More stories

  • in

    Benchmarking microbial growth rate predictions from metagenomes

    1.
    Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:285–309.
    Google Scholar 
    2.
    Koch BJ, McHough TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere. 2018;9:e02090.
    Google Scholar 

    3.
    Vieira-Silva S, Rocha EPC. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 2010;6:e1000808.
    PubMed  PubMed Central  Google Scholar 

    4.
    Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science. 2015;349:1101–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol. 2016;34:1256–63.
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Emiola A, Oh J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat Commun. 2018;9:4956.
    PubMed  PubMed Central  Google Scholar 

    7.
    Gao Y, Li H. Quantifying and comparing bacterial growth dynamics in multiple metagenomic samples. Nat Methods. 2018;15:1041–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol. 1998;14:113–8.
    Google Scholar 

    9.
    Hobbie JE, Daley RJ, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977;33:1225–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Didion JP, Martin M, Collins FS. Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ. 2017;5:e3720.
    PubMed  PubMed Central  Google Scholar 

    11.
    Joshi NA, Fass JN. Sickle: asliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. 2011. https://github.com/najoshi/sickle.

    12.
    Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

    13.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE. 2016;11:e0163962.
    PubMed  PubMed Central  Google Scholar 

    15.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M. Next generation sequence assembly with AMOS. Curr Protoc Bioinformatics. 2011;11:11.8.

    17.
    Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
    CAS  PubMed  Google Scholar 

    18.
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.  arXiv. 2013;1303.3997v2.

    19.
    Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.
    PubMed  PubMed Central  Google Scholar 

    20.
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359. https://doi.org/10.7717/peerj.7359.
    PubMed  PubMed Central  Google Scholar 

    21.
    Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144.
    CAS  PubMed  Google Scholar 

    22.
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
    CAS  PubMed  Google Scholar 

    23.
    Eren AM, Murat Eren A, Esen ÖC, Quince C, Vineis JH, Morrison HG, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Google Scholar 

    24.
    Nissen JN, Sonderby CK, Armenteros JJA, Groenbech CH, Nielsen HB, Petersen TN, et al. Binning microbial genomes using deep learning. bioRxiv. 2018:490078. bioRxiv preprint https://doi.org/10.1101/490078.

    25.
    Graham ED, Heidelberg JF, Tully BJ. BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ. 2017;5:e3035.
    PubMed  PubMed Central  Google Scholar 

    26.
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836.
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Google Scholar 

    28.
    Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics. 2019;35:4162–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
    Google Scholar 

    31.
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
    PubMed  PubMed Central  Google Scholar 

    34.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Harrel FE, Dupont C. Hmisc: Harrell Miscellaneous. R package version 4.2-0. 2019. https://CRAN.R-project.org/package=Hmisc.

    36.
    Mouriño-Pérez RR, Worden AZ, Azam F. Growth of Vibrio cholerae O1 in red tide waters off California. Appl Environ Microbiol. 2003;69:6923–31.
    PubMed  PubMed Central  Google Scholar 

    37.
    Liu H, Campbell L, Landry MR. Growth and mortality rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Mar Ecol Prog Ser. 1995;116:277–87.
    Google Scholar 

    38.
    Liu H, Nolla HA, Campbell L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol. 1997;12:39–47.
    Google Scholar 

    39.
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.
    CAS  PubMed  Google Scholar 

    40.
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson A, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.
    PubMed  PubMed Central  Google Scholar 

    41.
    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.
    CAS  PubMed  Google Scholar 

    42.
    Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. PNAS. 2015;112:5443–8.
    CAS  PubMed  Google Scholar 

    43.
    Roux S, Trubl G, Goudeau D, Nath N, Couradeau E, Ahlgren NA, et al. Optimizing de novo genome assembly from PCR-amplified metagenomes. PeerJ. 2019;7:e6902.
    PubMed  PubMed Central  Google Scholar 

    44.
    Ross A, Somssich IE. A DNA-based real-time PCR assay for robust growth quantification of the bacterial pathogen Pseudomonas syringae on Arabidopsis thaliana. Plant Methods. 2016;12:48.
    PubMed  PubMed Central  Google Scholar 

    45.
    Thrash JC, Seitz KW, Baker BJ, Temperton B, Gillies LE, Rabalais NN, et al. Metabolic roles of uncultivated bacterioplankton lineages in the Northern Gulf of Mexico ‘Dead Zone’. MBio. 2017;8:e01017–17.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Campbell BJ, Yu L, Straza TRA, Kirchman DL. Temporal changes in bacterial rRNA and rRNA genes in Delaware (USA) coastal waters. Aquat Microb Ecol. 2009;57:123–35.
    Google Scholar 

    47.
    Nikrad MP, Cottrell MT, Kirchman DL. Growth activity of gammaproteobacterial subgroups in waters off the west Antarctic Peninsula in summer and fall. Environ Microbiol. 2014;16:1513–23.
    CAS  PubMed  Google Scholar 

    48.
    Teira E, Martinez-Garcia S, Lonborg C, Ãlvarez-Salgado XA. Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system. Environ Microbiol Rep. 2009;1:545–54.
    PubMed  Google Scholar 

    49.
    Alderkamp AC, Sintes E, Herndl GJ. Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer. Aquat Microb Ecol. 2006;45:237–46.
    Google Scholar 

    50.
    Suzuki MT, Béjà O, Taylor LT, Delong EF. Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ Microbiol. 2001;3:323–31.
    CAS  PubMed  Google Scholar 

    51.
    Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Richter RA, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6:1186–99.
    CAS  PubMed  Google Scholar 

    52.
    Frigaard N-U, Martinez A, Mincer TJ, DeLong EF. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature. 2006;439:847–50.
    CAS  PubMed  Google Scholar 

    53.
    Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I, Bronner G, et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci USA. 2013;110:6004–9.
    CAS  PubMed  Google Scholar 

    54.
    Galand PE, Gutiérrez-Provecho C, Massana R, Gasol JM, Casamayor EO. Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory). Limnol Oceanogr. 2010;55:2117–25.
    Google Scholar 

    55.
    Martin-Cuadrado A-B, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N, López-García P, et al. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum. ISME J. 2015;9:1619–34.
    CAS  PubMed  Google Scholar 

    56.
    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol. 2007;9:1162–75.
    CAS  PubMed  Google Scholar  More

  • in

    New insights into the biodiversity of coliphages in the intestine of poultry

    Phage isolation
    In this study, 38 coliphages were isolated from poultry faecal samples collected from 27 Belgian poultry farms located in five different regions, including West Flanders, East Flanders, Antwerp, and Limburg. Between one and seven phages were isolated from each farm using E. coli C600 or K514 as host strain.
    Phage morphological analysis
    Based on a sequencing cut-off value of ≤ 95% nucleotide similarity, 18 coliphages were selected and subjected to TEM to determine phage morphology and confirm phage classification. Based on the morphological features, the phages were classified into the Caudovirales order and either the Siphoviridae family or the Myoviridae family. Analysis of the isolated Siphoviridae phages showed a long flexible non-contractile tail with a length varying between ~ 100 and ~ 200 nm and icosahedral heads with widths ranging from ~ 52 to ~ 77 nm (Fig. 1a–h). Among the isolated Myoviridae phages a long straight contractile tail was observed with a tailed length varied between ~ 100 and ~ 120 nm, head widths ranging from ~ 65 to ~ 84 nm, and head lengths from ~ 60 to ~ 110 nm (Fig. 1i–r). Taxonomic classification of each of the coliphages is shown in Table 1.
    Figure 1

    Negative staining electron microscopy images of Siphoviridae and Myoviridae coliphages. Siphoviridae phages: (a) Phage 17. (b) Phage 53. (c) Phage 54. (d) Phage 61. (e) Phage 70. (f) Phage 74. (g) Phage 76. (h) Phage 77. Myoviridae phages: (i) Phage 10. (j) Phage 11. (k) Phage 15. (l) Phage 18. (m) Phage 30. (n) Phage 55. (o) Phage 60. (p) Phage 62 (q) Phage 78. (r) Phage 79. The black bars represent 100 nm.

    Full size image

    Table 1 Characteristics of the 38 E. coli phages investigated in this study.
    Full size table

    Phage genome sequence analysis and annotation
    All 38 coliphages isolated in this study were characterized based on WGS data. An overview of the genomic characteristics and properties are listed in Table 1. According to FastQC parameters, good quality of the raw sequence data for all phages was confirmed. The phage genomes ranged in size between 44,324 and 173,384 bp, with a G+C content between 35.5 and 46.4%. Genomes smaller than 90,000 bp had a G+C content between 38.9 and 46.4%, whereas the larger genomes had a G+C content of 35.5–38%. For each coliphage, 72–275 putative CDSs were identified using both automatic and manual annotation. CDSs encoding the phage terminase small subunit, the phage terminase large subunit, the phage portal protein, and phage capsid and scaffold proteins were identified within all 38 coliphage genome sequences. They presented the same conserved genome structure with a general gene order: the terminase small subunit upstream from the terminase large subunit, the phage portal protein and two genes encoding phage capsid and scaffold proteins. In general, one phage terminase small subunit, one phage portal protein, and up to four phage capsid and scaffold proteins were found within each of the phage genomes. Besides, phage exonucleases were identified in all phage genomes. For each phage, one to three CDSs for exonucleases were found. No gene encoding for an integrase was found, indicating that these phages are strictly virulent/lytic phages. No known acquired resistance or virulence genes were detected in any of the 38 phage genomes.
    Phage phylogeny and taxonomy
    Taxonomic classification of the 38 isolated coliphages was performed through multiple WGS genome comparisons. These coliphages included 27 (71%) Siphoviridae coliphages and 11 (29%) Myoviridae coliphages. The Siphoviridae phages were compared with 146 published phages from this family. The Myoviridae phages were compared with 171 published Myoviridae phages. According to ICTV guidelines, phage family, subfamily and genus were predicted based on genome similarity. Results are shown in Table 1. All Siphoviridae phages belonged to the Tunavirinae subfamily, except for Phage 61. This phage was predicted to belong to the Tequintavirus genus, which do not have any ICTV subfamily. The ten phages, Phage 8, 53, 54, 63, 65, 68, 69, 71, 72, and 75 all belonged to the Hanrivervirus genus. Three phages belonged to the Rtpvirus genus, including Phage 17, 70, and 73. No existing ICTV genus could be assigned to the remaining 13 coliphages. Phage 28, 56_1 and 76 could be assigned to the same unknown genus. Phage 58 and Phage 74 were found to be in the same genus. Phage 47, 48, 59, 64, and 77 were predicted to belong to the same genus. Phage 52, 56_2, and 80 were predicted to belong to the same genus. The 11 Myoviridae belonged either to the Tevenvirinae or the Ounavirinae subfamily. Tevenvirinae phages included the six phages: Phage 10, 11, 15, 18, 30 and 55. Phage 10, 11 and 55 belonged to the Tequatrovirus genus, and Phage 18 and 30 belonged to the Mosigvirus genus. Ounavirinae phages included the remaining five phages; Phage 60, 62, 66, 78 and 79. All phages belonged to the Felixounavirus genus.
    Phage diversity
    To investigate the diversity of the coliphages, phage genomes were first clustered based on whole genome sequence. A total of 173 Siphoviridae and 182 Myoviridae coliphage genomes were included. Characteristics of selected reference genomes are listed in Supplementary Table S1. Siphoviridae phages isolated in this study were found in five different (sub)clusters, cluster A1–3, B and C, with a cut-off value of 0.82 (Fig. 2). Cluster A was divided into three subclusters. Fourteen of our phages, formed subcluster A1 together with the three pSf-1-like reference phages from the NCBI database. Phage 80, 28, 56_1, and 76 formed subcluster A2 with the three Swan01-like reference phages. Phages 69, 52, and 56_2 formed subcluster A3 with phage Jahat_MG145. Phage 73, 70, 17, 58 and 74 formed cluster B without any known reference phages. Phage 61 was placed in cluster C with 13 T5-like reference phages. For the Myoviridae phages, the resulting phylogeny placed phages isolated in this study in three different clusters with a cut-off height of 0.52 (Fig. 3). Phages 62, 78, 66, 60 and 79 formed cluster D with Felix01-like reference phage Alf5. Phage 30, 15 and 18 formed cluster E with 19 T4-like reference phages (cut-off height of 0.36). Phages 55, 11 and 10 were placed in cluster F with 57 reference phages. At the cut-off height of 0.39 Phage 55 was found in a different subcluster than Phage 10 and 11.
    Figure 2

    Phylogenetic analysis of Siphoviridae coliphages based on WGS sequence. Phages isolated in this study are highlighted. Each colour represents a cluster: Cluster A (blue), cluster B (green), and cluster C (red). Cluster A subclusters include A1 (light blue), A2 (blue), and A3 (dark blue). Distance matrices and clustering are based on kmer length = 10.

    Full size image

    Figure 3

    Phylogenetic analysis of Myoviridae coliphages based on WGS sequence. Phages isolated in this study are highlighted. Each colour represents a cluster: Cluster D (orange), cluster E (purple), and cluster F (brown). Distance matrices and clustering are based on kmer length = 10.

    Full size image

    Coliphages were further assessed based on the presence/absence of families of orthologues genes in their pan genome. Similar clusters were observed with only minor changes. For the Siphoviridae phage analysis, 5,227 gene groups were included (Supplementary Fig. S1). The resulting phylogenetic analysis placed phages isolated in this study in the same five clusters, cluster A1–3, B and C, with a cut-off height of 0.81 (Supplementary Fig. S2). One additional reference phage was found in cluster B and C, including the T1-like reference phage CEB_EC3a and the T5-like reference phage EPS7, respectively. For the Myoviridae phage analysis, 9,420 gene groups were included (Supplementary Fig. S3). The resulting phylogeny placed phages isolated in this study in the same three clusters, cluster D, E, and F, with a cut-off height of 0.58 (Supplementary Fig. S4). For cluster D, additionally 13 Felix01-like reference phages were found. In contrast to the WGS-based analysis, at a cut-off height of 0.39, all cluster F phages isolated in this study, were found in one subcluster with 10 T4-like reference phages. The degree of topological and branch length agreement between the different phylogenetic methods were compared (Supplementary Table S2).
    The coliphage diversity was further assessed based on three phage marker genes: the terminase large subunit and phage portal protein, and the phage exonuclease. Selected gene sequences from known phages were included for reference. Results are summarized in Table 1. For all three marker genes, cluster formation was in accordance with resulting clusters of the pan genome- and WGS-based phylogeny, cluster A–F, only with minor differences. Results based on the terminase large subunit analysis are shown below (Fig. 4).
    Figure 4

    Maximum likelihood tree based on the nucleotide sequences of the phage terminase large subunit. The analysis resulted in six clusters: A–F, according to phage family and subfamily. Cluster A and B: Siphoviridae, Tunavirinae, cluster C: Siphoviridae and Tequintavirus genus, cluster D: Myoviridae, Ounavirinae, and cluster E and F: Myoviridae, Tevenvirinae. Cluster A was divided into three subclusters: A1, A2 and A3. The tree was constructed using the MEGA X software54. The percent of data coverage for internal nodes is indicated. The scale bar indicates the number of nucleotide sequence substitutions per site. The analysis included 62 nucleotide sequences, including 24 reference phages listed in Supplementary Table S1 for comparison.

    Full size image

    For cluster A, all coliphages isolated in this study were found within same subclusters as for the WGS-based phylogeny except for Phage 63, which was found in the A2 subcluster instead of A1. Analysis based on the phage portal protein resulted in the division of our A2 subcluster phages into two groups: Phage 56_1, 80 and 28 in one group and Phage 76 in the other group (Supplementary Fig. S5). Analysis based on the exonuclease resulted in multiple clusters of cluster C and F, as phages from these clusters encoded 2 or 2–3 exonuclease genes, respectively (Supplementary Fig. S6). Comparison of the cluster construction of the three single genes analysis showed only minor topological and branch length differences (Supplementary Table S2). Moreover, cluster construction was in accordance with phage subfamily defined based on the whole genome. Siphoviridae phages from cluster A and B belonged to the Tunavirinae subfamily, and Siphoviridae phages form cluster C had no defined ICTV subfamily. Myoviridae phages from cluster D belonged to the Ounavirinae subfamily, and Myoviridae phages from cluster E and F belonged to the Tevenvirinae subfamily.
    Phage comparative genomics
    Pan genome analysis of Siphoviridae and Myoviridae phages isolated in this study revealed that neither of the two groups had any core genes. Analysis of coliphage genomes from each of the six clusters, A–F, identified core genes (core and softcore) and accessory genes (shell and cloud). As cluster A phages had only five core genes (2% of the total genome), analysis of subclusters, A1, A2 and A3, were performed additionally. Results are summarized in Table 2. The pan genome included between 81 and 333 genes, and core genes constituted between 22 and 73% of the pan genome.
    Table 2 Overview of comparative genomics analysis.
    Full size table

    The level of synteny and genomic rearrangement within each cluster or subcluster of related phages was assessed by genome comparison. Results are summarized in Table 2. Eight comparisons were performed, corresponding to the eight (sub)clusters, A1, A2, A3, B, C, D, E, and F resulting from the phage diversity analysis above (Supplementary Fig. S7–S14). Genome comparison of the phages resulted in identification of local collinear blocks (LCBs), indicating homologues DNA regions shared by two or more genomes without sequence rearrangements. The LCBs comprised different modules of genes with different functions, including modules for DNA packaging, structural proteins, head and tail morphogenesis, and host cell lysis. Several modules comprised only hypothetical proteins with unknown function. The average level of conservation varied between the different type of genes.
    Genes encoding the terminase large and small subunit, the major capsid protein, DNA primase, single-stranded protein, portal protein, recombinase, specific tail protein and holin were the most conserved genes between all phages, whereas genes with the lowest level of conservation included, specific tail fiber proteins, tail tape measure proteins and HNH homing endonucleases. Hypothetical proteins were found with large variation in level of conservation. Each phage genome comprised between four and 17 LCBs. Genome comparison of phages belonging to subcluster A1, A2 and A3 identified 16, seven and four LCBs, respectively. All phages in each cluster comprised all LCBs. All cluster B phages comprised all six LCBs. For the cluster C phages, between 6 and 10 LCBs were identified for each phage. Phage 61 isolated in this study comprised all nine regions. Variation in number of LCBs was due to a variable repeat region comprising multiple LCBs, which was found only in some of the cluster C phages. For the cluster D comparison, 14–17 different LCBs were identified for each phage. Variation in number of LCBs was due to four different small variable regions of which some of all were missing in the majority of the phages. Phages isolated in this study, including Phage 79, Phage 78, Phage 60, Phage 66, and Phage 62, comprised 17, 17, 16, 15, and 14 LCBs, respectively. Comparison of phages belonging to cluster E identified 18 LCBs. All phages lacked one or both of the same two LCBs. Phages isolated in this study, including Phage 30, Phage 15, and Phage 18, comprised 16, 17, and 17 LCBs, respectively. All 13 cluster F phages included in the comparison comprised all five LCBs. The comparison confirmed the presence of homologue regions between the phages within the clusters but also highlighted that re-arrangement and/or gain/loss of LCBs must have occurred at some point during the evolution of the phages. The region encoding the terminase large subunit and portal protein were present in a conserved region all genomes in all eight comparisons. More

  • in

    Behavioral and trophic segregations help the Tahiti petrel to cope with the abundance of wedge-tailed shearwater when foraging in oligotrophic tropical waters

    1.
    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
    Google Scholar 
    2.
    Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e622897 (2013).
    Google Scholar 

    3.
    Dehnhard, N. et al. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment?. J. Anim. Ecol. 89, 104–119 (2020).
    PubMed  Google Scholar 

    4.
    Longhurst, A. R. & Pauly, D. Ecology of Tropical Oceans (Academic Press, New York, 1987).
    Google Scholar 

    5.
    Weimerskirch, H. Are seabirds foraging for unpredictable resources?. Deep Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).
    ADS  Google Scholar 

    6.
    McDuie, F., Weeks, S. J. & Congdon, B. C. Oceanographic drivers of near-colony seabird foraging site use in tropical marine systems. Mar. Ecol. Prog. Ser. 589, 209–225 (2018).
    ADS  Google Scholar 

    7.
    Grémillet, D. et al. Irreplaceable area extends marine conservation hotspot off Tunisia: insights from GPS-tracking Scopoli’s shearwaters from the largest seabird colony in the Mediterranean. Mar. Biol. 161, 2669–2680 (2014).
    Google Scholar 

    8.
    Weimerskirch, H. et al. At-sea movements of wedge-tailed shearwaters during and outside the breeding season from four colonies in New Caledonia. Mar. Ecol. Prog. Ser. 663, 225–238 (2020).
    ADS  Google Scholar 

    9.
    de Grissac, S., Börger, L., Guitteaud, A. & Weimerskirch, H. Contrasting movement strategies among juvenile albatrosses and petrels. Sci. Rep. 6, 26103 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    10.
    Mott, R. & Clarke, R. H. Systematic review of geographic biases in the collection of at-sea distribution data for seabirds. Emu 118, 235–246 (2018).
    Google Scholar 

    11.
    Cherel, Y. et al. Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar. Ecol. Prog. Ser. 366, 281–291 (2008).
    ADS  CAS  Google Scholar 

    12.
    France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).
    Google Scholar 

    13.
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).
    ADS  CAS  Google Scholar 

    14.
    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotope ecology. Front. Ecol. Environ. 5, 429–436 (2007).
    Google Scholar 

    15.
    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–10012 (2004).
    Google Scholar 

    16.
    Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl. Acad. Sci. USA 104, 10075–10079 (2007).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641 (2002).
    CAS  PubMed  Google Scholar 

    18.
    Komura, T., Ando, H., Horikoshi, K., Suzuki, H. & Isagi, Y. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters. PLoS ONE 13, e0195385 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Carreiro, A. R. et al. Metabarcoding, stables isotopes, and tracking: unraveling the trophic ecology of a winter-breeding storm petrel (Hydrobates castro) with a multimethod approach. Mar. Biol. 167, 1–13 (2020).
    Google Scholar 

    20.
    Alonso, H. et al. An holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding. Mol. Ecol. 23, 3719–3733 (2014).
    CAS  PubMed  Google Scholar 

    21.
    del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World. Ostrich to Ducks Vol. 1 (Lynx Editions, Barcelona, 1992).
    Google Scholar 

    22.
    Brooke, M. Albatrosses and Petrels Across the World (Oxford University Press, Oxford, 2004).
    Google Scholar 

    23.
    McDuie, F., Weeks, S. J., Miller, M. G. R. & Congdon, B. C. Breeding tropical shearwaters use distant foraging sites when self-provisioning. Mar. Ornithol. 43, 123–129 (2015).
    Google Scholar 

    24.
    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).
    ADS  Google Scholar 

    25.
    Furness, R. W. & Birkhead, T. R. Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311, 655–656 (1984).
    ADS  Google Scholar 

    26.
    Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Baduini, C. L. Parental provisioning patterns of wedge-tailed shearwaters and their relation to chick body condition. Condor 104, 823 (2002).
    Google Scholar 

    28.
    Cecere, J. G., Calabrese, L., Rocamora, G. & Catoni, C. Movement patterns and habitat selection of wedge-tailed shearwaters (Puffinus pacificus) breeding at Aride Island, Seychelles. Waterbirds 36, 432–437 (2013).
    Google Scholar 

    29.
    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).
    ADS  Google Scholar 

    30.
    Jaquemet, S., Le Corre, M. & Weimerskirch, H. Seabird community structure in a coastal tropical environment: importance of natural factors and fish aggregating devices (FADs). Mar. Ecol. Prog. Ser. 268, 281–292 (2004).
    ADS  Google Scholar 

    31.
    Miller, M. G. R., Carlile, N., Phillips, J. S., Mcduie, F. & Congdon, B. C. Importance of tropical tuna for seabird foraging over a marine productivity gradient. Mar. Ecol. Prog. Ser. 586, 233–249 (2018).
    ADS  Google Scholar 

    32.
    Spear, L. B., Ainley, D. G. & Walker, W. A. Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud. Avian Biol. 35, 1–99 (2007).
    Google Scholar 

    33.
    Burger, A. E. Diving depths of shearwaters. Auk 118, 755–759 (2001).
    Google Scholar 

    34.
    Peck, D. R. & Congdon, B. C. Sex-specific chick provisioning and diving behaviour in the wedge-tailed shearwater Puffinus pacificus. J. Avian Biol. 37, 245–251 (2006).
    Google Scholar 

    35.
    IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-1. https://www.iucnredlist.org. Downloaded on 19 March 2020.

    36.
    Villard, P., Dano, S. & Bretagnolle, V. Morphometrics and the breeding biology of the Tahiti petrel Pseudobulweria rostrata. Ibis 148, 285–291 (2006).
    Google Scholar 

    37.
    Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. (2020).

    38.
    Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west pacific. Deep Res. Part II Top. Stud. Oceanogr. 113, 125–144 (2015).
    ADS  Google Scholar 

    39.
    Bretagnolle, V. Le Pétrel de la Chaîne Pterodroma (leucoptera) caledonica: Statut et Menaces. Unpubl. Rep. Prov. Sud, Nouméa, New Caledonia (2001).

    40.
    Pandolfi, M. & Bretagnolle, V. Seabirds of the Southern Lagoon of New Caledonia; distribution, abundance and threats. Waterbirds 25, 202–214 (2002).
    Google Scholar 

    41.
    QGIS Development Team. QGIS geographic information system. Open Source Geospatial Foundation Project (2018).

    42.
    Phillips, R. A., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).
    Google Scholar 

    43.
    Vandenabeele, S. P. et al. Excess baggage for birds: inappropriate placement of tags on gannets changes flight patterns. PLoS ONE 9, e92657 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    44.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    45.
    Michael, A., Sumner, D., Luque, S. & Fischbach, A. Trip : Tools for the Analysis of Animal Track Data. R package version 1.5.0. (2016).

    46.
    Garriga, J., Palmer, J. R. B., Oltra, A. & Bartumeus, F. Expectation–maximization binary clustering for behavioural annotation. PLoS ONE 11, e0151984 (2016).
    PubMed  PubMed Central  Google Scholar 

    47.
    de Grissac, S., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: behavioral responses of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017).
    PubMed  PubMed Central  Google Scholar 

    48.
    Bennison, A. et al. Search and foraging behaviors from movement data: a comparison of methods. Ecol. Evol. 8, 13–24 (2018).
    PubMed  Google Scholar 

    49.
    Clay, T. A. et al. Divergent foraging strategies during incubation of an unusually wide-ranging seabird, the Murphy’s petrel. Mar. Biol. 166, 8 (2019).
    PubMed  Google Scholar 

    50.
    Mendez, L., Prudor, A. & Weimerskirch, H. Ontogeny of foraging behaviour in juvenile red-footed boobies (Sula sula). Sci. Rep. 7, 13886 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    51.
    Ravache, A. et al. Flying to the moon: lunar cycle influences trip duration and nocturnal foraging behavior of the wedge-tailed shearwater Ardenna pacifica. J. Exp. Mar. Biol. Ecol. 525, 151322 (2020).
    Google Scholar 

    52.
    Lund, U. et al. R package ‘circular’: circular Statistics (version 0.4-93). R Packag (2017).

    53.
    Calenge, C. The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).
    Google Scholar 

    54.
    Hedd, A. et al. Foraging areas, offshore habitat use and colony overlap by incubating leach’s storm-petrels Oceanodroma leucorhoa in the Northwest Atlantic. PLoS ONE 13, 1–18 (2018).
    Google Scholar 

    55.
    Bivand, R. & Rundel, C. Interface to Geometry Engine – Open Source (‘GEOS’) (2018).

    56.
    Hobson, K. A. & Clark, R. G. Turnover of 13 C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110, 638–641 (1993).
    Google Scholar 

    57.
    Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid Commun. Mass Spectrom. 24, 3456–3460 (2010).
    ADS  CAS  PubMed  Google Scholar 

    58.
    Oksanen, J. et al. Package vegan. R Packag ver (2013).

    59.
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
    PubMed  Google Scholar 

    60.
    Ceia, F. R., Paiva, V. H., Garthe, S., Marques, J. C. & Ramos, J. A. Can variations in the spatial distribution at sea and isotopic niche width be associated with consistency in the isotopic niche of a pelagic seabird species?. Mar. Biol. 161, 1861–1872 (2014).
    Google Scholar 

    61.
    Votier, S. C. et al. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J. Appl. Ecol. 47, 487–497 (2010).
    Google Scholar 

    62.
    Bearhop, S. et al. Stable isotopes indicate sex-specific and longer-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).
    ADS  Google Scholar 

    63.
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Jarman, S. N., Redd, K. S. & Gales, N. J. Group-specific primers for amplifying DNA sequences that identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, Isopoda, Ostracoda and Thoracica. Mol. Ecol. Notes 6, 268–271 (2006).
    CAS  Google Scholar 

    65.
    Braley, M., Goldsworthy, S. D., Page, B., Steer, M. & Austin, J. J. Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol. Ecol. Resour. 10, 466–474 (2010).
    CAS  PubMed  Google Scholar 

    66.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
    CAS  PubMed  Google Scholar 

    68.
    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).
    PubMed  Google Scholar 

    69.
    Froese, R. & Pauly, D. Fishbase. World Wide Web electronic publication. FishBase (2019).

    70.
    Palomares, M. L. D. & Pauly, D. SeaLifeBase. World Wide Web Electronic Publication. www.sealifebase.org, version (2014).

    71.
    Wickham, H. tidyverse: Easily Install and Load ‘Tidyverse’ Packages. R package version 1.0.0 (2016).

    72.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).
    Google Scholar 

    73.
    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
    Google Scholar 

    74.
    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).
    Google Scholar 

    75.
    Granadeiro, J., Nunes, M., Silva, M. & Furness, R. Flexible foraging strategy of Cory’s shearwater, Calonectris diomedea, during the chick-rearing period. Anim. Behav. 56, 1169–1176 (1998).
    CAS  PubMed  Google Scholar 

    76.
    Kareiva, P. & Odell, G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987).
    Google Scholar 

    77.
    Jennings, S., Pinnegar, J. K., Polunin, N. V. C. & Warr, K. J. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226, 77–85 (2002).
    ADS  Google Scholar 

    78.
    Clua, É & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).
    Google Scholar 

    79.
    Roger, C. Relationships among yellowfin and skipjack tuna, their prey-fish and plankton. Fish. Oceanogr. 3, 133–141 (1994).
    Google Scholar 

    80.
    Choy, C. A., Popp, B. N., Hannides, C. C. S. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the north pacific subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).
    ADS  Google Scholar 

    81.
    Lipinski, M. R. & Jackson, S. Surface-feeding on cephalopods by procellariiform seabirds in the southern Benguela region, South Africa. J. Zool. 218, 549–563 (1989).
    Google Scholar 

    82.
    Spear, L. B. & Ainley, D. G. Morphological differences relative to ecological segregation in petrels (family: Procellariidae) of the Southern Ocean And Tropical Pacific. Auk 115, 1017–1033 (1998).
    Google Scholar 

    83.
    Keenan, S. W. & DeBruyn, J. M. Changes to vertebrate tissue stable isotope (δ15N) composition during decomposition. Sci. Rep. 9, 1–12 (2019).
    Google Scholar 

    84.
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
    MathSciNet  PubMed  Google Scholar 

    85.
    Mendez, L., Cotté, C., Prudor, A. & Weimerskirch, H. Variability in foraging behaviour of red-footed boobies nesting on Europa Island. Acta Oecol. 72, 87–97 (2016).
    ADS  Google Scholar  More

  • in

    Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species

    Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evolution 21:433–438
    Google Scholar 

    Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H et al. (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247
    Google Scholar 

    Aguilar R, Quesada M, Ashworth L, Herrerias‐Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188
    PubMed  Google Scholar 

    Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evolution 28:1703–1715
    CAS  Google Scholar 

    Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, second edn. Wiley-Blackwell, Chichester, West Sussex
    Google Scholar 

    Altizer S, Harvell D, Friedle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol Evolution 18:589–596
    Google Scholar 

    Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in toll-like receptor (TLR) genes in mammals. BMC Evolut Biol 11:368
    CAS  Google Scholar 

    Arnoux E, Eraud C, Navarro N, Tougard C, Thomas A, Cavallo F et al. (2014) Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri. Heredity 113:514–525
    CAS  PubMed  PubMed Central  Google Scholar 

    Bateson ZW, Whittingham LA, Johnson JA, Dunn PO (2015) Contrasting patterns of selection and drift between two categories of immune genes in prairie-chickens. Mol Ecol 24:6095–6106
    CAS  PubMed  Google Scholar 

    Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ et al. (2020) Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 89:972–995
    PubMed  Google Scholar 

    Belasen AM, Bletz MC, Leite D, da S, Toledo LF, James TY (2019) Long-term habitat fragmentation is associated with reduced MHC IIB diversity and increased infections in amphibian hosts. Front Ecol Evol 6:236
    Google Scholar 

    Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evolut Biol 16:363–377
    CAS  Google Scholar 

    Bertrand JAM, Bourgeois YXC, Delahaie B, Duval T, García-Jiménez R, Cornuault J et al. (2014) Extremely reduced dispersal and gene flow in an island bird. Heredity 112:190–196
    CAS  PubMed  Google Scholar 

    Biedrzycka A, Radwan J (2008) Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus. Mol Ecol 17:4801–4811
    CAS  PubMed  Google Scholar 

    Binetruy F, Buysse M, Barosi R, Duron O (2020a) Novel Rickettsia genotypes in ticks in French Guiana, South America. Sci Rep 10:1–11
    Google Scholar 

    Binetruy F, Chevillon C, de Thoisy B, Garnier S, Duron O (2019) Survey of ticks in French Guiana. Ticks Tick Borne Dis 10:77–85
    PubMed  Google Scholar 

    Binetruy F, Garnier S, Boulanger N, Talagrand-Reboul É, Loire E, Faivre B et al. (2020b) A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks. Sci Rep. 10:10596
    CAS  PubMed  PubMed Central  Google Scholar 

    Blake JG, Loiselle BA (2012) Temporal and spatial patterns in abundance of the wedge-billed woodcreeper (Glyphorynchus spirurus) in Lowland Ecuador. Wilson J Ornithol 124:436–445
    Google Scholar 

    Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Extensive MHC class II B gene duplication in a passerine, the common yellowthroat (Geothlypis trichas). J Hered 101:448–460
    CAS  PubMed  Google Scholar 

    Bollmer JL, Ruder EA, Johnson JA, Eimes JA, Dunn PO (2011) Drift and selection influence geographic variation at immune loci of prairie-chickens. Mol Ecol 20:4695–4706
    PubMed  Google Scholar 

    Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284
    CAS  PubMed  Google Scholar 

    Brown LM, Ramey RR, Tamburini B, Gavin TA (2004) Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conserv Genet 5:743–757
    CAS  Google Scholar 

    Calmont A (2012) La forêt guyanaise, entre valorisation et protection des ressources écosystémiques. VertigO – la revue électronique en sciences de l’environnement. Hors-série 14. http://journals.openedition.org/vertigo/12402

    Cavaillon J-M (2017) Pathogen-associated molecular patterns. In: Inflammation: from molecular and cellular mechanisms to the clinic. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 17–56

    Collinge SK (2009) Ecology of fragmented landscapes. JHU Press, Baltimore

    Colwell DD, Dantas-Torres F, Otranto D (2011) Vector-borne parasitic zoonoses: emerging scenarios and new perspectives. Vet Parasitol 182:14–21
    PubMed  Google Scholar 

    Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O’Farrelly C (2009) The avian toll-Like receptor pathway-subtle differences amidst general conformity. Dev Comp Immunol 33:967–973
    CAS  PubMed  Google Scholar 

    Daszak P (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449
    CAS  PubMed  Google Scholar 

    Dawson DA, Ball AD, Spurgin LG, Martín-Gálvez D, Stewart IRK, Horsburgh GJ et al. (2013) High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species. BMC Genomics 14:176
    CAS  PubMed  PubMed Central  Google Scholar 

    Dawson DA, Horsburgh GJ, Küpper C, Stewart IRK, Ball AD, Durrant KL et al. (2010) New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility—as demonstrated for birds. Mol Ecol Resour 10:475–494
    CAS  PubMed  Google Scholar 

    DIREN Guyane (2007) Atlas des paysages de Guyane. DIREN Guyane, Cayenne

    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406
    CAS  PubMed  Google Scholar 

    Downing T, Lloyd AT, O’Farrelly C, Bradley DG (2010) The differential evolutionary dynamics of avian cytokine and TLR gene classes. J Immunol 184:6993–7000
    CAS  PubMed  Google Scholar 

    Driscoll DA, Weir T (2005) Beetle responses to habitat fragmentation depend on ecological traits, habitat condition, and remnant size. Conserv Biol 19:182–194
    Google Scholar 

    Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188
    CAS  Google Scholar 

    Eizaguirre C, Lenz TL, Kalbe M, Milinski M (2012) Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 3:1–6
    Google Scholar 

    Evans ML, Neff BD, Heath DD (2010) MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha). Heredity 104:449–459
    CAS  PubMed  Google Scholar 

    Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515
    Google Scholar 

    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587
    CAS  PubMed  PubMed Central  Google Scholar 

    FAO (2001) Global forest resources assessment 2000. Main report, FAO, Rome

    FAO (2010) Global forest resources assessment 2010. Main report, FAO, Rome

    Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK et al. (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69
    PubMed  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge
    Google Scholar 

    Frankham R, Ballou JD, Ralls K, Eldridge M, Dudash MR, Fenster CB et al. (2017) Genetic management of fragmented animal and plant populations. Oxford University Press, Oxford, UK

    Fraser DJ, Debes PV, Bernatchez L, Hutchings JA (2014) Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish. Proc R Soc B 281:20140370
    PubMed  Google Scholar 

    Galetti M, Guevara R, Neves CL, Rodarte RR, Bovendorp RS, Moreira M et al. (2015) Defaunation affects the populations and diets of rodents in Neotropical rainforests. Biol Conserv 190:2–7
    Google Scholar 

    Galochet M, Morel V (2015) La biodiversité dans l’aménagement du territoire en Guyane française. VertigO – la revue électronique en sciences de l’environnement, Volume 15 Numéro 1. http://journals.openedition.org/vertigo/16069

    Garnier S, Alibert P, Audiot P, Prieur B, Rasplus J-Y (2004) Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine insect species, Carabus solieri. Mol Ecol 13:1883–1897
    CAS  PubMed  Google Scholar 

    Garrick RC, Sunnucks P, Dyer RJ (2010) Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evol Biol 10:118
    PubMed  PubMed Central  Google Scholar 

    Gavan MK, Oliver MK, Douglas A, Piertney SB (2015) Gene dynamics of toll-like receptor 4 through a population bottleneck in an insular population of water voles (Arvicola amphibius). Conserv Genet 16:1181–1193
    CAS  Google Scholar 

    Gonzalez-Quevedo C, Davies RG, Phillips KP, Spurgin LG, Richardson DS (2016) Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population. Mol Ecol 25:4234–4246
    CAS  PubMed  Google Scholar 

    Gonzalez-Quevedo C, Spurgin LG, Illera JC, Richardson DS (2015) Drift, not selection, shapes toll-like receptor variation among oceanic island populations. Mol Ecol 24:5852–5863
    CAS  PubMed  PubMed Central  Google Scholar 

    Gottdenker NL, Streicker DG, Faust CL, Carroll CR (2014) Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11:619–632
    PubMed  Google Scholar 

    Grueber CE, Knafler GJ, King TM, Senior AM, Grosser S, Robertson B et al. (2015) Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conserv Genet 16:595–611
    CAS  Google Scholar 

    Grueber CE, Wallis GP, Jamieson IG (2013) Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species. Mol Ecol 22:4470–4482
    CAS  PubMed  Google Scholar 

    Grueber CE, Wallis GP, Jamieson IG (2014) Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes. PLoS ONE 9:e89632
    PubMed  PubMed Central  Google Scholar 

    Grueber CE, Wallis GP, King TM, Jamieson IG (2012) Variation at innate immunity toll-like receptor genes in a bottlenecked population of a New Zealand Robin. PLoS ONE 7:e45011
    CAS  PubMed  PubMed Central  Google Scholar 

    Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG (2014) The hard ticks of the world. Springer Netherlands, Dordrecht
    Google Scholar 

    Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD et al. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052
    PubMed  PubMed Central  Google Scholar 

    Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A et al. (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853
    CAS  PubMed  Google Scholar 

    Harrisson KA, Pavlova A, Amos JN, Takeuchi N, Lill A, Radford JQ et al. (2013) Disrupted fine-scale population processes in fragmented landscapes despite large-scale genetic connectivity for a widespread and common cooperative breeder: the superb fairy-wren (Malurus cyaneus). J Anim Ecol 82:322–333
    PubMed  Google Scholar 

    Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638
    CAS  PubMed  Google Scholar 

    Hillis DM, Moritz C, Mable BK (eds) (1996) Molecular systematics, 2nd ed. Sinauer Associates, Sunderland, Massachusetts

    Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807
    Google Scholar 

    Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332
    PubMed  PubMed Central  Google Scholar 

    INSEE (2019) La population guyanaise à l’horizon 2050 : vers un doublement de la population? INSEE Antilles-Guyane, Pointe-à-pitre

    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL et al. (2008) Global trends in emerging infectious diseases. Nature 451:990–993
    CAS  PubMed  PubMed Central  Google Scholar 

    Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129(Suppl):S3–S14
    PubMed  Google Scholar 

    Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137
    CAS  PubMed  Google Scholar 

    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
    PubMed  PubMed Central  Google Scholar 

    Keesing F, Brunner J, Duerr S, Killilea M, LoGiudice K, Schmidt K et al. (2009) Hosts as ecological traps for the vector of Lyme disease. Proc R Soc B Biol Sci 276:3911–3919
    CAS  Google Scholar 

    Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, van Putten JPM (2013) Unique features of chicken toll-like receptors. Dev Comp Immunol 41:316–323
    CAS  PubMed  Google Scholar 

    Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064
    Google Scholar 

    Khimoun A, Arnoux E, Martel G, Pot A, Eraud C, Condé B et al. (2016b) Contrasted patterns of genetic differentiation across eight bird species in the Lesser Antilles. Genetica 144:125–138
    PubMed  Google Scholar 

    Khimoun A, Eraud C, Ollivier A, Arnoux E, Rocheteau V, Bely M et al. (2016a) Habitat specialization predicts genetic response to fragmentation in tropical birds. Mol Ecol 25:3831–3844
    PubMed  Google Scholar 

    Khimoun A, Ollivier A, Faivre B, Garnier S (2017) Level of genetic differentiation affects relative performances of expressed sequence tag and genomic SSRs. Mol Ecol Resour 17:893–903
    CAS  PubMed  Google Scholar 

    Knafler GJ, Grueber CE, Sutton JT, Jamieson IG (2017) Differential patterns of diversity at microsatellite, MHC, and TLR loci in bottlenecked South Island saddleback populations. NZ J Ecol 41:98–106
    Google Scholar 

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K, Battistuzzi FU (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
    CAS  PubMed  PubMed Central  Google Scholar 

    Lehmann T (1993) Ectoparasites: direct impact on host fitness. Parasitol Today 9:8–13
    CAS  PubMed  Google Scholar 

    Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760
    Google Scholar 

    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452
    CAS  PubMed  Google Scholar 

    Lindenmayer DB, Fischer J (2013) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington, DC

    Lindsay DL, Barr KR, Lance RF, Tweddale SA, Hayden TJ, Leberg PL (2008) Habitat fragmentation and genetic diversity of an endangered, migratory songbird, the golden-cheeked warbler (Dendroica chrysoparia). Mol Ecol 17:2122–2133
    PubMed  Google Scholar 

    Losos JB, Ricklefs RE (2009) The theory of island biogeography revisited. Princeton University Press, Princeton

    Marantz CA, Aleixo A, Bevier LR, Patten MA, Christie DA (2019) wedge-billed woodcreeper (Glyphorynchus spirurus). In: Handbook of the birds of the world alive. Lynx Edicions, Barcelona

    McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evolution 17:285–291
    Google Scholar 

    Milá B, Bardeleben C (2005) Isolation of polymorphic tetranucleotide microsatellite markers for the wedge-billed woodcreeper Glyphorynchus spirurus. Mol Ecol Notes 5:844–845
    Google Scholar 

    Minias P, Pikus E, Whittingham LA, Dunn PO (2018) A global analysis of selection at the avian MHC. Evolution 72:1278–1293
    PubMed  Google Scholar 

    Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond K et al. (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205
    CAS  PubMed  PubMed Central  Google Scholar 

    Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL et al. (2019) Vegan: community ecology package, vol 2. R package version, p 5–6

    Oliveira CJF, Carvalho WA, Garcia GR, Gutierrez FRS, de Miranda Santos IKF, Silva JS et al. (2010) Tick saliva induces regulatory dendritic cells: MAP-kinases and toll-like receptor-2 expression as potential targets. Vet Parasitol 167:288–297
    CAS  PubMed  Google Scholar 

    ONF (2017) Occupation du sol 2015 sur la bande littorale de Guyane et son evolution entre 2005 et 2015. Direction Régionale ONF Guyane, Cayenne

    Ostfeld RS, Keesing F, Eviner VT (2010) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton

    Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790
    CAS  PubMed  Google Scholar 

    Parham P (2003) Innate immunity: the unsung heroes. Nature 423:20

    Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405
    CAS  PubMed  Google Scholar 

    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539
    CAS  PubMed  PubMed Central  Google Scholar 

    Pearson SK, Bull CM, Gardner MG (2018) Selection outweighs drift at a fine scale: lack of MHC differentiation within a family living lizard across geographically close but disconnected rocky outcrops. Mol Ecol 27:2204–2214
    PubMed  Google Scholar 

    Pond SLK, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533
    CAS  PubMed  Google Scholar 

    Porlier M, Garant D, Perret P, Charmantier A (2012) Habitat-linked population genetic differentiation in the blue tit Cyanistes caeruleus. J Hered 103:781–791
    PubMed  Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
    CAS  PubMed  PubMed Central  Google Scholar 

    Quéméré E, Hessenauer P, Galan M, Fernandez M, Merlet J, Chaval Y et al. (2018) Fluctuating pathogen-mediated selection favours the maintenance of innate immune gene polymorphism in a widespread wild ungulate. bioRxiv: https://doi.org/10.1101/458216

    R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R Core Team, Vienna

    Radwan J, Kuduk K, Levy E, LeBas N, Babik W (2014) Parasite load and MHC diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard. Mol Ecol 23:5966–5978
    CAS  PubMed  Google Scholar 

    Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176
    PubMed  Google Scholar 

    Rivera-Ortíz FA, Aguilar R, Arizmendi MDC, Quesada M, Oyama K (2015) Habitat fragmentation and genetic variability of tetrapod populations: fragmentation and genetic variability. Anim Conserv 18:249–258
    Google Scholar 

    Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106
    PubMed  Google Scholar 

    Sagonas K, Runemark A, Antoniou A, Lymberakis P, Pafilis P, Valakos ED et al. (2019) Selection, drift, and introgression shape MHC polymorphism in lizards. Heredity 122:468–484
    CAS  PubMed  Google Scholar 

    Sano E, Carlson S, Wegley L, Rohwer F (2004) Movement of viruses between biomes. Appl Environ Microbiol 70:5842–5846
    CAS  PubMed  PubMed Central  Google Scholar 

    Santonastaso T, Lighten J, van Oosterhout C, Jones KL, Foufopoulos J, Anthony NM (2017) The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile, Podarcis erhardii. Ecol Evol 7:4568–4581
    PubMed  PubMed Central  Google Scholar 

    Schleicher A, Biedermann R, Kleyer M (2011) Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landsc Ecol 26:529–540
    Google Scholar 

    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234
    CAS  PubMed  Google Scholar 

    Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90
    CAS  Google Scholar 

    Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792
    CAS  PubMed  Google Scholar 

    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264
    CAS  PubMed  Google Scholar 

    Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B Biol Sci 277:979–988
    CAS  Google Scholar 

    Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169
    CAS  PubMed  PubMed Central  Google Scholar 

    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989
    CAS  PubMed  PubMed Central  Google Scholar 

    Strand TM, Segelbacher G, Quintela M, Xiao L, Axelsson T, Höglund J (2012) Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecol Evol 2:341–353
    PubMed  PubMed Central  Google Scholar 

    Sunnucks P (2011) Towards modelling persistence of woodland birds: the role of genetics. Emu 111:19–39
    Google Scholar 

    Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504
    CAS  PubMed  PubMed Central  Google Scholar 

    Tschirren B (2015) Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe. Biol Lett 11:20150263
    PubMed  PubMed Central  Google Scholar 

    Väli U, Einarsson A, Waits L, Ellegren H (2008) To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol Ecol 17:3808–3817
    PubMed  Google Scholar 

    Van Etten J (2017) R package gdistance: distances and routes on geographical grids. J Stat Softw 76:1–21
    Google Scholar 

    Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10:219–229
    PubMed  Google Scholar 

    Vilas A, Pérez-Figueroa A, Quesada H, Caballero A (2015) Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol Ecol 24:4419–4432
    PubMed  Google Scholar 

    Vinkler M, Albrecht T (2009) The question waiting to be asked: innate immunity receptors in the perspective of zoological research. Folia Zool 58:15
    Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
    CAS  PubMed  Google Scholar 

    Wlasiuk G, Nachman MW (2010) Adaptation and constraint at toll-like receptors in primates. Mol Biol Evol 27:2172–2186
    CAS  PubMed  PubMed Central  Google Scholar 

    Woltmann S, Kreiser BR, Sherry TW (2012) Fine-scale genetic population structure of an understory rainforest bird in Costa Rica. Conserv Genet 13:925–935
    Google Scholar 

    Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken toll-like receptors. Immunogenetics 56:743–753
    CAS  PubMed  Google Scholar 

    Young HS, McCauley DJ, Dirzo R, Goheen JR, Agwanda B, Brook C et al. (2015) Context-dependent effects of large-wildlife declines on small-mammal communities in central Kenya. Ecol Appl 25:348–360
    PubMed  Google Scholar  More

  • in

    Livestock enclosures in drylands of Sub-Saharan Africa are overlooked hotspots of N2O emissions

    Field N2O flux measurements
    At seven different semi-arid and arid savanna regions in Kenya (Fig. 1, Supplementary Fig. 9), N2O measurements from soils at 46 boma sites and 22 adjacent reference sites (undisturbed savanna) were carried out. At each boma and control site, 3–7 plots were chosen randomly for flux measurements. Local members of the pastoral communities, including herders and/or community elders were interviewed for information on the time since abandonment of each boma.
    N2O fluxes from bomas were measured using the fast-box chamber method15, deploying an ultra-portable greenhouse gas analyzer of ABB-Los Gatos Research Inc. (Modell 909–0041). A gas-tight, vented chamber (0.3 × 0.2 × 0.15 m) was pressed against the ground on foam frames for 4–7 min, during which time sample air was pumped from the headspace of the chamber to the analyzer and returned to the chamber thereafter. In this way, changes in headspace N2O concentrations were continuously measured over the sample period, with a running average of every 5 s. Linear regression over the sample period was used to calculate fluxes. The detection limit for N2O fluxes was More

  • in

    Temperature transcends partner specificity in the symbiosis establishment of a cnidarian

    1.
    Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.
    Google Scholar 
    2.
    Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci. 2017;4:158.
    Google Scholar 

    3.
    Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol. 2013;22:4335–48.
    PubMed  CAS  Google Scholar 

    4.
    Bay RA, Palumbi SR. Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol. 2014;24:2952–6.
    PubMed  CAS  Google Scholar 

    5.
    Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV. Genomic determinants of coral heat tolerance across latitudes. Science. 2015;348:1460.
    PubMed  CAS  Google Scholar 

    6.
    Howells EJ, Abrego D, Meyer E, Kirk NL, Burt JA. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob Change Biol. 2016;22:2702–14.
    Google Scholar 

    7.
    Morikawa MK, Palumbi SR. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc Natl Acad Sci USA. 2019;116:10586.
    PubMed  CAS  Google Scholar 

    8.
    Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc Biol Sci. 2006;273:2305–12.
    PubMed  PubMed Central  Google Scholar 

    9.
    Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA. 2008;105:10444.
    PubMed  CAS  Google Scholar 

    10.
    LaJeunesse TC, Smith RT, Finney J, Oxenford H. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc B: Biol Sci. 2009;276:4139–48.
    Google Scholar 

    11.
    Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change. 2011;2:116.
    Google Scholar 

    12.
    LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol. 2018;28:2570–.e6.
    PubMed  CAS  Google Scholar 

    13.
    Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE. 2012;7:e50685.
    PubMed  PubMed Central  CAS  Google Scholar 

    14.
    Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. Mechanisms of reef coral resistance to future climate change. Science. 2014;344:895.
    PubMed  CAS  Google Scholar 

    15.
    Sawall Y, Al-Sofyani A, Hohn S, Banguera-Hinestroza E, Voolstra CR, Wahl M. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci Rep. 2015;5:8940.
    PubMed  PubMed Central  CAS  Google Scholar 

    16.
    Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627.
    Google Scholar 

    17.
    Baker AC. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol, Evolution, Syst. 2003;34:661–89.
    Google Scholar 

    18.
    Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J. 2016;10:2693–701.
    PubMed  PubMed Central  CAS  Google Scholar 

    19.
    Cunning R, Silverstein RN, Baker AC. Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs. 2018;37:145–52.
    Google Scholar 

    20.
    Stat M, Loh WKW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA. Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs. 2009;28:709–13.
    Google Scholar 

    21.
    Putnam HM, Stat M, Pochon X, Gates RG. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc B: Biol Sci. 2012;279:4352–61.
    Google Scholar 

    22.
    Stat M, Morris E, Gates RD. Functional diversity in coral–dinoflagellate symbiosis. Proc Natl Acad Sci USA. 2008;105:9256.
    PubMed  CAS  Google Scholar 

    23.
    Starzak DE, Quinnell RG, Nitschke MR, Davy SK. The influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis. Mar Biol. 2014;161:711–24.
    CAS  Google Scholar 

    24.
    Gabay Y, Weis VM, Davy SK. Symbiont identity influences patterns of symbiosis establishment, host growth, and asexual reproduction in a model cnidarian-dinoflagellate symbiosis. Biol Bull. 2018;234:1–10.
    PubMed  Google Scholar 

    25.
    Quigley KM, Bay LK, Willis BL. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus acropora. Front Mar Sci. 2017;4:401.
    Google Scholar 

    26.
    Cumbo VR, vanOppen MJH, Baird AH. Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar Ecol Prog Ser. 2018;587:117–27.
    CAS  Google Scholar 

    27.
    Ali A, Kriefall NG, Emery LE, Kenkel CD, Matz MV, Davies SW. Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment. Coral Reefs. 2019;38:405–15.
    Google Scholar 

    28.
    McIlroy SE, Cunning R, Baker AC, Coffroth MA. Competition and succession among coral endosymbionts. Ecol Evolution. 2019;9:12767–78.
    Google Scholar 

    29.
    Abrego D, Willis BL, van Oppen MJH. Impact of light and temperature on the uptake of algal symbionts by coral juveniles. PLoS ONE. 2012;7:e50311.
    PubMed  PubMed Central  CAS  Google Scholar 

    30.
    Schnitzler CE, Hollingsworth LL, Krupp DA, Weis VM. Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Mar Biol. 2012;159:633–42.
    Google Scholar 

    31.
    Hawkins TD, Hagemeyer JCG, Warner ME. Temperature moderates the infectiousness of two conspecific Symbiodinium strains isolated from the same host population. Environ Microbiol. 2016;18:5204–17.
    PubMed  CAS  Google Scholar 

    32.
    Swain TD, Chandler J, Backman V, Marcelino L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct Ecol. 2017;31:172–83.
    Google Scholar 

    33.
    Gabay Y, Parkinson JE, Wilkinson SP, Weis VM, Davy SK. Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME J. 2019;13:2489–99.
    PubMed  Google Scholar 

    34.
    Poland DM, Coffroth MA. Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs. 2017;36:119–29.
    Google Scholar 

    35.
    Fraune S, Bosch TCG. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA. 2007;104:13146.
    PubMed  CAS  Google Scholar 

    36.
    Herrera M, Ziegler M, Voolstra CR, Aranda M. Laboratory-cultured strains of the sea anemone exaiptasia reveal distinct bacterial communities. Front Mar Sci. 2017;4:115.
    Google Scholar 

    37.
    Grajales A, Rodríguez E. Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actinaria, Metridioidea). Zootaxa. 2014;3826:55–100.
    PubMed  Google Scholar 

    38.
    Xiang T, Hambleton EA, DeNofrio JC, Pringle JR, Grossman AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity. J Phycol. 2013;49:447–58.
    PubMed  CAS  Google Scholar 

    39.
    Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR. Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching. PLoS ONE. 2016;11:e0152693.
    PubMed  PubMed Central  Google Scholar 

    40.
    Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics. 2009;10:258.
    PubMed  PubMed Central  Google Scholar 

    41.
    Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc Biol Sci. 2018;285:20172654.
    PubMed  PubMed Central  Google Scholar 

    42.
    Belda-Baillie CA, Baillie BK, Maruyama T. Specificity of a model cnidarian-dinoflagellate symbiosis. Biol Bull. 2002;202:74–85.
    PubMed  CAS  Google Scholar 

    43.
    Rodriguez-Lanetty M, Chang S-J, Song J-I. Specificity of two temperate dinoflagellate–anthozoan associations from the north-western Pacific Ocean. Mar Biol. 2003;143:1193–9.
    Google Scholar 

    44.
    Cziesielski MJ, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies. Ecol Evolution. 2019;9:10055–66.
    Google Scholar 

    45.
    Lehnert EM, Mouchka ME, Burriesci MS, Gallo ND, Schwarz JA, Pringle JR. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda). 2014;4:277–95.
    CAS  Google Scholar 

    46.
    Gegner HM, Ziegler M, Rädecker N, Buitrago-López C, Aranda M, Voolstra CR. High salinity conveys thermotolerance in the coral model Aiptasia. Biol Open. 2017;6:1943.
    PubMed  PubMed Central  CAS  Google Scholar 

    47.
    Cui G, Liew YJ, Li Y, Kharbatia N, Zahran NI, Emwas A-H, et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 2019;15:e1008189.
    PubMed  PubMed Central  CAS  Google Scholar 

    48.
    Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, et al. Distinct bacterial communities associated with the coral model aiptasia in aposymbiotic and symbiotic states with symbiodinium. Front Mar Sci. 2016;3:234.
    Google Scholar 

    49.
    Matthews JL, Sproles AE, Oakley CA, Grossman AR, Weis VM, Davy SK. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J Exp Biol. 2016;219:306.
    PubMed  Google Scholar 

    50.
    Hume BCC, Ziegler M, Poulain J, Pochon X, Romac S, Boissin E, et al. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ. 2018;6:e4816.
    PubMed  PubMed Central  Google Scholar 

    51.
    Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19:1063–80.
    PubMed  PubMed Central  CAS  Google Scholar 

    52.
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing; 2018.

    53.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Community Ecology Package. 2019.

    54.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    55.
    Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. American Cancer Society; 2017. p. 1–15.

    56.
    Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
    Google Scholar 

    57.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Google Scholar 

    58.
    IBM SPSS Statistics (Version 22.0). Armonk, NY, USA: IBM Corporation; 2013.

    59.
    Robison JD, Warner ME. Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol. 2006;42:568–79.
    CAS  Google Scholar 

    60.
    McGinty ES, Pieczonka J, Mydlarz LD. Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol. 2012;64:1000–7.
    PubMed  CAS  Google Scholar 

    61.
    Grégoire V, Schmacka F, Coffroth MA, Karsten U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J Appl Phycol. 2017;29:1893–905.
    Google Scholar 

    62.
    Lesser MP. Phylogenetic signature of light and thermal stress for the endosymbiotic dinoflagellates of corals (Family Symbiodiniaceae). Limnol Oceanogr. 2019;64:1852–63.
    Google Scholar 

    63.
    Hambleton EA, Guse A, Pringle JR. Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. J Exp Biol. 2014;217:1613.
    PubMed  PubMed Central  Google Scholar 

    64.
    Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M, et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep. 2016;6:32366.
    PubMed  PubMed Central  CAS  Google Scholar 

    65.
    Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol. 2013;22:4499–515.
    PubMed  CAS  Google Scholar 

    66.
    Little AF, van Oppen MJH, Willis BL. Flexibility in algal endosymbioses shapes growth in reef corals. Science. 2004;304:1492.
    PubMed  CAS  Google Scholar 

    67.
    Pettay DT, Wham DC, Smith RT, Iglesias-Prieto R, LaJeunesse TC. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Natl Acad Sci USA. 2015;112:7513.
    PubMed  CAS  Google Scholar 

    68.
    Baums IB, Devlin-Durante MK, LaJeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.
    PubMed  Google Scholar 

    69.
    Nyamukondiwa C, Terblanche JS. Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J Therm Biol. 2009;34:406–14.
    Google Scholar 

    70.
    Dowd WW, King FA, Denny MW. Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol. 2015;218:1956.
    PubMed  Google Scholar 

    71.
    Chidawanyika F, Nyamukondiwa C, Strathie L, Fischer K. Effects of thermal regimes, starvation and age on heat tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE. 2017;12:e0169371.
    PubMed  PubMed Central  Google Scholar 

    72.
    Hoadley KD, Lewis AM, Wham DC, Pettay DT, Grasso C, Smith R, et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep. 2019;9:9985.
    PubMed  PubMed Central  Google Scholar 

    73.
    Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, Kilburn MR, et al. Using aiptasia as a model to study metabolic interactions in cnidarian-symbiodinium symbioses. Front Physiol. 2018;9:214–214.
    PubMed  PubMed Central  Google Scholar 

    74.
    Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Change Biol. 2018;24:e474–84.
    Google Scholar 

    75.
    Berumen ML, Voolstra CR, Daffonchio D, Agusti S, Aranda M, Irigoien X, et al. The Red Sea: environmental gradients shape a natural laboratory in a nascent ocean. In: Voolstra CR, Berumen ML, editors. Coral Reefs of the Red Sea. Cham: Springer International Publishing; 2019. p. 1–10.

    76.
    Hawkins TD, Hagemeyer JCG, Hoadley KD, Marsh AG, Warner ME. Partitioning of respiration in an animal-algal symbiosis: implications for different aerobic capacity between Symbiodinium spp. Front Physiol. 2016;7:128.
    PubMed  PubMed Central  Google Scholar 

    77.
    Hoadley KD, Rollison D, Pettay DT, Warner ME. Differential carbon utilization and asexual reproduction under elevated pCO2 conditions in the model anemone, Exaiptasia pallida, hosting different symbionts. Limnol Oceanogr. 2015;60:2108–20.
    CAS  Google Scholar 

    78.
    Borell EM, Yuliantri AR, Bischof K, Richter C. The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. J Exp Mar Biol Ecol. 2008;364:116–23.
    Google Scholar 

    79.
    Ferrier-Pagès C, Rottier C, Beraud E, Levy O. Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J Exp Mar Biol Ecol. 2010;390:118–24.
    Google Scholar 

    80.
    Connolly SR, Lopez-Yglesias MA, Anthony KRN. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs. 2012;31:951–60.
    Google Scholar 

    81.
    Lyndby NH, Holm JB, Wangpraseurt D, Grover R, Rottier C, Kühl M, et al. Effect of feeding and thermal stress on photosynthesis, respiration and the carbon budget of the scleractinian coral Pocillopora damicornis. bioRxiv. 2018:378059.

    82.
    Borell EM, Bischof K. Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia. 2008;157:593.
    PubMed  Google Scholar 

    83.
    Weng L-C, Pasaribu B, Ping Lin I, Tsai C-H, Chen C-S, Jiang P-L. Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from aiptasia pulchella. Sci Rep. 2014;4:5777.
    PubMed  PubMed Central  CAS  Google Scholar 

    84.
    Fitt W, Cook C. The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Mar Biol. 2001;139:507–17.
    Google Scholar 

    85.
    Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs. 2003;22:229–40.
    Google Scholar 

    86.
    van der Merwe R, Röthig T, Voolstra CR, Ochsenkühn MA, Lattemann S, Amy GL. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment. Front Mar Sci. 2014;1:58.
    Google Scholar  More

  • in

    Environmental variability supports chimpanzee behavioural diversity

    1.
    Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. Brain Behav. Evol. 63, 233–246 (2004).
    PubMed  Google Scholar 
    2.
    Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 13971 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Schuck-Paim, C., Alonso, W. J. & Ottoni, E. B. Cognition in an ever-changing world: climatic variability is associated with brain size in neotropical parrots. Brain Behav. Evol. 71, 200–215 (2008).
    PubMed  Google Scholar 

    4.
    Reader, S. M. & MacDonald, K. in Animal Innovation (eds Reader, S. M. & Laland, K. N.) 83–116 (Oxford Univ. Press, 2003).

    5.
    Navarrete, A. F., Reader, S. M., Street, S. E., Whalen, A. & Laland, K. N. The coevolution of innovation and technical intelligence in primates. Philos. Trans. R. Soc. B 371, 20150186 (2016).
    Google Scholar 

    6.
    Street, S. E., Navarrete, A. F., Reader, S. M. & Laland, K. N. Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proc. Natl Acad. Sci. USA 114, 7908–7914 (2017).
    CAS  PubMed  Google Scholar 

    7.
    Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl Acad. Sci. USA 102, 5460–5465 (2005).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2002).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Sol, D., Timmermans, S. & Lefebvre, L. Behavioural flexibility and invasion success in birds. Anim. Behav. 63, 495–502 (2002).
    Google Scholar 

    10.
    Melin, A. D., Young, H. C., Mosdossy, K. N. & Fedigan, L. M. Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence. J. Hum. Evol. 71, 77–86 (2014).
    PubMed  Google Scholar 

    11.
    Kummer, H. & Goodall, J. Conditions of innovative behaviour in primates. Philos. Trans. R. Soc. B 308, 203–214 (1985).
    ADS  Google Scholar 

    12.
    MacDonald, K. in Archaeological Informatics (ed. Burenhult, G.) 105–112 (ArcheoPress, 2002).

    13.
    Richerson, P. J. & Boyd, R. in The Evolution of Cognition (eds Heyes, C. & Huber, L.) 329–345 (MIT Press, 2000).

    14.
    Reed, K. E. Early hominid evolution and ecological change through the African Plio-Pleistocene. J. Hum. Evol. 32, 289–322 (1997).
    CAS  PubMed  Google Scholar 

    15.
    deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci Lett. 220, 3–24 (2004).
    ADS  CAS  Google Scholar 

    16.
    Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).
    PubMed  Google Scholar 

    17.
    Vrba, E. S. Turnover-pulses, the Red Queen, and related topics. Am. J. Sci. 293, 418–452 (1993).
    ADS  Google Scholar 

    18.
    Foley, R. The adaptive legacy of human evolution: a search for the environment of evolutionary adaptedness. Evol. Anthropol. 4, 194–203 (1995).
    Google Scholar 

    19.
    Domínguez-Rodrigo, M. Is the “Savanna hypothesis” a dead concept for explaining the emergence of the earliest hominins? Curr. Anthropol. 55, 59–81 (2014).
    Google Scholar 

    20.
    Potts, R. Environmental hypotheses of hominin evolution. Am. J. Phys. Anthropol. 107, 93–136 (1998).
    Google Scholar 

    21.
    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Potts, R. Evolution and climate variability. Science 273, 922–923 (1996).
    ADS  CAS  Google Scholar 

    23.
    Antón, S. C., Potts, R. & Aiello, L. C. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (2014).
    PubMed  Google Scholar 

    24.
    McGrew, W. C. In search of the last common ancestor: new findings on wild chimpanzees. Philos. Trans. R. Soc. B 365, 3267–3276 (2010).
    CAS  Google Scholar 

    25.
    Pruetz, J. & Bertolani, P. Chimpanzee (Pan troglodytes verus) behavioral responses to stresses associated with living in a savanna-mosaic environment: implications for hominin adaptations to open habitats. PaleoAnthropology https://doi.org/10.4207/PA.2009.ART33 (2009).

    26.
    Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471–475 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Whiten, A. Culture extends the scope of evolutionary biology in the great apes. Proc. Natl Acad. Sci. USA 114, 7790–7797 (2017).
    CAS  PubMed  Google Scholar 

    29.
    Boesch, C. Wild Cultures: A Comparison between Chimpanzee and Human Cultures (Cambridge Univ. Press, 2012).

    30.
    Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).
    ADS  CAS  PubMed  Google Scholar 

    31.
    Lycett, S. J., Collard, M. & McGrew, W. C. Cladistic analyses of behavioural variation in wild Pan troglodytes: exploring the chimpanzee culture hypothesis. J. Hum. Evol. 57, 337–349 (2009).
    PubMed  Google Scholar 

    32.
    Lee, P. C. in Primate Responses to Environmental Change (ed. Box, H. O.) 39–56 (Chapman and Hall, 1991).

    33.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    34.
    Reed, K. E. & Fleagle, J. G. Geographic and climatic control of primate diversity. Proc. Natl Acad. Sci. USA 92, 7874–7876 (1995).
    ADS  CAS  PubMed  Google Scholar 

    35.
    Kay, R. F., Madden, R. H., Schaik, C. V. & Higdon, D. Primate species richness is determined by plant productivity: implications for conservation. Proc. Natl Acad. Sci. USA 94, 13023–13027 (1997).
    ADS  CAS  PubMed  Google Scholar 

    36.
    Macho, G. A. From rainforests to savannas and back: the impact of abiotic factors on non-human primate and hominin life histories. Quatern. Int. 448, 5–13 (2017).
    Google Scholar 

    37.
    Wessling, E. G. et al. Seasonal variation in physiology challenges the notion of chimpanzees (Pan troglodytes verus) as a forest-adapted species. Front. Ecol. Evol. 6, 60 (2018).
    Google Scholar 

    38.
    van Leeuwen, K. L., Hill, R. A. & Korstjens, A. H. Classifying chimpanzee (Pan troglodytes) landscapes across large-scale environmental gradients in Africa. Int. J. Primatol. https://doi.org/10.1007/s10764-020-00164-5 (2020).

    39.
    Maley, J. The African rain forest—main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proc. R. Soc. Edin. B 104, 31–73 (1996).
    Google Scholar 

    40.
    Mayr, E. & O’Hara, R. J. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40, 55–67 (1986).
    PubMed  Google Scholar 

    41.
    Plana, V. Mechanisms and tempo of evolution in the African Guineo–Congolian rainforest. Philos. Trans. R. Soc. B 359, 1585–1594 (2004).
    Google Scholar 

    42.
    Hewitt, G. M. The structure of biodiversity – insights from molecular phylogeography. Front. Zool. 1, 4 (2004).
    PubMed  PubMed Central  Google Scholar 

    43.
    Moritz, C., Patton, J. L., Schneider, C. J. & Smith, T. B. Diversification of rainforest faunas: ān integrated molecular approach. Annu. Rev. Ecol. Syst. 31, 533–563 (2000).
    Google Scholar 

    44.
    Gonder, M. K. et al. Evidence from Cameroon reveals differences in the genetic structure and histories of chimpanzee populations. Proc. Natl Acad. Sci. USA 108, 4766–4771 (2011).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Chown, S. L. & Gaston, K. J. Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol. Evol. 15, 311–315 (2000).
    CAS  PubMed  Google Scholar 

    46.
    Stenseth, N. C. The tropics: cradle or museum? Oikos 43, 417–420 (1984).
    Google Scholar 

    47.
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).
    PubMed  Google Scholar 

    48.
    Huntley, J. W., Keith, K. D., Castellanos, A. A., Musher, L. J. & Voelker, G. Underestimated and cryptic diversification patterns across Afro-tropical lowland forests. J. Biogeogr. 46, 381–391 (2019).
    Google Scholar 

    49.
    Boesch, C. et al. Chimpanzees routinely fish for algae with tools during the dry season in Bakoun, Guinea. Am. J. Primatol. 79, e22613 (2017).
    Google Scholar 

    50.
    Koops, K., Schöning, C., Isaji, M. & Hashimoto, C. Cultural differences in ant-dipping tool length between neighbouring chimpanzee communities at Kalinzu, Uganda. Sci. Rep. 5, 12456 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Möbius, Y., Boesch, C., Koops, K., Matsuzawa, T. & Humle, T. Cultural differences in army ant predation by West African chimpanzees? A comparative study of microecological variables. Anim. Behav. 76, 37–45 (2008).
    Google Scholar 

    52.
    Yamakoshi, G. & Sugiyama, Y. Pestle-pounding behavior of wild chimpanzees at Bossou, Guinea: a newly observed tool-using behavior. Primates 36, 489–500 (1995).

    53.
    Boesch, C. & Boesch-Achermann, H. The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution (Oxford Univ. Press, 2000).

    54.
    Luncz, L. V., Mundry, R. & Boesch, C. Evidence for cultural differences between neighboring chimpanzee communities. Curr. Biol. 22, 922–926 (2012).
    CAS  PubMed  Google Scholar 

    55.
    Pruetz, J. D. et al. New evidence on the tool-assisted hunting exhibited by chimpanzees (Pan troglodytes verus) in a savannah habitat at Fongoli, Sénégal. R. Soc. Open Sci. 2, 140507 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Günther, M. M. & Boesch, C. in Hands of Primates (eds Preuschoft, H. & Chivers, D. J.) 109–129 (Springer, 1993).

    57.
    Sanderson, E. W. et al. The Human Footprint and the Last of the WildThe human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891–904 (2002).
    Google Scholar 

    58.
    Laland, K. N., Odling‐Smee, J. & Feldman, M. W. Cultural niche construction and human evolution. J. Evol. Biol. 14, 22–33 (2001).
    CAS  PubMed  Google Scholar 

    59.
    Lorenzen, E. D., Masembe, C., Arctander, P. & Siegismund, H. R. A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: insights from mtDNA and the common eland antelope. J. Biogeogr. 37, 571–581 (2010).
    Google Scholar 

    60.
    Mitchell, M. W., Locatelli, S., Sesink Clee, P. R., Thomassen, H. A. & Gonder, M. K. Environmental variation and rivers govern the structure of chimpanzee genetic diversity in a biodiversity hotspot. BMC Evol. Biol. 15, 1 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Fünfstück, T. et al. The sampling scheme matters: Pan troglodytes troglodytes and P. t. schweinfurthii are characterized by clinal genetic variation rather than a strong subspecies break. Am. J. Phys. Anthropol. 156, 181–191 (2015).
    PubMed  Google Scholar 

    62.
    Hockings, K. J. et al. Apes in the Anthropocene: flexibility and survival. Trends Ecol. Evol. 30, 215–222 (2015).
    PubMed  Google Scholar 

    63.
    Thuiller, W. et al. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Change Biol. 12, 424–440 (2006).
    ADS  Google Scholar 

    64.
    Karl, T. R. & Trenberth, K. E. Modern global climate change. Science 302, 1719–1723 (2003).
    ADS  CAS  PubMed  Google Scholar 

    65.
    Keith, S. A. & Bull, J. W. Animal culture impacts species’ capacity to realise climate-driven range shifts. Ecography 40, 296–304 (2017).
    Google Scholar 

    66.
    Brakes, P. et al. Animal cultures matter for conservation. Science 363, 1032–1034 (2019).
    ADS  CAS  PubMed  Google Scholar 

    67.
    Kühl, H. S. et al. The Critically Endangered western chimpanzee declines by 80%. Am. J. Primatol. 79, e22681 (2017).
    Google Scholar 

    68.
    Sesink Clee, P. R. et al. Chimpanzee population structure in Cameroon and Nigeria is associated with habitat variation that may be lost under climate change. BMC Evol. Biol. 15, 2 (2015).
    PubMed  PubMed Central  Google Scholar 

    69.
    Zinner, D., Wertheimer, J., Liedigk, R., Groeneveld, L. F. & Roos, C. Baboon phylogeny as inferred from complete mitochondrial genomes. Am. J. Phys. Anthropol. 150, 133–140 (2013).
    PubMed  PubMed Central  Google Scholar 

    70.
    Jolly, C. J. A proper study for mankind: analogies from the Papionin monkeys and their implications for human evolution. Am. J. Phys. Anthropol. 116, 177–204 (2001).
    Google Scholar 

    71.
    Wildlife Conservation Society, Center for International Earth Science Information Network & Columbia University. Last of the Wild Project, version 2: global human footprint dataset (geographic). SEDAC https://doi.org/10.7927/H4M61H5F (2005).

    72.
    Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
    Google Scholar 

    73.
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
    Google Scholar 

    74.
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC, 2016).

    75.
    Bürkner, P.-C. brms: an R package for bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 

    76.
    Gelman, A. et al. Bayesian Data Analysis 3rd edn (CRC, 2014).

    77.
    Humle, T., Maisels, F., Oates, J. F., Plumptre, A. & Williamson, E. A. Pan troglodytes. The IUCN red list of threatened species. IUCN https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T15933A17964454.en (2018). More

  • in

    Deforestation and reforestation impacts on soils in the tropics

    1.
    Koch, A. et al. Soil security: solving the global soil crisis. Glob. Policy 4, 434–441 (2013).
    Google Scholar 
    2.
    Vogel, H.-J. et al. A systemic approach for modeling soil functions. SOIL 4, 83–92 (2018).
    Google Scholar 

    3.
    Corre, M. D., Veldkamp, E., Arnold, J. & Wright, S. J. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91, 1715–1729 (2010).
    Google Scholar 

    4.
    Cusack, D. F., Markesteijn, L., Condit, R., Lewis, O. T. & Turner, B. L. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots. Biogeochemistry 137, 253–266 (2018).
    Google Scholar 

    5.
    Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).
    Google Scholar 

    6.
    Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).
    Google Scholar 

    7.
    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).
    Google Scholar 

    8.
    Chaves, J. et al. Land management impacts on runoff sources in small Amazon watersheds. Hydrol. Process. 22, 1766–1775 (2008).
    Google Scholar 

    9.
    Nepstad, D. C. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994).
    Google Scholar 

    10.
    Elsenbeer, H. Hydrologic flowpaths in tropical rainforest soilscapes-a review. Hydrol. Process. 15, 1751–1759 (2001).
    Google Scholar 

    11.
    Markewitz, D., Davidson, E., Moutinho, P. & Nepstad, D. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol. Appl. 14, 177–199 (2004).
    Google Scholar 

    12.
    Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).
    Google Scholar 

    13.
    Clark, D. B., Palmer, M. W. & Clark, D. A. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80, 2662–2675 (1999).
    Google Scholar 

    14.
    Jones, M. M. et al. Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155, 593–604 (2008).
    Google Scholar 

    15.
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).
    Google Scholar 

    16.
    Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).
    Google Scholar 

    17.
    Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).
    Google Scholar 

    18.
    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).
    Google Scholar 

    19.
    Jobbágy, E. G. & Jackson, R. B. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53, 51–77 (2001).
    Google Scholar 

    20.
    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).
    Google Scholar 

    21.
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
    Google Scholar 

    22.
    Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. & Boivin, N. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3, 17093 (2017).
    Google Scholar 

    23.
    Ribeiro Filho, A. A., Adams, C., Manfredini, S., Aguilar, R. & Neves, W. A. Dynamics of soil chemical properties in shifting cultivation systems in the tropics: a meta-analysis. Soil Use Manag. 31, 474–482 (2015).
    Google Scholar 

    24.
    Jarosz, L. Defining and explaining tropical deforestation: shifting cultivation and population growth in colonial Madagascar (1896–1940). Econ. Geogr. 69, 366–379 (1993).
    Google Scholar 

    25.
    Lambin, E. F. et al. The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Change 11, 261–269 (2001).
    Google Scholar 

    26.
    Rudel, T. K., Defries, R., Asner, G. P. & Laurance, W. F. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 23, 1396–1405 (2009).
    Google Scholar 

    27.
    Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).
    Google Scholar 

    28.
    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).
    Google Scholar 

    29.
    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).
    Google Scholar 

    30.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).
    Google Scholar 

    31.
    Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. & Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience 50, 667–680 (2000).
    Google Scholar 

    32.
    Kurniawan, S. et al. Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences 15, 5131–5154 (2018).
    Google Scholar 

    33.
    Detwiler, R. P. Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2, 67–93 (1986).
    Google Scholar 

    34.
    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).
    Google Scholar 

    35.
    Davidson, E. A. & Ackerman, I. L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193 (1993).
    Google Scholar 

    36.
    Veldkamp, E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci. Soc. Am. J. 58, 175–180 (1994).
    Google Scholar 

    37.
    Nye, P. H. & Greenland, D. J. Changes in the soil after clearing tropical forest. Plant Soil 21, 101–112 (1964).
    Google Scholar 

    38.
    van Straaten, O. et al. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl Acad. Sci. USA 112, 9956–9960 (2015).
    Google Scholar 

    39.
    Tugel, A. J. et al. Soil change, soil survey, and natural resources decision making. Soil Sci. Soc. Am. J. 69, 738–747 (2005).
    Google Scholar 

    40.
    Sanchez, P. A. Properties and Management of Soils in the Tropics 2nd edn (Cambridge Univ. Press, 2019).

    41.
    van Breemen, N., Mulder, J. & Driscoll, C. T. Acidification and alkalinization of soils. Plant Soil 75, 283–308 (1983).
    Google Scholar 

    42.
    Andriesse, J. P. & Schelhaas, R. M. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. III. The effects of land clearing through burning on fertility level. Agric. Ecosyst. Environ. 19, 311–332 (1987).
    Google Scholar 

    43.
    Dechert, G., Veldkamp, E. & Brumme, R. Are partial nutrient balances suitable to evaluate nutrient sustainability of land use systems? Results from a case study in Central Sulawesi, Indonesia. Nutr. Cycling Agroecosyst. 72, 201–212 (2005).
    Google Scholar 

    44.
    Neill, C. et al. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol. Appl. 7, 1216–1225 (1997).
    Google Scholar 

    45.
    Allen, K., Corre, M. D., Kurniawan, S., Utami, S. R. & Veldkamp, E. Spatial variability surpasses land-use change effects on soil biochemical properties of converted lowland landscapes in Sumatra, Indonesia. Geoderma 284, 42–50 (2016).
    Google Scholar 

    46.
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).
    Google Scholar 

    47.
    Sanchez P. A. & Logan T. J. Myths and Science About the Chemistry and Fertility of Soils in the Tropics (Soil Science Society of America and American Society of Agronomy, 1992).

    48.
    Stahl, C. et al. Continuous soil carbon storage of old permanent pastures in Amazonia. Glob. Change Biol. 23, 3382–3392 (2017).
    Google Scholar 

    49.
    Bautista-Cruz, A. & del Castillo, R. F. Soil changes during secondary succession in a tropical montane cloud forest area. Soil Sci. Soc. Am. J. 69, 906–914 (2005).
    Google Scholar 

    50.
    Marin-Spiotta, E., Silver, W. L., Swanston, C. W. & Ostertag, R. Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob. Change Biol. 15, 1584–1597 (2009).
    Google Scholar 

    51.
    Silver, W. L. et al. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3, 193–209 (2000).
    Google Scholar 

    52.
    Oades, J. & Waters, A. Aggregate hierarchy in soils. Soil Res. 29, 815–828 (1991).
    Google Scholar 

    53.
    Chauvel, A., Grimaldi, M. & Tessier, D. Changes in soil pore-space distribution following deforestation and revegetation: an example from the Central Amazon Basin, Brazil. For. Ecol. Manag. 38, 259–271 (1991).
    Google Scholar 

    54.
    Kayombo, B. & Lal, R. Effects of soil compaction by rolling on soil structure and development of maize in no-till and disc ploughing systems on a tropical alfisol. Soil. Tillage Res. 7, 117–134 (1986).
    Google Scholar 

    55.
    Lal, R. Effects of macrofauna on soil properties in tropical ecosystems. Agric. Ecosyst. Environ. 24, 101–116 (1988).
    Google Scholar 

    56.
    Ghuman, B. S., Lal, R. & Shearer, W. Land clearing and use in the humid Nigerian tropics: I. Soil physical properties. Soil Sci. Soc. Am. J. 55, 178–183 (1991).
    Google Scholar 

    57.
    Minasny, B. & Hartemink, A. E. Predicting soil properties in the tropics. Earth Sci. Rev. 106, 52–62 (2011).
    Google Scholar 

    58.
    Hombegowda, H. C., van Straaten, O., Köhler, M. & Hölscher, D. On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India. SOIL 2, 13–23 (2016).
    Google Scholar 

    59.
    Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).
    Google Scholar 

    60.
    López-Ulloa, M., Veldkamp, E. & de Koning, G. H. J. Soil carbon stabilization in converted tropical pastures and forests depends on soil type. Soil Sci. Soc. Am. J. 69, 1110–1117 (2005).
    Google Scholar 

    61.
    Paul, S., Flessa, H., Veldkamp, E. & López-Ulloa, M. Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry 87, 247–263 (2008).
    Google Scholar 

    62.
    Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29, 535–562 (2001).
    Google Scholar 

    63.
    Douglas, P. M. J. et al. A long-term decrease in the persistence of soil carbon caused by ancient Maya land use. Nat. Geosci. 11, 645–649 (2018).
    Google Scholar 

    64.
    Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013).
    Google Scholar 

    65.
    Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P., Nepstad, D. C. & Martinelli, L. A. Belowground cycling of carbon in forests and pastures of eastern Amazonia. Glob. Biogeochem. Cycles 9, 515–528 (1995).
    Google Scholar 

    66.
    Veldkamp, E., Becker, A., Schwendenmann, L., Clark, D. A. & Schulte-Bisping, H. Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Glob. Change Biol. 9, 1171–1184 (2003).
    Google Scholar 

    67.
    Intergovernmental Panel on Climate Change (IPCC) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).

    68.
    Reiners, W. A., Bouwman, A. F., Parsons, W. F. J. & Keller, M. Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol. Appl. 4, 363–377 (1994).
    Google Scholar 

    69.
    Hamer, U., Potthast, K., Burneo, J. I. & Makeschin, F. Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after conversion of forest to pasture. Biogeochemistry 112, 495–510 (2013).
    Google Scholar 

    70.
    Veldkamp, E., Davidson, E., Erickson, H., Keller, M. & Weitz, A. Soil nitrogen cycling and nitrogen oxide emissions along a pasture chronosequence in the humid tropics of Costa Rica. Soil Biol. Biochem. 31, 387–394 (1999).
    Google Scholar 

    71.
    Wick, B., Veldkamp, E., de Mello, W. Z., Keller, M. & Crill, P. Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil. Biogeosciences 2, 175–187 (2005).
    Google Scholar 

    72.
    van Dam, D., van Breemen, N. & Veldkamp, E. Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry 39, 343–375 (1997).
    Google Scholar 

    73.
    Fisher, M. J. et al. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371, 236–238 (1994).
    Google Scholar 

    74.
    Navarrete, D., Sitch, S., Aragão, L. E. O. C. & Pedroni, L. Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices. Glob. Change Biol. 22, 3503–3517 (2016).
    Google Scholar 

    75.
    Chiti, T., Grieco, E., Perugini, L., Rey, A. & Valentini, R. Effect of the replacement of tropical forests with tree plantations on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil 375, 47–59 (2014).
    Google Scholar 

    76.
    Kirsten, M., Kimaro, D. N., Feger, K.-H. & Kalbitz, K. Impact of land use on soil organic carbon stocks in the humid tropics of NE Tanzania. J. Plant. Nutr. Soil Sci. 182, 625–636 (2019).
    Google Scholar 

    77.
    Kassa, H., Dondeyne, S., Poesen, J., Frankl, A. & Nyssen, J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: the case of the Gacheb catchment in the White Nile Basin, Ethiopia. Agric. Ecosyst. Environ. 247, 273–282 (2017).
    Google Scholar 

    78.
    Dechert, G., Veldkamp, E. & Anas, I. Is soil degradation unrelated to deforestation? Examining soil parameters of land use systems in upland Central Sulawesi, Indonesia. Plant Soil 265, 197–209 (2004).
    Google Scholar 

    79.
    Hiremath, A. J. & Ewel, J. J. Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems 4, 669–682 (2001).
    Google Scholar 

    80.
    Pineiro, G., Oesterheld, M., Batista, W. B. & Paruelo, J. M. Opposite changes of whole-soil vs. pools C:N ratios: a case of Simpson’s paradox with implications on nitrogen cycling. Glob. Change Biol. 12, 804–809 (2006).
    Google Scholar 

    81.
    de Koning, G. H. J., Veldkamp, E. & López-Ulloa, M. Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Glob. Biogeochem. Cycles 17, 1098 (2003).
    Google Scholar 

    82.
    Silver, W. L., Ostertag, R. & Lugo, A. E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor. Ecol. 8, 394–407 (2000).
    Google Scholar 

    83.
    Krashevska, V. et al. Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter type. Oecologia 187, 255–266 (2018).
    Google Scholar 

    84.
    Allen, K., Corre, M. D., Tjoa, A. & Veldkamp, E. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE 10, e0133325 (2015).
    Google Scholar 

    85.
    Brinkmann, N. et al. Intensive tropical land use massively shifts soil fungal communities. Sci. Rep. 9, 3403 (2019).
    Google Scholar 

    86.
    Berkelmann, D. et al. How rainforest conversion to agricultural systems in Sumatra (Indonesia) affects active soil bacterial communities. Front. Microbiol. 9, 2381 (2018).
    Google Scholar 

    87.
    Schneider, D. et al. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Front. Microbiol. 6, 1339 (2015).
    Google Scholar 

    88.
    Janos, D. P. Mycorrhizae influence tropical succession. Biotropica 12, 56–64 (1980).
    Google Scholar 

    89.
    Bachelot, B. et al. Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status. Ecology 99, 607–620 (2018).
    Google Scholar 

    90.
    Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).
    Google Scholar 

    91.
    Ostertag, R., Marín-Spiotta, E., Silver, W. L. & Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11, 701–714 (2008).
    Google Scholar 

    92.
    Cole, R. J., Selmants, P., Khan, S. & Chazdon, R. Litter dynamics recover faster than arthropod biodiversity during tropical forest succession. Biotropica 52, 22–33 (2020).
    Google Scholar 

    93.
    Zou, X. & Gonzalez, G. Changes in earthworm density and community structure during secondary succession in abandoned tropical pastures. Soil Biol. Biochem. 29, 627–629 (1997).
    Google Scholar 

    94.
    Stone, M. J., Shoo, L., Stork, N. E., Sheldon, F. & Catterall, C. P. Recovery of decomposition rates and decomposer invertebrates during rain forest restoration on disused pasture. Biotropica 52, 230–241 (2020).
    Google Scholar 

    95.
    Meloni, F. & Varanda, E. M. Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forests: Arthropod colonization in Atlantic forest soils. Restor. Ecol. 23, 690–697 (2015).
    Google Scholar 

    96.
    Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis: Nutrients, climate and tropical NPP. Ecol. Lett. 14, 939–947 (2011).
    Google Scholar 

    97.
    Matson, A. L., Corre, M. D., Burneo, J. I. & Veldkamp, E. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 122, 281–294 (2015).
    Google Scholar 

    98.
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).
    Google Scholar 

    99.
    Cusack, D. F., Silver, W. & McDowell, W. H. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems 12, 1299–1315 (2009).
    Google Scholar 

    100.
    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).
    Google Scholar 

    101.
    Kennedy, M. J., Chadwick, O. A., Vitousek, P. M., Derry, L. A. & Hendricks, D. M. Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology 26, 1015–1018 (1998).
    Google Scholar 

    102.
    Bristow, C. S., Hudson-Edwards, K. A. & Chappell, A. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37, L14807 (2010).
    Google Scholar 

    103.
    Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T. & Caner, L. Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Appl. Clay Sci. 104, 196–204 (2015).
    Google Scholar 

    104.
    Hedin, L. O., Vitousek, P. M. & Matson, P. A. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).
    Google Scholar 

    105.
    Mackensen, J., Hölscher, D., Klinge, R. & Fölster, H. Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. For. Ecol. Manag. 86, 121–128 (1996).
    Google Scholar 

    106.
    Klinge, R., Araujo Martins, A. R., Mackensen, J. & Fölster, H. Element loss on rain forest conversion in East Amazonia: comparison of balances of stores and fluxes. Biogeochemistry 69, 63–82 (2004).
    Google Scholar 

    107.
    Weitz, A. M., Veldkamp, E., Keller, M., Neff, J. & Crill, P. M. Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest. J. Geophys. Res. Atmos. 103, 28047–28058 (1998).
    Google Scholar 

    108.
    Moebius-Clune, B. N. et al. Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agric. Ecosyst. Environ. 141, 86–99 (2011).
    Google Scholar 

    109.
    Ngoze, S. et al. Nutrient constraints to tropical agroecosystem productivity in long-term degrading soils. Glob. Change Biol. 14, 2810–2822 (2008).
    Google Scholar 

    110.
    Haileslassie, A., Priess, J. A., Veldkamp, E. & Lesschen, J. P. Nutrient flows and balances at the field and farm scale: Exploring effects of land-use strategies and access to resources. Agric. Syst. 94, 459–470 (2007).
    Google Scholar 

    111.
    Kassa, H., Dondeyne, S., Poesen, J., Frankl, A. & Nyssen, J. Agro-ecological implications of forest and agroforestry systems conversion to cereal-based farming systems in the White Nile Basin, Ethiopia. Agroecol. Sustain. Food Syst. 42, 149–168 (2018).
    Google Scholar 

    112.
    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Google Scholar 

    113.
    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).
    Google Scholar 

    114.
    Drake, T. W. et al. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat. Geosci. 12, 541–546 (2019).
    Google Scholar 

    115.
    Meijide, A. et al. Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat. Commun. 11, 1089 (2020).
    Google Scholar 

    116.
    Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 1–63 (2007).
    Google Scholar 

    117.
    Dutaur, L. & Verchot, L. V. A global inventory of the soil CH4 sink. Glob. Biogeochem. Cycles 21, GB4013 (2007).
    Google Scholar 

    118.
    Veldkamp, E., Koehler, B. & Corre, M. D. Indications of nitrogen-limited methane uptake in tropical forest soils. Biogeosciences 10, 5367–5379 (2013).
    Google Scholar 

    119.
    Matson, A. L., Corre, M. D., Langs, K. & Veldkamp, E. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama. Biogeosciences 14, 3509–3524 (2017).
    Google Scholar 

    120.
    Koehler, B. et al. An in-depth look into a tropical lowland forest soil: nitrogen-addition effects on the contents of N2O, CO2 and CH4 and N2O isotopic signatures down to 2-m depth. Biogeochemistry 111, 695–713 (2012).
    Google Scholar 

    121.
    Hassler, E. et al. Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences 12, 5831–5852 (2015).
    Google Scholar 

    122.
    Keller, M. & Reiners, W. A. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob. Biogeochem. Cycles 8, 399–409 (1994).
    Google Scholar 

    123.
    Veldkamp, E., Weitz, A. M. & Keller, M. Management effects on methane fluxes in humid tropical pasture soils. Soil Biol. Biochem. 33, 1493–1499 (2001).
    Google Scholar 

    124.
    Tian, H. et al. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst. Health Sustain. 1, 1–20 (2015).
    Google Scholar 

    125.
    Veldkamp, E., Purbopuspito, J., Corre, M. D., Brumme, R. & Murdiyarso, D. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia. J. Geophys. Res. Biogeosci. 113, G02003 (2008).
    Google Scholar 

    126.
    Weitz, A. M., Linder, E., Frolking, S., Crill, P. M. & Keller, M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil. Biol. Biochem. 33, 1077–1093 (2001).
    Google Scholar 

    127.
    Keesstra, S. et al. Soil as a filter for groundwater quality. Curr. Opin. Environ. Sustain. 4, 507–516 (2012).
    Google Scholar 

    128.
    Schwendenmann, L. & Veldkamp, E. The role of dissolved organic carbon, dissolved organic nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems 8, 339–351 (2005).
    Google Scholar 

    129.
    Lehmann, J. et al. Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. Soil Use Manag. 20, 163–172 (2004).
    Google Scholar 

    130.
    Neill, C. et al. Watershed responses to Amazon soya bean cropland expansion and intensification. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120425 (2013).
    Google Scholar 

    131.
    Rasiah, V. & Armour, J. D. Nitrate accumulation under cropping in the Ferrosols of Far North Queensland wet tropics. Aust. J. Soil Res. 39, 329–341 (2001).
    Google Scholar 

    132.
    Goller, R., Wilcke, W., Fleischbein, K., Valarezo, C. & Zech, W. Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a montane forest in Ecuador. Biogeochemistry 77, 57–89 (2006).
    Google Scholar 

    133.
    Aragão, L. E. O. C. The rainforest’s water pump. Nature 489, 217–218 (2012).
    Google Scholar 

    134.
    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).
    Google Scholar 

    135.
    Giertz, S., Junge, B. & Diekkrüger, B. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys. Chem. Earth Parts A/B/C 30, 485–496 (2005).
    Google Scholar 

    136.
    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).
    Google Scholar 

    137.
    Kassa, H., Frankl, A., Dondeyne, S., Poesen, J. & Nyssen, J. Sediment yield at southwest Ethiopia’s forest frontier. Land Degrad. Dev. 30, 695–705 (2019).
    Google Scholar 

    138.
    Molina, A., Vanacker, V., Balthazar, V., Mora, D. & Govers, G. Complex land cover change, water and sediment yield in a degraded Andean environment. J. Hydrol. 472–473, 25–35 (2012).
    Google Scholar 

    139.
    Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V. & Bernoux, M. Soil erosion in the humid tropics: A systematic quantitative review. Agric. Ecosyst. Environ. 203, 127–139 (2015).
    Google Scholar 

    140.
    Islam, K. R. & Weil, R. R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosyst. Environ. 79, 9–16 (2000).
    Google Scholar 

    141.
    Le Bissonnais, Y. et al. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics. Plant Soil 424, 303–317 (2018).
    Google Scholar 

    142.
    Garcı́a-Oliva, F., Sanford, R. L. & Kelly, E. Effects of slash-and-burn management on soil aggregate organic C and N in a tropical deciduous forest. Geoderma 88, 1–12 (1999).
    Google Scholar 

    143.
    Sidle, R. C. et al. Erosion processes in steep terrain — Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 224, 199–225 (2006).
    Google Scholar 

    144.
    Nagy, R. C. et al. Soil carbon dynamics in soybean cropland and forests in Mato Grosso, Brazil. J. Geophys. Res. Biogeosci. 123, 18–31 (2018).
    Google Scholar 

    145.
    Driessen, P. M. Lecture Notes on the Major Soils of the World (Food and Agriculture Organization of the United Nations, 2001).

    146.
    Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. J. Soil. Sci. 33, 141–163 (1982).
    Google Scholar 

    147.
    Haileslassie, A., Priess, J., Veldkamp, E., Teketay, D. & Lesschen, J. P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 108, 1–16 (2005).
    Google Scholar 

    148.
    Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).
    Google Scholar 

    149.
    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).
    Google Scholar 

    150.
    Powers, J. S. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).
    Google Scholar 

    151.
    Russell, A. E. & Raich, J. W. Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species. Proc. Natl. Acad. Sci. USA 109, 10398–10402 (2012).
    Google Scholar 

    152.
    Saynes, V., Hidalgo, C., Etchevers, J. D. & Campo, J. E. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Appl. Soil. Ecol. 29, 282–289 (2005).
    Google Scholar 

    153.
    Barron, A. R. et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat. Geosci. 2, 42–45 (2009).
    Google Scholar 

    154.
    Szott, L. T., Palm, C. A. & Buresh, R. J. Ecosystem fertility and fallow function in the humid and subhumid tropics. Agrofor. Syst. 47, 163–196 (1999).
    Google Scholar 

    155.
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).
    Google Scholar 

    156.
    Lawrence, D. & Schlesinger, W. H. Changes in soil phosphorus during 200 years of shifting cultivation in Indonesia. Ecology 82, 2769–2780 (2001).
    Google Scholar 

    157.
    Markewitz, D., Figueiredo, R., de, O. & Davidson, E. A. CO2-driven cation leaching after tropical forest clearing. J. Geochem. Explor. 88, 214–219 (2006).
    Google Scholar 

    158.
    Markewitz, D. et al. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410, 802–805 (2001).
    Google Scholar 

    159.
    Orihuela-Belmonte, D. E. et al. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 171, 72–84 (2013).
    Google Scholar 

    160.
    Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).
    Google Scholar 

    161.
    Lu, D., Moran, E. & Mausel, P. Linking Amazonian secondary succession forest growth to soil properties. Land Degrad. Dev. 13, 331–343 (2002).
    Google Scholar 

    162.
    Mekuria, W., Veldkamp, E., Corre, M. D. & Haile, M. Restoration of ecosystem carbon stocks following exclosure establishment in communal grazing lands in Tigray, Ethiopia. Soil Sci. Soc. Am. J. 75, 246–256 (2011).
    Google Scholar 

    163.
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
    Google Scholar 

    164.
    Palm, C. A. et al. Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Glob. Biogeochem. Cycles 16, 1073 (2002).
    Google Scholar 

    165.
    Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310, 28–61 (2005).
    Google Scholar 

    166.
    Ogden, F. L., Crouch, T. D., Stallard, R. F. & Hall, J. S. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resour. Res. 49, 8443–8462 (2013).
    Google Scholar 

    167.
    Lacombe, G. et al. Contradictory hydrological impacts of afforestation in the humid tropics evidenced by long-term field monitoring and simulation modelling. Hydrol. Earth Syst. Sci. 20, 2691–2704 (2016).
    Google Scholar 

    168.
    de Blécourt, M., Gröngröft, A., Baumann, S. & Eschenbach, A. Losses in soil organic carbon stocks and soil fertility due to deforestation for low-input agriculture in semi-arid southern Africa. J. Arid. Environ. 165, 88–96 (2019).
    Google Scholar 

    169.
    Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl Acad. Sci. USA 115, 3261–3266 (2018).
    Google Scholar 

    170.
    Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).
    Google Scholar 

    171.
    Beach, T., Dunning, N., Luzzadder-Beach, S., Cook, D. E. & Lohse, J. Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. Catena 65, 166–178 (2006).
    Google Scholar 

    172.
    Lombardo, U. & Prümers, H. Pre-Columbian human occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. J. Archaeol. Sci. 37, 1875–1885 (2010).
    Google Scholar 

    173.
    Arroyo-Kalin, M. The Amazonian formative: crop domestication and anthropogenic soils. Diversity 2, 473–504 (2010).
    Google Scholar 

    174.
    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).
    Google Scholar 

    175.
    Richter, D. D. & Markewitz, D. How deep is soil? BioScience 45, 600–609 (1995).
    Google Scholar 

    176.
    Borneman, J. & Triplett, E. W. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63, 2647–2653 (1997).
    Google Scholar 

    177.
    Powers, J. S. & Veldkamp, E. Regional variation in soil carbon and δ13C in forests and pastures of northeastern Costa Rica. Biogeochemistry 72, 315–336 (2005).
    Google Scholar 

    178.
    Lucas, Y. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu. Rev. Earth Planet. Sci. 29, 135–163 (2001).
    Google Scholar 

    179.
    Kleber, M., Schwendenmann, L., Veldkamp, E., Rößner, J. & Jahn, R. Halloysite versus gibbsite: Silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138, 1–11 (2007).
    Google Scholar 

    180.
    Lucas, Y., Luizao, F. J., Chauvel, A., Rouiller, J. & Nahon, D. The relation between biological activity of the rain forest and mineral composition of soils. Science 260, 521–523 (1993).
    Google Scholar 

    181.
    Bouma, J. et al. Hydropedological insights when considering catchment classification. Hydrol. Earth Syst. Sci. 15, 1909–1919 (2011).
    Google Scholar 

    182.
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).
    Google Scholar 

    183.
    Jenny, H. Factors of Soil Formation. A System of Quantitative Pedology (McGraw-Hill, 1941).

    184.
    de Blécourt, M., Brumme, R., Xu, J., Corre, M. D. & Veldkamp, E. Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS ONE 8, e69357 (2013).
    Google Scholar 

    185.
    Darras, K. F. A. et al. Reducing fertilizer and avoiding herbicides in oil palm plantations — Ecological and economic valuations. Front. For. Glob. Change 2, 65 (2019).
    Google Scholar 

    186.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    Google Scholar 

    187.
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    Google Scholar 

    188.
    IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, 2015).

    189.
    FAO. Global Forest Resources Assessment 2015: How are the World’s Forests Changing? (FAO, 2016).

    190.
    Saikh, H., Varadachari, C. & Ghosh, K. Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: a case study in Simlipal National Park, India. Plant Soil 198, 137–145 (1998).
    Google Scholar 

    191.
    Paul, S., Veldkamp, E. & Flessa, H. Differential response of mineral-associated organic matter in tropical soils formed in volcanic ashes and marine Tertiary sediment to treatment with HCl, NaOCl, and Na4P2O7. Soil Biol. Biochem. 40, 1846–1855 (2008).
    Google Scholar 

    192.
    Soil Survey Staff. Keys to Soil Taxonomy (US Department of Agriculture, Natural Resources Conservation Service, 2014).

    193.
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
    Google Scholar 

    194.
    Alston, L. J., Libecap, G. D. & Mueller, B. Land reform policies, the sources of violent conflict, and implications for deforestation in the Brazilian Amazon. J. Environ. Econ. Manag. 39, 162–188 (2000).
    Google Scholar 

    195.
    Gatto, M., Wollni, M. & Qaim, M. Oil palm boom and land-use dynamics in Indonesia: The role of policies and socioeconomic factors. Land Use Policy 46, 292–303 (2015).
    Google Scholar 

    196.
    Jantalia, C. P. et al. Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil Tillage Res. 95, 97–109 (2007).
    Google Scholar 

    197.
    Six, J. et al. Soil organic matter, biota and aggregation in temperate and tropical soils – Effects of no-tillage. Agronomie 22, 755–775 (2002).
    Google Scholar 

    198.
    Comte, I. et al. Physicochemical properties of soils in the Brazilian Amazon following fire-free land preparation and slash-and-burn practices. Agric. Ecosyst. Environ. 156, 108–115 (2012).
    Google Scholar 

    199.
    Abu Bakar, R., Darus, S. Z., Kulaseharan, S. & Jamaluddin, N. Effects of ten year application of empty fruit bunches in an oil palm plantation on soil chemical properties. Nutr. Cycling Agroecosyst. 89, 341–349 (2011).
    Google Scholar 

    200.
    Clay, D., Reardon, T. & Kangasniemi, J. Sustainable intensification in the highland tropics: Rwandan farmers’ investments in land conservation and soil fertility. Econ. Dev. Cult. Change 46, 351–377 (1998).
    Google Scholar  More