More stories

  • in

    Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change

    1.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    CAS  Google Scholar 
    2.
    Grooten, M. & Almond, R. E. A. (eds) Living Planet Report ‒ 2018: Aiming Higher (WWF, 2018).

    3.
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
    PubMed  PubMed Central  Google Scholar 

    4.
    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
    CAS  PubMed  Google Scholar 

    5.
    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).
    CAS  PubMed  Google Scholar 

    6.
    Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).
    Google Scholar 

    7.
    Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).
    PubMed  Google Scholar 

    8.
    Ferrier, S. et al. (eds) The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2016).

    9.
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).
    Google Scholar 

    10.
    Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).
    Google Scholar 

    11.
    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).
    PubMed  PubMed Central  Google Scholar 

    12.
    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).
    Google Scholar 

    13.
    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
    Google Scholar 

    14.
    Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).
    PubMed  PubMed Central  Google Scholar 

    15.
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
    CAS  PubMed  Google Scholar 

    16.
    Alkemade, R. et al. GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12, 374–390 (2009).
    Google Scholar 

    17.
    Martins, I. S. & Pereira, H. M. Improving extinction projections across scales and habitats using the countryside species-area relationship. Sci. Rep. 7, 12899 (2017).
    PubMed  PubMed Central  Google Scholar 

    18.
    Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    CAS  PubMed  Google Scholar 

    20.
    Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
    Google Scholar 

    21.
    Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).
    CAS  PubMed  Google Scholar 

    22.
    Stevens, G. C. The latitudinal gradient in geographic range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).
    Google Scholar 

    23.
    Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).
    Google Scholar 

    24.
    Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).
    CAS  PubMed  Google Scholar 

    25.
    Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. Lond. B Biol. Sci. 280, 20122131 (2013).
    Google Scholar 

    26.
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).
    Google Scholar 

    27.
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).
    Google Scholar 

    28.
    Wiersma, P., Munoz-Garcia, A., Walker, A. & Williams, J. B. Tropical birds have a slow pace of life. Proc. Natl Acad. Sci. USA 104, 9340–9345 (2007).
    CAS  PubMed  Google Scholar 

    29.
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).
    CAS  PubMed  Google Scholar 

    30.
    Orme, C. D. L. et al. Distance to range edge determines sensitivity to deforestation. Nat. Ecol. Evol. 3, 886–891 (2019).
    PubMed  Google Scholar 

    31.
    Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).
    Google Scholar 

    32.
    Frishkoff, L. O. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).
    PubMed  Google Scholar 

    33.
    Williams, J. J. & Newbold, T. Local climatic changes affect biodiversity responses to land use: a review. Divers. Distrib. 26, 76–92 (2020).
    Google Scholar 

    34.
    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).
    PubMed  Google Scholar 

    35.
    Williams, J. J., Bates, A. E. & Newbold, T. Human‐dominated land uses favour species affiliated with more extreme climates, especially in the tropics. Ecography 43, 391–405 (2020).
    Google Scholar 

    36.
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
    Google Scholar 

    37.
    Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land‐use change. Ecography 42, 2084–2094 (2019).
    Google Scholar 

    38.
    Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).
    Google Scholar 

    39.
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).
    Google Scholar 

    40.
    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
    Google Scholar 

    41.
    Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    CAS  Google Scholar 

    42.
    Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A. Pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).
    PubMed  PubMed Central  Google Scholar 

    43.
    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
    Google Scholar 

    44.
    Fu, B., Wang, J., Chen, L. & Qiu, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 54, 197–213 (2003).
    Google Scholar 

    45.
    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).
    Google Scholar 

    46.
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).
    CAS  PubMed  Google Scholar 

    47.
    García-Vega, D. & Newbold, T. Assessing the effects of land use on biodiversity in the world’s drylands and Mediterranean environments. Biodivers. Conserv. 29, 393–408 (2020).
    Google Scholar 

    48.
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).
    CAS  PubMed  Google Scholar 

    49.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    CAS  PubMed  Google Scholar 

    50.
    Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).
    PubMed  PubMed Central  Google Scholar 

    51.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Google Scholar 

    52.
    Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. L. & Purvis, A. Reply to ‘The biodiversity intactness index may underestimate losses’. Nat. Ecol. Evol. 3, 864–865 (2019).
    PubMed  Google Scholar 

    53.
    Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744 (2017).
    CAS  PubMed  Google Scholar 

    54.
    The IUCN Red List of Threatened Species Version 2013.7 (IUCN, 2013); http://www.iucnredlist.org/

    55.
    Bird Species Distribution Maps of the World Version 2.0 (BirdLife International & NatureServe, 2012); http://www.birdlife.org/datazone/info/spcdownload

    56.
    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735 (2014).
    PubMed  PubMed Central  Google Scholar 

    57.
    Zero Draft of the Post-2020 Global Biodiversity Framework Resolution CBD/WG2020/2/3 (Convention on Biological Diversity, 2020).

    58.
    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).
    CAS  PubMed  Google Scholar 

    59.
    Kissling, W. D., Sekercioglu, C. H. & Jetz, W. Bird dietary guild richness across latitudes, environments and biogeographic regions. Glob. Ecol. Biogeogr. 21, 328–340 (2012).
    Google Scholar 

    60.
    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).
    PubMed  Google Scholar 

    61.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
    PubMed  PubMed Central  Google Scholar 

    62.
    Terrestrial Ecoregions of the World (The Nature Conservancy, 2009); http://maps.tnc.org/gis_data.html

    63.
    Hudson, L. N. et al. Dataset: The 2016 Release of the PREDICTS Database (Natural History Museum Data Portal, 2016); https://doi.org/10.5519/0066354

    64.
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
    Google Scholar 

    65.
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2008).
    Google Scholar 

    66.
    Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).
    Google Scholar 

    67.
    Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).
    Google Scholar 

    68.
    Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
    Google Scholar 

    69.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    70.
    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).
    Google Scholar 

    71.
    Bivand, R. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).
    Google Scholar  More

  • in

    Ecology shapes epistasis in a genotype–phenotype–fitness map for stick insect colour

    1.
    Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).
    CAS  PubMed  Google Scholar 
    2.
    Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013).
    CAS  PubMed  Google Scholar 

    3.
    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Natural selection on a major armor gene in threespine stickleback. Science 322, 255–257 (2008).
    CAS  PubMed  Google Scholar 

    4.
    Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).
    CAS  PubMed  Google Scholar 

    5.
    Gratten, J. et al. A localized negative genetic correlation constrains microevolution of coat color in wild sheep. Science 319, 318–320 (2008).
    CAS  PubMed  Google Scholar 

    6.
    Lamichhaney, S. et al. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352, 470–474 (2016).
    CAS  PubMed  Google Scholar 

    7.
    Coberly, L. C. & Rausher, M. D. Pleiotropic effects of an allele producing white flowers in Ipomoea purpurea. Evolution 62, 1076–1085 (2008).
    PubMed  Google Scholar 

    8.
    Korves, T. M., others. Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am. Nat. 169, 141–157 (2007).
    Google Scholar 

    9.
    Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17 (2012).
    PubMed  Google Scholar 

    10.
    de Visser, J. C. F. T. & Elena, S. F. The causes of epistasis. Proc. R. Soc. B 278, 3617–3624 (2011).
    PubMed  Google Scholar 

    11.
    Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Marques, D. A. et al. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).
    PubMed  PubMed Central  Google Scholar 

    15.
    Natarajan, C. et al. Epistasis among adaptive mutations in deer mouse hemoglobin. Science 340, 1324–1327 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Dettman, J. R., Sirjusingh, C., Kohn, L. M. & Anderson, J. B. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447, 585–588 (2007).
    CAS  PubMed  Google Scholar 

    17.
    Orr, H. A. The population genetics of speciation— the evolution of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12, 307–312 (1997).
    CAS  PubMed  Google Scholar 

    19.
    Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).
    CAS  PubMed  Google Scholar 

    20.
    Wilfert, L. & Schmid-Hempel, P. The genetic architecture of susceptibility to parasites. BMC Evol. Biol. 8, 187 (2008).
    PubMed  PubMed Central  Google Scholar 

    21.
    Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).
    CAS  PubMed  Google Scholar 

    22.
    Gavrilets, S. Fitness Landscapes and the Origin of Species (Princeton Univ. Press, 2004); https://doi.org/10.2307/j.ctv39x541

    23.
    Wright, S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. Sixth Int. Congr. Genet. 1, 356–366 (1932).
    Google Scholar 

    24.
    Lehner, B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 27, 323–331 (2011).
    CAS  PubMed  Google Scholar 

    25.
    Whitlock, M. C., Phillips, P. C., Moore, F. B. & Tonsor, S. J. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26, 601–629 (1995).
    Google Scholar 

    26.
    Whitlock, M. C. Founder effects and peak shifts without genetic drift: adaptive peak shifts occur easily when environments fluctuate slightly. Evolution 51, 1044–1048 (1997).
    PubMed  Google Scholar 

    27.
    Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).
    CAS  PubMed  Google Scholar 

    28.
    Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338 (2002).
    CAS  PubMed  Google Scholar 

    29.
    Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).
    CAS  PubMed  Google Scholar 

    30.
    Plucain, J. et al. Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343, 1366–1369 (2014).
    CAS  PubMed  Google Scholar 

    31.
    Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).
    PubMed  PubMed Central  Google Scholar 

    32.
    Sandoval, C. P. Differential visual predation on morphs of Timema cristinae (Phasmatodeae:Timemidae) and its consequences for host range. Biol. J. Linn. Soc. 52, 341–356 (1994).
    Google Scholar 

    33.
    Sandoval, C. P. The effects of the relative geographic scales of gene flow and selection on morph frequencies in the walking‐stick Timema cristinae. Evolution 48, 1866–1879 (1994).
    PubMed  Google Scholar 

    34.
    Sandoval, C. P. & Nosil, P. Counteracting selective regimes and host preference evolution in ecotypes of two species of walking-sticks. Evolution 59, 2405–2413 (2005).
    CAS  PubMed  Google Scholar 

    35.
    Comeault, A. A. et al. Selection on a genetic polymorphism counteracts ecological speciation in a stick insect. Curr. Biol. 25, 1975–1981 (2015).
    CAS  PubMed  Google Scholar 

    36.
    Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).
    CAS  PubMed  Google Scholar 

    37.
    Villoutreix, R. et al. Large-scale mutation in the evolution of a gene complex for cryptic coloration. Science 369, 460–466 (2020).
    CAS  PubMed  Google Scholar 

    38.
    Lindtke, D. et al. Long-term balancing selection on chromosomal variants associated with crypsis in a stick insect. Mol. Ecol. 26, 6189–6205 (2017).
    CAS  PubMed  Google Scholar 

    39.
    Endler, J. A. A framework for analysing colour pattern geometry: adjacent colours. Biol. J. Linn. Soc. 107, 233–253 (2012).
    Google Scholar 

    40.
    Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).
    Google Scholar 

    41.
    Hurvich, L. M. Color Vision (Sinauer Associates, 1981).

    42.
    Gompert, Z. et al. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17, 369–379 (2014).
    PubMed  Google Scholar 

    43.
    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Crawford, L., Zeng, P., Mukherjee, S. & Zhou, X. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet. 13, e1006869 (2017).
    PubMed  PubMed Central  Google Scholar 

    45.
    Comeault, A. A., Ferreira, C., Dennis, S., Soria-Carrasco, V. & Nosil, P. Color phenotypes are under similar genetic control in two distantly related species of Timema stick insect. Evolution 70, 1283–1296 (2016).
    CAS  PubMed  Google Scholar 

    46.
    Nosil, P. & Crespi, B. J. Experimental evidence that predation promotes divergence in adaptive radiation. Proc. Natl Acad. Sci. USA 103, 9090–9095 (2006).
    CAS  PubMed  Google Scholar 

    47.
    Rennison, D. J., Heilbron, K., Barrett, R. D. H. & Schluter, D. Discriminating selection on lateral plate phenotype and its underlying gene, ectodysplasin, in threespine stickleback. Am. Nat. 185, 150–156 (2015).
    PubMed  Google Scholar 

    48.
    Wright, S. The shifting balance theory and macroevolution. Annu. Rev. Genet. 16, 1–19 (1982).
    CAS  PubMed  Google Scholar 

    49.
    Coyne, J. A., Barton, N. H. & Turelli, M. Perspective: a critique of Sewall Wright’s shifting balance theory of evolution. Evolution 51, 643–671 (1997).
    PubMed  Google Scholar 

    50.
    Wade, M. J. & Goodnight, C. J. Perspective: the theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52, 1537–1553 (1998).
    PubMed  Google Scholar 

    51.
    Reimchen, T. E. Predator-induced cyclical changes in lateral plate frequencies of Gasterosteus. Behaviour 132, 1079–1094 (1995).
    Google Scholar 

    52.
    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

    53.
    Sackman, A. M. & Rokyta, D. R. Additive phenotypes underlie epistasis of fitness effects. Genetics 208, 339–348 (2018).
    CAS  PubMed  Google Scholar 

    54.
    Knief, U. et al. Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone. Nat. Ecol. Evol. 3, 570–576 (2019).
    PubMed  PubMed Central  Google Scholar 

    55.
    Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).
    PubMed  Google Scholar 

    56.
    Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

    57.
    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

    58.
    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
    CAS  PubMed  Google Scholar 

    59.
    Parchman, T. L. et al. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol. Ecol. 21, 2991–3005 (2012).
    CAS  PubMed  Google Scholar 

    60.
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    61.
    Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344, 738–742 (2014).
    CAS  PubMed  Google Scholar 

    62.
    Guan, Y. & Stephens, M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 1780–1815 (2011).
    Google Scholar 

    63.
    Nosil, P. Reproductive isolation caused by visual predation on migrants between divergent environments. Proc. R. Soc. B 271, 1521–1528 (2004).
    PubMed  Google Scholar 

    64.
    Nosil, P. et al. Genomic consequences of multiple speciation processes in a stick insect. Proc. R. Soc. B 279, 5058–5065 (2012).
    PubMed  Google Scholar 

    65.
    Sandoval, C. P. Persistence of a walking-stick population (Phasmatoptera: Timematodea) after a wildfire. Southwest. Nat. 45, 123–127 (2000).
    Google Scholar 

    66.
    Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4-8 (2018).

    67.
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
    PubMed  Google Scholar 

    68.
    Janzen, F. J. & Stern, H. S. Logistic regression for empirical studies of multivariate selection. Evolution 52, 1564–1571 (1998).
    PubMed  Google Scholar 

    69.
    Zeugner, S. & Feldkircher, M. Bayesian model averaging employing fixed and flexible priors: the BMS package for R. J. Stat. Softw. 68, 1–37 (2015).
    Google Scholar 

    70.
    Zellner, A. in Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (eds Goel, P. & Zellner, A.) 233–243 (1986).

    71.
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).
    Google Scholar 

    72.
    Weinberger, E. Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336 (1990).
    Google Scholar 

    73.
    Vassilev, V. K., Fogarty, T. C. & Miller, J. F. Information characteristics and the structure of landscapes. Evol. Comput. 8, 31–60 (2000).
    CAS  PubMed  Google Scholar 

    74.
    Kouyos, R. D. et al. Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet. 8, e1002551–e1002551 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Malan, K. M. & Engelbrecht, A. P. A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013).
    Google Scholar 

    76.
    Kondrashov, D. A. & Kondrashov, F. A. Topological features of rugged fitness landscapes in sequence space. Trends Genet. 31, 24–33 (2015).
    CAS  PubMed  Google Scholar 

    77.
    Poursoltan, S. & Neumann, F. in Evolutionary Constrained Optimization (eds Datta, R. & Deb, K.) 29–50 (Springer, 2015); https://doi.org/10.1007/978-81-322-2184-5_2

    78.
    Paten, B. et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).
    CAS  PubMed  Google Scholar 

    80.
    Endler, J. A. & Mielke, P. W. Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 86, 405–431 (2005).
    Google Scholar  More

  • in

    Molecular trade-offs in soil organic carbon composition at continental scale

    1.
    Baldock, J. A., Masiello, C. A., Gélinas, Y. & Hedges, J. I. Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar. Chem. 92, 39–64 (2004).
    Google Scholar 
    2.
    Sutton, R. & Sposito, G. Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39, 9009–9015 (2005).
    Google Scholar 

    3.
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).
    Google Scholar 

    4.
    Baldock, J. A. et al. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust. J. Soil Res. 35, 1061–1084 (1997).
    Google Scholar 

    5.
    Mahieu, N., Randall, E. W. & Powlson, D. S. Statistical analysis of published carbon-13 CPMAS NMR spectra of soil organic matter. Soil Sci. Soc. Am. J. 63, 307–319 (1999).
    Google Scholar 

    6.
    Grandy, A. S. & Neff, J. C. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 404, 297–307 (2008).
    Google Scholar 

    7.
    Baldock, J. A. et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 16, 1–42 (1992).
    Google Scholar 

    8.
    Ahmad, R., Nelson, P. N. & Kookana, R. S. The molecular composition of soil organic matter as determined by 13C NMR and elemental analyses and correlation with pesticide sorption. Eur. J. Soil Sci. 57, 883–893 (2006).
    Google Scholar 

    9.
    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).
    Google Scholar 

    10.
    Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).
    Google Scholar 

    11.
    Wagai, R. et al. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Glob. Change Biol. 19, 1114–1125 (2013).
    Google Scholar 

    12.
    Waksman, S. A. & Iyer, K. R. N. Contribution to our knowledge of the chemical nature and origin of humus: I. on the synthesis of the “humus nucleus”. Soil Sci. 34, 43–69 (1932).
    Google Scholar 

    13.
    Kirk, T. K. & Farrell, R. L. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–501 (1987).
    Google Scholar 

    14.
    Amelung, W., Brodowski, S., Sandhage-Hofmann, A. & Bol, R. in Advances in Agronomy Vol. 100 (ed. Sparks, D. L.) 155–250 (Elsevier, 2008).

    15.
    Thevenot, M., Dignac, M.-F. & Rumpel, C. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211 (2010).
    Google Scholar 

    16.
    Bosatta, E. & Ågren, G. I. Soil organic matter quality interpreted thermodynamically. Soil Biol. Biochem. 31, 1889–1891 (1999).
    Google Scholar 

    17.
    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2011).
    Google Scholar 

    18.
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
    Google Scholar 

    19.
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).
    Google Scholar 

    20.
    Ma, T. et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 3480 (2018).
    Google Scholar 

    21.
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).
    Google Scholar 

    22.
    Khan, K. S., Mack, R., Castillo, X., Kaiser, M. & Joergensen, R. G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271, 115–123 (2016).
    Google Scholar 

    23.
    Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).
    Google Scholar 

    24.
    Córdova, S. C. et al. Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biol. Biochem. 125, 115–124 (2018).
    Google Scholar 

    25.
    Huang, W. et al. Enrichment of lignin-derived carbon in mineral-associated soil organic matter. Environ. Sci. Technol. 53, 7522–7531 (2019).
    Google Scholar 

    26.
    Wan, D. et al. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils. Eur. J. Soil Sci. 70, 1153–1163 (2019).
    Google Scholar 

    27.
    Hernes, P. J., Kaiser, K., Dyda, R. Y. & Cerli, C. Molecular trickery in soil organic matter: hidden lignin. Environ. Sci. Technol. 47, 9077–9085 (2013).
    Google Scholar 

    28.
    Klotzbücher, T., Kalbitz, K., Cerli, C., Hernes, P. J. & Kaiser, K. Gone or just out of sight? The apparent disappearance of aromatic litter components in soils. SOIL 2, 325–335 (2016).
    Google Scholar 

    29.
    Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397–420 (2006).
    Google Scholar 

    30.
    Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).
    Google Scholar 

    31.
    Mikutta, R., Kleber, M., Torn, M. S. & Jahn, R. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77, 25–56 (2006).
    Google Scholar 

    32.
    Kleber, M. What is recalcitrant soil organic matter? Environ. Chem. 7, 320–332 (2010).
    Google Scholar 

    33.
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
    Google Scholar 

    34.
    DiDonato, N., Chen, H., Waggoner, D. & Hatcher, P. G. Potential origin and formation for molecular components of humic acids in soils. Geochim. Cosmochim. Acta 178, 210–222 (2016).
    Google Scholar 

    35.
    Scatena, F. An Introduction to the Physiography and History of the Bisley Experimental Watersheds in the Luquillo Mountains of Puerto Rico General Technical Report SO-72 (USDA, 1989).

    36.
    Kleber, M. et al. in Advances in Agronomy Vol. 130 (ed. Sparks, D. L.) Ch. 1 (Elsevier, 2015).

    37.
    Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).
    Google Scholar 

    38.
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
    Google Scholar 

    39.
    Lundström, U. S., van Breemen, N. & Bain, D. The podzolization process. A review. Geoderma 94, 91–107 (2000).
    Google Scholar 

    40.
    Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Change Biol. 18, 2594–2605 (2012).
    Google Scholar 

    41.
    Kaiser, K. & Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem. 31, 711–725 (2000).
    Google Scholar 

    42.
    Coward, E. K., Ohno, T. & Plante, A. F. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity. Environ. Sci. Technol. 52, 1036–1044 (2018).
    Google Scholar 

    43.
    Throckmorton, H. M., Bird, J. A., Dane, L., Firestone, M. K. & Horwath, W. R. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol. Lett. 15, 1257–1265 (2012).
    Google Scholar 

    44.
    Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).
    Google Scholar 

    45.
    LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).
    Google Scholar 

    46.
    Ye, C. et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecol. Lett. 21, 1162–1173 (2018).
    Google Scholar 

    47.
    Ayres, E., et al. NEON Field and Lab Procedure and Protocol: TIS Soil Pit Sampling Protocol NEON.DOC.001307 (NEON, 2017); https://data.neonscience.org/data-products/DP1.00097.001

    48.
    Ayres, E. & Durden, D. NEON Field and Lab Procedure and Protocol: TIS Soil Archiving NEON.DOC.000325 (NEON, 2017); https://data.neonscience.org/data-products/DP1.00097.001

    49.
    Ayres, E. NEON Procedure and Protocol: Producing TIS Soil Archive Subsamples for Users NEON.DOC.001306 (NEON, 2017); https://data.neonscience.org/data-products/DP1.00097.001

    50.
    Gélinas, Y., Baldock, J. A. & Hedges, J. I. Demineralization of marine and freshwater sediments for CP/MAS 13C NMR analysis. Org. Geochem. 32, 677–693 (2001).
    Google Scholar 

    51.
    Harbison, G. S. et al. High-resolution carbon-13 NMR of retinal derivatives in the solid state. J. Am. Chem. Soc. 107, 4809–4816 (1985).
    Google Scholar 

    52.
    Mao, J.-D. et al. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 64, 873–884 (2000).
    Google Scholar 

    53.
    Longbottom, T. L. & Hockaday, W. C. Molecular and isotopic composition of modern soils derived from kerogen-rich bedrock and implications for the global C cycle. Biogeochemistry 143, 239–255 (2019).
    Google Scholar 

    54.
    NEON (National Ecological Observatory Network). DP1.00096.001, DP1.10066.001, DP1.10102.001, DP1.10109.001 (accessed September 1, 2019), DP1.10026.001, DP1.10033.001, DP1.10031.001 (accessed May 15, 2020); http://data.neonscience.org

    55.
    Sullivan, P. F. et al. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153, 643–652 (2007).
    Google Scholar 

    56.
    SanClements, M. et al. Collaborating with NEON. BioScience 70, 107–107 (2020).
    Google Scholar 

    57.
    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).
    Google Scholar 

    58.
    Revelle, W. psych: Procedures for Personality and Psychological Research v.1.8.12 (Northwestern University, 2018).

    59.
    Chittleborough, D. J. Indices of weathering for soils and palaeosols formed on silicate rocks. Aust. J. Earth Sci. 38, 115–120 (1991).
    Google Scholar 

    60.
    Hair, J. F., Risher, J. J., Sarstedt, M. & Ringle, C. M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 31, 2–24 (2019).
    Google Scholar 

    61.
    Lefcheck, J. S.piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Google Scholar  More

  • in

    Microbial deterioration and sustainable conservation of stone monuments and buildings

    1.
    Dornieden, T., Gorbushina, A. & Krumbein, W. Biodecay of cultural heritage as a space/time-related ecological situation—an evaluation of a series of studies. Int. Biodeterior. Biodegrad. 46, 261–270 (2000).
    CAS  Google Scholar 
    2.
    Warscheid, T. et al. Studies on the temporal development of microbial infection of different types of sedimentary rocks and its effect on the alteration of the physico-chemical properties in building materials. In Conservation of stone and other materials: Proc. of the International RILEM/UNESCO congress held at the UNESCO headquarters (ed. Thiel, M.-J.) 303–310 (E. & F.N. Spon Ltd, 1993).

    3.
    Gadd, G. M. Geomicrobiology of the built environment. Nat. Microbiol. 2, 16275 (2017).
    CAS  Google Scholar 

    4.
    Pinna, D. Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives (Apple Academic Press, 2017).

    5.
    Onofri, S., Zucconi, L., Isola, D. & Selbmann, L. Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area. Plant Biosyst. 148, 384–391 (2014).
    Google Scholar 

    6.
    Villa, F., Stewart, P. S., Klapper, I., Jacob, J. M. & Cappitelli, F. Subaerial biofilms on outdoor stone monuments: changing the perspective toward an ecological framework. BioScience 66, 285–294 (2016).
    Google Scholar 

    7.
    Warscheid, T. & Braams, J. Biodeterioration of stone: a review. Int. Biodeterior. Biodegrad. 46, 343–368 (2000).
    CAS  Google Scholar 

    8.
    Saiz-Jimenez, C. Biogeochemistry of weathering processes in monuments. Geomicrobiol. J. 16, 27–37 (1999).
    CAS  Google Scholar 

    9.
    Chen, J., Blume, H.-P. & Beyer, L. Weathering of rocks induced by lichen colonization — a review. Catena 39, 121–146 (2000).
    CAS  Google Scholar 

    10.
    Martino, P. D. What about biofilms on the surface of stone monuments? Open Conf. Proc. J. 6, 14–28 (2016).
    Google Scholar 

    11.
    Gu, J.-D., Ford, T. E. & Mitchell, R. in Uhlig’s Corrosion Handbook 3rd edn (ed. Revie, R. W.) 351–363 (Wiley, 2011).

    12.
    Polynov, B. The first stages of soil formation on massive crystaline rocks. Pochvovedeniye 7, 325–339 (1945).
    Google Scholar 

    13.
    Vernadskiy, V. Geochemical Essays (Ocherki geokhimii) (Leningrad State Publishing House, 1927).

    14.
    Krasil’nikov, N. The role of microorganisms in the weathering of rocks. Mikrobiologiya 18, 318–323 (1949).
    Google Scholar 

    15.
    Yarilova, Y. A. The role of lithophilous lichens in the weathering of massive crystalline rocks. Pochvovedeniye 3, 533–548 (1947).
    Google Scholar 

    16.
    Pochon, J., Tardieux, P., Lajudie, J. & Charpentier, M. Degradation des temples d’Angkor et processus biologiques. Ann. Inst. Pasteur 98, 457–461 (1960).
    Google Scholar 

    17.
    Pochon, J. & Jaton, C. in Biodeterioration of Materials (eds. Wolters, A. H. & Elphich, C. C.) 258–268 (Elsevier, 1968).

    18.
    Pochon, J. & Jaton, C. The role of microbiological agencies in the deterioration of stone. Chem. Ind. 9, 1587–1589 (1967).
    Google Scholar 

    19.
    Paquet, J. Contribution a l’etude de la maladie de la pierre: new hypothese sur les causes des transferts et des concentrations de sulfate produisant les effets foliants. Mon. His. France 10, 73–88 (1964).
    Google Scholar 

    20.
    Hueck, H. in Biodeterioration of Materials. Microbiological and Allied Aspects (eds Walters, A. H. & Elphick, J. J.) 6–12 (Elsevier Publishing Co. Ltd, 1968).

    21.
    Gaylarde, P. & Gaylarde, C. Deterioration of siliceous stone monuments in Latin America: microorganisms and mechanisms. Corros. Rev. 22, 395–416 (2004).
    CAS  Google Scholar 

    22.
    Uchida, E., Ogawa, Y., Maeda, N. & Nakagawa, T. Deterioration of stone materials in the Angkor monuments, Cambodia. Eng. Geol. 55, 101–112 (2000).
    Google Scholar 

    23.
    Caneva, G., Bartoli, F., Savo, V., Futagami, Y. & Strona, G. Combining statistical tools and ecological assessments in the study of biodeterioration patterns of stone temples in Angkor (Cambodia). Sci. Rep. 6, 32601 (2016).
    CAS  Google Scholar 

    24.
    Meng, H., Katayama, Y. & Gu, J.-D. More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. Int. Biodeterior. Biodegrad. 117, 78–88 (2017).
    CAS  Google Scholar 

    25.
    Zammit, G., Sánchez-Moral, S. & Albertano, P. Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci. Total Environ. 409, 2773–2782 (2011).
    CAS  Google Scholar 

    26.
    McNamara, C. J., Perry, T. D., Bearce, K. A., Hernandez-Duque, G. & Mitchell, R. Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb. Ecol. 51, 51–64 (2006).
    Google Scholar 

    27.
    Ortega-Morales, B. O. et al. Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Front. Microbiol. 7, 201 (2016).
    Google Scholar 

    28.
    Cappitelli, F., Principi, P., Pedrazzani, R., Toniolo, L. & Sorlini, C. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci. Total Environ. 385, 172–181 (2007).
    CAS  Google Scholar 

    29.
    Rosado, T. et al. Pink! Why not? On the unusual colour of Évora Cathedral. Int. Biodeterior. Biodegrad. 94, 121–127 (2014).
    CAS  Google Scholar 

    30.
    Schiavon, N. et al. A multianalytical approach to investigate stone biodeterioration at a UNESCO world heritage site: the volcanic rock-hewn churches of Lalibela, Northern Ethiopia. Appl. Phys. A 113, 843–854 (2013).
    CAS  Google Scholar 

    31.
    Guillitte, O. Bioreceptivity: a new concept for building ecology studies. Sci. Total Environ. 167, 215–220 (1995).
    CAS  Google Scholar 

    32.
    Warscheid, T. & Leisen, H. in Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series (eds Charola, A. E. et al.) 1–18 (Smithsonian Institution Scholarly Press, 2011).

    33.
    Warscheid, T., Oelting, M. & Krumbein, W. E. Physico-chemical aspects of biodeterioration processes on rocks with special regard to organic pollutants. Int. Biodeterior. Biodegrad. 28, 37–48 (1991).
    CAS  Google Scholar 

    34.
    Haack, T. K. & McFeters, G. A. Nutritional relationships among microorganisms in an epilithic biofilm community. Microb. Ecol. 8, 115–126 (1982).
    CAS  Google Scholar 

    35.
    Liu, X., Meng, H., Wang, Y., Katayama, Y. & Gu, J.-D. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Int. Biodeterior. Biodegrad. 133, 9–16 (2018).
    CAS  Google Scholar 

    36.
    Prieto, B. & Silva, B. Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int. Biodeterior. Biodegrad. 56, 206–215 (2005).
    CAS  Google Scholar 

    37.
    Miller, A. Z. et al. Bioreceptivity of building stones: a review. Sci. Total Environ. 426, 1–12 (2012).
    CAS  Google Scholar 

    38.
    Warscheid, T. et al. Biodeterioration studies on soapstone, quartzite & sandstones of historical monuments in Brazil and Germany. Preliminary results and evaluation for restoration practices. In Proc. of the 7th International Congress on Deterioration and Conservation of Stone 491–500 (Laboratório Nacional de Engenharia Civil, 1992).

    39.
    Beck, K., Al-Mukhtar, M., Rozenbaum, O. & Rautureau, M. Characterization, water transfer properties and deterioration in tuffeau: building material in the Loire valley—France. Build. Environ. 38, 1151–1162 (2003).
    Google Scholar 

    40.
    Sousa, L. M. O., Suárez del Río, L. M., Calleja, L., Ruiz de Argandoña, V. G. & Rey, A. R. Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng. Geol. 77, 153–168 (2005).
    Google Scholar 

    41.
    Koestler, R., Warscheid, T. & Nieto, F. in Saving our Architectural Heritage: The Conservation of Historic Stone Structures (eds Baer, N. S. & Snethlage, R.) 25–36 (Wiley, 1997).

    42.
    Miller, A. Z., Dionísio, A., Laiz, L., Macedo, M. F. & Saiz-Jimenez, C. The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms. Ann. Microbiol. 59, 705–713 (2009).
    CAS  Google Scholar 

    43.
    Tiano, P., Accolla, P. & Tomaselli, L. Phototrophic biodeteriogens on lithoid surfaces: an ecological study. Microb. Ecol. 29, 299–309 (1995).
    CAS  Google Scholar 

    44.
    Vázquez-Nion, D., Silva, B. & Prieto, B. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Sci. Total Environ. 610–611, 44–54 (2018).
    Google Scholar 

    45.
    Miller, A., Dionísio, A. & Macedo, M. F. Primary bioreceptivity: a comparative study of different Portuguese lithotypes. Int. Biodeterior. Biodegrad. 57, 136–142 (2006).
    CAS  Google Scholar 

    46.
    Hunt, J. M. Distribution of hydrocarbons in sedimentary rocks. Geochim. Cosmochim. Acta 22, 37–49 (1961).
    CAS  Google Scholar 

    47.
    Carter, N. & Viles, H. Lichen hotspots: raised rock temperatures beneath Verrucaria nigrescens on limestone. Geomorphology 62, 1–16 (2004).
    Google Scholar 

    48.
    Castanier, S., Le Métayer-Levrel, G. & Perthuisot, J.-P. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment. Geol. 126, 9–23 (1999).
    CAS  Google Scholar 

    49.
    Leavengood, P., Twilley, J. & Asmus, J. F. Lichen removal from Chinese Spirit Path figures of marble. J. Cult. Herit. 1, S71–S74 (2000).
    Google Scholar 

    50.
    Gu, J.-D., Ford, T. E. & Mitchell, R. in Uhlig’s Corrosion Handbook 3rd edn (ed. Revie, R. W.) 451–460 (Wiley, 2011).

    51.
    Roig, P. B., Regidor Ros, J. L. & Estellés, R. M. Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int. Biodeterior. Biodegrad. 84, 266–274 (2013).
    CAS  Google Scholar 

    52.
    Šimonovičová, A., Gódyová, M. & Ševc, J. Airborne and soil microfungi as contaminants of stone in a hypogean cemetery. Int. Biodeterior. Biodegrad. 54, 7–11 (2004).
    Google Scholar 

    53.
    Lan, W., Li, H., Wang, W.-D., Katayama, Y. & Gu, J.-D. Microbial community analysis of fresh and old microbial biofilms on Bayon Temple Sandstone of Angkor Thom, Cambodia. Microb. Ecol. 60, 105–115 (2010).
    Google Scholar 

    54.
    Bartoli, F. et al. Biological colonization patterns on the ruins of Angkor temples (Cambodia) in the biodeterioration vs bioprotection debate. Int. Biodeterior. Biodegrad. 96, 157–165 (2014).
    Google Scholar 

    55.
    Xu, H.-B. et al. Lithoautotrophical oxidation of elemental sulfur by fungi including Fusarium solani isolated from sandstone Angkor temples. Int. Biodeterior. Biodegrad. 126, 95–102 (2018).
    CAS  Google Scholar 

    56.
    Kusumi, A., Li, X. S. & Katayama, Y. Mycobacteria isolated from Angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur. Front. Microbiol. 2, 104 (2011).
    CAS  Google Scholar 

    57.
    Caneva, G. et al. Exploring ecological relationships in the biodeterioration patterns of Angkor temples (Cambodia) along a forest canopy gradient. J. Cult. Herit. 16, 728–735 (2015).
    Google Scholar 

    58.
    Kemmling, A., Kämper, M., Flies, C., Schieweck, O. & Hoppert, M. Biofilms and extracellular matrices on geomaterials. Environ. Geol. 46, 429–435 (2004).
    CAS  Google Scholar 

    59.
    Gaylarde, C. C., Rodríguez, C. H., Navarro-Noya, Y. E. & Ortega-Morales, B. O. Microbial biofilms on the sandstone monuments of the Angkor Wat complex, Cambodia. Curr. Microbiol. 64, 85–92 (2012).
    CAS  Google Scholar 

    60.
    Nuhoglu, Y. et al. The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci. Total Environ. 364, 272–283 (2006).
    CAS  Google Scholar 

    61.
    Gaylarde, C. et al. Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate. Biofouling 33, 113–127 (2017).
    Google Scholar 

    62.
    Mansch, R. & Bock, E. Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9, 47–64 (1998).
    CAS  Google Scholar 

    63.
    Viles, H. A. Implications of future climate change for stone deterioration. Geol. Soc. Lond. Spec. Publ. 205, 407–418 (2002).
    Google Scholar 

    64.
    Moroni, B. & Pitzurra, L. Biodegradation of atmospheric pollutants by fungi: a crucial point in the corrosion of carbonate building stone. Int. Biodeterior. Biodegrad. 62, 391–396 (2008).
    CAS  Google Scholar 

    65.
    Saiz-Jimenez, C. Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buidlings. Int. Biodeterior. Biodegrad. 40, 225–232 (1997).
    CAS  Google Scholar 

    66.
    Mitchell, R. & Gu, J.-D. Changes in the biofilm microflora of limestone caused by atmospheric pollutants. Int. Biodeterior. Biodegrad. 46, 299–303 (2000).
    CAS  Google Scholar 

    67.
    Stefanis, N.-A., Theoulakis, P. & Pilinis, C. Dry deposition effect of marine aerosol to the building stone of the medieval city of Rhodes, Greece. Build. Environ. 44, 260–270 (2009).
    Google Scholar 

    68.
    Leysen, L., Roekens, E. & Van Grieken, R. Air-pollution-induced chemical decay of a sandy-limestone Cathedral in Belgium. Sci. Total Environ. 78, 263–287 (1989).
    CAS  Google Scholar 

    69.
    Duan, Y. et al. The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China. PLoS ONE 12, e0179718 (2017).
    Google Scholar 

    70.
    Bakr, A. & El Hafez, M. A. Role assessment of bat excretions in degradation of painted surface from Mohamed Ali’s palace, Suez, Egypt. Egypt. J. Archaeol. Restor. Stud. 3, 47–56 (2012).
    Google Scholar 

    71.
    Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 934 (2015).
    Google Scholar 

    72.
    Aviam, O., Bar-Nes, G., Zeiri, Y. & Sivan, A. Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of low-level radioactive waste. Appl. Environ. Microbiol. 70, 6031–6036 (2004).
    CAS  Google Scholar 

    73.
    Vupputuri, S. et al. Isolation of a sulfur-oxidizing Streptomyces sp. from deteriorating bridge structures and its role in concrete deterioration. Int. Biodeterior. Biodegrad. 97, 128–134 (2015).
    CAS  Google Scholar 

    74.
    Sand, W. & Bock, E. Biodeterioration of mineral materials by microorganisms—biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol. J. 9, 129–138 (1991).
    CAS  Google Scholar 

    75.
    Salvadori, O. & Municchia, A. C. The role of fungi and lichens in the biodeterioration of stone monuments. Open Conf. Proc. J. 7, 39–54 (2016).
    CAS  Google Scholar 

    76.
    Meng, H., Luo, L., Chan, H. W., Katayama, Y. & Gu, J.-D. Higher diversity and abundance of ammonia-oxidizing archaea than bacteria detected at the Bayon Temple of Angkor Thom in Cambodia. Int. Biodeterior. Biodegrad. 115, 234–243 (2016).
    CAS  Google Scholar 

    77.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    CAS  Google Scholar 

    78.
    Gu, J.-D. & Katayama, Y. A microbiological challenge in protection of the sandstone Angkor monuments in Cambodia. IIC Newsletter (15 December 2017).

    79.
    Gu, J.-D., Ford, T. E., Berke, N. S. & Mitchell, R. Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad. 41, 101–109 (1998).
    Google Scholar 

    80.
    Li, X. S. et al. Oxidation of elemental sulfur by Fusarium solani strain THIF01 harboring endobacterium Bradyrhizobium sp. Microb. Ecol. 60, 96–104 (2010).
    CAS  Google Scholar 

    81.
    Li, X., Arai, H., Shimoda, I., Kuraishi, H. & Katayama, Y. Enumeration of sulfur-oxidizing microorganisms on deteriorating stone of the Angkor monuments, Cambodia. Microbes Environ. 23, 293–298 (2008).
    Google Scholar 

    82.
    Bourcart, J., Noetzlin, J., Pochon, J. & Berthelier, S. Etude des détériorations des pierres des monuments historiques. In Annales de l’Institut Technique de Bâtiment et des Travaux Publics 1–16 (1949).

    83.
    Lepidi, A. & Schippa, G. Some aspects of the growth of chemotrophic and heterotrophic microorganisms on calcareous surfaces. In Colloque international sur la deterioration des pierres en oeuvre. 1er. International symposium on the deterioration of building stones 143–148 (Les Imprimerie Reunites de Chambery, 1973).

    84.
    Barcellona Vero, L. & Monte Sila, M. Isolation of various sulphur-oxidizing bacteria from stone monuments. In The conservation of stone i. Proceedings of the international symposium (ed. Rossi-Manaresi, R.) 233–244 (Centro per la conservazione delle sculture all’aperto, 1976).

    85.
    Tarantino, M. M. S.-G. The metabolic state of microorganisms of the genus Thiobacillus on stone monuments. In The Conservation of stone II: preprints of the contributions to the international symposium 117–138 (Centro per la conservazione delle sculture all’aperto, 1981).

    86.
    Milde, K., Sand, W., Wolff, W. & Bock, E. Thiobacilli of the corroded concrete walls of the Hamburg sewer system. Microbiology 129, 1327–1333 (1983).
    Google Scholar 

    87.
    Krumbein, W. E. Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (gulf of Aqaba, Sinai). Geomicrobiol. J. 1, 139–203 (1979).
    CAS  Google Scholar 

    88.
    Suzuki, D., Li, Z., Cui, X., Zhang, C. & Katayama, A. Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int. J. Syst. Evol. Microbiol. 64, 3081–3086 (2014).
    CAS  Google Scholar 

    89.
    Kleindienst, S. et al. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J. 8, 2029–2044 (2014).
    CAS  Google Scholar 

    90.
    Griffin, P., Indictor, N. & Koestler, R. The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment. Int. Biodeterior. Biodegrad. 28, 187–207 (1991).
    Google Scholar 

    91.
    Gaylarde, P., Englert, G., Ortega-Morales, O. & Gaylarde, C. Lichen-like colonies of pure Trentepohlia on limestone monuments. Int. Biodeterior. Biodegrad. 58, 119–123 (2006).
    CAS  Google Scholar 

    92.
    Isola, D. et al. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers. 76, 75–96 (2016).
    Google Scholar 

    93.
    Suihko, M.-L. et al. Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst. Appl. Microbiol. 30, 494–508 (2007).
    CAS  Google Scholar 

    94.
    Morillas, H. et al. Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging. Microchem. J. 121, 48–55 (2015).
    CAS  Google Scholar 

    95.
    Hu, H. et al. Occurrence of Aspergillus allahabadii on sandstone at Bayon temple, Angkor Thom, Cambodia. Int. Biodeterior. Biodegrad. 76, 112–117 (2013).
    CAS  Google Scholar 

    96.
    ElBaghdady, K. Z., Tolba, S. T. & Houssien, S. S. Biogenic deterioration of Egyptian limestone monuments: treatment and conservation. J. Cult. Herit. 38, 118–125 (2019).
    Google Scholar 

    97.
    Gonzalez-Pimentel, J. L. et al. Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Sci. Rep. 8, 1944 (2018).
    Google Scholar 

    98.
    Garty, J. Influence of epilithic microorganisms on the surface temperature of building walls. Can. J. Bot. 68, 1349–1353 (1990).
    Google Scholar 

    99.
    Sterflinger, K. Fungi: their role in deterioration of cultural heritage. Fungal Biol. Rev. 24, 47–55 (2010).
    Google Scholar 

    100.
    Ortega-Morales, B. O., Gaylarde, C. C., Englert, G. E. & Gaylarde, P. M. Analysis of salt-containing biofilms on limestone buildings of the Mayan culture at Edzna, Mexico. Geomicrobiol. J. 22, 261–268 (2005).
    CAS  Google Scholar 

    101.
    Cappitelli, F. et al. Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl. Environ. Microbiol. 72, 3733–3737 (2006).
    CAS  Google Scholar 

    102.
    Vincke, E. et al. Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int. Biodeterior. Biodegrad. 49, 283–292 (2002).
    CAS  Google Scholar 

    103.
    De Windt, L. & Devillers, P. Modeling the degradation of Portland cement pastes by biogenic organic acids. Cem. Concr. Res. 40, 1165–1174 (2010).
    Google Scholar 

    104.
    Turkington, A. V. & Paradise, T. R. Sandstone weathering: a century of research and innovation. Geomorphology 67, 229–253 (2005).
    Google Scholar 

    105.
    Rossi, F. et al. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 28, 215–224 (2012).
    CAS  Google Scholar 

    106.
    Li, W.-W. & Yu, H.-Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour. Technol. 160, 15–23 (2014).
    CAS  Google Scholar 

    107.
    Stone, A. T. Microbial metabolites and the reductive dissolution of manganese oxides: oxalate and pyruvate. Geochim. Cosmochim. Acta 51, 919–925 (1987).
    CAS  Google Scholar 

    108.
    Monte, M. Oxalate film formation on marble specimens caused by fungus. J. Cult. Herit. 4, 255–258 (2003).
    Google Scholar 

    109.
    Cariati, F., Rampazzi, L., Toniolo, L. & Pozzi, A. Calcium oxalate films on stone surfaces: experimental assessment of the chemical formation. Stud. Conserv. 45, 180–188 (2000).
    CAS  Google Scholar 

    110.
    Scherer, G. W. Stress from crystallization of salt. Cem. Concr. Res. 34, 1613–1624 (2004).
    CAS  Google Scholar 

    111.
    Saiz-Jimenez, C. & Laiz, L. Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int. Biodeterior. Biodegrad. 46, 319–326 (2000).
    CAS  Google Scholar 

    112.
    Favero-Longo, S. E., Borghi, A., Tretiach, M. & Piervittori, R. In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts. Mycol. Res. 113, 1216–1227 (2009).
    Google Scholar 

    113.
    Lisci, M., Monte, M. & Pacini, E. Lichens and higher plants on stone: a review. Int. Biodeterior. Biodegrad. 51, 1–17 (2003).
    Google Scholar 

    114.
    Caneva, G., Danin, A., Ricci, S. & Conti, C. The pitting of Trajan’s column, Rome: an ecological model of its origin. In Conservazione del Patrimonio culturale II, Contributi Centro Linceo Interdisciplinare Beniamino Segre 78–102 (Accademia Nazionale dei Lincei, 1994).

    115.
    Danin, A. Pitting of calcareous rocks by organisms under terrestrial conditions. Isr. J. Earth Sci. 41, 201–207 (1992).
    Google Scholar 

    116.
    Danin, A. & Caneva, G. Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int. Biodeterior. Biodegrad. 26, 397–417 (1990).
    Google Scholar 

    117.
    Lombardozzi, V., Castrignanò, T., D’Antonio, M., Casanova Municchia, A. & Caneva, G. An interactive database for an ecological analysis of stone biopitting. Int. Biodeterior. Biodegrad. 73, 8–15 (2012).
    Google Scholar 

    118.
    Gehrmann, C., Krumbein, W. & Petersen, K. Endolithic lichens and the corrosion of carbonate rocks. A study of biopitting. Int. J. Mycol. Lichenol. 5, 37–48 (1992).
    Google Scholar 

    119.
    McIlroy de la Rosa, J. P., Warke, P. A. & Smith, B. J. Microscale biopitting by the endolithic lichen Verrucaria baldensis and its proposed role in mesoscale solution basin development on limestone. Earth Surf. Process. Landf. 37, 374–384 (2012).
    Google Scholar 

    120.
    Pomar, F., Gómez-Pujol, L., Fornós, J. J., Del Valle, L. & Nogales, B. Limestone biopitting in coastal settings: A spatial, morphometric, SEM and molecular microbiology sequencing study in the Mallorca rocky coast (Balearic Islands, Western Mediterranean). Geomorphology 276, 104–115 (2017).
    Google Scholar 

    121.
    Caneva, G. Ecological approach to the genesis of calcium oxalate patinas on stone monuments. Aerobiologia 9, 149–156 (1993).
    Google Scholar 

    122.
    Bruno, L. & Valle, V. Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman Catacombs. Int. Biodeterior. Biodegrad. 123, 286–295 (2017).
    Google Scholar 

    123.
    Danin, A. Patterns of biogenic weathering as indicators of palaeoclimates in Israel. Proc. R. Soc. Edinb. B 89, 243–253 (1986).
    Google Scholar 

    124.
    de Ferri, L., Lottici, P. P., Lorenzi, A., Montenero, A. & Salvioli-Mariani, E. Study of silica nanoparticles – polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit. 12, 356–363 (2011).
    Google Scholar 

    125.
    Son, S. et al. Organic−inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage. ACS Appl. Mater. Inter. 1, 393–401 (2009).
    CAS  Google Scholar 

    126.
    Erkal, A., D’Ayala, D. & Sequeira, L. Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. Build. Environ. 57, 336–348 (2012).
    Google Scholar 

    127.
    Traversetti, L., Bartoli, F. & Caneva, G. Wind-driven rain as a bioclimatic factor affecting the biological colonization at the archaeological site of Pompeii, Italy. Int. Biodeterior. Biodegrad. 134, 31–38 (2018).
    Google Scholar 

    128.
    Ortega-Morales, O., Guezennec, J., Hernández-Duque, G., Gaylarde, C. C. & Gaylarde, P. M. Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Curr. Microbiol. 40, 81–85 (2000).
    CAS  Google Scholar 

    129.
    Li, Q., Zhang, B., He, Z. & Yang, X. Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS ONE 11, e0163287 (2016).
    Google Scholar 

    130.
    Wu, F., Wang, W., Feng, H. & Gu, J.-D. Realization of biodeterioration to cultural heritage protection in China. Int. Biodeterior. Biodegrad. 117, 128–130 (2017).
    CAS  Google Scholar 

    131.
    Wang, W. et al. Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. Int. Biodeterior. Biodegrad. 64, 461–466 (2010).
    Google Scholar 

    132.
    Zamarreño, D. V., Inkpen, R. & May, E. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl. Environ. Microbiol. 75, 5981–5990 (2009).
    Google Scholar 

    133.
    Jroundi, F. et al. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat. Commun. 8, 279 (2017).
    Google Scholar 

    134.
    Ascaso, C. et al. In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int. Biodeterior. Biodegrad. 49, 1–12 (2002).
    Google Scholar 

    135.
    Koestler, R. J., Parreira, E., Santoro, E. D. & Noble, P. Visual effects of selected biocides on easel painting materials. Stud. Conserv. 38, 265–273 (1993).
    Google Scholar 

    136.
    Fidanza, M. R. & Caneva, G. Natural biocides for the conservation of stone cultural heritage: a review. J. Cult. Herit. 38, 271–286 (2019).
    Google Scholar 

    137.
    Silva, M., Rosado, T., Teixeira, D., Candeias, A. & Caldeira, A. T. Production of green biocides for cultural heritage. Novel biotechnological solutions. Int. J. Conserv. Sci. 6, 519–530 (2015).
    CAS  Google Scholar 

    138.
    Silva, M., Rosado, T., Teixeira, D., Candeias, A. & Caldeira, A. T. Green mitigation strategy for cultural heritage: bacterial potential for biocide production. Environ. Sci. Pollut. Res. 24, 4871–4881 (2017).
    CAS  Google Scholar 

    139.
    Marin, E., Vaccaro, C. & Leis, M. Biotechnology applied to historic stoneworks conservation: testing the potential harmfulness of two biological biocides. Int. J. Conserv. Sci. 7, 227–238 (2016).
    Google Scholar 

    140.
    Caneva, G., Fidanza, M. R., Tonon, C. & Favero-Longo, S. E. Biodeterioration patterns and their interpretation for potential applications to stone conservation: a hypothesis from allelopathic inhibitory effects of lichens on the Caestia Pyramid (Rome). Sustainability 12, 1132 (2020).
    CAS  Google Scholar 

    141.
    Alfano, G. et al. The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. Int. Biodeterior. Biodegrad. 65, 1004–1011 (2011).
    CAS  Google Scholar 

    142.
    Soffritti, I. et al. The potential use of microorganisms as restorative agents: an update. Sustainability 11, 3853 (2019).
    CAS  Google Scholar 

    143.
    Scherer, G. W., Flatt, R. & Wheeler, G. Materials science research for the conservation of sculpture and monuments. MRS Bull. 26, 44–50 (2001).
    CAS  Google Scholar 

    144.
    Gu, J.-D. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int. Biodeterior. Biodegrad. 52, 69–91 (2003).
    CAS  Google Scholar 

    145.
    Charola, A. E., McNamara, C. & Koestler, R. J. (eds) Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series Smithsonian Contributions to Museum Conservation no. 2 (Smithsonian Institution Scholarly Press, 2011).

    146.
    Yang, F. et al. Conservation of weathered historic sandstone with biomimetic apatite. Chin. Sci. Bull. 57, 2171–2176 (2012).
    CAS  Google Scholar 

    147.
    Gherardi, F., Roveri, M., Goidanich, S. & Toniolo, L. Photocatalytic nanocomposites for the protection of European architectural heritage. Materials 11, 65 (2018).
    Google Scholar 

    148.
    Sierra-Fernandez, A., Gomez-Villalba, L., Rabanal, M. & Fort, R. New nanomaterials for applications in conservation and restoration of stony materials: a review. Mater. Construcc. 67, e107 (2017).
    Google Scholar 

    149.
    Grossi, C. M., Bonazza, A., Brimblecombe, P., Harris, I. & Sabbioni, C. Predicting twenty-first century recession of architectural limestone in European cities. Environ. Geol. 56, 455–461 (2008).
    CAS  Google Scholar 

    150.
    de la Rosa, J. P. M., Warke, P. A. & Smith, B. J. Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog. Phys. Geog. 37, 325–351 (2013).
    Google Scholar 

    151.
    Gadd, G. M. & Dyer, T. D. Bioprotection of the built environment and cultural heritage. Microb. Biotechnol. 10, 1152–1156 (2017).
    Google Scholar 

    152.
    Pinna, D. Biofilms and lichens on stone monuments: do they damage or protect? Front. Microbiol. 5, 133 (2014).
    Google Scholar 

    153.
    Gadd, G. M. et al. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 28, 36–55 (2014).
    Google Scholar 

    154.
    Bosch-Roig, P. & Ranalli, G. The safety of biocleaning technologies for cultural heritage. Front. Microbiol. 5, 155 (2014).
    Google Scholar 

    155.
    Zhang, G. et al. Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. Int. Biodeterior. Biodegrad. 143, 104723 (2019).
    CAS  Google Scholar 

    156.
    Zhang, X., Ge, Q., Zhu, Z., Deng, Y. & Gu, J.-D. Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA gene. Int. Biodeterior. Biodegrad. 134, 127–135 (2018).
    CAS  Google Scholar  More

  • in

    Climate change increases predation risk for a keystone species of the boreal forest

    1.
    Romero, G. Q. et al. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8, 1087–1091 (2018).
    Article  Google Scholar 
    2.
    Ims, R. A. et al. Arctic greening and bird nest predation risk across tundra ecotones. Nat. Clim. Change 9, 607–610 (2019).
    Article  Google Scholar 

    3.
    Stenseth, N. et al. Snow conditions may create an invisible barrier for lynx. Proc. Natl Acad. Sci. USA 101, 10632–10634 (2004).
    CAS  Article  Google Scholar 

    4.
    Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change induced camouflage mismatch in a seasonally colour moulting mammal. Ecol. Lett. 19, 299–307 (2016).
    Article  Google Scholar 

    5.
    Post, E., Peterson, R. O., Stenseth, N. C. & McLaren, B. E. Ecosystem consequences of wolf behavioural response to climate. Nature 401, 905–907 (1999).
    CAS  Article  Google Scholar 

    6.
    Iles, D. T., Rockwell, R. F. & Koons, D. N. Shifting vital rate correlations alter predicted population responses to increasingly variable environments. Am. Nat. 193, E57–E64 (2019).
    Article  Google Scholar 

    7.
    Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328 (2018).
    Article  Google Scholar 

    8.
    Myers, J. H. Population cycles: generalities, exceptions and remaining mysteries. Proc. R. Soc. B 285, 20172841 (2018).
    Article  Google Scholar 

    9.
    Boutin, S. et al. Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. Oikos 74, 69–80 (1995).
    Article  Google Scholar 

    10.
    Murray, D. L. & Boutin, S. The influence of snow on lynx and coyote movements: does morphology affect behavior? Oecologia 88, 463–469 (1991).
    Article  Google Scholar 

    11.
    Penczykowski, R. M., Connolly, B. M. & Barton, B. T. Winter is changing: trophic interactions under altered snow regimes. Food Webs 13, 80–91 (2017).
    Article  Google Scholar 

    12.
    Cornulier, T. et al. Europe-wide dampening of population cycles in keystone herbivores. Science 340, 63–66 (2013).
    CAS  Article  Google Scholar 

    13.
    Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).
    CAS  Article  Google Scholar 

    14.
    Ims, R. A., Henden, J.-A. & Killengreen, S. T. Collapsing population cycles. Trends Ecol. Evol. 23, 79–86 (2008).
    Article  Google Scholar 

    15.
    Hodges, K. et al. in Ecosystem Dynamics of the Boreal Forest (eds Krebs, C. et al.) 141–178 (Oxford Univ. Press, 2001).

    16.
    Oli, M. K. et al. Demography of snowshoe hare population cycles. Ecology 101, e02969 (2020).
    Article  Google Scholar 

    17.
    Peacock, S. Projected twenty-first-century changes in temperature, precipitation, and snow cover over North America in CCSM4. J. Clim. 25, 4405–4429 (2012).
    Article  Google Scholar 

    18.
    Krebs, C. J. et al. What factors determine cyclic amplitude in the snowshoe hare (Lepus americanus) cycle? Can. J. Zool. 92, 1039–1048 (2014).
    Article  Google Scholar 

    19.
    Yan, C., Stenseth, N. C., Krebs, C. J. & Zhang, Z. Linking climate change to population cycles of hares and lynx. Glob. Change Biol. 19, 3263–3271 (2013).
    Google Scholar 

    20.
    Studd, E. K. et al. Use of acceleration and acoustics to classify behavior, generate time budgets, and evaluate responses to moonlight in free-ranging snowshoe hares. Front. Ecol. Evol. 7, e154 (2019).
    Article  Google Scholar 

    21.
    Mills, L. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Natl Acad. Sci. USA 110, 7360–7365 (2013).
    CAS  Article  Google Scholar 

    22.
    Wilson, E. C., Shipley, A. A., Zuckerberg, B., Peery, M. Z. & Pauli, J. N. An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conserv. Lett. 12, e12614 (2019).
    Article  Google Scholar 

    23.
    Guillaumet, A., Bowman, J., Thornton, D. & Murray, D. L. The influence of coyote on Canada lynx populations assessed at two different spatial scales. Community Ecol. 16, 135–146 (2015).
    Article  Google Scholar 

    24.
    Peers, M. J. L., Thornton, D. H. & Murray, D. L. Reconsidering the specialist–generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS ONE 7, e51488 (2012).
    CAS  Article  Google Scholar 

    25.
    Bowler, B., Krebs, C., O’Donoghue, M. & Hone, J. Climatic amplification of the numerical response of a predator population to its prey. Ecology 95, 1153–1161 (2014).
    Article  Google Scholar 

    26.
    Krebs, C. J., Boutin, S. & Boonstra, R. (eds) Ecosystem Dynamics of the Boreal Forest (Oxford Univ. Press, 2001).

    27.
    O’Donoghue, M., Boutin, S., Krebs, C. & Hofer, E. Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80, 150–162 (1997).
    Article  Google Scholar 

    28.
    Hodges, K. in Ecology and Conservation of Lynx in the United States (eds Ruggiero, L. F. et al.) 117–161 (Univ. Press of Colorado, 2000).

    29.
    Brown, R. D. & Mote, P. W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 22, 2124–2145 (2009).
    Article  Google Scholar 

    30.
    Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710 (2013).
    Article  Google Scholar 

    31.
    Kielland, K., Olson, K. & Euskirchen, E. Demography of snowshoe hares in relation to regional climate variability during a 10-year population cycle in interior Alaska. Can. J. Res. 40, 1265–1272 (2010).
    Article  Google Scholar 

    32.
    Humphries, M. M., Studd, E. K., Menzies, A. K. & Boutin, S. To everything there is a season: summer-to-winter food webs and the functional traits of keystone species. Integr. Comp. Biol. 57, 961–976 (2017).
    Article  Google Scholar 

    33.
    Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13275 (2020).

    34.
    Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).
    Article  Google Scholar 

    35.
    Krebs, C. J. et al. The Community Ecological Monitoring Program Annual Data Report (Univ. of British Columbia, 2018).

    36.
    Zeileis, A., Grothendieck, G., Ryan, J., Ulrich, J. & Andrews, F. zoo: S3 infrastructure for regular and irregular time series (Z’s ordered observations). R package version 1.8-8 (2019).

    37.
    Fieberg, J. & Delgiudice, G. D. What time is it? Choice of time origin and scale in extended proportional hazards models. Ecology 90, 1687–1697 (2009).
    Article  Google Scholar 

    38.
    Murray, D. L. et al. Death from anthropogenic causes is partially compensatory in recovering wolf populations. Biol. Conserv. 143, 2514–2524 (2010).
    Article  Google Scholar 

    39.
    Murray, D. & Bastille-Rousseau, G. in Population Ecology in Practice (eds Murray, D. L. & Sandercock, B.) 123–156 (Wiley-Blackwell, 2020).

    40.
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference (Springer, 2002).

    41.
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
    Article  Google Scholar 

    42.
    McLellan, B. N. Some mechanisms underlying variation in vital rates of grizzly bears on a multiple use landscape. J. Wildl. Manag. 79, 749–765 (2015).
    Article  Google Scholar 

    43.
    Lunn, M. & McNeil, D. Applying Cox regression to competing risks. Biometrics 51, 524–532 (1995).
    CAS  Article  Google Scholar 

    44.
    Bastille-Rousseau, G. et al. Phase-dependent climate–predator interactions explain three decades of variation in neonatal caribou survival. J. Anim. Ecol. 85, 445–456 (2016).
    Article  Google Scholar 

    45.
    Murray, D. L., Bastille-Rousseau, G., Hornseth, M., Row, J. & Thornton, D. H. in Population Ecology in Practice (eds Murray, D. L. & Sandercock, B.) 17–46 (Wiley-Blackwell, 2020).

    46.
    Hodges, K. E., Krebs, C. J. & Sinclair, A. R. E. Snowshoe hare demography during a cyclic population low. J. Anim. Ecol. 68, 581–594 (1999).
    Article  Google Scholar 

    47.
    Boutin, S., Gilbert, B. S., Krebs, C. J., Sinclair, A. R. E. & Smith, J. N. M. The role of dispersal in the population dynamics of snowshoe hares. Can. J. Zool. 63, 106–115 (1984).
    Article  Google Scholar 

    48.
    Gillis, E. A. Survival of juvenile hares during a cyclic population increase. Can. J. Zool. 76, 1949–1956 (1998).
    Article  Google Scholar 

    49.
    Graf, P. M., Wilson, R. P., Qasem, L., Hackländer, K. & Rosell, F. The use of acceleration to code for animal behaviours; a case study in free-ranging Eurasian beavers Castor fiber. PLoS ONE 10, 1–17 (2015).
    Google Scholar  More

  • in

    Frequency of mispackaging of Prochlorococcus DNA by cyanophage

    1.
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.
    CAS  PubMed  Google Scholar 
    2.
    Braakman R, Follows MJ, Chisholm SW. Metabolic evolution and the self-organization of ecosystems. Proc Natl Acad Sci USA. 2017;114:E3091–100.
    CAS  PubMed  Google Scholar 

    3.
    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.
    CAS  PubMed  Google Scholar 

    4.
    Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.
    CAS  PubMed  Google Scholar 

    6.
    Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. Elife. 2019;8:e41043.
    PubMed  PubMed Central  Google Scholar 

    7.
    Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell. 2019;178:820–34.e14.
    CAS  PubMed  Google Scholar 

    8.
    Bentkowski P, Van Oosterhout C, Mock T. A model of genome size evolution for prokaryotes in stable and fluctuating environments. Genome Biol Evol. 2015;7:2344–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Larkin AA, Blinebry SK, Howes C, Lin Y, Loftus SE, Schmaus CA, et al. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME J. 2016;10:1555–67.
    PubMed  PubMed Central  Google Scholar 

    10.
    Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343:183–6.
    CAS  PubMed  Google Scholar 

    11.
    Biller SJ, McDaniel LD, Breitbart M, Rogers E, Paul JH, Chisholm SW. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 2017;11:394–404.
    CAS  PubMed  Google Scholar 

    12.
    Taton A, Erikson C, Yang Y, Rubin BE, Rifkin SA, Golden JW, et al. The circadian clock and darkness control natural competence in cyanobacteria. Nat Commun. 2020;11:1688.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Popa O, Dagan T. Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol. 2011;14:615–23.
    CAS  PubMed  Google Scholar 

    14.
    Popa O, Landan G, Dagan T. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J. 2016;11:543–54.
    PubMed  PubMed Central  Google Scholar 

    15.
    Touchon M, Moura de Sousa JA, Rocha EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol. 2017;38:66–73.
    CAS  PubMed  Google Scholar 

    16.
    Jiang SC, Paul JH. Gene transfer by transduction in the marine environment. Appl Environ Microbiol. 1998;64:2780–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Kenzaka T, Tani K, Nasu M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 2010;4:648–59.
    CAS  PubMed  Google Scholar 

    18.
    Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158.
    PubMed  PubMed Central  Google Scholar 

    19.
    Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.
    CAS  PubMed  Google Scholar 

    20.
    Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol. 2017;340:1–11.
    Google Scholar 

    21.
    Parsons RJ, Breitbart M, Lomas MW, Carlson CA. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME J. 2012;6:273–84.
    CAS  PubMed  Google Scholar 

    22.
    Clokie MRJ, Millard AD, Wilson WH, Mann NH. Encapsidation of host DNA by bacteriophages infecting marine Synechococcus strains. FEMS Microbiol Ecol. 2003;46:349–52.
    CAS  PubMed  Google Scholar 

    23.
    Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6:417–24.
    CAS  PubMed  Google Scholar 

    24.
    Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8.
    PubMed  Google Scholar 

    25.
    Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, Chee MSJ, et al. Genome hypermobility by lateral transduction. Science. 2018;362:207–12.
    CAS  PubMed  Google Scholar 

    26.
    Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:180154–11.
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Sabehi G, Lindell D. The P-SSP7 cyanophage has a linear genome with direct terminal repeats. PLoS ONE. 2012;7:e36710.
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol. 2009;502:91–111.
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Mašlaňová I, Doškař J, Varga M, Kuntová L, Mužík J, Malúšková D, et al. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ Microbiol Rep. 2012;5:66–73.
    PubMed  Google Scholar 

    31.
    Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.
    CAS  PubMed  Google Scholar 

    32.
    Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS ONE. 2015;10:e0142962–17.
    PubMed  PubMed Central  Google Scholar 

    33.
    Clokie MRJ, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J. 2010;7:291.
    PubMed  PubMed Central  Google Scholar 

    34.
    Frois-Moniz K. Host/virus interactions in the marine cyanobacterium Prochlorococcus. Massachusetts Institute of Technology; 2014.

    35.
    Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.
    CAS  PubMed  Google Scholar 

    37.
    Moore LR, Chisholm SW. Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol Oceanogr. 1999;44:628–38.
    Google Scholar 

    38.
    Liu R, Liu Y, Chen Y, Zhan Y, Zeng Q. Cyanobacterial viruses exhibit diurnal rhythms during infection. Proc Natl Acad Sci USA. 2019;63:201819689–201814082.
    Google Scholar 

    39.
    Thompson LR, Zeng Q, Chisholm SW. Gene expression patterns during light and dark infection of Prochlorococcus by cyanophage. PLoS ONE. 2016;11:e0165375–20.
    PubMed  PubMed Central  Google Scholar 

    40.
    Puxty RJ, Evans DJ, Millard AD, Scanlan DJ. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 2018;12:1273–86.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–89.
    CAS  PubMed  Google Scholar 

    42.
    Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. Transfer of photosynthesis genes to and from Prochlorococcus viruses. PNAS. 2004;101:11013–8.
    CAS  PubMed  Google Scholar 

    43.
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.
    CAS  PubMed  Google Scholar 

    44.
    Demory D, Liu R, Chen Y, Zhao F, Coenen AR, Zeng Q, et al. Linking light-dependent life history traits with population dynamics for Prochlorococcus and cyanophage. mSystems. 2020;5:e00586–19.
    PubMed  PubMed Central  Google Scholar 

    45.
    Jia Y, Shan J, Millard A, Clokie MRJ, Mann NH. Light-dependent adsorption of photosynthetic cyanophages to Synechococcus sp. WH7803. FEMS Microbiol Lett. 2010;310:120–6.
    CAS  PubMed  Google Scholar 

    46.
    Cooper WJ, Zika RG, Petasne RG, Plane JM. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ Sci Technol. 1988;22:1156–60.
    CAS  PubMed  Google Scholar 

    47.
    Gerringa LJA, Rijkenberg MJA, Timmermans R, Buma AGJ. The influence of solar ultraviolet radiation on the photochemical production of H2O2 in the equatorial Atlantic Ocean. J Sea Res. 2004;51:3–10.
    CAS  Google Scholar 

    48.
    Morris JJ, Johnson ZI, Szul MJ, Keller M, Zinser ER. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean’s surface. PLoS ONE. 2011;6:e16805.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Ziegelhoffer EC, Donohue TJ. Bacterial responses to photo-oxidative stress. Nat Rev Microbiol. 2009;7:856–63.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl Environ Microbiol. 2008;74:4530–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio. 2012;3:e00036–12.
    PubMed  PubMed Central  Google Scholar 

    52.
    Zinser ER. Cross-protection from hydrogen peroxide by helper microbes: the impacts on the cyanobacterium Prochlorococcus and other beneficiaries in marine communities. Environ Microbiol Rep. 2018;10:1–35.
    Google Scholar 

    53.
    Mella-Flores D, Six C, Ratin M, Partensky F, Boutte C, Le Corguillé G, et al. Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress. Front Microbiol. 2012;3:285.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Blot N, Mella-Flores D, Six C, Le Corguillé G, Boutte C, Peyrat A, et al. Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. Plant Physiol. 2011;156:1934–54.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Abrashev R, Krumova E, Dishliska V, Eneva R, Engibarov S, Abrashev I, et al. Differential effect of paraquat and hydrogen peroxide on the oxidative stress response in Vibrio Cholerae Non O1 26/06. Biotechnol Biotechnol Equip. 2011;25:72–6.
    Google Scholar 

    56.
    Lindell D. The genus Prochlorococcus, Phylum Cyanobacteria. Prokaryotes. 2014; 829–45.

    57.
    Zinser ER. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. Environ Microbiol Rep. 2018;10:412–27.
    CAS  PubMed  Google Scholar 

    58.
    Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, et al. Quantitative insights into the cyanobacterial cell economy. Elife. 2019;8:273.
    Google Scholar 

    59.
    Doron S, Fedida A, Hernández-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.
    CAS  PubMed  Google Scholar 

    60.
    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA. 2011;108:E757–64.
    CAS  PubMed  Google Scholar 

    61.
    Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.
    CAS  PubMed  Google Scholar 

    62.
    Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11:443–54.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Kolowrat C, Partensky F, Mella-Flores D, Le Corguillé G, Boutte C, Blot N, et al. Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511. BMC Microbiol. 2010;10:204.
    PubMed  PubMed Central  Google Scholar 

    64.
    Laurenceau R, Bliem C, Osburne MS, Becker JW, Biller SJ, Cubillos-Ruiz A, et al. Toward a genetic system in the marine cyanobacterium Prochlorococcus. Access Microbiol. 2020;2:acmi000107.
    Google Scholar 

    65.
    Abedon ST. Phage-Antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics. 2019;8:182.
    CAS  PubMed Central  Google Scholar 

    66.
    Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev. 2019;32:31–25.
    Google Scholar 

    67.
    Schmidt C. Phage therapy’s latest makeover. Nat Biotechnol. 2019;37:1–6.
    Google Scholar 

    68.
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465–70.
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction–modification systems. Proc Natl Acad Sci USA. 2016;113:5658–63.
    CAS  PubMed  Google Scholar 

    70.
    Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE. 2011;6:e17549.
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Brown-Jaque M, Calero-Cáceres W, Espinal P, Rodríguez-Navarro J, Miró E, González-López JJ, et al. Antibiotic resistance genes in phage particles isolated from human feces and induced from clinical bacterial isolates. Int J Antimicrob Agents. 2017;51:1–35.
    Google Scholar 

    72.
    Larrañaga O, Brown-Jaque M, Quirós P, Gómez-Gómez C, Blanch AR, Rodríguez-Rubio L, et al. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Environ Int. 2018;115:133–41.
    PubMed  Google Scholar 

    73.
    Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.
    CAS  Google Scholar 

    74.
    Biller SJ, Coe A, Martin-Cuadrado A-B, Chisholm SW. Draft genome sequence of Alteromonas macleodii strain MIT1002, isolated from an enrichment culture of the marine Cyanobacterium Prochlorococcus. Genome Announc. 2015;3:e00967–15.
    PubMed  PubMed Central  Google Scholar 

    75.
    Berube PM, Biller SJ, Kent AG, Berta-Thompson JW, Roggensack SE, Roache-Johnson KH, et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 2014;9:1195–207.
    PubMed  PubMed Central  Google Scholar 

    76.
    Olson RJ, Chisholm SW, Zettler ER, Altabet MA, Dusenberry JA. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res A. 1990;37:1033–51.
    Google Scholar 

    77.
    Cuervo A, Dans PD, Carrascosa JL, Orozco M, Gomila G, Fumagalli L. Direct measurement of the dielectric polarization properties of DNA. Proc Natl Acad Sci USA. 2014;111:E3624–30.
    CAS  PubMed  Google Scholar 

    78.
    Fang P-A, Wright ET, Weintraub ST, Hakala K, Wu W, Serwer P, et al. Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo. J Mol Biol. 2008;384:1384–99.
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Shen PS, Domek MJ, Sanz-Garcia E, Makaju A, Taylor RM, Hoggan R, et al. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup. J Virol. 2012;86:7907–17.
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Manning KA, Quiles-Puchalt N, Penadés JR, Dokland T. A novel ejection protein from bacteriophage 80α that promotes lytic growth. Virology. 2018;525:237–47.
    CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:e144.
    PubMed  PubMed Central  Google Scholar  More

  • in

    Mapping the forest disturbance regimes of Europe

    1.
    State of Europe’s Forests 2015 Report (Forest Europe, 2015).
    2.
    Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W. & Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biol. 21, 299–313 (2015).
    Google Scholar 

    3.
    Ciais, P. et al. Carbon accumulation in European forests. Nat. Geosci. 1, 425–429 (2008).
    CAS  Google Scholar 

    4.
    Senf, C. et al. Canopy mortality has doubled across Europe’s temperate forests in the last three decades. Nat. Commun. 9, 4978 (2018).
    Google Scholar 

    5.
    Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biol. 17, 2842–2852 (2011).
    Google Scholar 

    6.
    Senf, C. & Seidl, R. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Global Change Biol. 24, 1201–1211 (2018).
    Google Scholar 

    7.
    Senf, C., Sebald, J. & Seidl, R. Increases in canopy mortality and their impact on the demographic structure of Europe’s forests. Preprint at bioRxiv https://doi.org/10.1101/2020.03.30.015818 (2020).

    8.
    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).
    CAS  Google Scholar 

    9.
    Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).
    CAS  Google Scholar 

    10.
    Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).
    Google Scholar 

    11.
    Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manage. 259, 698–709 (2010).
    Google Scholar 

    12.
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manage. 259, 660–684 (2010).
    Google Scholar 

    13.
    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).
    CAS  Google Scholar 

    14.
    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).
    Google Scholar 

    15.
    Seidl, R. The shape of ecosystem management to come: anticipating risks and fostering resilience. BioScience 64, 1159–1169 (2014).
    Google Scholar 

    16.
    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
    Google Scholar 

    17.
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
    Google Scholar 

    18.
    Bebi, P. et al. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. Forest Ecol. Manage. 388, 43–56 (2017).
    CAS  Google Scholar 

    19.
    Kulakowski, D., Bebi, P. & Rixen, C. The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 120, 216–225 (2011).
    Google Scholar 

    20.
    Munteanu, C. et al. Legacies of 19th century land use shape contemporary forest cover. Glob. Environ. Change 34, 83–94 (2015).
    Google Scholar 

    21.
    Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temeprate forest biome. Nat. Commun. 9, 4355 (2018).

    22.
    Lindenmayer, D. B. et al. Salvage harvesting policies after natural disturbance. Science 303, 1303 (2004).
    CAS  Google Scholar 

    23.
    Senf, C., Müller, J. & Seidl, R. Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landsc. Ecol. 34, 2837–2850 (2019).

    24.
    Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).
    Google Scholar 

    25.
    Janda, P. et al. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecol. Manage. 388, 67–78 (2017).
    Google Scholar 

    26.
    Vacchiano, G., Garbarino, M., Lingua, E. & Motta, R. Forest dynamics and disturbance regimes in the Italian Apennines. Forest Ecol. Manage. 388, 57–66 (2017).
    Google Scholar 

    27.
    Nagel, T. A. et al. The natural disturbance regime in forests of the Dinaric Mountains: a synthesis of evidence. Forest Ecol. Manage. 388, 29–42 (2017).
    Google Scholar 

    28.
    Stephens, S. L. et al. Temperate and boreal forest mega-fires: characteristics and challenges. Front. Ecol. Environ. 12, 115–122 (2014).
    Google Scholar 

    29.
    Brang, P. et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87, 492–503 (2014).
    Google Scholar 

    30.
    Kulha, N. A. et al. At what scales and why does forest structure vary in naturally dynamic boreal forests? An analysis of forest landscapes on two continents. Ecosystems 22, 709–724 (2019).
    Google Scholar 

    31.
    Duncker, P. S. et al. Classification of forest management approaches. Ecol. Soc. 17, 51 (2012).

    32.
    Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. Forest Ecol. Manage. 315, 160–172 (2014).
    Google Scholar 

    33.
    Boncina, A. History, current status and future prospects of uneven-aged forest management in the Dinaric region: an overview. Forestry 84, 467–478 (2011).
    Google Scholar 

    34.
    Kulakowski, D. et al. A walk on the wild side: disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecol. Manage. 388, 120–131 (2017).
    Google Scholar 

    35.
    Kuuluvainen, T., Tahvonen, O. & Aakala, T. Even-aged and uneven-aged forest management in boreal Fennoscandia: a review. AMBIO 41, 720–737 (2012).
    Google Scholar 

    36.
    Kuemmerle, T., Hostert, P., Radeloff, V. C., Perzanowski, K. & Kruhlov, I. Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine. Ecol. Appl. 17, 1279–1295 (2007).
    Google Scholar 

    37.
    Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).
    Google Scholar 

    38.
    San-Miguel-Ayanz, J., Moreno, J. M. & Camia, A. Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. Forest Ecol. Manage. 294, 11–22 (2013).
    Google Scholar 

    39.
    Mori, A. S. & Kitagawa, R. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: a global meta-analysis. Biol. Conserv. 175, 65–73 (2014).
    Google Scholar 

    40.
    Meigs, G. W. et al. More ways than one: mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. Forest Ecol. Manage. 406, 410–426 (2017).
    Google Scholar 

    41.
    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 170, 121–132 (2015).
    Google Scholar 

    42.
    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
    Google Scholar 

    43.
    Potapov, P. V. et al. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 159, 28–43 (2015).
    Google Scholar 

    44.
    Senf, C., Pflugmacher, D., Hostert, P. & Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 130, 453–463 (2017).
    Google Scholar 

    45.
    Kennedy, R. E. et al. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 122, 117–133 (2012).
    Google Scholar 

    46.
    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens. Environ. 158, 220–234 (2015).
    Google Scholar 

    47.
    Cohen, W. B., Yang, Z. & Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation. Remote Sens. Environ. 114, 2911–2924 (2010).
    Google Scholar 

    48.
    Pflugmacher, D., Rabe, A., Peters, M. & Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 221, 583–595 (2019).
    Google Scholar 

    49.
    Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910 (2010).
    Google Scholar 

    50.
    Kennedy, R. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. 10, 691 (2018).

    51.
    Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).
    Google Scholar 

    52.
    Flood, N. Seasonal composite landsat TM/ETM+ images using the medoid (a multi-dimensional median). Remote Sens. 5, 6481–6500 (2013).
    Google Scholar 

    53.
    Pflugmacher, D., Cohen, W. B. & E. Kennedy, R. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ. 122, 146–165 (2012).
    Google Scholar 

    54.
    Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E. & Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 205, 131–140 (2018).
    Google Scholar 

    55.
    Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 170, 166–177 (2015).
    Google Scholar 

    56.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 

    57.
    Cohen, W. et al. How similar are forest disturbance maps derived from different landsat time series algorithms? Forests 8, 98 (2017).
    Google Scholar 

    58.
    Birch, C. P. D., Oom, S. P. & Beecham, J. A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 206, 347–359 (2007).
    Google Scholar 

    59.
    Bright, B. C., Hudak, A. T., Kennedy, R. E. & Meddens, A. J. H. Landsat time series and Lidar as predictors of live and dead basal area across five bark beetle-affected forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 3440–3452 (2014).
    Google Scholar 

    60.
    Wilcox, R. R. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy (Springer, 2010). More

  • in

    A guide to ecosystem models and their environmental applications

    1.
    Lindenmayer, D. et al. The complementarity of single-species and ecosystem-oriented research in conservation research. Oikos 116, 1220–1226 (2007).
    Google Scholar 
    2.
    Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).
    Google Scholar 

    3.
    Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13427 (2019).

    4.
    Buckley, Y. M. & Han, Y. Managing the side effects of invasion control. Science 344, 975–976 (2014).
    CAS  Google Scholar 

    5.
    Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).
    Google Scholar 

    6.
    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).
    CAS  Google Scholar 

    7.
    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079 (2011).
    CAS  Google Scholar 

    8.
    Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Embrace complexity to improve conservation decision making. Nat. Ecol. Evol. 1, 1588 (2017).
    Google Scholar 

    9.
    Dorresteijn, I. et al. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape. Proc. R. Soc. B, https://doi.org/10.1098/rspb.2015.1602 (2015).

    10.
    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).
    Google Scholar 

    11.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765 (2013).
    CAS  PubMed Central  PubMed  Google Scholar 

    12.
    Peters, D. P. C. & Okin, G. S. A Toolkit for ecosystem ecologists in the time of big science. Ecosystems 20, 259–266 (2017).
    Google Scholar 

    13.
    Fulton, E. A. Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171–183 (2010).
    Google Scholar 

    14.
    Waltner-Toews, D., Kay James, J., Neudoerffer, C. & Gitau, T. Perspective changes everything: managing ecosystems from the inside out. Front. Ecol. Environ. 1, 23–30 (2003).
    Google Scholar 

    15.
    Evans, M. R., Norris, K. J. & Benton, T. G. Predictive ecology: systems approaches. Philos. Trans. R. Soc. B 367, 163–169 (2012).
    Google Scholar 

    16.
    Smith, A. D. M., Fulton, E. J., Hobday, A. J., Smith, D. C. & Shoulder, P. Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES J. Mar. Sci. 64, 633–639 (2007).
    Google Scholar 

    17.
    Baker, C. M. et al. A novel approach to assessing the ecosystem-wide impacts of reintroductions. Ecol. Appl. 29, https://doi.org/10.1002/eap.1811 (2018).

    18.
    Purves, D. et al. Ecosystems: time to model all life on Earth. Nature 493, 295 (2013).
    CAS  Google Scholar 

    19.
    Sutherland, W. J. Predicting the ecological consequences of environmental change: a review of the methods. J. Appl. Ecol. 43, 599–616 (2006).
    Google Scholar 

    20.
    Seidl, R. To model or not to model, that is no longer the question for ecologists. Ecosystems 20, 222–228 (2017).
    PubMed Central  PubMed  Google Scholar 

    21.
    Rastetter, E. B. Modeling for understanding v. modeling for numbers. Ecosystems 20, 215–221 (2017).
    Google Scholar 

    22.
    Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).
    Google Scholar 

    23.
    Schweiger, E. W., Grace, J. B., Cooper, D., Bobowski, B. & Britten, M. Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere 7, e01548 (2016).
    Google Scholar 

    24.
    Evans, M. R. Modelling ecological systems in a changing world. Philos. Trans. R. Soc. B 367, 181–190 (2012).
    Google Scholar 

    25.
    Fulton, E. A., Smith, A. D. M. & Johnson, C. R. Effect of complexity on marine ecosystem models. Mar. Ecol. Prog. Ser. 253, 1–16 (2003).
    Google Scholar 

    26.
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12097–12912 (2019).
    Google Scholar 

    27.
    Lindenmayer, D. et al. A checklist for ecological management of landscapes for conservation. Ecol. Lett. 11, 78–91 (2007).
    Google Scholar 

    28.
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
    Google Scholar 

    29.
    Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).
    Google Scholar 

    30.
    Dambacher, J. M., Li, H. W. & Rossignol, P. A. Qualitative predictions in model ecosystems. Ecol. Model. 161, 79–93 (2003).
    Google Scholar 

    31.
    Baker, C. M., Holden, M. H., Plein, M., McCarthy, M. A. & Possingham, H. P. Informing network management using fuzzy cognitive maps. Biol. Conserv. 224, 122–128 (2018).
    Google Scholar 

    32.
    Dexter, N., Ramsey, D. S., MacGregor, C. & Lindenmayer, D. Predicting ecosystem wide impacts of wallaby management using a fuzzy cognitive map. Ecosystems 15, 1363–1379 (2012).
    Google Scholar 

    33.
    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).
    CAS  PubMed  Google Scholar 

    34.
    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).
    CAS  PubMed Central  PubMed  Google Scholar 

    35.
    Harfoot, M. B. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).
    PubMed Central  PubMed  Google Scholar 

    36.
    Fulton, E. A. et al. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188 (2011).
    Google Scholar 

    37.
    Priester, C. R., Melbourne-Thomas, J., Klocker, A. & Corney, S. Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts. Ecol. Model. 359, 372–382 (2017).
    CAS  Google Scholar 

    38.
    McCann, R. K., Marcot, B. G. & Ellis, R. Bayesian belief networks: applications in ecology and natural resource management. Can. J. Res. 36, 3053–3062 (2006).
    Google Scholar 

    39.
    Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).
    Google Scholar 

    40.
    Lester, R. E. & Fairweather, P. G. Ecosystem states: creating a data-derived, ecosystem-scale ecological response model that is explicit in space and time. Ecol. Model. 222, 2690–2703 (2011).
    CAS  Google Scholar 

    41.
    Lester, R. E., Fairweather, P. G., Webster, I. T. & Quin, R. A. Scenarios involving future climate and water extraction: ecosystem states in the estuary of Australia’s largest river. Ecol. Appl. 23, 984–998 (2013).
    PubMed  Google Scholar 

    42.
    Dubois, D. M. A model of patchiness for prey–predator plankton populations. Ecol. Model. 1, 67–80 (1975).
    Google Scholar 

    43.
    Pauly, D., Christensen, V. & Walters, C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697–706 (2000).
    Google Scholar 

    44.
    Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. Plos ONE 9, e84242 (2014).
    PubMed Central  PubMed  Google Scholar 

    45.
    Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).
    Google Scholar 

    46.
    Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).
    Google Scholar 

    47.
    Crabtree, S. A., Bird, D. W. & Bird, R. B. Subsistence transitions and the simplification of ecological networks in the Western Desert of Australia. Hum. Ecol. 47, https://doi.org/10.1007/s10745-019-0053-z (2019).

    48.
    Planque, B. Projecting the future state of marine ecosystems, “la grande illusion”? ICES J. Mar. Sci. 73, 204–208 (2015).
    Google Scholar 

    49.
    Walters, C. & Maguire, J.-J. Lessons for stock assessment from the northern cod collapse. Rev. Fish. Biol. Fish. 6, 125–137 (1996).
    Google Scholar 

    50.
    García-Díaz, P. et al. A concise guide to developing and using quantitative models in conservation management. Conserv. Sci. Pract. 1, e11 (2019).
    PubMed Central  PubMed  Google Scholar 

    51.
    Morse, N. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, https://doi.org/10.5751/ES-06192-190212 (2014).

    52.
    Fulton, E. & Gorton, R. Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations (FRDC/CSIRO, 2014).

    53.
    Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987 (2008).
    CAS  Google Scholar 

    54.
    Plagányi, É. E. Models for an Ecosystem Approach to Fisheries (FAO, 2007).

    55.
    Hunter, D. O., Britz, T., Jones, M. & Letnic, M. Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol. Conserv. 191, 428–435 (2015).
    Google Scholar 

    56.
    Baker, C., Bode, M. & McCarthy, M. Models that predict ecosystem impacts of reintroductions should consider uncertainty and distinguish between direct and indirect effects. Biol. Conserv. 196, 211–212 (2016).
    Google Scholar 

    57.
    Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447 (2011).
    Google Scholar 

    58.
    Morello, E. B. et al. Model to manage and reduce crown-of-thorns starfish outbreaks. Mar. Ecol. Prog. Ser. 512, 167–183 (2014).
    Google Scholar 

    59.
    Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: best practices. Fish Fish. 17, 303–334 (2016).
    Google Scholar 

    60.
    Edwards, C. T. T., Bunnefeld, N., Balme, G. A. & Milner-Gulland, E. J. Data-poor management of African lion hunting using a relative index of abundance. Proc. Natl Acad. Sci. USA 111, 539–543 (2014).
    CAS  Google Scholar 

    61.
    Mapstone, B. et al. Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives. Fish. Res. 94, 315–329 (2008).
    Google Scholar 

    62.
    Roemer, G. W., Donlan, C. J. & Courchamp, F. Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proc. Natl Acad. Sci. USA 99, 791–796 (2002).
    CAS  Google Scholar 

    63.
    Lurgi, M., Ritchie, E. G. & Fordham, D. A. Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: the importance of multispecies interactions. J. Appl. Ecol. 55, 2396–2407 (2018).
    Google Scholar 

    64.
    Raymond, B., McInnes, J., Dambacher, J. M., Way, S. & Bergstrom, D. M. Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J. Appl. Ecol. 48, 181–191 (2011).
    Google Scholar 

    65.
    Levins, R. Discussion paper: the qualitative analysis of partially specified systems. Ann. NY Acad. Sci. 231, 123–138 (1974).
    CAS  Google Scholar 

    66.
    Baker, C. M., Gordon, A. & Bode, M. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction. Conserv. Biol. 31, 376–384 (2017).
    Google Scholar 

    67.
    Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).
    CAS  Google Scholar 

    68.
    Trifonova, N., Maxwell, D., Pinnegar, J., Kenny, A. & Tucker, A. Predicting ecosystem responses to changes in fisheries catch, temperature, and primary productivity with a dynamic Bayesian network model. ICES J. Mar. Sci. 74, 1334–1343 (2017).
    Google Scholar 

    69.
    McCarthy, M. A., Andelman, S. J. & Possingham, H. P. Reliability of relative predictions in population viability analysis. Conserv. Biol. 17, 982–989 (2003).
    Google Scholar 

    70.
    Jamiyansharav, K., Fernández-Giménez, M. E., Angerer, J. P., Yadamsuren, B. & Dash, Z. Plant community change in three Mongolian steppe ecosystems 1994–2013: applications to state-and-transition models. Ecosphere 9, https://doi.org/10.1002/ecs2.2145 (2018).

    71.
    Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K. & Clout, M. N. Spatial heterogeneity of mesopredator release within an oceanic island system. Proc. Natl Acad. Sci. USA 104, 20862–20865 (2007).
    CAS  Google Scholar 

    72.
    Melbourne-Thomas, J. et al. Regional‐scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. Ecol. Appl. 21, 1380–1398 (2011).
    Google Scholar 

    73.
    Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).
    Google Scholar 

    74.
    Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3, 899–903 (2013).
    Google Scholar 

    75.
    Fedriani, J. M. et al. Assisting seed dispersers to restore oldfields: an individual‐based model of the interactions among badgers, foxes and Iberian pear trees. J. Appl. Ecol. 55, 600–611 (2018).
    Google Scholar 

    76.
    Breckling, B., Müller, F., Reuter, H., Hölker, F. & Fränzle, O. Emergent properties in individual-based ecological models—introducing case studies in an ecosystem research context. Ecol. Model. 186, 376–388 (2005).
    Google Scholar 

    77.
    Grimm, V., Ayllón, D. & Railsback, S. F. Next-generation individual-based models integrate biodiversity and ecosystems: yes we can, and yes we must. Ecosystems 20, 229–236 (2017).
    Google Scholar 

    78.
    Walters, C., Christensen, V. & Pauly, D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish. Biol. Fish. 7, 139–172 (1997).
    Google Scholar 

    79.
    Pachzelt, A., Rammig, A., Higgins, S. & Hickler, T. Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecol. Model. 263, 92–102 (2013).
    Google Scholar 

    80.
    Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).
    Google Scholar 

    81.
    Bodini, A. Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can. J. Fish. Aquat. Sci. 57, 1999–2009 (2000).
    Google Scholar 

    82.
    Greenville, A. C., Wardle, G. M. & Dickman, C. R. Desert mammal populations are limited by introduced predators rather than future climate change. R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.170384 (2017).

    83.
    Pasanen‐Mortensen, M. et al. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change. J. Anim. Ecol. 86, 566–576 (2017).
    Google Scholar 

    84.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Google Scholar 

    85.
    Bliege Bird, R. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, https://doi.org/10.1038/s41559-018-0576-5 (2018).

    86.
    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).
    Google Scholar 

    87.
    Kuijper, D. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B 283, 20161625 (2016).
    Google Scholar 

    88.
    Moran, D., Laycock, H. & White, P. C. L. The role of cost-effectiveness analysis in conservation decision-making. Biol. Conserv. 143, 826–827 (2010).
    Google Scholar 

    89.
    Evans, M. R. et al. Predictive systems ecology. Proc. R. Soc. B 280, https://doi.org/10.1098/rspb.2013.1452 (2013).

    90.
    Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).
    Google Scholar 

    91.
    Plagányi, É. E. et al. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22 (2014).
    Google Scholar 

    92.
    Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 34, 121–131 (2018).
    Google Scholar 

    93.
    Chadès, I., Curtis, J. M. R. & Martin, T. G. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone. Conserv. Biol. 26, 1016–1025 (2012).
    Google Scholar 

    94.
    Pesendorfer, M. et al. Oak habitat recovery on California’s largest islands: scenarios for the role of corvid seed dispersal. J. Appl. Ecol. 55, 1185–1194 (2017).
    Google Scholar 

    95.
    Schuwirth, N. et al. How to make ecological models useful for environmental management. Ecol. Model. 411, 108784 (2019).
    Google Scholar 

    96.
    Davis, K. J., Chadès, I., Rhodes, J. R. & Bode, M. General rules for environmental management to prioritise social–ecological systems research based on a value of information approach. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13425 (2019).

    97.
    Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2015).
    Google Scholar 

    98.
    Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evol. 2, 465–474 (2018).
    Google Scholar 

    99.
    Lohr, C. A. et al. Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere 8, e01822 (2017).
    Google Scholar 

    100.
    Nicol, S., Fuller Richard, A., Iwamura, T. & Chadès, I. Adapting environmental management to uncertain but inevitable change. Proc. R. Soc. B 282, 20142984 (2015).
    Google Scholar 

    101.
    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).
    Google Scholar 

    102.
    Andersen, K. H., Jacobsen, N. S. & Farnsworth, K. D. The theoretical foundations for size spectrum models of fish communities. Can. J. Fish. Aquat. Sci. 73, 575–588 (2015).
    Google Scholar 

    103.
    Nicol, S., Sabbadin, R., Peyrard, N. & Chadès, I. Finding the best management policy to eradicate invasive species from spatial ecological networks with simultaneous actions. J. Appl. Ecol. 54, 1989–1999 (2017).
    Google Scholar 

    104.
    Milner‐Gulland, E. J., Shea, K. & Punt, A. Embracing uncertainty in applied ecology. J. Appl. Ecol. 54, 2063–2068 (2017).
    PubMed Central  PubMed  Google Scholar 

    105.
    Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).
    CAS  Google Scholar 

    106.
    Gregr, E. J. & Chan, K. M. A. Leaps of faith: how implicit assumptions compromise the utility of ecosystem models for decision-making. BioScience 65, 43–54 (2015).
    Google Scholar 

    107.
    Hill, S. L. et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336 (2007).
    Google Scholar 

    108.
    Spence, M. A. et al. A general framework for combining ecosystem models. Fish Fish. 19, 1031–1042 (2018).
    Google Scholar 

    109.
    Wood, S. N. & Thomas, M. B. Super-sensitivity to structure in biological models. Proc. R. Soc. B 266, 565–570 (1999).
    Google Scholar 

    110.
    Runge, M. C., Converse, S. J. & Lyons, J. E. Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol. Conserv. 144, 1214–1223 (2011).
    Google Scholar 

    111.
    Bal, P. et al. Quantifying the value of monitoring species in multi‐species, multi‐threat systems. Methods Ecol. Evol. 9, 1706–1717 (2018).
    Google Scholar 

    112.
    Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).
    Google Scholar 

    113.
    Wallach, A. D. et al. Trophic cascades in 3D: network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).
    Google Scholar 

    114.
    Ruscoe, W. A. et al. Unexpected consequences of control: competitive vs. predator release in a four‐species assemblage of invasive mammals. Ecol. Lett. 14, 1035–1042 (2011).
    Google Scholar 

    115.
    Bower, S. D. et al. Making tough choices: picking the appropriate conservation decision‐making tool. Conserv. Lett. 11, e12418 (2017).
    Google Scholar 

    116.
    Stouffer, D. B. All ecological models are wrong, but some are useful. J. Anim. Ecol. 88, 192–195 (2019).
    Google Scholar 

    117.
    Olsen, E. et al. Ecosystem model skill assessment. Yes we can! PLoS ONE 11, e0146467 (2016).
    PubMed Central  PubMed  Google Scholar 

    118.
    Cattarino, L. et al. Information uncertainty influences conservation outcomes when prioritizing multi‐action management efforts. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13147 (2018).

    119.
    Greenville, A. C. et al. Biodiversity responds to increasing climatic extremes in a biome-specific manner. Sci. Total Environ. 634, 382–393 (2018).
    CAS  Google Scholar 

    120.
    de Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).
    Google Scholar 

    121.
    Curtsdotter, A. et al. Ecosystem function in predator–prey food webs — confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).
    Google Scholar 

    122.
    Greenville, A. C., Nguyen, V., Wardle, G. M. & Dickman, C. R. Making the most of incomplete long-term datasets: the MARSS solution. Aust. Zool. 39, 733–747 (2018).
    Google Scholar 

    123.
    Tulloch, A. I. T., Chadès, I. & Possingham, H. P. Accounting for complementarity to maximize monitoring power for species management. Conserv. Biol. 27, 988–999 (2013).
    Google Scholar 

    124.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    Google Scholar 

    125.
    Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).
    PubMed Central  PubMed  Google Scholar 

    126.
    Tittensor, D., Coll, M. & Walker, N. D. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).
    Google Scholar 

    127.
    Prowse, T. A. A. et al. An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere 7, e01238 (2016).
    Google Scholar 

    128.
    McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).
    Google Scholar 

    129.
    Chee, Y. E. & Wintle, B. A. Linking modelling, monitoring and management: an integrated approach to controlling overabundant wildlife. J. Appl. Ecol. 47, 1169–1178 (2010).
    Google Scholar 

    130.
    Plagányi, É. E. & Butterworth, D. S. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey. Ecol. Appl. 22, 748–761 (2012).
    Google Scholar 

    131.
    Kinzey, D. & Punt, A. E. Multispecies and single‐species models of fish population dynamics: comparing parameter estimates. Nat. Resour. Model. 22, 67–104 (2009).
    Google Scholar 

    132.
    Bode, M. & Possingham, H. Can culling a threatened species increase its chance of persisting? Ecol. Model. 201, 11–18 (2007).
    Google Scholar 

    133.
    Poudel, D. & Sandal, L. K. Stochastic optimization for multispecies fisheries in the Barents Sea. Nat. Resour. Model. 28, 219–243 (2015).
    Google Scholar 

    134.
    Gray, R. & Wotherspoon, S. Increasing model efficiency by dynamically changing model representations. Environ. Model. Softw. 30, 115–122 (2012).
    Google Scholar 

    135.
    Punt, A. E. & Hobday, D. Management strategy evaluation for rock lobster, Jasus edwardsii, off Victoria, Australia: accounting for uncertainty in stock structure. N. Zeal. J. Mar. Freshw. Res. 43, 485–509 (2009).
    Google Scholar 

    136.
    Colléter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).
    Google Scholar 

    137.
    Angelini, S. et al. An ecosystem model of intermediate complexity to test management options for fisheries: a case study. Ecol. Model. 319, 218–232 (2016).
    Google Scholar 

    138.
    Tulloch, V. J., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish. Fish. 19, 117–137 (2018).
    Google Scholar 

    139.
    Geary, W. L., Ritchie, E. G., Lawton, J. A., Healey, T. R. & Nimmo, D. G. Incorporating disturbance into trophic ecology: fire history shapes mesopredator suppression by an apex predator. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13125 (2018).

    140.
    Marcot, B. G., Holthausen, R. S., Raphael, M. G., Rowland, M. M. & Wisdom, M. J. Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement. Ecol. Manag. 153, 29–42 (2001).
    Google Scholar 

    141.
    Elmhagen, B., Ludwig, G., Rushton, S. P., Helle, P. & Lindén, H. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. J. Anim. Ecol. 79, 785–794 (2010).
    CAS  PubMed  Google Scholar 

    142.
    Ritchie, E. et al. Ecosystem restoration with teeth: what role for predators? Trends Ecol. Evol. 27, 265–271 (2012).
    Google Scholar 

    143.
    Borsuk, M. E., Stow, C. A. & Reckhow, K. H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecol. Model. 173, 219–239 (2004).
    Google Scholar 

    144.
    Christensen, V. & Walters, C. J. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).
    Google Scholar  More