Changes in grassland management and linear infrastructures associated to the decline of an endangered bird population
1.
Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363 (1994).
ADS Google Scholar
2.
Watkinson, A. R. & Ormerod, S. J. Grasslands, grazing and biodiversity: editors’ introduction. J. Appl. Ecol. 38, 233–237 (2001).
Google Scholar
3.
Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).
Google Scholar
4.
Dover, J. W., Spencer, S., Collins, S., Hadjigeorgiou, I. & Rescia, A. Grassland butterflies and low intensity farming in Europe. J. Insect Conserv. 15, 129–137 (2011).
Google Scholar
5.
Morelli, F. High nature value farmland increases taxonomic diversity, functional richness and evolutionary uniqueness of bird communities. Ecol. Indic. 90, 540–546 (2018).
Google Scholar
6.
Morelli, F., Benedetti, Y. & Tryjanowski, P. Introduction. In Birds as Useful Indicators of High Nature Value Farmlands (eds Morelli, F. & Tryjanowski, P.) 1–26 (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-319-50284-7_1.
Google Scholar
7.
Sutcliffe, L. M. E. et al. Harnessing the biodiversity value of Central and Eastern European farmland. Divers. Distrib. 21, 722–730 (2015).
Google Scholar
8.
Donald, P. F., Green, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 25–29 (2001).
Google Scholar
9.
Donald, P. F., Pisano, G., Rayment, M. D. & Pain, D. J. The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric. Ecosyst. Environ. 89, 167–182 (2002).
Google Scholar
10.
Fragoso, R., Marques, C., Lucas, M. R., Martins, M. B. & Jorge, R. The economic effects of common agricultural policy on Mediterranean montado/dehesa ecosystem. J. Policy Model. 33, 311–327 (2011).
Google Scholar
11.
Ribeiro, P. F. et al. Modelling farming system dynamics in high nature value farmland under policy change. Agric. Ecosyst. Environ. 183, 138–144 (2014).
Google Scholar
12.
Suárez, F., Naveso, M. A. & De Juana, E. Farming in the drylands of Spain: birds of the pseudosteppes. In Farming and Birds in Europe. The common Agricultural Policy and its Implications for Bird Conservation (eds Pain, D. & Pienkowsky, M.) 297–330 (Academic Press, New York, 1997).
Google Scholar
13.
Hoogeveen, Y., Petersen, J. E., Balazs, K. & Higuero, I. High Nature Value Farmland: Characteristics, Trends and Policy Challenges. EEA Report. No 1/2004. European Environment Agency, Copenhagen, Denmark (2004).
14.
Moreira, F., Pinto, M. J., Henriques, I. & Marques, T. The importance of low-intensive farming systems for fauna, flora and habitats protected under the european “birds” and “habitats” directives: is agriculture essential for preserving biodiversity in the mediterranean region? In Trends in Biodiversity Research (ed. Burk, A. R.) 117–145 (Nova Science Publishers, Huappauge, 2005).
Google Scholar
15.
Lomba, A. et al. Mapping and monitoring high nature value farmlands: challenges in European landscapes. J. Environ. Manag. 143, 140–150 (2014).
Google Scholar
16.
Delgado, A. & Moreira, F. Bird assemblages of an Iberian cereal steppe. Agric. Ecosyst. Environ. 78, 65–76 (2000).
Google Scholar
17.
Ribeiro, P. F. et al. An applied farming systems approach to infer conservation-relevant agricultural practices for agri-environment policy design. Land Use Policy 58, 165–172 (2016).
Google Scholar
18.
Stoate, C. et al. Ecological impacts of early 21st century agricultural change in Europe—a review. J. Environ. Manag. 91, 22–46 (2009).
CAS Google Scholar
19.
Faria, N., Morales, M. B. & Rabaça, J. E. Exploring nest destruction and bird mortality in mown Mediterranean dry grasslands: an increasing threat to grassland bird conservation. Eur. J. Wildl. Res. 62, 663–671 (2016).
Google Scholar
20.
Santana, J. et al. Using beta diversity to inform agricultural policies and conservation actions on Mediterranean farmland. J. Appl. Ecol. 54, 1825–1835 (2017).
Google Scholar
21.
Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).
Google Scholar
22.
Bernardino, J. et al. Bird collisions with power lines: state of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).
Google Scholar
23.
Loss, S. R., Will, T. & Marra, P. P. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 46, 99–120 (2015).
Google Scholar
24.
Hernández-Matías, A., Real, J., Parés, F. & Pradel, R. Electrocution threatens the viability of populations of the endangered Bonelli’s eagle (Aquila fasciata) in Southern Europe. Biol. Conserv. 191, 110–116 (2015).
Google Scholar
25.
Shaw, J. M., Reid, T. A., Schutgens, M., Jenkins, A. R. & Ryan, P. G. High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (Lond. 1859) https://doi.org/10.1111/ibi.12553 (2017).
Article Google Scholar
26.
Borda-de-Água, L., Grilo, C. & Pereira, H. M. Modeling the impact of road mortality on barn owl (Tyto alba) populations using age-structured models. Ecol. Model. 276, 29–37 (2014).
Google Scholar
27.
Reijnen, R., Foppen, R. & Meeuwsen, H. The effects of traffic on the density of breeding birds in Dutch agricultural grasslands. Biol. Conserv. 75, 255–260 (1996).
Google Scholar
28.
Mcnew, L. B., Hunt, L. M., Gregory, A. J., Wisely, S. M. & Sandercock, B. K. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands. Conserv. Biol. 28, 1089–1099 (2014).
PubMed PubMed Central Google Scholar
29.
Wolfe, D. H., Patten, M. A., Shochat, E., Pruett, C. L. & Sherrod, S. K. Causes and patterns of mortality in lesser prairie-chickens Tympanuchus pallidicinctus and implications for management. Wildl. Biol. 13, 95–104 (2007).
Google Scholar
30.
Shaw, J. M., Jenkins, A. R., Smallie, J. J. & Ryan, P. G. Modelling power-line collision risk for the Blue Crane Anthropoides paradiseus in South Africa. Ibis (Lond. 1859) 152, 590–599 (2010).
Google Scholar
31.
Birdlife International. The IUCN Red List of Threatened Species 2018 (2018). www.iucnredlist.org. Accessed 2nd August 2019.
32.
Faria, N. Implications of Dry Grassland Management in the Ecology and Conservation of Grassland Birds in South Portugal (Universidad Autónoma de Madrid, Madrid, 2015).
Google Scholar
33.
Iñigo, A. & Barov, B. Action plan for the Little Bustard Tetrax tetrax in the European Union. Report. SEO| BirdLife and BirdLife International for the European Commission (2010).
34.
Morales, M. B., García, J. T. & Arroyo, B. Can landscape composition changes predict spatial and annual variation of little bustard male abundance?. Anim. Conserv. 8, 167–174 (2005).
Google Scholar
35.
Moreira, F. et al. Mosaic-level inference of the impact of land cover changes in agricultural landscapes on biodiversity: a case-study with a threatened grassland bird. PLoS ONE 7, e38876 (2012).
ADS MathSciNet CAS PubMed PubMed Central Google Scholar
36.
Silva, J. P., Palmeirim, J. M. & Moreira, F. Higher breeding densities of the threatened little bustard Tetrax tetrax occur in larger grassland fields: implications for conservation. Biol. Conserv. 143, 2553–2558 (2010).
Google Scholar
37.
Silva, J. P. et al. EU protected area network did not prevent a country wide population decline in a threatened grassland bird. PeerJ 6, e4284 (2018).
PubMed PubMed Central Google Scholar
38.
García de la Morena, Bota, G., Mañosa, S. & Morales, M. B. El sisón común en España. II Censo Nacional (2016). Report (2018).
39.
Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9, 9473 (2019).
ADS PubMed PubMed Central Google Scholar
40.
Marcelino, J. et al. Tracking data of the Little Bustard Tetrax tetrax in Iberia shows high anthropogenic mortality. Bird Conserv. Int. https://doi.org/10.1017/S095927091700051X (2017).
Article Google Scholar
41.
Bevanger, K. Biological and conservation aspects of bird mortality caused by electricity power lines: a review. Biol. Conserv. 86, 67–76 (1998).
Google Scholar
42.
Janss, G. F. E. Avian mortality from power lines: a morphologic approach of a species-specific mortality. Biol. Conserv. 95, 353–359 (2000).
Google Scholar
43.
Martin, G. R. Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis. 153, 239–254 (2011).
Google Scholar
44.
Martin, G. R. & Shaw, J. M. Bird collisions with power lines: failing to see the way ahead?. Biol. Conserv. 143, 2695–2702 (2010).
Google Scholar
45.
Marques, A. T., Martins, R. C., Silva, J. P., Palmeirim, J. M. & Moreira, F. Power line routing and configuration as major drivers of collision risk in two bustard species. Oryx https://doi.org/10.1017/S0030605319000292 (2020).
Article Google Scholar
46.
Silva, J. P. et al. A spatially explicit approach to assess the collision risk between birds and overhead power lines: a case study with the little bustard. Biol. Conserv. 170, 256–263 (2014).
Google Scholar
47.
García, J., Suárez-Seoane, S., Miguélez, D., Osborne, P. E. & Zumalacárregui, C. Spatial analysis of habitat quality in a fragmented population of little bustard (Tetrax tetrax): implications for conservation. Biol. Conserv. 137, 45–56 (2007).
Google Scholar
48.
Osborne, P. E. & Suárez-Seoane, S. Identifying core areas in a species’ range using temporal suitability analysis: an example using little bustards Tetrax Tetrax L. in Spain. Biodivers. Conserv. 16, 3505–3518 (2007).
Google Scholar
49.
Santangeli, A. & Dolman, P. M. Density and habitat preferences of male little bustard across contrasting agro-pastoral landscapes in Sardinia (Italy). Eur. J. Wildl. Res. 57, 805–815 (2011).
Google Scholar
50.
Santos, M. et al. Impacts of land use and infrastructural changes on threatened Little Bustard Tetrax tetrax breeding populations: quantitative assessments using a recently developed spatially explicit dynamic modelling framework. Bird Conserv. Int. 26, 418–435 (2016).
Google Scholar
51.
Suárez-Seoane, S., Osborne, P. E. & Alonso, J. C. Large-scale habitat selection by agricultural steppe birds in Spain: identifying species-habitat responses using generalized additive models. J. Appl. Ecol. 39, 755–771 (2002).
Google Scholar
52.
Silva, J. P. et al. Estimating the influence of overhead transmission power lines and landscape context on the density of little bustard Tetrax tetrax breeding populations. Ecol. Model. 221, 1954–1963 (2010).
Google Scholar
53.
Morales, M. B., Traba, J., Carriles, E., Delgado, M. P. & de la Morena, E. L. G. Sexual differences in microhabitat selection of breeding little bustards Tetrax tetrax: ecological segregation based on vegetation structure. Acta Oecologica 34, 345–353 (2008).
ADS Google Scholar
54.
Faria, N., Rabaça, J. E. & Morales, M. B. The importance of grazing regime in the provision of breeding habitat for grassland birds: the case of the endangered little bustard (Tetrax tetrax). J. Nat. Conserv. 20, 211–218 (2012).
Google Scholar
55.
Silva, J. P., Estanque, B., Moreira, F. & Palmeirim, J. M. Population density and use of grasslands by female Little Bustards during lek attendance, nesting and brood-rearing. J. Ornithol. 155, 53–63 (2014).
Google Scholar
56.
INE. Statistical data: Database. (2019). https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados. Accessed 9th May 2019.
57.
Gameiro, J., Silva, J. P., Franco, A. M. A. & Palmeirim, J. M. Effectiveness of the European Natura 2000 network at protecting Western Europe’s agro-steppes. Biol. Conserv. 248, 108681 (2020).
Google Scholar
58.
Beja, P. et al. Predators and livestock reduce bird nest survival in intensive Mediterranean farmland. Eur. J. Wildl. Res. 60, 249–258 (2014).
Google Scholar
59.
van der Wal, R. & Palmer, S. C. Is breeding of farmland wading birds depressed by a combination of predator abundance and grazing?. Biol. Lett. 4, 256–258 (2008).
PubMed PubMed Central Google Scholar
60.
Lane, S. J., Alonso, J. C. & Martín, C. A. Habitat preferences of great bustard Otis tarda flocks in the arable steppes of central Spain: are potentially suitable areas unoccupied?. J. Appl. Ecol. 38, 193–203 (2001).
Google Scholar
61.
Ahlering, M. A., Johnson, D. H. & Faaborg, J. Conspecific attraction in a grassland bird, the Baird’s Sparrow. J. Field Ornithol. 77, 365–371 (2006).
Google Scholar
62.
Tarjuelo, R. et al. Not only habitat but also sex: factors affecting spatial distribution of Little Bustard Tetrax tetrax families. Acta Ornithol. 48, 119–128 (2013).
Google Scholar
63.
Reino, L. et al. Effects of changed grazing regimes and habitat fragmentation on Mediterranean grassland birds. Agric. Ecosyst. Environ. 138, 27–34 (2010).
Google Scholar
64.
Walters, K., Kosciuch, K. & Jones, J. Can the effect of tall structures on birds be isolated from other aspects of development?. Wildl. Soc. Bull. 38, 250–256 (2014).
Google Scholar
65.
Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. Soc. 14, 21 (2009).
Google Scholar
66.
Tryjanowski, P. et al. Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithol. 46, 1–12 (2011).
Google Scholar
67.
Gudka, M., Santos, C. D., Dolman, P. M., Abad-Gómez, J. M. & Silva, J. P. Feeling the heat: elevated temperature affects male display activity of a lekking grassland bird. PLoS ONE 14, e0221999 (2019).
CAS PubMed PubMed Central Google Scholar
68.
Silva, J. P., Catry, I., Palmeirim, J. M. & Moreira, F. Freezing heat: thermally imposed constraints on the daily activity patterns of a free-ranging grassland bird. Ecosphere 6, art119 (2015).
69.
Alonso, H. et al. Male post-breeding movements and stopover habitat selection of an endangered short-distance migrant, the Little Bustard Tetrax tetrax. Ibis (Lond. 1859) 162, 279–292 (2020).
Google Scholar
70.
García de la Morena, E. L. et al. Migration patterns of Iberian little bustards Tetrax tetrax. Ardeola 62, 95–112 (2015).
Google Scholar
71.
Silva, J. P., Faria, N. & Catry, T. Summer habitat selection and abundance of the threatened little bustard in Iberian agricultural landscapes. Biol. Conserv. 139, 186–194 (2007).
Google Scholar
72.
Equipa Atlas. Atlas das aves nidificantes em Portugal (1999–2005). (Instituto da Conservaçăo da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar, 2008).
73.
De Juana, E. & Martínez, C. Distribution and conservation status of Little bustard Tetrax tetrax in the Iberian Peninsula. Ardeola 43, 157–167 (1996).
Google Scholar
74.
Delgado, A. & Moreira, F. Between-year variations in Little Bustard Tetrax tetrax population densities are influenced by agricultural intensification and rainfall. Ibis (Lond. 1859) 152, 633–642 (2010).
Google Scholar
75.
DGT. Especificações técnicas da Carta de Uso e Ocupação do Solo de Portugal Continental para 1995, 2007, 2010 e 2015. 103 (2018).
76.
INE. Recenseamento Agrícola 1999—Análise de resultados (2001).
77.
INE. Recenseamento Agrícola 2009—Análise dos principais resultados (2011).
78.
Haklay, M. & Weber, P. Openstreetmap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).
Google Scholar
79.
R Core Team. R: a language and environment for statistical computing (2016).
80.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
81.
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
82.
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, Boca Raton, 2017).
Google Scholar
83.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-87458-6.
Google Scholar
84.
Wood, S. N. mgcv: mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.8-24. 302 (2018).
85.
Bjørnstad, O. N. & Falck, W. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8, 53–70 (2001).
MathSciNet Google Scholar
86.
Rhodes, J. R., McAlpine, C. A., Zuur, A. F., Smith, G. M. & Ieno, E. N. Mixed Effects Models and Extensions in Ecology with R 469–492 (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-87458-6_21.
Google Scholar
87.
Bjørnstad, O. N. ncf: spatial nonparametric covariance functions. R package version 1.1–7. (2016).
88.
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org (2017). More