Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods
1.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity: biodiversity and climate change. Ecol. Lett. 15, 365–377 (2012).
PubMed PubMed Central Article Google Scholar
2.
Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).
PubMed Article CAS PubMed Central Google Scholar
3.
Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
ADS CAS Article Google Scholar
5.
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Article Google Scholar
6.
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
7.
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
ADS CAS PubMed Article PubMed Central Google Scholar
8.
Miller, J. Species distribution modeling. Geogr, Compass 4, 490–509 (2010).
Article Google Scholar
9.
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
PubMed PubMed Central Article Google Scholar
10.
Bellard, C. et al. Will climate change promote future invasions?. Glob. Change Biol. 19, 3740–3748 (2013).
ADS Article Google Scholar
11.
Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 12, 2272–2281 (2006).
ADS Article Google Scholar
12.
Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25, 839–852 (2019).
Article Google Scholar
13.
Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: a literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).
Article Google Scholar
14.
Qiao, H., Soberón, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136 (2015).
Article Google Scholar
15.
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
PubMed Article PubMed Central Google Scholar
16.
Thuiller, W. Patterns and uncertainties of species’ range shifts under climate change. Glob. Change Biol. 10, 2020–2027 (2004).
ADS Article Google Scholar
17.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1–9 (2019).
CAS Article Google Scholar
18.
Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob. Change Biol. 22, 2505–2515 (2016).
ADS Article Google Scholar
19.
Solomon, S. et al.IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Vol. 1 (2007).
20.
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Article Google Scholar
21.
Richmond, O. M. W., McEntee, J. P., Hijmans, R. J. & Brashares, J. S. Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents. PLoS ONE 5, e12899 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
22.
Kearney, M. Habitat, environment and niche: what are we modelling?. Oikos 115, 186–191 (2006).
Article Google Scholar
23.
Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform.2, 1–10 (2005).
Article Google Scholar
24.
Merow, C., LaFleur, N., Silander, J. A. Jr., Wilson, A. M. & Rubega, M. Developing dynamic mechanistic species distribution models: predicting bird-mediated spread of invasive plants across northeastern North America. Am. Nat. 178, 30–43 (2011).
PubMed Article PubMed Central Google Scholar
25.
Bocedi, G. et al. RangeShifter: a platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Methods Ecol. Evol. 5, 388–396 (2014).
Article Google Scholar
26.
Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).
PubMed Article PubMed Central Google Scholar
27.
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
Article Google Scholar
28.
Mammola, S. & Isaia, M. Rapid poleward distributional shifts in the European cave-dwelling Meta spiders under the influence of competition dynamics. J. Biogeogr. 44, 2789–2797 (2017).
Article Google Scholar
29.
Lafage, D., Maugenest, S., Bouzillé, J.-B. & Pétillon, J. Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol. Res. 30, 1025–1035 (2015).
Article Google Scholar
30.
Leroy, B. et al. First assessment of effects of global change on threatened spiders: potential impacts on Dolomedes Plantarius (Clerck) and its conservation plans. Biol. Conserv. 161, 155–163 (2013).
Article Google Scholar
31.
Leroy, B. et al. Forecasted climate and land use changes, and protected areas: the contrasting case of spiders. Divers. Distrib. 20, 686–697 (2014).
Article Google Scholar
32.
Keppel, G. & Wardell-Johnson, G. W. Refugia: keys to climate change management. Glob. Change Biol. 18, 2389–2391 (2012).
ADS Article Google Scholar
33.
Finlayson, C. M. et al. The second warning to humanity—providing a context for wetland management and policy. Wetlands 39, 1–5 (2019).
Article Google Scholar
34.
van Helsdingen, P. J. Ecology and distribution of dolomedes in Europe (Araneida: Dolomedidae). Boll. Acc. Gioenia Sci. Nat. 26, 181–187 (1993).
Google Scholar
35.
Duffey, E. Dolomedes plantarius (Clerck, 1757) (Araneae: Pisauridae): a reassessment of its ecology and distribution in Europe, with comments on its history at Redgrave and Lopham Fen, England. Bull. Br. Arachnol. Soc. 15, 285–292 (2012).
Google Scholar
36.
Ivanov, V., Prishepchik, O. & Setrakova, E. Dolomedes plantarius (Araneae, Pisauridae) in Belarus: records, distribution and implications for conservation. Arachnol. Mitteilungen 54, 33–37 (2017).
Article Google Scholar
37.
Holec, M. Spiders (aranea) of the fishpond eulittoral zone. In Proceedings of the 18th European Colloquium of Arachnology vol. 19, 51–54 (Ekológia, Bratislava, 2000).
38.
Duffey, E. The distribution, status and habitat of Dolomedes fimbriatus (Clerck) and D. plantarius (Clerck) in Europe. In Proceedings of 15th European Colloquium of Arachnology 54–65 (1995).
39.
Hill, J. K., Thomas, C. D. & Blakeley, D. S. Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121, 165–170 (1999).
ADS CAS PubMed Article PubMed Central Google Scholar
40.
GBIF: The Global Biodiversity Information Facility. What is GBIF?https://www.gbif.org/what-is-gbif (2019).
41.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria(2020).
42.
ESRI. World Imagery. (2009).
43.
Braunisch, V. et al. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36, 971–983 (2013).
Article Google Scholar
44.
Dormann, C. F. Promising the future? Global change projections of species distributions. Basic Appl. Ecol. 8, 387–397 (2007).
Article Google Scholar
45.
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Article Google Scholar
46.
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).
ADS Article Google Scholar
47.
Hijmans, R. J., Cameron, S. E., Parra, J. L. & Jarvis, A. Very high resolution interpolated climated surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
48.
Lafage, D. & Pétillon, J. Relative importance of management and natural flooding on spider, carabid and plant assemblages in extensively used grasslands along the Loire. Basic Appl. Ecol. 17, 535–545 (2016).
Article Google Scholar
49.
Dickel, L. Characterisation of Habitat Requirements of European Fishing Spiders (Inland Norway University of Applied Sciences, 2019).
50.
EEA. European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA). (2018).
51.
Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).
ADS Article Google Scholar
52.
Senay, S. D., Worner, S. P. & Ikeda, T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS ONE 8, e71218 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
53.
Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).
Article Google Scholar
54.
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).
ADS Article Google Scholar
55.
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
Article Google Scholar
56.
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Article Google Scholar
57.
Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006).
Article Google Scholar
58.
Engler, R. & Guisan, A. MigClim: predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15, 590–601 (2009).
Article Google Scholar
59.
Bonte, D., Clercq, N. D., Zwertvaegher, I. & Lens, L. Repeatability of dispersal behaviour in a common dwarf spider: evidence for different mechanisms behind short- and long-distance dispersal. Ecol. Entomol. 34, 271–276 (2009).
Article Google Scholar
60.
Lee, V. M. J., Kuntner, M. & Li, D. Ballooning behavior in the golden orbweb spider Nephila pilipes (Araneae: Nephilidae). Front. Ecol. Evol. 3, 2 (2015).
Article Google Scholar
61.
Reynolds, A. M., Bohan, D. A. & Bell, J. R. Ballooning dispersal in arthropod taxa: conditions at take-off. Biol. Lett. 3, 237–240 (2007).
PubMed PubMed Central Article Google Scholar
62.
Thomas, C. F. G., Brain, P. & Jepson, P. C. Aerial activity of linyphiid spiders: modelling dispersal distances from meteorology and behaviour. J. Appl. Ecol. 40, 912–927 (2003).
Article Google Scholar
63.
Shah, V. B. & McRae, B. Circuitscape: a tool for landscape ecology. In Proceedings of the 7th Python in Science Conference Vol. 7 62–66 (2008).
64.
McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).
PubMed Article PubMed Central Google Scholar
65.
Keeley, A. T. H., Beier, P., Keeley, B. W. & Fagan, M. E. Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landsc. Urban Plan. 161, 90–102 (2017).
Article Google Scholar
66.
Pelletier, D. et al. Applying circuit theory for corridor expansion and management at regional scales: tiling, pinch points, and omnidirectional connectivity. PLoS ONE 9, e84135 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
67.
Febbraro, M. D. et al. Integrating climate and land-use change scenarios in modelling the future spread of invasive squirrels in Italy. Divers. Distrib. 25, 644–659 (2019).
Article Google Scholar
68.
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol. Int. J. Org. Evol. 62, 2868–2883 (2008).
Article Google Scholar
69.
Rödder, D. & Engler, J. O. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Glob. Ecol. Biogeogr. 20, 915–927 (2011).
Article Google Scholar
70.
Bonte, D., Travis, J. M. J., Clercq, N. D., Zwertvaegher, I. & Lens, L. Thermal conditions during juvenile development affect adult dispersal in a spider. Proc. Natl. Acad. Sci. 105, 17000–17005 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
71.
Eskildsen, A. et al. Testing species distribution models across space and time: high latitude butterflies and recent warming. Glob. Ecol. Biogeogr. 22, 1293–1303 (2013).
Article Google Scholar
72.
Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).
Article Google Scholar
73.
Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 1–14 (2019).
CAS Article Google Scholar
74.
Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull. Entomol. Res. 95, 69–114 (2005).
CAS PubMed Article PubMed Central Google Scholar
75.
Bonte, D., Borre, J. V., Lens, L. & Jean-Pierre, M. Geographical variation in wolf spider dispersal behaviour is related to landscape structure. Anim. Behav. 72, 655–662 (2006).
Article Google Scholar
76.
Bellvert, A., Casals, A., Fonollosa, A., Dalmau, G. & Tobella, C. First record of Dolomedes plantarius (Clerck, 1758) (Araneae: Pisauridae) from the Iberian Peninsula. Rev. Ibérica Aracnol. 23, 109–111 (2013).
Google Scholar
77.
Carico, J. E. The nearctic species of the genus Dolomedes (Araneae: Pisauridae). Bull. Mus. Comp. Zool. Harv. Coll. 144, 435–488 (1973).
Google Scholar
78.
Weinstein, B. G., Graham, C. H. & Parra, J. L. The role of environment, dispersal and competition in explaining reduced co-occurrence among related species. PLoS ONE 12, e0185493 (2017).
PubMed PubMed Central Article CAS Google Scholar
79.
Montoya, J. M. & Raffaelli, D. Climate change, biotic interactions and ecosystem services. Philos. Trans. R. Soc. B Biol. Sci. 365, 2013–2018 (2010).
Article Google Scholar
80.
Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).
ADS CAS PubMed PubMed Central Article Google Scholar
81.
Roux, P. C. L. & McGeoch, M. A. Rapid range expansion and community reorganization in response to warming. Glob. Change Biol. 14, 2950–2962 (2008).
ADS Article Google Scholar
82.
Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).
PubMed Article PubMed Central Google Scholar
83.
Williams, D. D., Ambrose, L. G. & Browning, L. N. Trophic dynamics of two sympatric species of riparian spider (Araneae: Tetragnathidae). Can. J. Zool. 73, 1545–1553 (1995).
Article Google Scholar
84.
Balfour, R. A., Buddle, C. M., Rypstra, A. L., Walker, S. E. & Marshall, S. D. Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecol. Entomol. 28, 25–30 (2003).
Article Google Scholar
85.
Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).
Article Google Scholar
86.
Travis, J. M. J. et al. Modelling dispersal: an eco-evolutionary framework incorporating emigration, movement, settlement behaviour and the multiple costs involved. Methods Ecol. Evol. 3, 628–641 (2012).
Article Google Scholar
87.
Bonte, D., Lukáč, M. & Lens, L. Starvation affects pre-dispersal behaviour of Erigone spiders. Basic Appl. Ecol. 9, 308–315 (2008).
Article Google Scholar
88.
Goodacre, S. L. et al. Microbial modification of host long-distance dispersal capacity. BMC Biol. 7, 32 (2009).
PubMed PubMed Central Article Google Scholar
89.
De Meester, N. & Bonte, D. Information use and density-dependent emigration in an agrobiont spider. Behav. Ecol. 21, 992–998 (2010).
Article Google Scholar
90.
Bonte, D. & Lens, L. Heritability of spider ballooning motivation under different wind velocities. Evol. Ecol. Res. 9, 817–827 (2007).
Google Scholar
91.
Clobert, J., Galliard, J.-F.L., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
PubMed Article PubMed Central Google Scholar
92.
Titeux, N. et al. Ecological traps and species distribution models: a challenge for prioritizing areas of conservation importance. Ecography 43, 365–375 (2020).
Article Google Scholar
93.
Ceia-Hasse, A., Sinervo, B., Vicente, L. & Pereira, H. M. Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography 37, 679–688 (2014).
Article Google Scholar
94.
Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
95.
Slatyer, R. A., Nash, M. A. & Hoffmann, A. A. Measuring the effects of reduced snow cover on Australia’s alpine arthropods. Austral Ecol. 42, 844–857 (2017).
Article Google Scholar
96.
Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
Article Google Scholar
97.
Samways, M. J. et al. Solutions for humanity on how to conserve insects. Biol. Conserv. 242, 108427 (2020).
Article Google Scholar
98.
Prieto-Benítez, S. & Méndez, M. Effects of land management on the abundance and richness of spiders (Araneae): a meta-analysis. Biol. Conserv. 144, 683–691 (2011).
Article Google Scholar
99.
Marc, P., Canard, A. & Ysnel, F. Spiders (Araneae) useful for pest limitation and bioindication. Agric. Ecosyst. Environ. 74, 229–273 (1999).
Article Google Scholar
100.
Noss, R. F. & Daly, K. M. Incorporating connectivity into broad-scale conservation planning. In Connectivity Conservation (eds Crooks, K. R. et al.) 587–619 (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511754821.026.
Google Scholar
101.
World Conservation Monitoring Centre. The IUCN Red List of Threatened Species 1996 (1996).
102.
Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. https://CRAN.R-project.org/package=ggspatial (2020).
103.
Wickham, H. ggplot2: elegant graphics for data analysis (Springer, New York, 2016).
Google Scholar
104.
South, A. rnaturalearth: World Map Data from Natural Earth. https://CRAN.R-project.org/package=rnaturalearth (2017).
105.
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr (2020). More
