods of oscillation in DD (krill#7: T = 12 h, p-value = 8.5e−04; krill#9: T = 17 h, p-value = 8.3e−08) (Supplementary Fig. S3C,D). Also, on-board measurements in LD displayed almost a reversed phase of oscillation compared to those in the lab, with peak oxygen consumption occurring at the beginning of the light phase, around ZT4 (Supplementary Fig. S2A–C). It is tempting to speculate that this might be related to the reverse DVM pattern observed in the lab. Unfortunately, we do not have the corresponding DVM measurements from the field to support this hypothesis. Additional field observations of krill rhythms of oxygen consumption in association with DVM would help to clarify how these two phenomena might be related to each other.
    Dissection of putative circadian oscillators in krill brain and eyestalks
    It might be possible that the DVM rhythm and the metabolic oscillation observed in krill were under the influence of separated circadian oscillators. This was suggested by the different responses displayed by DVM and oxygen consumption in DD. While DVM showed a complete shift to a 12 h rhythm, oxygen consumption only showed an advance in the peaking time.
    Previous studies on the circadian system of Crustaceans identified multiple oscillators located in the head and along the body31. In particular, a model has been proposed where the circadian oscillators in the head are situated in the brain, in the eyestalks and in the retinae of the compound eye (Supplementary Fig. S4)31. To investigate this hypothesis we compared, for the first time, daily patterns of clock genes expression in brain and eyestalks tissue of krill exposed to LD and DD. Krill were sampled within a 72-h time-series, 9 animals were collected every four hours. During the first 24 h (ZT0-24), krill were exposed to LD, while during the remaining 48 h (CT0-48) krill were exposed to DD. We dissected brain and eyestalks tissue (Supplementary Fig. S5) and measured relative changes in clock-related mRNAs over time during the first day in LD (ZT0-24) and during the second day in DD (CT24-48) (Supplementary Table S1). We used RAIN to check for rhythmic oscillations within tissue.
    Clear rhythms of oscillation were found in both tissues. In LD, the core clock components in the brain displayed an antiphase relationship between positive (clk-cyc) and negative (per-tim) regulators, with clk-cyc peaking around ZT16-20 (clk: T = 24 h, p-value = 4.86e−07; cyc: T = 24 h, p-value = 2.28e−12) and per-tim peaking around ZT4 (per: T = 24 h, p-value = 2.99e−05; tim: T = 24 h, p-value = 1.31e−11) (Fig. 4A). In the eyestalks such antiphase relationship was not present and most clock genes showed upregulation during the dark phase (ZT16-24) (Fig. 4B). The antiphase relationship is a typical feature of the circadian clock and is well-known from studies on model organisms like Drosophila and mouse2. So far, previous studies on krill failed to demonstrate a clear antiphase relationship between positive and negative regulators21,22. This was discussed as a non-canonical feature of krill circadian clock, as observed before in other Crustacean species32,33. However, our results suggest that this might be related to the specific tissue analyzed. In fact, previous works focused mostly on the eyestalks or on the full head21,22, possibly failing to detect the antiphase oscillation in the brain. This indicates that separate oscillators might be present in the brain and the eyestalks of krill, as already suggested for other Crustaceans31, and suggests that the central pacemaker might be located in the brain. The oscillator in the eyestalks, where all clock genes displayed upregulation during the dark phase, seems to be mostly influenced by the external photoperiod and might be considered as a peripheral oscillator.
    Figure 4

    Comparison of daily patterns of clock genes expression in LD between brain and eyestalk tissues. (A, B) Heatmaps representing up- (in yellow) and down- (in blue) regulation of clock genes expression over time in the brain (A) and eyestalks (B) of krill exposed to LD. For gene names abbreviations please see Supplementary Table S1. Zeitgeber Time (ZT) given in hour from time of lights-on (6:00), corresponding to ZT0, is indicated below each column of the heatmaps. Heatmaps were generated using the heatmap.2 function in the “gplots” package (version 3.0.4, https://github.com/talgalili/gplots) in R (RStudio version 1.0.136, RStudio Team 2016).

    Full size image

    As in LD, also in DD different patterns of regulations were observed in the brain and in the eyestalks (Supplementary Fig. S6A,B). In the brain, clk, cyc and per, three of the core clock components, displayed a marked tendency towards a shortening of the oscillation period (Fig. 5A–C). Clk shifted from 24 to 12 h (p-value = 1.31e−16), cyc from 24 to 16 h (p-value = 2.48e−10) and per from 24 to 12 h (p-value = 4.05e−07). In the eyestalks, only per showed a similar tendency, shifting from 24 h (p-value = 3.69e−06) to 16 h (p-value = 2.36e−13) (Fig. 5D). This again suggested that separated oscillators might be present in krill brain and eyestalks. The shortening of clock gene oscillation period observed in DD in the brain and, to a lesser extent, in the eyestalks, together with the short (12–16 h) oscillation period registered for cry2 across all tissues and conditions (brain LD: T = 12 h, p-value = 2.4e−08; brain DD: T = 12 h, p-value = 1.4e−04; eyestalk LD: T = 12 h, p-value = 3.2e−05; eyestalk DD: T = 16 h, p-value = 6.1e−13) (Supplementary Fig. S7A,B), is in agreement with previous observations of krill clock gene expression in DD22 and strongly indicates that krill endogenous circadian period might be significantly shorter than 24 h also at the molecular level.
    Figure 5

    LD-DD shortening of the oscillation period in the core clock genes clk, cyc and per. (A–C) Line-plots representing changes in expression levels over time for the clock genes clk (A), cyc (B) and per (C) in LD (blue) and DD (red) in the brain, and for the clock gene per (D) in LD (blue) and DD (red) in the eyestalks. Time intervals are reported on the x-axis. For LD, Zeitgeber Time (ZT) is used, given in hours from the time of lights-on (6:00). For DD, Circadian Time (CT) is used, given in hours from the beginning of the subjective light phase (6:00). Mean gene expression levels (n = 7) are reported on the y-axis as mean Relative Quantities (RQ), indicating the average normalized expression levels of the target clock genes relative to the expression levels of the selected internal and external reference genes at each time interval. Error bars represents SEMs (n = 7). Results of the RAIN analysis test for the presence of rhythmic oscillations are reported (T = period of oscillation; p = p-value). A schematic representation of the light/dark cycle is given below the graphs. For LD, withe rectangles indicate light phases, grey rectangles indicate dark phases. For DD, light grey rectangles indicate subjective light phases, grey rectangles indicate dark phases. The figure was generated using the plot function in the “graphics” package (version 3.6.3, https://www.rdocumentation.org/packages/graphics) in R (RStudio version 1.0.136, RStudio Team 2016).

    Full size image

    The presence of separated oscillators in krill might help to coordinate different aspects of daily rhythmicity on different levels including physiology (e.g. oxygen consumption) and behavior (e.g. DVM). This might allow a flexible regulation of daily rhythms in response to local changes in environmental conditions driven by temporary and/or seasonal factors including photoperiod, food availability and presence/absence of predators among others.
    Adaptive significance of the short endogenous free-running period in krill
    The tendency in krill to display a 12 h endogenous free-running period might represent a circadian adaptation for living at high latitudes, where the photoperiodic signal displays strong seasonal variability16,22. Surveys from plants and insects along broad latitudinal gradients indicate that high-latitude species tend to have shorter endogenous periods compared to low-latitude ones34. The reasons why this happens are not fully understood yet, but it has been proposed that the short endogenous period might help the clock to entrain to a wider range of photoperiods34. Indeed, krill displayed rhythmic clock gene activity during the midnight sun in summer, suggesting that their clock can successfully entrain to extremely long photoperiods17,35. However, exposition to similar extreme photoperiods in the laboratory apparently caused the disruption of the clock, suggesting that in the field krill might switch to alternative Zeitgebers (i.e. entraining cues) to entrain the clock when photoperiod becomes extremely long/short (e.g. midsummer/midwinter)36.
    From an ecological perspective, having a short endogenous period might help krill to adapt to different environmental scenarios. In the presence of overt day/night cycles, the clock would entrain to the photoperiod and promote daily rhythms with a period of approx. 24 h, like for example the nocturnal DVM pattern usually observed during spring and autumn. This would help krill to anticipate the day/night cycle and maximize the costs/benefits balance between time spent feeding at the surface and time spent hiding in deeper water layers. At the same time, the clock would promote 24 h oscillations in krill metabolism and physiology and coordinate phases of high and low activity with phases of upward and downward migration during DVM.
    On the other hand, in the absence of overt day/night cues, for example during summer and winter, the clock would tend to shift towards the free-running period and promote daily rhythms with a period shorter than 24 h. Observations of krill DVM in the field during winter are scarce, due to the harsh weather conditions which characterize the Southern Ocean at that time of the year. Much of the rhythmic biology of krill during winter still remains unknown. At the same time, field observations of krill DVM and swimming activity during summer suggest that a de-synchronized, “around-the -clock”, individual migratory movement might be present instead18,28. According to some studies, frequent shallow individual migrations could occur during summer as a result of a hunger-satiation mechanism, triggered by the abundant primary production occurring in the surface layers37. To get further insight into these aspects, first we would need to perform additional laboratory studies and field observations of krill rhythmic functions (oxygen consumption, swimming activity, DVM) under extreme photoperiods (LL-DD in the lab, summer–winter in the field). Second, laboratory and on-board trials with krill exposed to different food concentrations (low-medium–high) and different photoperiods (LD-DD-LL) could be used to study the interaction between food and light cues in the emergence of “opportunistic” rhythmic responses. More

  • in

    Divalent heavy metals and uranyl cations incorporated in calcite change its dissolution process

    1.
    Chang, L. L. Y. Carbonates. In Non-silicates: Sulphates, carbonates, phosphates, halides 5B, 95–288 (The Geological Society, New York, 1998).
    2.
    Hazen, R. M., Downs, R. T., Jones, A. P. & Kah, L. Carbon mineralogy and crystal chemistry. Rev. Miner. Geochem. 75, 7–46 (2013).
    CAS  Article  Google Scholar 

    3.
    Martin, J. B. Carbonate minerals in the global carbon cycle. Chem. Geol. 449, 58–72 (2017).
    ADS  CAS  Article  Google Scholar 

    4.
    Curti, E. Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl. Geochem. 14, 433–445 (1999).
    CAS  Article  Google Scholar 

    5.
    Stipp, S. L. S., Christensen, J. T., Lakshtanov, L. Z., Baker, J. A. & Waight, T. E. Rare earth element (REE) incorporation in natural calcite: upper limits for actinide uptake in a secondary phase. Radiochim. Acta 94, 523–528 (2006).
    CAS  Article  Google Scholar 

    6.
    Olsson, J., Stipp, S. L. S., Makovicky, E. & Gislason, S. R. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano: a carbon capture and storage analogue. Chem. Geol. 384, 135–148 (2014).
    ADS  CAS  Article  Google Scholar 

    7.
    Drake, H. et al. Incorporation of metals into calcite in a deep anoxic granite aquifer. Environ. Sci. Technol. 52, 493–502 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Chi, J., Zhang, W., Wang, L. & Putnis, C. V. Direct observations of the occlusion of soil organic matter within calcite. Environ. Sci. Technol. 53, 8097–8104 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Ware, J. R., Smith, S. V. & Reaka-Kudla, M. L. Coral reefs: sources or sinks of atmospheric CO2?. Coral Reefs 11, 127–130 (1992).
    ADS  Article  Google Scholar 

    10.
    Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci. USA 105, 17295–17300 (2008).
    ADS  CAS  Article  Google Scholar 

    11.
    Kunhikrishnan, A. et al. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 139, 1–71 (2016).
    Article  Google Scholar 

    12.
    Holland, J. E. et al. Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ. 610–611, 316–332 (2018).
    ADS  PubMed  Article  CAS  Google Scholar 

    13.
    McBride, M. B. Reactions controlling heavy metal solubility in soils. Advances in Soil Science 10th edn. (Springer, New York, 1989).
    Google Scholar 

    14.
    Lee, S. H., Lee, J. S., Jeong Choi, Y. & Kim, J. G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77, 1069–1075 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Phillips, A. J. et al. Engineered applications of ureolytic biomineralization: a review. Biofouling 29, 715–733 (2013).
    CAS  PubMed  Article  Google Scholar 

    16.
    Kumari, D. et al. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv. Appl. Microbiol. 94, 79–108 (2016).
    CAS  PubMed  Article  Google Scholar 

    17.
    Gat, D., Ronen, Z. & Tsesarsky, M. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere 184, 524–531 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Guo, J. H. et al. Significant acidification in major chinese croplands. Science 327, 1008–1010 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Rice, K. C. & Herman, J. S. Acidification of earth: an assessment across mechanisms and scales. Appl. Geochem. 27, 1–14 (2012).
    CAS  Article  Google Scholar 

    20.
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
    PubMed  Article  Google Scholar 

    21.
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Sulpis, O. et al. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc. Natl. Acad. Sci. USA. 115, 11700–11705 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    25.
    Kopáček, J. et al. Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environ. Sci. Technol. 51, 159–166 (2017).
    ADS  PubMed  Article  CAS  Google Scholar 

    26.
    Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).
    CAS  Article  Google Scholar 

    27.
    Kirsch, K., Navarre-Sitchler, A. K., Wunsch, A. & McCray, J. E. Metal release from sandstones under experimentally and numerically simulated CO2 leakage conditions. Environ. Sci. Technol. 48, 1436–1442 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Wunsch, A., Navarre-Sitchler, A. K., Moore, J. & McCray, J. E. Metal release from limestones at high partial-pressures of CO2. Chem. Geol. 363, 40–55 (2014).
    ADS  CAS  Article  Google Scholar 

    29.
    Palmer, M. R. & Edmond, J. M. Uranium in river water. Geochim. Cosmochim. Acta 57, 4947–4955 (1993).
    ADS  CAS  Article  Google Scholar 

    30.
    Edmond, J. M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258, 1594–1597 (1992).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Quezada-Hinojosa, R. P., Matera, V., Adatte, T., Rambeau, C. & Föllmi, K. B. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma 150, 287–301 (2009).
    ADS  CAS  Article  Google Scholar 

    32.
    Rambeau, C. M. C. et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France. Environ. Earth Sci. 61, 1573–1585 (2010).
    CAS  Article  Google Scholar 

    33.
    Wen, Y., Li, W., Yang, Z., Zhang, Q. & Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 245, 125620 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Qu, S., Wu, W., Nel, W. & Ji, J. The behavior of metals/metalloids during natural weathering: a systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China. Sci. Total Environ. 708, 134572 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Xia, X. et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock. Chemosphere 254, 126799 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Morse, J. W. The kinetics of calcium carbonate dissolution and precipitation in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 191–225 (1983).
    Google Scholar 

    37.
    Morse, J. W. & Arvidson, R. S. The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58, 51–84 (2002).
    ADS  CAS  Article  Google Scholar 

    38.
    Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).
    CAS  PubMed  Article  Google Scholar 

    39.
    Arvidson, R. S. et al. Magnesium inhibition of calcite dissolution kinetics. Geochim. Cosmochim. Acta 70, 583–594 (2006).
    ADS  CAS  Article  Google Scholar 

    40.
    Harstad, A. O. & Stipp, S. L. S. Calcite dissolution: Effects of trace cations naturally present in Iceland spar calcites. Geochim. Cosmochim. Acta 71, 56–70 (2007).
    ADS  CAS  Article  Google Scholar 

    41.
    Mackenzie, F. T. et al. Magnesian calcites: low-temperature occurrence, solubility and solid-solution behavior in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 97–144 (1983).
    Google Scholar 

    42.
    Bischoff, W. D., Mackenzie, F. T. & Bishop, F. C. Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim. Cosmochim. Acta 51, 1413–1423 (1987).
    ADS  CAS  Article  Google Scholar 

    43.
    Busenberg, E. & Niel Plummer, L. Thermodynamics of magnesian calcite solid-solutions at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta 53, 1189–1208 (1989).
    ADS  CAS  Article  Google Scholar 

    44.
    Davis, K. J., Dove, P. M. & De Yoreo, J. J. The role of Mg2+ as an impurity in calcite growth. Science 290, 1134–1137 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Zhang, X., Wu, S. & Chen, F. Nano precipitates formed during the dissolution of calcite incorporated with Cu and Mn. Minerals 8, 484 (2018).
    CAS  Article  Google Scholar 

    46.
    Haese, R. R., Smith, J., Weber, R. & Trafford, J. High-magnesium calcite dissolution in tropical continental shelf sediments controlled by ocean acidification. Environ. Sci. Technol. 48, 8522–8528 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Rauls, M. et al. Influence of impurities on crystallization kinetics – a case study on ammonium sulfate. J. Cryst. Growth 213, 116–128 (2000).
    ADS  CAS  Article  Google Scholar 

    48.
    Latta, D. E., Pearce, C. I., Rosso, K. M., Kemner, K. M. & Boyanov, M. I. Reaction of UVI with titanium-substituted magnetite: influence of Ti on UIV speciation. Environ. Sci. Technol. 47, 4121–4130 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    World Data Centre for Greenhouse Gases (WDCGG). https://gaw.kishou.go.jp.

    50.
    RRUFFa. https://rruff.info/repository/sample_child_record_powder/by_minerals/Smithsonite__R040035-1__Powder__DIF_File__3114.txt.

    51.
    RRUFFb. https://rruff.info/repository/sample_child_record_powder/by_minerals/Aragonite__R080142-9__Powder__DIF_File__11841.txt.

    52.
    RRUFFc. https://rruff.info/repository/sample_child_record_powder/by_minerals/Calcite__R050130-1__Powder__DIF_File__4388.txt.

    53.
    Reeder, R. J. Crystal chemistry of the rhombohedral carbonates in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 1–47 (1983).
    CAS  Google Scholar 

    54.
    Chang, L. L. Y. & Brice, W. R. Subsolidus phase relations in the system calcium carbonate-cadmium carbonate. Am. Miner. 56, 338–341 (1971).
    Google Scholar 

    55.
    Lorens, R. B. Sr. Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 45, 553–561 (1981).
    ADS  CAS  Article  Google Scholar 

    56.
    Stipp, S. L., Hochella, M. F., Parks, G. A. & Leckie, J. O. Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: Interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES). Geochim. Cosmochim. Acta 56, 1941–1954 (1992).
    ADS  CAS  Article  Google Scholar 

    57.
    Reeder, R. J. Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim. Cosmochim. Acta 60, 1543–1552 (1996).
    ADS  CAS  Article  Google Scholar 

    58.
    Tesoriero, A. J. & Pankow, J. F. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim. Cosmochim. Acta 60, 1053–1063 (1996).
    ADS  CAS  Article  Google Scholar 

    59.
    Prieto, M., Cubillas, P. & Fernández-Gonzalez, Á. Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochim. Cosmochim. Acta 67, 3859–3869 (2003).
    ADS  CAS  Article  Google Scholar 

    60.
    Horner, T. J., Rickaby, R. E. M. & Henderson, G. M. Isotopic fractionation of cadmium into calcite. Earth Planet. Sci. Lett. 312, 243–253 (2011).
    ADS  CAS  Article  Google Scholar 

    61.
    Moureaux, C. et al. Effects of field contamination by metals (Cd, Cu, Pb, Zn) on biometry and mechanics of echinoderm ossicles. Aquat. Toxicol. 105, 698–707 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Xu, M. et al. Heterogeneous growth of cadmium and cobalt carbonate phases at the (1014) calcite surface. Chem. Geol. 397, 24–36 (2015).
    ADS  CAS  Article  Google Scholar 

    63.
    Lamble, G. M., Reeder, R. J. & Northrup, P. A. Characterization of heavy metal incorporation in calcite by XAFS spectroscopy. J. Phys. IV 7, 793–797 (1997).
    CAS  Google Scholar 

    64.
    Reeder, R. J., Lamble, G. M. & Northrup, P. A. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+ and Ba2+ trace elements in calcite. Am. Miner. 84, 1049–1060 (1999).
    ADS  CAS  Article  Google Scholar 

    65.
    Cheng, L., Sturchio, N. C. & Bedzyk, M. J. Local structure of incorporated at the calcite surface: an X-ray standing wave and SEXAFS study. Phys. Rev. B Condens. Matter Mater. Phys. 61, 4877–4883 (2000).
    ADS  CAS  Article  Google Scholar 

    66.
    Katsikopoulos, D., Fernández-González, Á, Prieto, A. C. & Prieto, M. Co-crystallization of Co(II) with calcite: implications for the mobility of cobalt in aqueous environments. Chem. Geol. 254, 87–100 (2008).
    ADS  CAS  Article  Google Scholar 

    67.
    González-López, J. et al. Cobalt incorporation in calcite: thermochemistry of (Ca, Co)CO3 solid solutions from density functional theory simulations. Geochim. Cosmochim. Acta 142, 205–216 (2014).
    ADS  Article  CAS  Google Scholar 

    68.
    González-López, J., Fernández-González, Á & Jiménez, A. Precipitation behaviour in the system Ca2+-Co2+-CO32+-H2O at ambient conditions: amorphous phases and CaCO3 polymorphs. Chem. Geol. 482, 91–100 (2018).
    ADS  Article  CAS  Google Scholar 

    69.
    De Giudici, G. et al. Coordination environment of Zn in foraminifera Elphidium aculeatum and Quinqueloculina seminula shells from a polluted site. Chem. Geol. 477, 100–111 (2018).  
    ADS  Article  CAS  Google Scholar 

    70.
    Cheng, L. et al. High-resolution structural study of zinc ion incorporation at the calcite cleavage surface. Surf. Sci. 415, 976–982 (1998).
    Article  Google Scholar 

    71.
    Elzinga, E. & Reeder, R. X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: implications for site-specific metal incorporation preferences during calcite crystal growth. Geochim. Cosmochim. Acta 66, 3943–3954 (2002).  
    ADS  CAS  Article  Google Scholar 

    72.
    Elzinga, E. J., Rouff, A. A. & Reeder, R. J. The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: an X-ray absorption spectroscopy study. Geochim. Cosmochim. Acta 70, 2715–2725 (2006).  
    ADS  CAS  Article  Google Scholar 

    73.
    Menadakis, M., Maroulis, G. & Koutsoukos, P. G. A quantum chemical study of doped CaCO3 (calcite). Comput. Mater. Sci. 38, 522–525 (2007).  
    CAS  Article  Google Scholar 

    74.
    Liu, X., Lu, X., Liu, X. & Zhou, H. Atomistic simulation on mixing thermodynamics of calcite-smithsonite solid solutions. Am. Miner. 100, 172–180 (2015).
    ADS  Article  Google Scholar 

    75.
    van Dijk, I., de Nooijer, L. J., Wolthers, M. & Reichart, G. J. Impacts of pH and [CO32−] on the incorporation of Zn in foraminiferal calcite. Geochim. Cosmochim. Acta 197, 263–277 (2017).
    ADS  Article  CAS  Google Scholar 

    76.
    Hoffmann, U. & Stipp, S. L. S. The behavior of Ni2+ on calcite surfaces. Geochim. Cosmochim. Acta 65, 4131–4139 (2001).
    ADS  CAS  Article  Google Scholar 

    77.
    Lakshtanov, L. Z. & Stipp, S. L. S. Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71, 3686–3697 (2007).  
    ADS  CAS  Article  Google Scholar 

    78.
    Munsel, D. et al. Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida. Biogeosciences 7, 2339–2350 (2010).
    ADS  CAS  Article  Google Scholar 

    79.
    Andersson, M. P., Sakuma, H. & Stipp, S. L. S. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory. Langmuir 30, 6129–6133 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D. & Morris, D. E. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ. Sci. Technol. 34, 638–644 (2000).
    ADS  CAS  Article  Google Scholar 

    81.
    Reeder, R. J. et al. Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta 65, 3491–3503 (2001).  
    ADS  CAS  Article  Google Scholar 

    82.
    Chen, X., Romaniello, S. J., Herrmann, A. D., Wasylenki, L. E. & Anbar, A. D. Uranium isotope fractionation during coprecipitation with aragonite and calcite. Geochim. Cosmochim. Acta 188, 189–207 (2016).
    ADS  CAS  Article  Google Scholar 

    83.
    Niu, Z. et al. Spectroscopic studies on U(VI) incorporation into CaCO3: effects of aging time and U(VI) concentration. Chemosphere 220, 1100–1107 (2019).
    ADS  CAS  Article  Google Scholar 

    84.
    Kelly, S. D. et al. Uranyl incorporation in natural calcite. Environ. Sci. Technol. 37, 1284–1287 (2003).
    ADS  CAS  Article  Google Scholar 

    85.
    Reeder, R. J. et al. Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochim. Cosmochim. Acta 68, 4799–4808 (2004).
    ADS  CAS  Article  Google Scholar 

    86.
    Wang, Z., Zachara, J. M., Mckinley, J. P. & Smith, S. C. Cryogenic laser induced U(VI) fluorescence studies of a U(VI) substituted natural calcite: implications to U(VI) speciation in contaminated hanford sediments. Environ. Sci. Technol. 39, 2651–2659 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    87.
    Kelly, S. D., Rasbury, E. T., Chattopadhyay, S., Kropf, A. J. & Kemner, K. M. Evidence of a stable uranyl site in ancient organic-rich calcite. Environ. Sci. Technol. 40, 2262–2268 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    88.
    Arai, Y., Marcus, M. A., Tamura, N., Davis, J. A. & Zachara, J. M. Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ. Sci. Technol. 41, 4633–4639 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    89.
    Keul, N. et al. Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochem. Geophys. Geosyst. 14, 102–111 (2013).
    ADS  CAS  Article  Google Scholar 

    90.
    Balboni, E., Morrison, J. M., Wang, Z., Engelhard, M. H. & Burns, P. C. Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution. Geochim. Cosmochim. Acta 151, 133–149 (2015).
    ADS  CAS  Article  Google Scholar 

    91.
    Smith, K. F. et al. U(VI) behaviour in hyperalkaline calcite systems. Geochim. Cosmochim. Acta 148, 343–359 (2015).
    ADS  CAS  Article  Google Scholar 

    92.
    Walker, S. M. & Becker, U. Uranyl(VI) and neptunyl(V) incorporation in carbonate and sulfate minerals: insight from first-principles. Geochim. Cosmochim. Acta 161, 19–35 (2015).
    ADS  CAS  Article  Google Scholar 

    93.
    Lee, Y. J., Reeder, R. J., Wenskus, R. W. & Elzinga, E. J. Structural relaxation in the MnCO3–CaCO3 solid solution: a Mn K-edge EXAFS study. Phys. Chem. Miner. 29, 585–594 (2002).
    ADS  CAS  Article  Google Scholar 

    94.
    Rouff, A. A., Elzinga, E. J., Reeder, R. J. & Fisher, N. S. X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-Sphere adsorption complexes and precipitates at the calcite−water interface. Environ. Sci. Technol. 38, 1700–1707 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    95.
    Kerisit, S. N. & Prange, M. P. Ab initio molecular dynamics simulation of divalent metal cation incorporation in calcite: implications for interpreting X-ray absorption spectroscopy data. ACS Earth Spectr. Chem. 3, 2582 (2019).
    CAS  Article  Google Scholar 

    96.
    Elzinga, E. J. et al. EXAFS study of rare-earth element coordination in calcite. Geochim. Cosmochim. Acta 66, 2875–2885 (2002).
    ADS  CAS  Article  Google Scholar 

    97.
    Heberling, F., Denecke, M. A. & Bosbach, D. Neptunium(V) coprecipitation with calcite. Environ. Sci. Technol. 42, 471–476 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    98.
    Sturchio, N. C., Antonio, M. R., Soderholm, L., Sutton, S. R. & Brannon, J. C. Tetravalent uranium in calcite. Science 281, 971–973 (1998).
    ADS  CAS  PubMed  Article  Google Scholar 

    99.
    Stumpf, T., Marques Fernandes, M., Walther, C., Dardenne, K. & Fanghänel, T. Structural characterization of Am incorporated into calcite: A TRLFS and EXAFS study. J. Colloid Interface Sci. 302, 240–245 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    100.
    Podder, J. et al. Iodate in calcite and vaterite: insights from synchrotron X-ray absorption spectroscopy and first-principles calculations. Geochim. Cosmochim. Acta 198, 218–228 (2017).
    ADS  CAS  Article  Google Scholar 

    101.
    Saslow, S. A. et al. Chromate effect on iodate incorporation into calcite. ACS Earth Spectr. Chem. 3, 1624–1630 (2019).
    CAS  Article  Google Scholar 

    102.
    Tang, Y., Elzinga, E. J., Jae Lee, Y. & Reeder, R. J. Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 71, 1480–1493 (2007).
    ADS  CAS  Article  Google Scholar 

    103.
    Aurelio, G. et al. Structural study of selenium(IV) substitutions in calcite. Chem. Geol. 270, 249–256 (2010).
    ADS  CAS  Article  Google Scholar 

    104.
    Bardelli, F. et al. Arsenic uptake by natural calcite: an XAS study. Geochim. Cosmochim. Acta 75, 3011–3023 (2011).
    ADS  CAS  Article  Google Scholar 

    105.
    Alexandratos, V. G., Elzinga, E. J. & Reeder, R. J. Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim. Cosmochim. Acta 71, 4172–4187 (2007).
    ADS  CAS  Article  Google Scholar 

    106.
    Füger, A., Konrad, F., Leis, A., Dietzel, M. & Mavromatis, V. Effect of growth rate and pH on lithium incorporation in calcite. Geochim. Cosmochim. Acta 248, 14–24 (2019).
    ADS  Article  CAS  Google Scholar 

    107.
    vander Putten, E., Dehairs, F., Keppens, E. & Baeyens, W. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim. Cosmochim. Acta 64, 997–1011 (2000).
    ADS  CAS  Article  Google Scholar 

    108.
    Vielzeuf, D. et al. Distribution of sulphur and magnesium in the red coral. Chem. Geol. 355, 13–27 (2013).
    ADS  CAS  Article  Google Scholar 

    109.
    Trong Nguyen, L. et al. Distribution of trace element in Japanese red coral Paracorallium japonicum by μ-XRF and sulfur speciation by XANES: linkage between trace element distribution and growth ring formation. Geochim. Cosmochim. Acta 127, 1–9 (2014).
    ADS  CAS  Article  Google Scholar 

    110.
    Tanaka, K. et al. Microscale magnesium distribution in shell of the Mediterranean mussel Mytilus galloprovincialis: an example of multiple factors controlling Mg/Ca in biogenic calcite. Chem. Geol. 511, 521–532 (2019).
    ADS  CAS  Article  Google Scholar 

    111.
    Drake, H., Tullborg, E. L., Hogmalm, K. J. & Åström, M. E. Trace metal distribution and isotope variations in low-temperature calcite and groundwater in granitoid fractures down to 1km depth. Geochim. Cosmochim. Acta 84, 217–238 (2012).
    ADS  CAS  Article  Google Scholar 

    112.
    Gabitov, R. I., Sadekov, A. & Migdisov, A. REE incorporation into calcite individual crystals as one time spike addition. Minerals 7, 1–11 (2017).
    CAS  Article  Google Scholar 

    113.
    Svensson, U. & Dreybrodt, W. Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibrium. Chem. Geol. 100, 129–145 (1992).
    ADS  CAS  Article  Google Scholar 

    114.
    Eisenlohr, L., Meteva, K., Gabrovšek, F. & Dreybrodt, W. The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O–CO2 solutions. Geochim. Cosmochim. Acta 63, 989–1001 (1999).
    ADS  CAS  Article  Google Scholar 

    115.
    Briese, L., Arvidson, R. S. & Luttge, A. The effect of crystal size variation on the rate of dissolution: a kinetic Monte Carlo study. Geochim. Cosmochim. Acta 212, 167–175 (2017).
    ADS  CAS  Article  Google Scholar 

    116.
    Noiriel, C., Oursin, M. & Daval, D. Examination of crystal dissolution in 3D: a way to reconcile dissolution rates in the laboratory? Geochim. Cosmochim. Acta 273, 1–25 (2020).
    ADS  CAS  Article  Google Scholar 

    117.
    Jacquat, O., Voegelin, A., Juillot, F. & Kretzschmar, R. Changes in Zn speciation during soil formation from Zn-rich limestones. Geochim. Cosmochim. Acta 73, 5554–5571 (2009).
    ADS  CAS  Article  Google Scholar 

    118.
    Wilson, M. J. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner. 39, 233–266 (2004).
    ADS  CAS  Article  Google Scholar 

    119.
    Velde, B. & Alain, M. The Origin of Clay Minerals in Soils and Weathered Rocks (Springer, New York, 2008).
    Google Scholar 

    120.
    Nesbitt, H. W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206–210 (1979).
    ADS  CAS  Article  Google Scholar 

    121.
    Li, M. Y. H., Zhou, M. F. & Williams-Jones, A. E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China. Econ. Geol. 114, 541–568 (2019).
    Article  Google Scholar 

    122.
    Li, M. Y. H. & Zhou, M. F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. Am. Miner. 105, 92–108 (2020).
    ADS  Article  Google Scholar 

    123.
    Savage, K. S., Tingle, T. N., O’Day, P. A., Waychunas, G. A. & Bird, D. K. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl. Geochem. 15, 1219–1244 (2000).
    CAS  Article  Google Scholar 

    124.
    Zhu, Y. et al. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2–9. Geochem. Trans. 17, 1–18 (2016).
    ADS  Article  CAS  Google Scholar 

    125.
    Godelitsas, A., Astilleros, J. M., Hallam, K., Harissopoulos, S. & Putnis, A. Interaction of calcium carbonates with lead in aqueous solutions. Environ. Sci. Technol. 37, 3351–3360 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    126.
    Schindler, M., Hawthorne, F. C., Putnis, C. & Putnis, A. Growth of uranyl-hydroxy-hydrate and uranyl-carbonate minerals on the (104) surface of calcite. Can. Mineral. 42, 1683–1697 (2004).
    CAS  Article  Google Scholar 

    127.
    Schindler, M. & Putnis, A. Crystal growth of schoepite on the (104) surface of calcite. Can. Mineral. 42, 1667–1681 (2004).
    CAS  Article  Google Scholar 

    128.
    Tang, H., Xian, H., He, H., Wei, J. & Liu, H. Science of the total environment kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions. Sci. Total Environ. 668, 602–616 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    129.
    Klasa, J. et al. An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions. Geochim. Cosmochim. Acta 117, 115–128 (2013).
    ADS  CAS  Article  Google Scholar 

    130.
    Renard, F., Røyne, A. & Putnis, C. V. Timescales of interface-coupled dissolution-precipitation reactions on carbonates. Geosci. Front. 10, 17–27 (2019).
    CAS  Article  Google Scholar 

    131.
    Yang, T., Huh, W., Jho, J. Y. & Kim, I. W. Effects of fluoride and polymeric additives on the dissolution of calcite and the subsequent formation of fluorite. Colloids Surf. A 451, 75–84 (2014).
    CAS  Article  Google Scholar 

    132.
    Yuan, K., Lee, S. S., De Andrade, V., Sturchio, N. C. & Fenter, P. Replacement of calcite (CaCO3) by cerussite (PbCO3). Environ. Sci. Technol. 50, 12984–12991 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    133.
    Pearce, M. A., Timms, N. E., Hough, R. M. & Cleverley, J. S. Reaction mechanism for the replacement of calcite by dolomite and siderite: implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralisation. Contrib. Miner. Pet. 166, 995–1009 (2013).
    ADS  CAS  Article  Google Scholar 

    134.
    Jonas, L., Müller, T., Dohmen, R., Baumgartner, L. & Putlitz, B. Transport-controlled hydrothermal replacement of calcite by Mg-carbonates. Geology 43, 779–783 (2015).
    ADS  CAS  Article  Google Scholar 

    135.
    Kondratiuk, P., Tredak, H., Ladd, A. J. C. & Szymczak, P. Synchronization of dissolution and precipitation fronts during infiltration-driven replacement in porous rocks. Geophys. Res. Lett. 42, 2244–2252 (2015).
    ADS  Article  Google Scholar 

    136.
    Takahashi, Y., Miyoshi, T., Yabuki, S., Inada, Y. & Shimizu, H. Observation of transformation of calcite to gypsum in mineral aerosols by Ca K-edge X-ray absorption near-edge structure (XANES). Atmos. Environ. 42, 6535–6541 (2008).
    ADS  CAS  Article  Google Scholar 

    137.
    Ruiz-Agudo, E. et al. Experimental study of the replacement of calcite by calcium sulphates. Geochim. Cosmochim. Acta 156, 75–93 (2015).
    ADS  CAS  Article  Google Scholar 

    138.
     Ruiz-Agudo, E., Álvarez-Lloret, P., Putnis, C. V., Rodriguez-Navarro, A. B. & Putnis, A. Influence of chemical and structural factors on the calcite-calcium oxalate transformation. CrystEngComm 15, 9968–9979 (2013).
    CAS  Article  Google Scholar 

    139.
    Pedrosa, E. T., Boeck, L., Putnis, C. V. & Putnis, A. The replacement of a carbonate rock by fluorite: kinetics and microstructure. Am. Miner. 102, 126–134 (2017).
    ADS  Article  Google Scholar 

    140.
    Glover, E. D. & Sippel, R. F. Experimental pseudomorphs: replacement of calcite by fluorite. Am. Miner. 47, 1156–1165 (1962).
    CAS  Google Scholar 

    141.
    Subhas, A. V. et al. Catalysis and chemical mechanisms of calcite dissolution in seawater. Proc. Natl. Acad. Sci. USA 114, 8175–8180 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    142.
    Renard, F., Putnis, C. V., Montes-Hernandez, G. & King, H. E. Siderite dissolution coupled to iron oxyhydroxide precipitation in the presence of arsenic revealed by nanoscale imaging. Chem. Geol. 449, 123–134 (2017).
    ADS  CAS  Article  Google Scholar 

    143.
    Marocchi, M., Bureau, H., Fiquet, G. & Guyot, F. In-situ monitoring of the formation of carbon compounds during the dissolution of iron(II) carbonate (siderite). Chem. Geol. 290, 145–155 (2011).
    ADS  CAS  Article  Google Scholar 

    144.
    Perdikouri, C., Piazolo, S., Kasioptas, A., Schmidt, B. C. & Putnis, A. Hydrothermal replacement of aragonite by calcite: interplay between replacement, fracturing and growth. Eur. J. Miner. 25, 123–136 (2013).
    CAS  Article  Google Scholar 

    145.
    Greer, H. F., Zhou, W. & Guo, L. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines. Miner. Pet. 109, 453–462 (2015).
    CAS  Article  Google Scholar 

    146.
    Hacker, B. R., Kirby, S. H. & Bohlen, S. R. Time and metamorphic petrology: calcite to aragonite experiments. Science 258, 110–112 (1992).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    147.
    Hacker, B. R., Rubie, D. C., Kirby, S. H. & Bohlen, S. R. The calcite → aragonite transformation in low-Mg marble: equilibrium relations, transformations mechanisms, and rates. J. Geophys. Res. Solid Earth 110, 1–16 (2005).
    Article  CAS  Google Scholar 

    148.
    Lin, S. J. & Huang, W. L. Polycrystalline calcite to aragonite transformation kinetics: experiments in synthetic systems. Contrib. Miner. Pet. 147, 604–614 (2004).
    ADS  CAS  Article  Google Scholar 

    149.
    Huang, Y. C. et al. Calcium-43 NMR studies of polymorphic transition of calcite to aragonite. J. Phys. Chem. B 116, 14295–14301 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    150.
    Monger, H. C., Daugherty, L. A. & Lindemann, W. C. Microbial precipitation of pedogenic calcite. Geology 19, 997–1000 (1991).
    ADS  CAS  Article  Google Scholar 

    151.
    Claquin, T., Schulz, M. & Balkanski, Y. J. Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res. Atmos. 104, 22243–22256 (1999).
    ADS  CAS  Article  Google Scholar 

    152.
    Engelbrecht, J. P. & Derbyshire, E. Airborne mineral dust. Elements 6, 241–246 (2010).
    Article  Google Scholar 

    153.
    Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).
    ADS  Article  Google Scholar 

    154.
    Rodgers, A. L. & Spector, M. Human stones. Endeavour 5, 119–126 (1981).
    CAS  PubMed  Article  Google Scholar 

    155.
    Baconnier, S. et al. Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies. Bioelectromagnetics 23, 488–495 (2002).
    CAS  PubMed  Article  Google Scholar 

    156.
    Tessier, A., Campbell, P. G. C. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979).
    CAS  Article  Google Scholar 

    157.
    Gleyzes, C., Tellier, S. & Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal. Chem. 21, 451–467 (2002).
    CAS  Article  Google Scholar 

    158.
    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).
    ADS  CAS  Article  Google Scholar  More

  • in

    Rural–urban scaling of age, mortality, crime and property reveals a loss of expected self-similar behaviour

    1.
    Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. 104, 7301–7306 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Bettencourt, L. M. A., Lobo, J., Strumsky, D. & West, G. B. Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities. PLoS ONE 5, e13541 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    van Raan, A. F. J., van der Meulen, G. & Goedhart, W. Urban Scaling of Cities in the Netherlands. arXiv Prepr. arXiv1503.04795 (2015).

    4.
    Alves, L. G. A., Ribeiro, H. V. & Mendes, R. S. Scaling laws in the dynamics of crime growth rate. Phys. A 392, 2672–2679 (2013).
    Article  Google Scholar 

    5.
    Society, S., Annaler, G. & Geography, H. Urban Allometric Growth Author (s): Stig Nordbeck Published by : Wiley on behalf of the Swedish Society for Anthropology and Geography Stable URL : https://www.jstor.org/stable/490887dy/Iydx. 53, 54–67 (2016).

    6.
    Gomez-Lievano, A., Youn, H. J. & Bettencourt, L. M. A. The statistics of urban scaling and their connection to Zipf’s law. PLoS ONE 7, e40393 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Hanley, Q. S., Lewis, D. & Ribeiro, H. V. Rural to urban population density scaling of crime and property transactions in english and welsh parliamentary constituencies. PLoS ONE 11, e0149546 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Ribeiro, H. V., Hanley, Q. S. & Lewis, D. Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools. PLoS ONE 13, e0192931 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Bettencourt, L., Lobo, J. & Youn, H. The hypothesis of urban scaling: formalization, implications and challenges. arXiv Prepr. arXiv1301.5919 (2013).

    10.
    Alves, L. G. A., Ribeiro, H. V., Lenzi, E. K. & Mendes, R. S. Distance to the scaling law: A useful approach for unveiling relationships between crime and urban metrics. PLoS ONE 8, e69580 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Alves, L. G. A., Mendes, R. S., Lenzi, E. K. & Ribeiro, H. V. Scale-adjusted metrics for predicting the evolution of urban indicators and quantifying the performance of cities. PLoS ONE 10, e0134862 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Advisory Committee Allocation Resource. Public health grant : Exposition book for proposed formula for 2016–17 target allocations – Technical Guide. (2016).

    13.
    NHS England Analytical Services (Finance). Technical Guide to Allocation Formulae and Pace of Change. (2016).

    14.
    Anonymous. Fair Shares: A guide to NHS Allocations. (2018).

    15.
    Green, A. E. The north–south divide in great Britain: An examination of the evidence. Trans. Inst. Br. Geogr. 13, 179 (1988).
    Article  Google Scholar 

    16.
    Hacking, J. M., Muller, S. & Buchan, I. E. Trends in mortality from 1965 to 2008 across the English north-south divide: Comparative observational study. BMJ 342, 1–9 (2011).
    Article  Google Scholar 

    17.
    Keeble, D. & Bryson, J. Small-firm creation and growth, regional development and the North-South divide in Britain. Environ. Plan. A 28, 909–934 (1996).
    Article  Google Scholar 

    18.
    United Nations. World Urbanisation Prospects: The 2014 Revision. ST/ESA/SER.A/366, (2015).

    19.
    Salvatore, M., Pozzi, F., Ataman, E., Huddleston, B. & Bloise, M. Mapping global urban and rural population distributions. (2005).

    20.
    Swiecki-Sikora, A. L., Henry, K. A. & Kepka, D. HPV vaccination coverage among us teens across the rural–urban continuum. J. Rural Heal. 35, 506–517 (2019).
    Article  Google Scholar 

    21.
    Li, K., Chen, Y., Wang, M. & Gong, A. Spatial–temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China. Sci. Total Environ. 669, 229–247 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Leitão, J. C., Miotto, J. M., Gerlach, M. & Altmann, E. G. Is this scaling nonlinear? Subject category: Subject areas. R Soc. Open Sci. 3, 150649 (2016).
    ADS  MathSciNet  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Finance, O. & Cottineau, C. Are the absent always wrong? Dealing with zero values in urban scaling. Environ. Plan. B Urban Anal. City Sci. 2, 1–15 (2018).
    Google Scholar 

    24.
    Hanley, Q. S., Khatun, S., Yosef, A. & Dyer, R. M. Fluctuation scaling, Taylor’s law, and crime. PLoS ONE 9, 2 (2014).
    Article  CAS  Google Scholar 

    25.
    Yang, V. C., Papachristos, A. V. & Abrams, D. M. The origin of urban productivity scaling laws: mathematical model and new empirical evidence. arXiv1712.00476, 1–9 (2017).

    26.
    Caminha, C. et al. Human mobility in large cities as a proxy for crime. PLoS ONE 12, 1–13 (2017).
    Article  CAS  Google Scholar 

    27.
    Grasmick, H. G., Tittle, C. R., Bursik, R. J. & Arneklev, B. J. Testing the core empirical implications of gottfredson and hirschi’s general theory of crime. J. Res. Crime Delinq. 30, 5–29 (1993).
    Article  Google Scholar 

    28.
    Pratt, T. C. & Cullen, F. T. The empirical status of Gottfredson and Hirchi’s general theory of crime: A meta-analysis. Criminology 38, 931–964 (2000).
    Article  Google Scholar 

    29.
    Wikström, P. O. H. Why Crime Happens: A Situational Action Theory. In Analytical Sociology: Actions and Networks (ed. Manzo, G.) 74–94 (Wiley, New York, 2014).
    Google Scholar 

    30.
    Wikström, P. O. H. Crime as alternative: Towards a cross-level situational action theory of crime causation. In Beyond Empiricism: Institutions and Intentions in the Study of Crime (ed. McCord, J.) 1–38 (Transaction Publishers, Abingdon, 2004).
    Google Scholar 

    31.
    Kinney, J. B., Mann, E. & Winterdyk, J. A. Crime Prevention. Crime Prevention: International Perspectives, Issues, and Trends (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781315314211.
    Google Scholar 

    32.
    Cottineau, C., Finance, O., Hatna, E., Arcaute, E. & Batty, M. Defining urban clusters to detect agglomeration economies. Environ. Plan. B Urban Anal. City Sci. 46, 1611–1626 (2019).
    Article  Google Scholar 

    33.
    Bettencourt, L. M. A. The origins of scaling in cities. Science (80-). 340, 1438–1441 (2013).
    ADS  MathSciNet  CAS  MATH  Article  Google Scholar 

    34.
    Lee, D., Cho, Y. S., Goh, K.-I., Lee, D.-S. & Kahng, B. Recent advances of percolation theory in complex networks. J. Korean Phys. Soc. 73, 152–164 (2018).
    ADS  Article  Google Scholar 

    35.
    Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3, 1–11 (2016).
    MathSciNet  Article  Google Scholar 

    36.
    Alves, L. G. A., Andrade, J. S., Hanley, Q. S. & Ribeiro, H. V. The hidden traits of endemic illiteracy in cities. Phys. A 515, 566–574 (2019).
    Article  Google Scholar 

    37.
    Wynder, E., Covey, L., Mabuchi, K. & Mushininski, M. Environmental factors in cancer of the larynx. A second Look. Cancer 38, 1591–1601 (1976).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    South, A. P. et al. Mutation signature analysis identifies increased mutation caused by tobacco smoke associated DNA adducts in larynx squamous cell carcinoma compared with oral cavity and oropharynx. Sci. Rep. 9, 1–9 (2019).
    ADS  Article  CAS  Google Scholar 

    39.
    Barnard-Kelly, K. D. et al. Suicide and self-inflicted injury in diabetes: A balancing act. J. Diabetes Sci. Technol. https://doi.org/10.1177/1932296819891136 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Amiri, S. & Behnezhad, S. Cancer diagnosis and suicide mortality: A systematic review and meta-analysis. Arch. Suicide Res. 2, 1–19 (2019).
    Google Scholar 

    41.
    Alattas, M., Ross, C. S., Henehan, E. R. & Naimi, T. S. Alcohol policies and alcohol-attributable cancer mortality in U.S. States. Chem. Biol. Interact. 315, 108885 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA. 99, 7821–7826 (2002).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

    43.
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
    ADS  CAS  Article  Google Scholar 

    44.
    Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA. 103, 8577–8582 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, 1–12 (2008).
    MATH  Google Scholar 

    46.
    Kohonen, T. Self-organizing maps (Springer, Berlin, 2001).
    Google Scholar 

    47.
    Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480 (1990).
    Article  Google Scholar 

    48.
    Chang, M. Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare (Chapman and Hall/CRC, Boca Raton, 2020).
    Google Scholar 

    49.
    Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. https://doi.org/10.1111/1467-9868.00293 (2001).
    MathSciNet  Article  MATH  Google Scholar 

    50.
    Team, R. C. R: A language and environment for statistical computing. (2019).

    51.
    Muggeo, V. M. R. Segmented: An R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).
    Google Scholar 

    52.
    Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Muggeo, V. M. R. Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling. J. Stat. Comput. Simul. 86, 3059–3067 (2016).
    MathSciNet  MATH  Article  Google Scholar 

    54.
    Muggeo, V. M. R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 59, 311–322 (2017).
    MathSciNet  MATH  Article  Google Scholar 

    55.
    Meyer, D. & Buchta, C. Proxy: Distance and similarity measures. (2019).

    56.
    Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) Functions. (2019).

    57.
    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Applications (Cambridge University Press, Cambridge, 1997).
    Google Scholar 

    58.
    Wehrens, R. & Kruisselbrink, J. Flexible self-organizing maps in kohonen 3.0. J. Stat. Softw. 87, 1–18 (2018).
    Article  Google Scholar 

    59.
    Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: The kohonen package. J. Stat. Softw. 21, 1–19 (2007).
    Article  Google Scholar 

    60.
    Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. (2019).

    61.
    Novomestky, L. K. and F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. (2015).

    62.
    Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Huber Andy Liaw, Thomas Lumley, M. & Maechler, Arni Magnusson, Steffen Moeller, M. S. and B. V. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1.1. (2019).

    63.
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, New York, 2016).
    Google Scholar 

    64.
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression. (Sage, 2019).

    65.
    Gross, J. & Ligges, U. nortest: Tests for normality. (2015).

    66.
    Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014).

    67.
    Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust}: An {R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).
    Article  Google Scholar 

    68.
    Wickham, H. et al. Welcome to the {tidyverse}. J. Open Source Softw. 4, 1686 (2019).
    ADS  Article  Google Scholar 

    69.
    Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2019).

    70.
    Revelle, W. psych: Procedures for psychological, psychometric, and personality research. (2019).

    71.
    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
    Article  Google Scholar 

    72.
    Hijmans, R. J. raster: Geographic data analysis and modeling. (2020).

    73.
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation, R package version 0.8.3. (2019).

    74.
    Bivand, R., Nowosad, J. & Lovelace, R. spData: Datasets for Spatial Analysis. (2020).

    75.
    Tennekes, M. {tmap}: Thematic maps in {R}. J. Stat. Softw. 84, 1–39 (2018).
    Article  Google Scholar 

    76.
    Cheng, J., Karambelkar, B. & Xie, Y. leaflet: Create interactive web maps with the javascript ‘Leaflet’ library. (2019).

    77.
    Appelhans, T., Detsch, F., Reudenbach, C. & Woellauer, S. mapview: Interactive Viewing of Spatial Data in R. (2019).

    78.
    Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web Application Framework for R. (2020).

    79.
    Urbanek, S. png: Read and write PNG images. (2013).

    80.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Third international AAAI conference on weblogs and social media (2009). More