More stories

  • in

    The global biological microplastic particle sink

    For this study we use the University of Victoria Earth System Climate Model (UVic ESCM) version 2.940,41,42. The UVic ESCM is an intermediate-complexity earth system model with a resolution of 1.8(^circ ) latitude by 3.6(^circ ) longitude and 19 ocean depth levels. The surface ocean level is 50 m deep. The model contains a two dimensional energy moisture-balance model of the atmosphere, as well as representations of sea ice, ocean circulation and sediments, and terrestrial carbon. The particular biogeochemical version used here includes three phytoplankton functional types, namely diazotrophs (DZ), mixed phytoplankton (PH), and small phytoplankton and calcifiers (CO)43. The model pre-industrial climate has been previously described43, as has its response to business-as-usual atmospheric (hbox{CO}_2) forcing44. The following sections describe the MP model. A model schematic is presented in Fig. 6.
    Figure 6

    Microplastic model schematic. Marine snow is produced as a fixed fraction of the free detritus (DET) pool. MP aggregates with this marine snow, entering the (hbox{MP}_A) (marine snow entrained MP) pool. (hbox{MP}_A) held in aggregates sinks at the aggregate rate, with a fraction reaching the seafloor considered to be lost from the ocean. Detrital remineralisation releases the (hbox{MP}_A) from marine snow aggregates at the rate of detrital remineralisation. MP is also grazed by zooplankton and excreted into a pellet-bound (hbox{MP}_Z) pool. Pellet-bound (hbox{MP}_Z) sinks and is released back to the free MP pool at the rate of detrital remineralisation, but some is also lost at the seafloor. Details on the biogeochemical aspects of the model are previously described43.

    Full size image

    Model description
    The base model43 was modified in order to quantify the roles of two of the three theorised biological export pathways on MP (aggregation in marine snow and zooplankton ingestion; for now, we neglect an explicit representation of biofouling29). We distinguish between detritus that becomes faecal pellets, and the physical aggregation of marine snow, by introducing a new faecal pellet tracer to divert 50% of zooplankton particulate losses into a separate detrital pool27. For simplicity, this new pellet detrital pool has the same sinking parameterisation as the original detritus. Using the same sinking rates for both detrital classes produces ocean biogeochemistry that is identical to the previously published versions of the model. In the model, plastic particles only interact passively with marine snow (they do not, for example, modify aggregate sinking rates), but they interact actively with zooplankton grazing (described below). Plastic particles have been observed to both increase and decrease the sinking rates of marine snow21,22 and decrease the sinking rates of faecal pellets20,38, but for simplicity and as a first approximation we neglect these effects in our model.
    Three MP compartments are introduced; “free” (unattached) microplastic (MP), microplastic aggregated in marine snow ((hbox{MP}_A)), and microplastic in zooplankton faecal pellets ((hbox{MP}_Z)). All MP are considered to represent particles within a biologically active size range, but this size (and the particles’ composition) is never made explicit. These assumptions could bias modelled MP towards polymer types favoured by generic zooplankton34 and particle sizes in the lower end33,34 of the defined range of microplastic size. However, our parameter sensitivity testing in the Supplemental Information tests various fractional uptake rates that implicitly consider size and particle composition in how biologically “active” the MP pool is. As with all model ocean tracers, microplastic concentrations (MP) vary according to:

    $$begin{aligned} frac{dmathrm {MP}}{dt} = T + S(mathrm {MP}) end{aligned}$$
    (1)

    With T including all transport terms and S representing all source minus sink terms. The source and sink terms for free microplastic are:

    $$begin{aligned} S(mathrm {MP}) = Emis – S(mathrm {MP}_A) – S(mathrm {MP}_Z) + w_p frac{delta mathrm {MP} times F_R}{delta z} end{aligned}$$
    (2)

    Microplastic is emitted to the ocean (Emis) along coastlines and major shipping routes using a scaling against regional (hbox{CO}_2) emissions (a dataset provided with the standard UVic ESCM version 2.9 package download), in order to approximate degree of industrialisation and population density in this first version of this model. The rate of emission is a proportion of the total annual plastic waste generation ((F_T))45. For now, abiotic degradation of macroplastics as a source of microplastics to the ocean is neglected to keep the model simple and focus on biological transport. The MP then exchanges with the marine snow ((hbox{MP}_A)) and zooplankton faecal pellet ((hbox{MP}_Z)) pools. A fast particle rising rate ((w_p)) of 1.9 cm per second46 is prescribed to a fraction ((F_R)) of the free MP in each grid cell below the surface level as an approximation of positive buoyancy. An alternative approach would be to assign a uniform rise rate to all MP particles, and to subject the value of the rise rate to sensitivity testing. However, a weakness of this alternative approach is that the many types of plastic in the ocean have different characteristic buoyancies, which could produce unique particle pathways18. In this alternative approach it would be more appropriate to explicitly simulate multiple MP types in the model (which we sought to avoid in this first modelling effort for the sake of simplicity). Nevertheless, we conducted a sensitivity test using several different rise rates, and the effect of reducing the mean rise rate was similar to reducing the fraction assigned a rise rate.
    In the current model version there are no abiotic breakdown rates (i.e., photo-degradation39) or respiration losses47 removing MP from circulation.
    MP is modelled to aggregate in marine snow as:

    $$begin{aligned} S(mathrm {MP}_A) = A_{upt} – A_{rel} – w_Dfrac{delta mathrm {MP}_A}{delta z} end{aligned}$$
    (3)

    MP particles are taken up ((A_{upt})) via a Monod function applied to the rate of marine snow formation (sources of detritus; (D_A) in nitrogen units, multiplied by an aggregation fraction, (F_A)) in order to approximate an increased likelihood of MP/marine snow encounter with increasing MP concentrations that approaches a level of saturation at high MP concentrations:

    $$begin{aligned} A_{upt} = frac{mathrm {MP}}{k_P + mathrm {MP}} times source(D_A) times F_A end{aligned}$$
    (4)

    The uptake constant ((k_P)) is subjected to sensitivity testing, as is the fraction of marine snow aggregation ((F_A)). In this parameterisation, the aggregation of MP in marine snow represents the net uptake of MP into aggregates by both aggregation and biofouling processes. Biofouling occurs mostly in the upper 50 m35, which is the entire surface layer grid cell in our model. The entrainment-release cycle of biofouling is implicit in our parameterisation via the microbial loop, which is temperature-dependent. Sensitivity testing of the (k_P) and (F_A) parameters therefore represent testing of the net aggregation due to non-zooplankton biological aggregation effects. MP is released ((A_{rel})) from marine snow at the rate of detrital remineralisation ((mu _D)). This rate is temperature-dependent and results in higher rates of release in the low latitudes.

    $$begin{aligned} A_{rel} = mu _D mathrm {MP}_A end{aligned}$$
    (5)

    A particle sinking term ((w_D)) applies to marine snow-associated MP, and has the same value as sinking detritus. The base unit of all MP tracers is number of plastic particles. As a first approximation we assume that all marine snow aggregates forming from free detritus have the characteristic of diatom aggregates (8.8 (upmu )g C per aggregate48). Model detritus in mmol N is converted to mmol C using Redfield stoichiometry, which is then converted to (upmu )g C to calculate the maximum number of aggregates. The maximum number of aggregates is then multiplied by the aggregation fraction (F_A), to calculate (hbox{MP}_A) source and sink rates. MP is conserved for all MP tracers when surface flux balances sedimentary loss rate. What fraction of MP particles reaching the seafloor via aggregate and faecal pellet ballasting are returned to the water column ((F_B)) is tested. For simplicity and as a first approximation, detritus ballasted by calcite, and calcite43, are assumed to not aggregate with microplastic.
    Similarly, for MP associated with zooplankton, sources and sinks are:

    $$begin{aligned} S(mathrm {MP}_Z) = P_{upt} – P_{rel} – w_Dfrac{delta mathrm {MP}_Z}{delta z} end{aligned}$$
    (6)

    The calculation of MP particle ingestion rate ((P_{upt})) is the same as for other food sources37. A grazing preference ((psi _{MP})) for MP is subjected to sensitivity testing. This sensitivity testing implicitly examines effects such as biofouling altering the grazing preference of zooplankton for MP. It is assumed that 100% of ingested MP will be egested as faecal pellets and released ((P_{rel})) to the “free” MP pool at the rate of faecal pellet remineralisation, with no plastic remaining in the gut and no plastic being metabolised by the zooplankton. Ingesting MP also results in a reduced zooplankton carbon uptake rate19, with implications for primary and export production (although, Redfield ratios are conserved). Pellet-bound (hbox{MP}_Z) is considered to sink at the rate of faecal pellets ((w_D)).
    Plastic is eaten by zooplankton in this model. The Holling II grazing formulation37 is extended to include MP. Grazing of MP ((G_{MP})) is calculated as:

    $$begin{aligned} begin{aligned} G_{MP}&= mu _Z^{max} times Z times mathrm {MP}times R_{M:P}times R_{F:MP}times R_{N:F}times psi _{MP}\&quad times ,(psi _{CO}CO+psi _{PH}PH+psi _{DZ}DZ+psi _{Detr_{tot}}Detr_{tot}\&quad +,psi_{Z}Z+psi _{MP}mathrm {MP}times R_{M:P}times R_{F:MP}times R_{N:F} + k_Z)^{-1} end{aligned} end{aligned}$$
    (7)

    The maximum potential grazing rate ((mu _Z^{max})) is scaled by zooplankton population (Z) and MP availability (MP), and weighted by a food preference ((psi _{MP})), total prey (CO, PH, DZ, (hbox{Detr}_{{tot}})), and Z representing the food sources described in44 and a half saturation constant for zooplankton ingestion ((k_z)). Grazing preferences must always sum to 1 in the model, so sensitivity testing of (psi _{MP}) requires that all grazing preferences must also be adjusted. This is done by varying (psi _{MP}) but requiring (psi _{DZ}) always be set to 0.1 (on the basis that diazotrophs are a poor food source, and to minimize disruption to the nitrogen cycle). The remaining allowance is equally split by the other (psi ) terms. The calculation occurs in N units, so MP is first converted to grams of MP using the MP particle-to-mass conversion of 236E3 tonnes MP = 51.2E12 particles MP ((R_{M:P}))4. It is assumed that 1 g MP will roughly replace 1 g of food (at Redfield ratios; (R_{N:F}) is the conversion from mol Food to mol N) in the zooplankton’s diet, and MP is thus converted to mmol N for the grazing calculation. However, we subject this ratio ((R_{F:MP})) to sensitivity testing. Zooplankton uptake of plastic is therefore:

    $$begin{aligned} P_{upt} = frac{G_{MP}}{R_{M:P}times R_{F:MP}times R_{N:F}} end{aligned}$$
    (8)

    MP particles are released from faecal pellets via remineralisation, which occurs at the same rate as the remineralisation of aggregates:

    $$begin{aligned} P_{rel} = mu _D mathrm {MP}_Z end{aligned}$$
    (9)

    Model forcing
    The model was integrated at year 1765 boundary conditions (including agricultural greenhouse forcing and land ice) for more than 10,000 years until equilibration was achieved. From year 1765 to 1950, historical (hbox{CO}_2) concentration forcing, and geostrophically adjusted wind anomalies are applied. From 1950 to 2100 the model is forced with a combination of historical (hbox{CO}_2) concentration forcing (to 2000) and a business-as-usual high atmospheric (hbox{CO}_2) concentration projection RCP8.549,50. MP emissions start from 2 million metric tonnes in year 1950 (a total plastic waste generation estimate45), increasing at a rate of 8.4% per year. (hbox{CO}_2) and MP forcing is summarized in Fig. 7. It has been estimated that about 4% of total plastic waste generated enters the ocean30, but that the microplastic mass found at the sea surface represents only about 1% of the annual plastic input to the ocean4. We test a range of input fractions (see Table 2), after applying a mass conversion from tonnes to number of MP particles4. Using a considerable over-estimation of MP pollution rate also implicitly accounts for abiotic degradation of larger plastics.
    Figure 7

    Model forcing from years 1950–2100. Atmospheric (hbox{CO}_2) follows RCP8.5 (panel a). Plastic flux into the ocean is assumed to be some fraction of the total historical and projected plastic waste generation estimate (panel b), with a continuing rate of increase of 8.4% per year45, converted to MP particles using a mass conversion4. Previous estimates of actual total plastic mass flux into the ocean is only about 4% of the total plastic waste generation30, with the MP fraction being a small proportion of that.

    Full size image

    Table 2 Microplastic model parameters and range tested.
    Full size table

    Experimental setup
    A 700-member Latin Hypercube51 was used to test the microplastic parameter space of the model using the forcing described in the previous section. While biological model parameters might also influence microplastic uptake and transport, we limited our initial tests to the new parameters introduced above. A range of values was prescribed to the parameters listed in Table 2, in which the parameter space was randomly sampled with a normal distribution. The objective was to see what can be learned about plastic accumulation in the ocean, when very little is known about plastic/particle interactions and basic processes are still poorly understood. An analysis of the full Latin Hypercube parameter search is provided as Supplemental Information.
    We adopted an incremental approach to increasing model complexity. We started with a control Hypercube where biology was not allowed to take up plastic, in order to first test the physical parameters ((F_T) and (F_R), the fraction of total annual plastic produced entering the ocean as MP, and the fraction assigned a rise rate, respectively). One hundred simulations were performed in this configuration, with the results analysed in the Supplemental Information. We next included passive plastic aggregation in marine snow (MP plus the (hbox{MP}_A) tracer) in a 300 simulation Hypercube, spread across the (k_P) (marine snow uptake coefficient) parameter space (0–1, 1–100, 100–1000 particles (hbox{m}^{-3}), each with 100 Hypercube simulations) in a normal distribution. These 300 simulations explored the 5 relevant MP model parameters: (F_T), (F_R), (F_A) (marine snow aggregation fraction), (k_P), and (F_B) (fractional return to ocean at the seafloor). These results are also provided in the Supplemental Information. Finally, we added active zooplankton-associated plastic (MP, plus (hbox{MP}_A) and (hbox{MP}_Z) tracers) as a third 300-individual Hypercube set. This third Hypercube is similarly split across the (k_P) parameter space in a normal distribution, but with the addition of grazing parameters (psi _{MP}) (MP grazing preference) and (R_{F:MP}) (the food to MP substitution ratio; 7 parameters in total). More

  • in

    Mating type specific transcriptomic response to sex inducing pheromone in the pennate diatom Seminavis robusta

    In this study, we generated a new time-series dataset to investigate the response of dark-synchronized MT+ cultures to SIP− filtrate (6 time points, 0–9 h, Fig. 2a) and to compare expression patterns with two existing datasets on the response of MT− to SIP+ [16, 18] (4 time points, 0–10 h, Fig. 2b). Here, we first report the results of a conventional DE analysis for each dataset separately. Next, we use these results to discover genes or biological processes related to sexual reproduction, either based on their predicted functional annotation or the current literature. Finally, we integrate the results of both the novel and publicly available datasets in an integrative analysis that aims at identifying key genes involved in either a single or both mating types.
    Fig. 2: Transcriptional responses induced by SIP treatment of Seminavis robusta.

    a Multidimensional scaling (MDS) plot for MT+ expression data (0 h–9 h), and (b) MDS plots of two MT− expression datasets (0 h–3 h and 10 h, respectively). Distances between samples in the MDS plot approximate the log2 fold changes of the top 500 genes. c Number of significant DE genes between control and SIP treated cultures for each time point in both mating types. Each dataset was analyzed on a 5% overall FDR (OFDR) level, i.e., the fraction of false positive genes over all rejected genes. The color represents mating type (MT+: red, MT−: blue) and the shade denotes direction of change (dark: downregulated after SIP treatment, light: upregulated after SIP treatment). d Number of significantly enriched GO terms on a 5% FDR level for each time point. The color represents mating type (MT+: red, MT−: blue). A high number of GO terms are discovered in the early time points for MT+, in comparison to the number of DE genes.

    Full size image

    General transcriptional response and identification of key SIP responsive genes
    Multidimensional scaling plots of the RNA-seq data (Fig. 2a, b) showed that in both mating types the dark-to-light transition and time since illumination were the major drivers of gene expression change throughout the experiments. However, as time progresses, the effect of SIP becomes more pronounced. This is supported by DE analysis showing that the number of significant genes increased markedly at later time points (Fig. 2c). Overall, most genes are significantly DE in only a single time point on a 5% overall FDR (OFDR) level (Supplementary Fig. 1B). Combined, on a 5% OFDR level, 4037 genes are DE in response to SIP treatment for MT+, while 5486 genes are found to be DE in MT− in the first 3 h and 6079 genes after 10 h. The stronger response during the first 3 time points in MT− versus MT+ may be the result of the use of a chromatographic fraction of SIP+ for MT− while MT+ cultures were treated with a SIP− containing filtrate. Gene sets for many biological processes were significantly enriched in the conventional lists of DE genes: a total of 1081 and 740 enriched biological process terms were discovered for the response to sex pheromones in MT+ and MT−, respectively (Fig. 2d, Supplemenatry Fig. 2).
    We discovered key genes by developing a statistical integrative analysis workflow that is capable of testing for equivalent, i.e., non-DE, expression between conditions. Coupling equivalence testing in one mating type with DE calls in the other allowed for the discovery of key genes exhibiting mating type specific responses to SIP, while DE calls in both datasets found key genes responsive in both mating types. This workflow revealed 52 key genes responding to SIP in both mating types (SRBs), 12 genes uniquely responding in MT+ (SRPs) and 70 genes uniquely responding in MT− (SRMs) (Fig. 3a, Supplementary Figs. 3, 4, 5). Similar to the conventional DE analysis, the response of MT− was more pronounced compared to MT+, likely due to technical differences such as different protocols for pheromone administration. Remarkably, while in MT− we discovered a comparable number of down- and upregulated SRMs, we only found upregulated SRPs and SRBs, possibly indicating that sexual processes induced by SIPs are mainly driven by the induction of key genes rather than the downregulation of inhibitory genes (Fig. 3a).
    Fig. 3: Visualization and main results of the integrative workflow.

    a Schematic representation of the integrative workflow indicating how SIP responsive genes with a shared response (SRBs) or mating type specific response (SRPs, SRMs) were discovered. Non-responsive genes consist of genes that are equivalently expressed after SIP treatment versus control, or that are very lowly/not expressed (filtered). A log fold change (LFC) cutoff of ±log(3) was used to define responsive (differentially expressed) genes and equivalent genes. At the right side of the panel, log2 fold changes of SRMs, SRPs and SRBs in both mating types are plotted. Each gene is plotted for the time point at which they are differentially expressed. Genes which were not expressed (“filtered”) in the non-responsive mating type are plotted as diamonds. The red horizontal lines represent the fold change cutoff used to determine equivalence and differential expression. The number of discovered genes is indicated in the top left corner of each plot. b Expression of a selection of SIP responsive genes (SRMs, SRPs, SRBs). For each gene, counts per million (CPM) are plotted as a function of time for both mating types. The data points correspond to gene expression of the replicates in each time point and the solid line represents the mean. Data points and lines are colored according to condition, i.e., black for control condition and orange for SIP treatment. c Expression of the five genes belonging to the gene family of SRP12 (Sro2882_g339270). Data are presented in the plots in the same manner as in (b).

    Full size image

    In what follows we will discuss in more detail the genes and pathways that are responding to SIP in both mating types or uniquely in one mating type and link these changes to physiological events in the mating process. In each section, we first discuss key genes highlighted by the integrative analysis (Fig. 3), after which we discuss results from the conventional DE analysis, focussing on selected biological processes (Fig. 4).
    Fig. 4: Gene expression of Seminavis robusta genes involved in mating-related processes.

    a Heatmap of genes related to mitotic and meiotic cell cycle progression, which are differentially expressed (DE) in both mating types in the conventional DE analysis. Each gene is plotted for control and SIP treated conditions in both S. robusta mating types. Genes are specified as row names and are scaled relative to the mean expression, amounting to counts per million (CPM) standardized to zero mean and unit variance for each gene in each mating type separately. Blue indicates low expression, while red indicates high expression. b Expression of genes related to diproline synthesis and reactive oxygen species (ROS) production, which are significantly DE in only one mating type in the conventional DE analysis. CPM are plotted as a function of time for both mating types. The data points correspond to gene expression of the replicates in each time point while the solid line represents the mean. Data points and lines are colored according to condition, i.e., black for control condition and orange for SIP treatment. P5CS = Δ1-pyrroline-5-carboxylate synthetase; P5CR = Δ1-pyrroline-5-carboxylate reductase.

    Full size image

    Responses to SIP conserved in both mating types
    Integrative analysis reveals key genes responsive in both mating types
    A large fraction (22/52) of SRBs, i.e., key genes with a strong response to SIP in both mating types, lack any functional annotation and homology to sequenced genomes of other diatoms (Supplementary Table 2), suggesting that the molecular mechanisms underlying early mating are highly species-specific. The remaining 30 SRBs can be linked to energy metabolism, ROS signaling and meiosis, amongst others. Pyruvate kinase (Sro373_g129070) and isocitrate dehydrogenase (Sro492_g153950), respectively involved in glycolysis and the citric acid cycle, are strongly upregulated in both mating types (Fig. 3b), suggesting an increased energy demand. Interestingly, pyruvate kinase is also upregulated during gametogenesis in the brown alga Saccharina latissima [26] and the parasite Plasmodium berghei [27]. In addition, two enzymes from the pentose phosphate pathway (PPP) are among the SRBs: transketolase (Sro524_g159900) and transaldolase (Sro196_g083630) (Supplementary Fig. 3). The PPP generates NADPH, a reductive compound needed in various metabolic reactions and involved in detoxification of ROS by regenerating glutathione [28, 29]. Furthermore, one SRB encoding a heme peroxidase (Sro1252_g256250) exhibited strong upregulation upon SIP treatment (Fig. 3b). Upregulation of heme peroxidases was also reported during sexual reproduction in other eukaryotes, e.g., mosquitoes (Anopheles gambiae) [30] and fungi [31, 32]. Heme peroxidases promote substrate oxidation in various metabolic pathways and are essential for the detoxification of ROS [33], suggesting that ROS signaling plays a role in the response to SIP, as seen in the green algae Volvox carteri, where high ROS levels trigger sex [34]. Finally, a highly expressed SRB encodes a transmembrane protein containing an Epidermal Growth Factor-like (EGF-like) domain (Sro65_g036830, Fig. 3b), with potential orthologs encoded in pennate and centric diatoms including P. tricornutum and T. pseudonana (BLASTp, E  More

  • in

    Interactions with conspecific outsiders as drivers of cognitive evolution

    1.
    Milton, K. in Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans 285–305 (Clarendon, Oxford, 1988).
    2.
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Article  Google Scholar 

    3.
    Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 13971 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 1–8 (2017).
    Google Scholar 

    5.
    Byrne, R. W. & Whiten, A. in Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans. https://doi.org/10.2307/2804121 (Clarendon, Oxford, 1988).

    6.
    Dunbar, R. I. M. The social brain hypothesis. Evol. Anthropol. Rev. 6, 178–190 (1998).
    Article  Google Scholar 

    7.
    Ashton, B. J., Thornton, A. & Ridley, A. R. An intraspecific appraisal of the social intelligence hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170288 (2018).
    Article  Google Scholar 

    8.
    Holekamp, K. E. Questioning the social intelligence hypothesis. Trends Cogn. Sci. 11, 65–69 (2007).
    PubMed  Article  Google Scholar 

    9.
    Kern, J. M. & Radford, A. N. Experimental evidence for delayed contingent cooperation among wild dwarf mongooses. Proc. Natl Acad. Sci. USA 115, 6255–6260 (2018).
    CAS  PubMed  Article  Google Scholar 

    10.
    Borgeaud, C. & Bshary, R. Wild vervet monkeys trade tolerance and specific coalitionary support for grooming in experimentally induced conflicts. Curr. Biol. 25, 3011–3016 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Moll, H. & Tomasello, M. Cooperation and human cognition: the Vygotskian intelligence hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 362, 639–648 (2007).
    Article  Google Scholar 

    12.
    van Schaik, C. P., Isler, K. & Burkart, J. M. Explaining brain size variation: from social to cultural brain. Trends Cogn. Sci. 16, 277–284 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Lucas, J. R., Gentry, K. E., Sieving, K. E. & Freeberg, T. M. Communication as a fundamental part of Machiavellian intelligence. J. Comp. Psychol. 132, 442–454 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Dunbar, R. I. M. & Shultz, S. Why are there so many explanations for primate brain evolution? Philos. Trans. R. Soc. B Biol. Sci. 372, 20160244 (2017).
    Article  Google Scholar 

    15.
    Dunbar, R. I. M. & Shultz, S. Understanding primate brain evolution. Philos. Trans. R. Soc. B Biol. Sci. 362, 649–658 (2007).
    CAS  Article  Google Scholar 

    16.
    Shultz, S. & Dunbar, R. I. M. Social bonds in birds are associated with brain size and contingent on the correlated evolution of life-history and increased parental investment. Biol. J. Linn. Soc. 100, 111–123 (2010).
    Article  Google Scholar 

    17.
    Shultz, S. & Dunbar, R. I. M. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B Biol. Sci. 274, 2429–2436 (2007).
    Article  Google Scholar 

    18.
    Lemoine, S. et al. Between-group competition impacts reproductive success in wild chimpanzees. Curr. Biol. 30, 312–318.e3 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303 (2001).
    Article  Google Scholar 

    20.
    Hardy, I. C. W. & Briffa, M. Animal Contests (Cambridge Univ. Press, Cambridge, 2013).
    Google Scholar 

    21.
    Radford, A. N., Majolo, B. & Aureli, F. Within-group behavioural consequences of between-group conflict: a prospective review. Proc. R. Soc. B Biol. Sci. 283, 20161567 (2016).
    Article  Google Scholar 

    22.
    van Schaik, C. P. in Comparative Socioecology (eds. Standen, V. & Foley, R. A.) 195–218 (Blackwell, 1989).

    23.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    24.
    Sterck, E. H. M. The evolution of female social relationships in nonhuman primates. Behav. Ecol. Sociol. 291–309 (1997).

    25.
    Wilson, M. L. & Wrangham, R. W. Intergroup relations in chimpanzees. Annu. Rev. Anthropol. 32, 363–392 (2003).
    Article  Google Scholar 

    26.
    Moser-Purdy, C., MacDougall-Shackleton, E. A. & Mennill, D. J. Enemies are not always dear: male song sparrows adjust dear enemy effect expression in response to female fertility. Anim. Behav. 126, 17–22 (2017).
    Article  Google Scholar 

    27.
    Gherardi, F. Fighting behavior in hermit crabs: the combined effect of resource-holding potential and resource value in Pagurus longicarpus. Behav. Ecol. Sociobiol. 59, 500–510 (2006).
    Article  Google Scholar 

    28.
    Alexander, R. D. in The Human Revolution (eds. Mellars, P. & Stringer, C.) 455–513 (Edinburgh Univ. Press, Edinburgh, 1984).

    29.
    Hamilton, W. D. in ASA Studies 4: Biosocial Anthropology (ed. Fox, R.) 133–153 (Malaby, 1975).

    30.
    Grueter, C. C. Home range overlap as a driver of intelligence in primates. Am. J. Primatol. 77, 418–424 (2015).
    PubMed  Article  Google Scholar 

    31.
    Reichert, M. S. & Quinn, J. L. Cognition in contests: mechanisms, ecology, and evolution. Trends Ecol. Evol. 32, 773–785 (2017).
    PubMed  Article  Google Scholar 

    32.
    Shettleworth, S. J. Cognition, Evolution, and Behavior (Oxford Univ. Press, 2010).

    33.
    Young, A. J., Spong, G. & Clutton-Brock, T. Subordinate male meerkats prospect for extra-group paternity: alternative reproductive tactics in a cooperative mammal. Proc. R. Soc. B Biol. Sci. 274, 1603–1609 (2007).
    Article  Google Scholar 

    34.
    Radford, A. N. & du Plessis, M. A. Territorial vocal rallying in the green woodhoopoe: factors affecting contest length and outcome. Anim. Behav. 68, 803–810 (2004).
    Article  Google Scholar 

    35.
    Geissmann, T. & Orgeldinger, M. The relationship between duet songs and pair bonds in siamangs, Hylobates syndactylus. Anim. Behav. 60, 805–809 (2000).
    CAS  PubMed  Article  Google Scholar 

    36.
    Ridley, A. R. in Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution and Behavior. 115–132. https://doi.org/10.1017/CBO9781107338357.008 (Cambridge Univ. Press, 2016).

    37.
    Bee, M. A. Habituation and sensitization of aggression in bullfrogs (Rana catesbeiana): testing the dual-process theory of habituation. J. Comp. Psychol. 115, 307–316 (2001).
    CAS  PubMed  Article  Google Scholar 

    38.
    Sheehan, M. J. & Tibbetts, E. A. Selection for individual recognition and the evolution of polymorphic identity signals in Polistes paper wasps. J. Evol. Biol. 23, 570–577 (2010).
    CAS  PubMed  Article  Google Scholar 

    39.
    Cant, M. A., Otali, E. & Mwanguhya, F. Fighting and mating between groups in a cooperatively breeding mammal, the banded mongoose. Ethology 108, 541–555 (2002).
    Article  Google Scholar 

    40.
    Braga Goncalves, I. & Radford, A. N. Experimental evidence that intruder and group member attributes affect outgroup defence and associated within-group interactions in a social fish. Proc. R. Soc. B Biol. Sci. 286, 20191261 (2019).
    Article  Google Scholar 

    41.
    Szipl, G., Ringler, E. & Bugnyar, T. Attacked ravens flexibly adjust signalling behaviour according to audience composition. Proc. R. Soc. B Biol. Sci. 285, 20180375 (2018).
    Article  Google Scholar 

    42.
    Noser, R. & Byrne, R. W. Mental maps in chacma baboons (Papio ursinus): Using inter-group encounters as a natural experiment. Anim. Cogn. 10, 331–340 (2007).
    PubMed  Article  Google Scholar 

    43.
    Radford, A. N. Preparing for battle? Potential intergroup conflict promotes current intragroup affiliation. Biol. Lett. 7, 26–29 (2011).
    PubMed  Article  Google Scholar 

    44.
    Christensen, C. & Radford, A. N. Dear enemies or nasty neighbors? Causes and consequences of variation in the responses of group-living species to territorial intrusions. Behav. Ecol. 29, 1004–1013 (2018).
    Article  Google Scholar 

    45.
    Temeles, E. J. The role of neighbours in territorial systems: when are they ‘dear enemies’? Anim. Behav. 47, 339–350 (1994).
    Article  Google Scholar 

    46.
    Radford, A. N. Group-specific vocal signatures and neighbour-stranger discrimination in the cooperatively breeding green woodhoopoe. Anim. Behav. 70, 1227–1234 (2005).
    Article  Google Scholar 

    47.
    Hyman, J. & Hughes, M. Territory owners discriminate between aggressive and nonaggressive neighbours. Anim. Behav. 72, 209–215 (2006).
    Article  Google Scholar 

    48.
    Monclús, R., Saavedra, I. & de Miguel, J. Context-dependent responses to neighbours and strangers in wild European rabbits (Oryctolagus cuniculus). Behav. Process. 106, 17–21 (2014).
    Article  Google Scholar 

    49.
    Thompson, F. J., Marshall, H. H., Vitikainen, E. I. K. & Cant, M. A. Causes and consequences of intergroup conflict in cooperative banded mongooses. Anim. Behav. 126, 31–40 (2017).
    Article  Google Scholar 

    50.
    McComb, K., Packer, C. & Pusey, A. Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim. Behav. 47, 379–387 (1994).
    Article  Google Scholar 

    51.
    Descovich, K. A., Lisle, A. T., Johnston, S., Nicolson, V. & Phillips, C. J. C. Differential responses of captive southern hairy-nosed wombats (Lasiorhinus latifrons) to the presence of faeces from different species and male and female conspecifics. Appl. Anim. Behav. Sci. 138, 110–117 (2012).
    Article  Google Scholar 

    52.
    Christensen, C., Kern, J. M., Bennitt, E. & Radford, A. N. Rival group scent induces changes in dwarf mongoose immediate behavior and subsequent movement. Behav. Ecol. 27, 1627–1634 (2016).
    Google Scholar 

    53.
    Trimmer, P. C. & Houston, A. I. An evolutionary perspective on information processing. Top. Cogn. Sci. 6, 312–330 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Mares, R., Young, A. J., Levesque, D. L., Harrison, N. & Clutton-Brock, T. H. Responses to intruder scents in the cooperatively breeding meerkat: sex and social status differences and temporal variation. Behav. Ecol. 22, 594–600 (2011).
    Article  Google Scholar 

    55.
    Humphries, D. J., Finch, F. M., Bell, M. B. V. & Ridley, A. R. Vocal cues to identity: pied babblers produce individually distinct but not stable loud calls. Ethology 122, 609–619 (2016).
    Article  Google Scholar 

    56.
    Burgener, N., Dehnhard, M., Hofer, H. & East, M. L. Does anal gland scent signal identity in the spotted hyaena? Anim. Behav. 77, 707–715 (2009).
    Article  Google Scholar 

    57.
    Lanchester, F. W. W. Aircraft in Warfare: the Dawn of the Fourth Arm. (Constable and Company Limited, 1916).

    58.
    Wilson, M. L., Britton, N. F. & Franks, N. R. Chimpanzees and the mathematics of battle. Proc. R. Soc. B Biol. Sci. 269, 1107–1112 (2002).
    Article  Google Scholar 

    59.
    Plowes, N. J. R. & Adams, E. S. An empirical test of Lanchester’s square law: mortality during battles of the fire ant Solenopsis invicta. Proc. R. Soc. B Biol. Sci. 272, 1809–1814 (2005).
    Article  Google Scholar 

    60.
    Radford, A. N. Territorial vocal rallying in the green woodhoopoe: influence of rival group size and composition. Anim. Behav. 66, 1035–1044 (2003).
    Article  Google Scholar 

    61.
    van Schaik, C. P. et al. Male monkeys use punishment and coercion to de-escalate costly intergroup fights. Proc. R. Soc. B Biol. Sci. 285, 20172323 (2018).
    Article  Google Scholar 

    62.
    Boydston, E. E., Morelli, T. L. & Holekamp, K. E. Sex differences in territorial behavior exhibited by the spotted hyena (Hyaenidae, Crocuta crocuta). Ethology 107, 369–385 (2001).
    Article  Google Scholar 

    63.
    McComb, K., Pusey, A., Packer, C. & Grinnell, J. Female lions can identify potentially infanticidal males from their roars. Proc. R. Soc. B Biol. Sci. 252, 59–64 (1993).
    ADS  CAS  Article  Google Scholar 

    64.
    Koch, F., Signer, J., Kappeler, P. M. & Fichtel, C. Intergroup encounters in Verreaux’s sifakas (Propithecus verreauxi): who fights and why? Behav. Ecol. Sociobiol. 70, 797–808 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Schindler, S., Radford, A. N. & Schindler, S. Factors influencing within-group conflict over defence against conspecific outsiders seeking breeding positions. Proc. R. Soc. B Biol. Sci. 285, 20181669 (2018).
    Article  Google Scholar 

    66.
    Arseneau-Robar, T. J. M. et al. Female monkeys use both the carrot and the stick to promote male participation in intergroup fights. Proc. R. Soc. B Biol. Sci. 283, 20161817 (2016).
    Article  Google Scholar 

    67.
    Radford, A. N. Duration and outcome of intergroup conflict influences intragroup affiliative behaviour. Proc. R. Soc. B Biol. Sci. 275, 2787–2791 (2008).
    Article  Google Scholar 

    68.
    Tibbetts, E. A., Agudelo, J., Pandit, S. & Riojas, J. Transitive inference in Polistes paper wasps. Biol. Lett. 15, 20190015 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Grosenick, L., Clement, T. S. & Fernald, R. D. Fish can infer social rank by observation alone. Nature 445, 429–432 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Arseneau-Robar, T. J. M., Taucher, A. L., Schnider, A. B., van Schaik, C. P. & Willems, E. P. Intra- and interindividual differences in the costs and benefits of intergroup aggression in female vervet monkeys. Anim. Behav. 123, 129–137 (2017).
    Article  Google Scholar 

    71.
    Kotrschal, A., Räsänen, K., Kristjánsson, B. K., Senn, M. & Kolm, N. Extreme sexual brain size dimorphism in sticklebacks: a consequence of the cognitive challenges of sex and parenting? PLoS ONE 7, e30055 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Garamszegi, L. Z., Eens, M., Erritzøe, J. & Møller, A. P. Sperm competition and sexually size dimorphic brains in birds. Proc. R. Soc. B Biol. Sci. 272, 159–166 (2005).
    Article  Google Scholar 

    73.
    Willems, E. P. & Van Schaik, C. P. Collective action and the intensity of between-group competition in nonhuman primates. Behav. Ecol. 26, 625–631 (2015).
    Article  Google Scholar 

    74.
    Kotrschal, A. et al. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Kotrschal, A., Corral-Lopez, A. & Kolm, N. Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol. Lett. 15 (2019).

    76.
    Tsuboi, M. et al. Comparative support for the expensive tissue hypothesis: big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids. Evolution 69, 190–200 (2015).
    PubMed  Article  Google Scholar 

    77.
    Kotrschal, A., Kolm, N. & Penn, D. J. Selection for brain size impairs innate, but not adaptive immune responses. Proc. R. Soc. B Biol. Sci. 283 (2016).

    78.
    Gervais, M. M., Kline, M., Ludmer, M., George, R. & Manson, J. H. The strategy of psychopathy: primary psychopathic traits predict defection on low-value relationships. Proc. R. Soc. B Biol. Sci. 280, 20122773 (2013).
    Article  Google Scholar 

    79.
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).
    PubMed  Article  Google Scholar 

    80.
    Bruintjes, R., Lynton-Jenkins, J., Jones, J. W. & Radford, A. N. Out-group threat promotes within-group affiliation in a cooperative fish. Am. Nat. 187, 274–282 (2015).
    PubMed  Article  Google Scholar 

    81.
    Mosser, A. & Packer, C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim. Behav. 78, 359–370 (2009).
    Article  Google Scholar 

    82.
    Crofoot, M. C., Gilby, I. C., Wikelski, M. C. & Kays, R. W. Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests. Proc. Natl Acad. Sci. USA 105, 577–581 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    83.
    Shaw, R. C., Boogert, N. J., Clayton, N. S. & Burns, K. C. Wild psychometrics: evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes. Anim. Behav. 109, 101–111 (2015).
    Article  Google Scholar 

    84.
    Buechel, S. D., Boussard, A., Kotrschal, A., van Der Bijl, W. & Kolm, N. Brain size affects performance in a reversal-learning test. Proc. R. Soc. B Biol. Sci. 285, 20172031 (2018).
    Article  Google Scholar 

    85.
    Kotrschal, A., Deacon, A. E., Magurran, A. E. & Kolm, N. Predation pressure shapes brain anatomy in the wild. Evol. Ecol. 31, 619–633 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Ashton, B. J., Ridley, A. R., Edwards, E. K. & Thornton, A. Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature 61, 5985–5991 (2018).
    Google Scholar 

    88.
    Taborsky, B. & Oliveira, R. F. Social competence: an evolutionary approach. Trends Ecol. Evol. 27, 679–688 (2012).
    PubMed  Article  Google Scholar 

    89.
    Gonda, A., Herczeg, G. & Merilä, J. Evolutionary ecology of intraspecific brain size variation: a review. Ecol. Evol. 3, 2751–2764 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Morris-Drake, A. et al. Experimental field evidence that out-group threats influence within-group behavior. Behav. Ecol. 30, 1425–1435 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Hellmann, J. K. & Hamilton, I. M. Intragroup social dynamics vary with the presence of neighbors in a cooperatively breeding fish. Curr. Zool. 65, 21–31 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    92.
    Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B Biol. Sci. 274, 453–464 (2007).
    Article  Google Scholar 

    93.
    Kotrschal, A. et al. The benefit of evolving a larger brain: big-brained guppies perform better in a cognitive task. Anim. Behav. 86, e4–e6 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    94.
    Whiten, A. Social, Machiavellian and cultural cognition: a golden age of discovery in comparative and evolutionary psychology. J. Comp. Psychol. 132, 437–441 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Radford, A. N. & Bruintjes, R. Expanding the link between out-group threats and in-group behavior (a reply to Kavaliers and Choleris). Am. Nat. 189, 459–462 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    96.
    Brown, M. Food and range defence in group-living primates. Anim. Behav. 85, 807–816 (2013).
    Article  Google Scholar 

    97.
    Mirville, M. O. et al. Factors influencing individual participation during intergroup interactions in mountain gorillas. Anim. Behav. 144, 75–86 (2018).
    Article  Google Scholar 

    98.
    Sheldahl, L. A. & Martins, E. P. The territorial behavior of the western fence lizard, Sceloporus occidentalis. Herpetologica 56, 469–479 (2000).
    Google Scholar 

    99.
    Ward, M. P., Alessi, M., Benson, T. J. & Chiavacci, S. J. The active nightlife of diurnal birds: extraterritorial forays and nocturnal activity patterns. Anim. Behav. 88, 175–184 (2014).
    Article  Google Scholar 

    100.
    Feldblum, J. T., Manfredi, S., Gilby, I. C. & Pusey, A. E. The timing and causes of a unique chimpanzee community fission preceding Gombe’s “Four-Year War”. Am. J. Phys. Anthropol. 166, 730–744 (2018).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Alligators in the big city: spatial ecology of American alligators (Alligator mississippiensis) at multiple scales across an urban landscape

    Our work was conducted under a permit from the University of North Florida Institutional Animal Care and Use Committee (permit #18-005).
    Field methods
    We performed nighttime spotlight surveys with an outboard motorboat throughout 2019 to determine relative alligator abundance, distribution, and habitat selection. This technique is an established method for estimating relative population sizes in crocodilians across heterogeneous habitat32. However, a limitation of spotlight surveys is the variation in detection probability caused by different environmental conditions or observers29. To control for these effects, we implemented a standardized survey protocol33,34. All surveys covered the first 8 km of nine tributaries within the lower St. Johns River system, starting at the point where each tributary meets the main channel of the river (Fig. 1). We limited our surveys to the first 8 km because some tributaries contained low bridges that blocked boat access after this point. We chose tributaries that were surrounded by different amounts of urban land cover such that our surveys spanned an urbanization gradient from approximately 5 to 80% urban land cover within 1 km of the river’s edge (Fig. 2). GIS analyses also revealed that land use patterns around the St. Johns River are dynamic, with different urban land cover proportions at 0.1, 1, 3, and 5 km from the water’s edge for each tributary (Fig. 2). To reduce temporal bias, we conducted surveys over the span of 1 year and segregated sampling periods into four distinct seasons (winter [Dec–Feb], spring [Mar–May], summer [Jun–Aug], and fall [Sep–Nov]. We surveyed each tributary one time during the middle month of each season, resulting in a total of four surveys per tributary. We surveyed the tributaries in a quasi-random fashion because the tributaries closest to the mouth of the St. Johns River are under significant tidal influence, so we timed surveys of those tributaries during periods of high tide in order to access the full survey area. We only performed surveys when rainfall was absent and wind speeds were below 16 km/h since these factors have been shown to affect alligator detection probability24. Quasi-random sampling over the span of a year was best suited to randomize environmental conditions that affect nighttime spotlight survey counts, such as water level, temperature, moon phase, and moon illumination24,31,35,36.
    Figure 1

    Map of the tributaries surrounding the lower St. Johns River that were surveyed as part of our study (white areas). From northeast to south: Clapboard Creek, Dunn Creek, Broward River, Trout River, Arlington River, Ortega River, Doctors Lake, Julington Creek, and Black Creek. The map was created with ArcGIS Pro 2.6 (https://arcgis.pro/).

    Full size image

    Figure 2

    Levels of urban development (FLUCCS code 1000) surrounding the tributaries of the St. Johns River that were surveyed in this study. Land use was quantified using 0.1, 1, 3, and 5 km buffers around each tributary transect.

    Full size image

    We began all surveys no earlier than 30 min after sunset and we maintained a constant boat speed of 10–12 km/h. At the start and end of each survey we recorded moon phase, weather conditions, visibility, ambient light, air temperature, water temperature, and salinity. We detected alligator eyeshine primarily using two 1200 lm handheld spotlights, but we also used additional handheld lights (6000 lumens) often throughout the surveys. As soon as we detected eyeshine we approached the alligator at reduced speed. We placed each individual into a size class (30–90 cm [juvenile], 90–180 cm [sub-adult], 180–270 cm [adult], 270–360 cm [large adult], + 360 cm [largest adult]) by estimating the distance between the eyes and the tip of the snout37,38. If an alligator submerged before size estimation could take place, we recorded its length as unknown or simply larger or smaller than 180 cm. At each sighting we recorded global positioning system location using the on-deck boat navigation unit. We measured environmental characteristics at each sighting using a YSI meter (Pro2030; YSI; Yellow Springs, Ohio, USA), a thermometer, and a sky quality meter (SQM; Unihedron; Grimsby, Ontario, Canada).
    We recorded information about habitat characteristics for each sighting following previous studies13,26. We first visually characterized habitat in a 10 m radius circle centered on the alligator sighting location (“used habitat”). We recorded the proportion of open water, emergent vegetation, floating vegetation, anthropogenic structure, and dry ground within the circle, as well as the alligator’s distance from shore, vegetation, and anthropogenic structure. We then visually classified the same habitat characteristics in a 20 × 100 m plot centered on the alligator sighting location and stretching along the shoreline (“available habitat”). If an alligator sighting occurred entirely in open water, then we shifted the available habitat plot to the closest shoreline. For each used habitat circle and available habitat plot, we classified the respective shorelines as natural, hardened, or mixed, depending on if the shore was totally vegetated, subject to anthropogenic armoring, or a mixture of the two types, respectively. We also estimated the proportion of shoreline found within these areas that were covered in naturally growing vegetation rather than anthropogenically altered lawns.
    Land use classification
    We used ArcGIS Pro (ESRI; Redlands, CA, USA) for all spatial data manipulation and visualization. We acquired land use and cover data from the St. Johns River Water Management District (SJRWMD) via the Florida Geographic Data Library. For all analyses we used data from the most recent SJRWMD dataset, which was from 2014.
    We split a 100 k definition polygon of the St. Johns River to create smaller units representing each tributary transect. The resulting features consisted of the main portion of each tributary surveyed where lower order streams that were not surveyed were deleted. Because the extent to which alligators respond to land use changes was not known a priori, we buffered the transect polygon feature for each tributary to 0.1, 1, 3, and 5 km to further clip the SJRWMD land cover and use data layer. By creating four buffers for each of the nine tributaries, we generated a total of 36 land cover and use layers.
    We classified land use types through the Florida Land Use and Cover Classification System (FLUCCS), as cited in SJRWMD metadata documentation. This hierarchical coding scheme contains four levels, of which we used the highest level (level 1) designation. This particular level classifies land use into nine distinct categories. These categories included urban and built-up; agriculture; upland nonforested; upland forests; water; wetlands; barren land; transportation, communication, and utilities; and special classification. For the purposes of this study, we only included defined terrestrial land use types in statistical analyses. These land use types were urban and built-up (e.g., residential, industrial, and recreational areas), agriculture (e.g., cropland, pastures, aquaculture), upland nonforested (e.g., shrub and brushland), upland forests (e.g., coniferous forests, hardwood forests, tree plantations), wetlands (e.g., freshwater/saltwater marshes, mangrove swamps, wet prairies), barren land (e.g., beaches other than swimming beaches, borrow areas, spoil areas), and transportation, communication and utilities (e.g., highways, electrical power facilities, wastewater treatment facilities). We calculated the proportions of each land use type using each respective land use shape area divided by total shape area.
    Statistical analyses
    To determine if environmental conditions and/or land use characteristics affect broad scale alligator distribution, we performed multiple analyses using SPSS (IBM; Armonk, NY, USA). We included all alligator sightings in our analyses, but we did not apply population estimate correction equations to the alligator counts because they tend to underestimate population numbers in crocodilians39. Sighting data used in statistical analyses therefore represent relative alligator abundance, not estimates of true alligator population size. We first checked normality for each variable using Kolmogorov–Smirnov and Shapiro–Wilk tests to determine if parametric or nonparametric tests were appropriate. Normality varied greatly across the suite of variables; therefore, Spearman’s rho and Pearson’s correlation coefficient were used when appropriate. We then performed simple linear regression to determine if there were any direct relationships between relative alligator abundance and individual variables. We performed these tests for alligator counts in each tributary by season and for the average number of sightings per tributary across seasons. We also averaged environmental variables for each tributary by season and for the average value per tributary across seasons. We tested for the effect of land use at all four buffer sizes for each tributary, including all relevant terrestrial land use types.
    We then performed multiple linear regression analyses in a stepwise manner. This modeling system excluded variables found to be highly correlated with other variables (multicollinear) and retained variables that significantly contributed to the model (P ≤ 0.05). We then performed these tests on modified datasets that did not contain the two most saline tributaries to further validate preliminary findings. When more than one significant model was produced for a given data set, we calculated AICc values to rank models while penalizing model complexity and accounting for our small sample sizes.
    To evaluate habitat selection, we compared percent shoreline vegetation and the proportions of habitat characteristics found in the 10 m radius circle to those found in the remaining areas of each respective 20 × 100 m plot using the Wilcoxon signed rank test. When comparisons could be made between two normally distributed groups of data, we used a paired sample t test instead. While comparing used to available habitat data was the basis of the tests, the amount of data per analysis differed between analysis groups. The first group was composed of all habitat selection data across time and space. This “global” dataset was the most robust in terms of sample size but may have been biased by double counting individuals across time. The second group was divided by season, so analyses were performed on all data collected within a season across space. This group removed the bias of double counting individuals but may be affected by variation in the number of sightings per season and tributary. More

  • in

    Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae

    1.
    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577. https://doi.org/10.1038/nrgastro.2012.156 (2012).
    CAS  Article  PubMed  Google Scholar 
    2.
    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267. https://doi.org/10.1126/science.1223813 (2012).
    ADS  CAS  Article  Google Scholar 

    3.
    Zhang, Z., Jiao, S., Li, X. & Li, M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 8, 15634 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
    CAS  PubMed  Article  Google Scholar 

    5.
    Paine, T., Raffa, K. & Harrington, T. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42, 179–206 (1997).
    CAS  PubMed  Article  Google Scholar 

    6.
    Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Fukatsu, T. & Ishikawa, H. A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). J. Insect Physiol. 38, 765–773 (1992).
    Article  Google Scholar 

    8.
    Malacrinò, A., Schena, L., Campolo, O., Laudani, F. & Palmeri, V. Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae. Fungal Ecol. 18, 67–74 (2015).
    Article  Google Scholar 

    9.
    Vega, F. E. & Blackwell, M. Insect-Fungal Associations: Ecology and Evolution (Oxford University Press, Oxford, 2005).
    Google Scholar 

    10.
    Stefanini, I. Yeast-insect associations: it takes guts. Yeast 35, 315–330 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Boyce, A. Bionomics of the walnut husk fly, Rhagoletis completa. Hilgardia 8, 363–579 (1934).
    Article  Google Scholar 

    12.
    Fanson, B. G. & Taylor, P. W. Protein: carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast: sugar ratios. Age 34, 1361–1368 (2012).
    CAS  PubMed  Article  Google Scholar 

    13.
    Moadeli, T., Mainali, B., Ponton, F. & Taylor, P. Evaluation of yeasts in gel larval diet for Queensland fruit fly, Bactrocera tryoni. J. Appl. Entomol. 142, 679–688 (2018).
    CAS  Article  Google Scholar 

    14.
    Nash, W. J. & Chapman, T. Effect of dietary components on larval life history characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae). PLoS ONE 9, e86029 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Nestel, D. & Nemny-Lavy, E. Nutrient balance in medfly, Ceratitis capitata, larval diets affects the ability of the developing insect to incorporate lipid and protein reserves. Entomol. Exp. Appl. 126, 53–60. https://doi.org/10.1111/j.1570-7458.2007.00639.x (2008).
    CAS  Article  Google Scholar 

    16.
    Nestel, D., Nemny-Lavy, E. & Chang, C. L. Lipid and protein loads in pupating larvae and emerging adults as affected by the composition of Mediterranean fruit fly (Ceratitis capitata) meridic larval diets. Arch. Insect Biochem. Physiol. 56, 97–109. https://doi.org/10.1002/arch.20000 (2004).
    CAS  Article  PubMed  Google Scholar 

    17.
    Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177. https://doi.org/10.1111/1365-2664.12688 (2017).
    Article  Google Scholar 

    18.
    Stamps, J. A., Yang, L. H., Morales, V. M. & Boundy-Mills, K. L. Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS ONE 7, e42238. https://doi.org/10.1371/journal.pone.0042238 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Anagnostou, C., Dorsch, M. & Rohlfs, M. Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol. Exp. Appl. 136, 1–11. https://doi.org/10.1111/j.1570-7458.2010.00997.x (2010).
    Article  Google Scholar 

    20.
    Rohlfs, M. & Kürschner, L. Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J. Appl. Entomol. 134, 667–671. https://doi.org/10.1111/j.1439-0418.2009.01458.x (2010).
    Article  Google Scholar 

    21.
    Menezes, C. et al. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25, 2851–2855. https://doi.org/10.1016/j.cub.2015.09.028 (2015).
    CAS  Article  PubMed  Google Scholar 

    22.
    Yun, J. H., Jung, M. J., Kim, P. S. & Bae, J. W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 2019. https://doi.org/10.1038/s41598-018-19860-7 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    DeLeon-Rodriguez, C. M. & Casadevall, A. Cryptococcus neoformans: tripping on acid in the phagolysosome. Front. Microbiol. 7, 164. https://doi.org/10.3389/fmicb.2016.00164 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Hajek, A. & St. Leger, R. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293–322. https://doi.org/10.1146/annurev.en.39.010194.001453 (1994).
    Article  Google Scholar 

    25.
    Lu, H. L., Wang, J. B., Brown, M. A., Euerle, C. & Leger, R. J. S. Identification of Drosophila mutants affecting defense to an entomopathogenic fungus. Sci. Rep. 5, 12350 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Almeida, J. E., Batista Filho, A., Oliveira, F. C. & Raga, A. Pathogenicity of the entomopathogenic fungi and nematode on medfly Ceratitis capitata (Wied.)(Diptera: Tephritidae). BioAssay https://doi.org/10.14295/BA.v2 (2007).
    Article  Google Scholar 

    27.
    Lacey, L. A., Frutos, R., Kaya, H. & Vail, P. Insect pathogens as biological control agents: do they have a future?. Biol. Control 21, 230–248 (2001).
    Article  Google Scholar 

    28.
    Ortu, S., Cocco, A. & Dau, R. Evaluation of the entomopathogenic fungus Beauveria bassiana strain ATCC 74040 for the management of Ceratitis capitata. B. Insectol. 62, 245–252 (2009).
    Google Scholar 

    29.
    Quesada-Moraga, E., Ruiz-García, A. & Santiago-Alvarez, C. Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 99, 1955–1966 (2006).
    CAS  PubMed  Article  Google Scholar 

    30.
    Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).
    Article  Google Scholar 

    31.
    Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).
    Article  Google Scholar 

    32.
    Sutherst, R. W., Collyer, B. S. & Yonow, T. The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus) tryoni, under climate change. Aust. J. Agric. Res. 51, 467–480 (2000).
    Article  Google Scholar 

    33.
    Dominiak, B., Westcott, A. & Barchia, I. Release of sterile Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), at Sydney, Australia. Aust. J. Exp. Agric. 43, 519–528 (2003).
    Article  Google Scholar 

    34.
    Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284. https://doi.org/10.1007/BF00376839 (1983).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Lloyd, A., Drew, R., Teakle, D. & Hayward, A. Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust. J. Biol. Sci. 39, 361–368 (1986).
    Article  Google Scholar 

    37.
    Morrow, J. L., Frommer, M., Shearman, D. C. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).
    CAS  PubMed  Article  Google Scholar 

    38.
    Murphy, K. M., Teakle, D. S. & MacRae, I. C. Kinetics of colonization of adult Queensland fruit flies (Bactrocera tryoni) by dinitrogen-fixing alimentary tract bacteria. Appl. Environ. Microbiol. 60, 2508–2517 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Thaochan, N., Drew, R., Hughes, J., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 1–12 (2019).
    Article  CAS  Google Scholar 

    41.
    Shuttleworth, L. A., Khan, M. A. M., Collins, D., Osborne, T. & Reynolds, O. L. Wild bacterial probiotics fed to larvae of mass-reared Queensland fruit fly [Bactrocera tryoni (Froggatt)] do not impact long-term survival, mate selection, or locomotor activity. Insect Sci. 27, 745–755 (2020).
    CAS  PubMed  Article  Google Scholar 

    42.
    Shuttleworth, L. A. et al. A walk on the wild side: gut bacteria fed to mass-reared larvae of Queensland fruit fly [Bactrocera tryoni (Froggatt)] influence development. BMC Biotechnol. 19, 1–11 (2019).
    Article  CAS  Google Scholar 

    43.
    Woruba, D. N. et al. Diet and irradiation effects on the bacterial community composition and structure in the gut of domesticated teneral and mature Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). BMC Microbiol. 19, 281 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Majumder, R., Sutcliffe, B., Chapman, T. A. & Taylor, P. W. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).
    PubMed Central  Article  PubMed  Google Scholar 

    45.
    Deutscher, A. T., Reynolds, O. L. & Chapman, T. A. Yeast: an overlooked component of Bactrocera tryoni (Diptera: Tephritidae) larval gut microbiota. J. Econ. Entomol. 110, 298–300 (2016).
    Google Scholar 

    46.
    Piper, A. M., Farnier, K., Linder, T., Speight, R. & Cunningham, J. P. Two gut-associated yeasts in a tephritid fruit fly have contrasting effects on adult attraction and larval survival. J. Chem. Ecol. 43, 891–901 (2017).
    CAS  PubMed  Article  Google Scholar 

    47.
    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Schmidt, P. A. et al. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 65, 128–132 (2013).
    CAS  Article  Google Scholar 

    49.
    Yun, J. H., Jung, M. J., Kim, P. S. & Bae, J. W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 1–11 (2018).
    Article  CAS  Google Scholar 

    50.
    Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).
    Article  Google Scholar 

    51.
    Mohammed, W. S., Ziganshina, E. E., Shagimardanova, E. I., Gogoleva, N. E. & Ziganshin, A. M. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci. Rep. 8, 10073 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Sutcliffe, B. et al. Diverse fungal lineages in subtropical ponds are altered by sediment-bound copper. Fungal Ecol. 34, 28–42 (2018).
    Article  Google Scholar 

    53.
    Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kurtzman, C., Fell, J. W. & Boekhout, T. The Yeasts: A Taxonomic Study (Elsevier, Amsterdam, 2011).
    Google Scholar 

    55.
    Marchesi, J. R. Prokaryotic and eukaryotic diversity of the human gut. Adv. Appl. Microbiol. 72, 43–62 (2010).
    PubMed  Article  Google Scholar 

    56.
    Xiang, H. et al. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 52, 1085–1092 (2006).
    CAS  PubMed  Article  Google Scholar 

    57.
    Kudo, R., Masuya, H., Endoh, R., Kikuchi, T. & Ikeda, H. Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME J. 13, 676 (2019).
    CAS  PubMed  Article  Google Scholar 

    58.
    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).
    CAS  PubMed  Article  Google Scholar 

    60.
    Quan, A. S. & Eisen, M. B. The ecology of the Drosophila-yeast mutualism in wineries. PLoS ONE 13, e0196440 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Starmer, W. T. & Lachance, M. A. Yeast ecology. Yeasts 7, 65–83 (2011).
    Article  Google Scholar 

    62.
    Molnárová, J., Vadkertiová, R. & Stratilová, E. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J. Basic Microbiol. 54, S74–S84 (2014).
    PubMed  Article  CAS  Google Scholar 

    63.
    White, I. M. & Elson-Harris, M. M. Fruit Flies of Economic Significance: Their Identification and Bionomics (CAB International, Wallingford, 1992).
    Google Scholar 

    64.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  Google Scholar 

    65.
    Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).
    CAS  PubMed  Article  Google Scholar 

    66.
    Australia, P. H. The Australian Handbook for the Identification of Fruit Flies. Vol. Version 1.0 (ed. Woods N) 234 (2011).

    67.
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).
    CAS  PubMed  Article  Google Scholar 

    68.
    Hoggard, M. et al. Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front. Microbiol. 9, 2208 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Fouts, D. E. et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 7, e48289 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Greenfield, P. Greenfield Hybrid Analysis Pipeline (GHAP) v1 (CSIRO, Canberra, 2017).
    Google Scholar 

    72.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  PubMed  Article  Google Scholar 

    73.
    Maidak, B. L. et al. The ribosomal database project (RDP). Nucleic Acids Res. 24, 82–85 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Deshpande, V. et al. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108, 1–5 (2016).
    PubMed  Article  Google Scholar 

    75.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
    CAS  PubMed  Article  Google Scholar 

    76.
    Clarke, K. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205–205 (1993).
    ADS  Article  Google Scholar  More

  • in

    ‘Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psyllidae: Aphalaridae)

    1.
    Wen, A. et al. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra complex disease of potato in North America. Plant Dis. 93, 1102–1115 (2009).
    CAS  PubMed  Article  Google Scholar 
    2.
    Munyaneza, J. E. et al. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Europe. Plant Dis. 94, 639 (2010).
    CAS  PubMed  Article  Google Scholar 

    3.
    Nelson, W. R. et al. A new haplotype of ‘Candidatus Liberibacter solanacearum’ identified in the Mediterranean region. Eur. J. Plant Pathol. 135, 633–639 (2013).
    Article  Google Scholar 

    4.
    Teresani, G. R. et al. Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopathology 104, 804–811 (2014).
    CAS  PubMed  Article  Google Scholar 

    5.
    Swisher Grimm, K. D. & Garczynski, S. F. Identification of a new haplotype of ‘Candidatus Liberibacter solanacearum’ in Solanum tuberosum. Plant Dis. 103, 468–474 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Mauck, K. E., Sun, P., Meduri, V. & Hansen, A. K. N. C. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Sci. Rep. 9, 9530 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Haapalainen, M. et al. A novel haplotype of ‘Candidatus Liberibacter solanacearum ’ found in Apiaceae and Polygonaceae family plants. Eur. J. Plant Pathol. https://doi.org/10.1007/s10658-019-01890-0 (2019).
    Article  Google Scholar 

    8.
    Contreras-Rendón, A., Sánchez-Pale, J. R., Fuentes-Aragón, D., Alanís-Martínez, I. & Silva-Rojas, H. V. Conventional and qPCR reveals the presence of ‘Candidatus Liberibacter solanacearum’ haplotypes A, and B in Physalis philadelphica plant, seed, and Βactericera cockerelli psyllids, with the assignment of a new haplotype H in Convolvul. Antonie Van Leeuwenhoek 113, 533–551 (2020).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Haapalainen, M. et al. Genetic variation of ‘Candidatus Liberibacter solanacearum’ haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology 1–49 (2018).

    10.
    Munyaneza, J. E., Sengoda, V. G., Aguilar, E., Bextine, B. & McCue, K. F. First report of ‘Candidatus Liberibacter solanacearum’ associated with psyllid-infested tobacco in Nicaragua. Plant Dis. 97, 1244 (2013).
    CAS  PubMed  Article  Google Scholar 

    11.
    Hajri, A., Loiseau, M., Cousseau-Suhard, P., Renaudin, I. & Gentit, P. Genetic characterization of ‘Candidatus Liberibacter solanacearum’ haplotypes associated with Apiaceous crops in France. Plant Dis. 101, 1383–1390 (2017).
    CAS  PubMed  Article  Google Scholar 

    12.
    Haapalainen, M. et al. Frequency and occurrence of the carrot pathogen ‘Candidatus Liberibacter solanacearum’ haplotype C in Finland. Plant Pathol. 66, 559–570 (2017).
    CAS  Article  Google Scholar 

    13.
    Nissinen, A. I., Haapalainen, M., Jauhiainen, L., Lindman, M. & Pirhonen, M. Different symptoms in carrots caused by male and female carrot psyllid feeding and infection by ‘Candidatus Liberibacter solanacearum’. Plant Pathol. 63, 812–820 (2014).
    Article  Google Scholar 

    14.
    Munyaneza, J. E. et al. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Sweden. Plant Dis. 96, 453–453 (2012).
    CAS  PubMed  Article  Google Scholar 

    15.
    Ouvrard, D. 2018 Psyl’list – The World Psylloidea Database. https://www.hemiptera-databases.com/psyllist (2019).

    16.
    Bell, J. et al. Detection and monitoring of psyllid vectors of ‘Candidatus Liberibacter solanacearum’ in Scotland – Final report of project RRL/001/14. (2017).

    17.
    Teresani, G. R. et al. Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts. Spanish J. Agric. Res. 15, e1011 (2017).
    Article  Google Scholar 

    18.
    Antolínez, C. A., Fereres, A. & Moreno, A. Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci. Rep. 7, 45534 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Mawassi, M. et al. ‘Candidatus Liberibacter solanacearum’ is tightly associated with Carrot Yellows symptoms in Israel and transmitted by the prevalent psyllid vector Bactericera trigonica. Phytopathology 108, 1056–1066 (2018).
    CAS  PubMed  Article  Google Scholar 

    20.
    Antolínez, C. et al. Seasonal abundance of psyllid species on carrots and potato crops in Spain. Insects 10, 287 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    21.
    Loiseau, M. et al. First report of ‘Candidatus Liberibacter solanacearum’ in carrot in France. Plant Dis. 98, 839 (2014).
    CAS  PubMed  Article  Google Scholar 

    22.
    Tahzima, R. et al. First report of ‘Candidatus, Liberibacter solanacearum’ on carrot in Africa. Plant Dis. 98, 1426 (2014).
    CAS  PubMed  Article  Google Scholar 

    23.
    Alfaro-Fernández, A., Siverio, F., Cebrián, M. C., Villaescusa, F. J. & Font, M. I. ‘Candidatus Liberibacter solanacearum’ associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant Dis. 96, 581 (2012).
    PubMed  Article  Google Scholar 

    24.
    Othmen, S. B. et al. ‘Candidatus Liberibacter solanacearum’ haplotypes D and E in carrot plants and seeds in Tunisia. J. Plant Pathol. 100, 197–207 (2018).
    Article  Google Scholar 

    25
    Othmen, S. B. et al. Bactericera trigonica and B. nigricornis (Hemiptera: Psylloidea) in Tunisia as potential vectors of ‘Candidatus Liberibacter solanacearum’ on Apiaceae. Orient. Insects https://doi.org/10.1080/00305316.2018.1536003 (2018).
    Article  Google Scholar 

    26.
    Monger, W. A. & Jeffries, C. J. First report of ’ Candidatus Liberibacter solanacearum’ in parsley (Petroselinum crispum ) seed. New Dis. Rep. 34, 31 (2016).
    Article  Google Scholar 

    27.
    Torres, G. L. et al. Horizontal transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera cockerelli (Hemiptera: Triozidae) on Convolvulus and Ipomoea (Solanales: Convolvulaceae). PLoS ONE 10, 1–11 (2015).
    CAS  Google Scholar 

    28.
    Munyaneza, J. E., Sengoda, V. G., Aguilar, E., Bextine, B. R. & McCue, K. F. First report of ‘Candidatus Liberibacter solanacearum’ infecting eggplant in Honduras. Plant Dis. 97, 1654 (2013).
    CAS  PubMed  Article  Google Scholar 

    29.
    Aguilar, E., Sengoda, V. G., Bextine, B., McCue, K. F. & Munyaneza, J. E. First report of ‘Candidatus Liberibacter solanacearum’ on tobacco in Honduras. Plant Dis. 97, 1376 (2013).
    CAS  PubMed  Article  Google Scholar 

    30.
    Munyaneza, J. E., Sengoda, V. G., Crosslin, J. M., De la Rosa-Lozano, G. & Sanchez, A. First report of ‘Candidatus Liberibacter psyllaurous’ in potato tubers with Zebra Chip Disease in Mexico. Dis. Notes 93, 552–552 (2009).
    CAS  Google Scholar 

    31.
    Teulon, D. A., Workman, P. J., Thomas, K. L. & Nielsen, M. C. Bactericera cockerelli: Incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zeal. Plant Prot. 62, 136–144 (2009).
    Article  Google Scholar 

    32.
    Castillo Carrillo, C., Fu, Z. & Burckhardt, D. First record of the Tomato Potato Psyllid Bactericera cockerelli from South America. Bull. Insectol. 72, 85–91 (2019).
    Google Scholar 

    33.
    EPPO. PM 9/25 (1) Bactericera cockerelli and ‘Candidatus Liberibacter solanacearum’. EPPO Bull.47, 513–523 (2017).

    34.
    Hodkinson, I. D. Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. J. Nat. Hist. 43, 65–179 (2009).
    Article  Google Scholar 

    35.
    Thinakaran, J. et al. Association of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae) with Lycium spp. (Solanaceae) in potato growing regions of Washington, Idaho, and Oregon. Am. J. Potato Res. 94, 490–499 (2017).
    Article  Google Scholar 

    36.
    Kaur, N. et al. Survival and development of Potato Psyllid (Hemiptera: Triozidae) on Convolvulaceae: effects of a plant-fungus symbiosis (Periglandula). PLoS ONE 13, 1–19 (2018).
    Google Scholar 

    37
    Cooper, W. R., Horton, D. R., Miliczky, E., Wohleb, C. H. & Waters, T. D. The weed link in Zebra Chip epidemiology: suitability of non-crop Solanaceae and Convolvulaceae to Potato Psyllid and “Candidatus Liberibacter solanacearum”. Am. J. Potato Res. https://doi.org/10.1007/s12230-019-09712-z (2019).
    Article  Google Scholar 

    38.
    Munyaneza, J. E., Mustafa, T., Fisher, T. W., Sengoda, V. G. & Horton, D. R. Assessing the likelihood of transmission of ‘Candidatus Liberibacter solanacearum’ to carrot by Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae). PLoS ONE 11, 1–16 (2016).
    Article  CAS  Google Scholar 

    39.
    Nissinen, A. I. et al. Can Carrot Psyllid (Trioza apicalis) transmit ‘Candidatus Liberibacter solanacearum’ to potato? Proceedings of the 12th Annual Zebra Chip Report. Sess. 194–198 (2012).

    40.
    Haapalainen, M. et al. Carrot pathogen ‘Candidatus Liberibacter solanacearum’ Haplotype C detected in symptomless potato plants in Finland. Potato Res. 61, 31–50 (2018).
    CAS  Article  Google Scholar 

    41.
    Teresani, G. et al. Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops. Span, J. Agric. Res. 13, 1–11 (2015).
    Article  Google Scholar 

    42.
    Antolinez, C. A., Fereres, A. & Moreno, A. Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci. Rep. 7, 1–10 (2017).
    Article  CAS  Google Scholar 

    43.
    Sjölund, M. J. et al. First report of ’Candidatus Liberibacter solanacearum ’ in the United Kingdom in the psyllid Trioza anthrisci. New Dis. Rep. 36, 4 (2017).
    Article  Google Scholar 

    44.
    Munyaneza, J. E. et al. Association of “Candidatus Liberibacter solanacearum” with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe. J. Econ. Entomol. 103, 1060–1070 (2010).
    CAS  PubMed  Article  Google Scholar 

    45.
    Munyaneza, J. E., Sengoda, V. G., Sundheim, L. & Meadow, R. Survey of ‘Candidatus Liberibacter solanacearum’ in carrot crops affected by the psyllid Trioza apicalis (Hemiptera: Triozidae) in Norway. J. Plant Pathol. 96, 397–402 (2014).
    Google Scholar 

    46.
    Liefting, L. W., Weir, B. S., Pennycook, S. R. & Clover, G. R. G. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. Int. J. Syst. Evol. Microbiol. 59, 2274–2276 (2009).
    CAS  PubMed  Article  Google Scholar 

    47.
    Hansen, A. K., Trumble, J. T., Stouthamer, R. & Paine, T. D. A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’, found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl. Environ. Microbiol. 74, 5862–5865 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Munyaneza, J. E., Sengoda, V. G., Crosslin, J. M., Garzon-Tiznado, J. A. & Cardenas-Valenzuela, O. G. First report of ‘Candidatus Liberibacter solanacearum’ in tomato plants in Mexico. Plant Dis. 93, 1076 (2009).
    PubMed  Google Scholar 

    49.
    Crosslin, J. M., Lin, H. & Munyaneza, J. E. Detection of ‘Candidatus Liberibacter solanacearum’ in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwest. Entomol. 36, 125–135 (2011).
    Article  Google Scholar 

    50.
    Loiseau, M. et al. Lack of evidence of vertical transmission of ‘Candidatus Liberibacter solanacearum’ by carrot seeds suggests that seed is not a major transmission pathway. Plant Dis. 101, 2104–2109 (2017).
    CAS  PubMed  Article  Google Scholar 

    51.
    Bertolini, E. et al. Transmission of ‘Candidatus Liberibacter solanacearum’ in carrot seeds. Plant Pathol. 64, 276–285 (2015).
    CAS  Article  Google Scholar 

    52.
    Carminati, G., Satta, E., Paltrinieri, S. & Bertaccini, A. Simultaneous evaluation of ‘ Candidatus Phytoplasma’ and ‘Candidatus Liberibacter solanacearum’ seed transmission in carrot. Phytopathogenic Mol. 9, 141 (2019).
    Article  Google Scholar 

    53.
    Bantock, T. & Botting, J. British Bugs: an online identification guide to UK Hemiptera. https://www.britishbugs.org.uk/index.htmlhttps://www.britishbugs.org.uk/index.html (2018).

    54.
    Hodkinson, I. D. & White, I. M. Homoptera Psylloidea. Handbooks for the Identification of British Insects (Royal Entomology Society of London, London, 1979).

    55.
    Munyaneza, J. E. et al. First report of ‘Candidatus Liberibacter solanacearum’ associated with psyllid-infested carrots in Germany. Plant Dis. 99, 1269 (2015).
    Article  Google Scholar 

    56.
    Sjölund, M. J., Arnsdorf, Y. M., Carnegie, M., Fornefeld, E. & Will, T. ‘Candidatus Liberibacter solanacearum’ detected in Trioza urticae using suction trap-based monitoring of psyllids in Germany. J. Plant Dis. Prot. 126, 89–92 (2018).
    Article  Google Scholar 

    57.
    Hajri, A., Cousseau-suhard, P., Gentit, P. & Loiseau, M. New insights into the genetic diversity of the bacterial plant pathogen ‘Candidatus Liberibacter solanacearum ’ as revealed by a new multilocus sequence analysis scheme. bioRxiv (preprint server) https://doi.org/https://doi.org/10.1101/623405.

    58.
    Ossiannilsson, F. The Psylloidea (Homoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavia (E. J. Brill, 1992).

    59.
    Tishetshkin, D. Y. The possibility to use bioacoustic characters in the taxonomy of the jumping plant lice with an example of the genus Craspedolepta (Homoptera, Psyllinea, Aphalaridae) and description of a new species from Transbaikalia. Entomol. Rev. 87, 561–570 (2007).
    Article  Google Scholar 

    60.
    Bird, J. M. & Hodkinson, I. D. Species at the edge of their range: The significance of the thermal environment for the distribution of congeneric Craspedolepta species (Sternorrhyncha: Psylloidea) living on Chamerion angustifolium (Onagraceae). Eur. J. Entomol. 96, 103–109 (1999).
    Google Scholar 

    61.
    Brunt, A. et al. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. https://biology.anu.edu.au/Groups/MES/vide/https://biology.anu.edu.au/Groups/MES/vide/.

    62.
    Sjölund, M. J., Ouvrard, D., Kenyon, D. & Highet, F. Developing an RT-PCR assay for the identification of psyllid species. Proc. Crop Prot. North. Britain 279–282 (2016).

    63.
    Percy, D. M. Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids. Evolution (N.Y.) 57, 2540–2556 (2003).
    Google Scholar 

    64.
    Li, W. et al. Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. J. Microbiol. Methods 78, 59–65 (2009).
    CAS  PubMed  Article  Google Scholar 

    65.
    Peccoud, J., Labonne, G. & Sauvion, N. Molecular test to assign individuals within the Cacopsylla pruni complex. PLoS ONE 8, 1–8 (2013).
    Article  CAS  Google Scholar 

    66.
    EPPO. PM 7/129 (1) DNA barcoding as an identification tool for a number of regulated pests. EPPO Bull.46, 501–537 (2016). More

  • in

    Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda)

    1.
    Adams, M., Raadik, T. A., Burridge, C. P. & Georges, A. Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room?. Syst. Biol. 63, 518–533 (2014).
    PubMed  Article  Google Scholar 
    2.
    Pérez-Ponce de León, G. & Poulin, R. Taxonomic distribution of cryptic diversity among metazoans: not so homogeneous after all. Biol. Lett. 12, 20160371. https://doi.org/10.1098/rsbl.2016.0371 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Pfenninger, M. & Schwenk, K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7, 121. https://doi.org/10.1186/1471-2148-7-121 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Keshavmurthy, S. et al. DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci. Rep. 3, 1520. https://doi.org/10.1038/srep01520 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 785–810 (2016).
    Article  Google Scholar 

    6.
    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).
    PubMed  Article  Google Scholar 

    7.
    Brodersen, J. & Seehausen, O. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol. Appl. 7, 968–983 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41, 424–436 (2018).
    Article  Google Scholar 

    9.
    Galipaud, M., Gauthey, Z., Turlin, J., Bollache, L. & Lagrue, C. Mate choice and male–male competition among morphologically cryptic but genetically divergent amphipod lineages. Behav. Ecol. Sociobiol. 69, 1907–1916 (2015).
    Article  Google Scholar 

    10.
    Galipaud, M., Bollache, L. & Lagrue, C. Variations in infection levels and parasite-induced mortality among sympatric cryptic lineages of native amphipods and a congeneric invasive species: Are native hosts always losing?. Int. J. Parasitol. Parasites Wildl. 6, 439–447 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Westram, A. M., Baumgartner, C., Keller, I. & Jokela, J. Are cryptic host species also cryptic to parasites? Host specificity and geographical distribution of acanthocephalan parasites infecting freshwater Gammarus. Infect. Genet. Evol. 11, 1083–1090 (2011).
    CAS  PubMed  Article  Google Scholar 

    12.
    Fišer, Ž, Altermatt, F., Zakšek, V., Knapič, T. & Fišer, C. Morphologically cryptic amphipod species are “ecological clones” at regional but not at local scale: a case study of four Niphargus species. PLoS ONE 10, e0134384. https://doi.org/10.1371/journal.pone.0134384 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Eisenring, M., Altermatt, F., Westram, A. M. & Jokela, J. Habitat requirements and ecological niche of two cryptic amphipod species at landscape and local scales. Ecosphere 7, e01319. https://doi.org/10.1002/ecs2.1319 (2016).
    Article  Google Scholar 

    14.
    Westram, A. M., Jokela, J. & Keller, I. Hidden biodiversity in an ecologically important freshwater amphipod: Differences in genetic structure between two cryptic species. PLoS ONE 8, e69576. https://doi.org/10.1371/journal.pone.0069576 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Mutanen, M., Kaila, L. & Tabell, J. Wide-ranging barcoding aids discovery of one-third increase of species richness in presumably well-investigated moths. Sci. Rep. 3, 2901. https://doi.org/10.1038/srep02901 (2013).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Cook, B. D., Page, T. J. & Hughes, J. M. Importance of cryptic species for identifying ‘representative’ units of biodiversity for freshwater conservation. Biol. Conserv. 141, 2821–2831 (2008).
    Article  Google Scholar 

    17.
    Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).
    PubMed  Article  Google Scholar 

    18.
    Bálint, M., Barnard, P. C., Schmitt, T., Ujvárosi, L. & Popescu, O. Differentiation and speciation in mountain streams: a case study in the caddisfly Rhyacophila aquitanica (Trichoptera). J. Zool. Syst. Evol. Res. 46, 340–345 (2008).
    Article  Google Scholar 

    19.
    Major, K., Soucek, D. J., Giordano, R., Wetzel, M. J. & Soto-Adames, F. The common ecotoxicology laboratory strain of Hyalella azteca is genetically distinct from most wild strains sampled in eastern North America: common lab strain of H. azteca is distinct from wild strains. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.2355 (2013).
    Article  PubMed  Google Scholar 

    20.
    Feckler, A., Thielsch, A., Schwenk, K., Schulz, R. & Bundschuh, M. Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Sci. Total Environ. 439, 158–164 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Feckler, A. et al. Cryptic species diversity: an overlooked factor in environmental management?. J. Appl. Ecol. 51, 958–967 (2014).
    Article  Google Scholar 

    22.
    Caputo, D. R., Robson, S. C., Werner, I. & Ford, A. T. Complete transcriptome assembly and annotation of a critically important amphipod species in freshwater ecotoxicological risk assessment: Gammarus fossarum. Environ. Int. 137, 105319 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Cogne, Y. et al. De novo transcriptomes of 14 gammarid individuals for proteogenomic analysis of seven taxonomic groups. Sci. Data 6, 184. https://doi.org/10.1038/s41597-019-0192-5 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Costa-Silva, G. J., Rodriguez, M. S., Roxo, F. F., Foresti, F. & Oliveira, C. Using different methods to access the difficult task of delimiting species in a complex Neotropical hyperdiverse group. PLoS ONE 10, e0135075 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Dincă, V. et al. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci. Rep. 5, 12395. https://doi.org/10.1371/journal.pone.0135075 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Trontelj, P. et al. A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts?. Freshw. Biol. 54, 727–744 (2009).
    CAS  Article  Google Scholar 

    27.
    Jackson, J. K. et al. Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications. Freshw. Sci. 33, 312–324 (2014).
    Article  Google Scholar 

    28.
    Grabowski, M., Mamos, T., Bacela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread balkan freshwater amphipod. PeerJ https://doi.org/10.7717/peerj.3016 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlw025 (2017).
    Article  Google Scholar 

    30.
    Hogg, I. D., Larose, C., de Lafontaine, Y. & Doe, K. G. Genetic evidence for a Hyalella species complex within the Great Lakes—St. Lawrence River drainage basin: implications for ecotoxicology and conservation biology. Can. J. Zool. 76, 1134–1140 (1998).
    Article  Google Scholar 

    31.
    Hogg, I. D., Stevens, M. I., Schnabel, K. E. & Ann Chapman, M. Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses. Freshw. Biol. 51, 236–248 (2006).
    CAS  Article  Google Scholar 

    32.
    Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507. https://doi.org/10.1038/srep22507 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarusbalcanicus Schäferna, (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248 (2014).
    Article  Google Scholar 

    34.
    Murphy, N. P., Adams, M., Guzik, M. T. & Austin, A. D. Extraordinary micro-endemism in Australian desert spring amphipods. Mol. Phylogenet. Evol. 66, 645–653 (2013).
    CAS  PubMed  Article  Google Scholar 

    35.
    Murphy, N. P., King, R. A. & Delean, S. Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods. Invertebr. Syst. 29, 457 (2015).
    Article  Google Scholar 

    36.
    Seidel, R. A., Lang, B. K. & Berg, D. J. Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biol. Conserv. 142, 2303–2313 (2009).
    Article  Google Scholar 

    37.
    Sutherland, D. L., Hogg, I. D. & Waas, J. R. Phylogeography and species discrimination in the Paracalliopefluviatilis species complex (Crustacea: Amphipoda): can morphologically similar heterospecifics identify compatible mates?: Mate discrimination in P. fluviatilis. Biol. J. Linn. Soc. 99, 196–205 (2009).
    Article  Google Scholar 

    38.
    Witt, J. D. S., Threloff, D. L. & Hebert, P. D. N. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol. Ecol. 15, 3073–3082 (2006).
    CAS  PubMed  Article  Google Scholar 

    39.
    Witt, J. D. S. & Hebert, P. D. N. Cryptic species diversity and evolution in the amphipod genus Hyalella within central glaciated North America: a molecular phylogenetic approach. Can. J. Fish Aquat. Sci. 57, 12 (2000).
    Article  Google Scholar 

    40.
    Blackman, R. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples—first record of Gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).
    Article  Google Scholar 

    41.
    Dangles, O., Gessner, M. O., Guerold, F. & Chauvet, E. Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J. Appl. Ecol. 41, 365–378 (2004).
    CAS  Article  Google Scholar 

    42.
    Felten, V., Tixier, G., Guérold, F., De Crespin De Billy, V. & Dangles, O. Quantification of diet variability in a stream amphipod: implications for ecosystem functioning. Fundam. Appl. Limnol. Arch. Für Hydrobiol. 170, 303–313 (2008).
    Article  Google Scholar 

    43.
    Besse, J.-P., Geffard, O. & Coquery, M. Relevance and applicability of active biomonitoring in continental waters under the Water Framework Directive. TrAC Trends Anal. Chem. 36, 113–127 (2012).
    CAS  Article  Google Scholar 

    44.
    Schmidlin, L., von Fumetti, S. & Nagel, P. Temperature effects on the feeding and electron transport system (ETS) activity of Gammarus fossarum. Aquat. Ecol. 49, 71–80 (2015).
    Article  Google Scholar 

    45.
    Labaude, S., Rigaud, T. & Cézilly, F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): the importance of aggregative behavior. Glob. Change Biol. 23, 1415–1424 (2017).
    ADS  Article  Google Scholar 

    46.
    Kunz, P. Y., Kienle, C. & Gerhardt, A. Gammarus spp. in aquatic ecotoxicology and water quality assessment: Toward integrated multilevel tests. In Reviews of Environmental Contamination and Toxicology Vol. 205 (ed. Whitacre, D. M.) 1–76 (Springer, New York, 2010).
    Google Scholar 

    47.
    Mehennaoui, K. et al. Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. Sci. Total Environ. 566–567, 1649–1659 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    48.
    Besse, J.-P. et al. Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: towards the determination of threshold values. Water Res. 47, 650–660 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Gouveia, D. et al. Ecotoxico-Proteomics for aquatic environmental monitoring: First in situ application of a new proteomics-based multibiomarker assay using caged amphipods. Environ. Sci. Technol. 51, 13417–13426 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Trapp, J. et al. Proteogenomics of Gammarus fossarum to document the reproductive system of amphipods. Mol. Cell. Proteomics 13, 3612–3625 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Sanchez-Thirion, K. et al. High food quality increases infection of Gammarus pulex (Crustacea: Amphipoda) by the acanthocephalan parasite Pomphorhynchus laevis. Int. J. Parasitol. 49, 805–817 (2019).
    CAS  PubMed  Article  Google Scholar 

    52.
    Bigot-Clivot, A. et al. Bioaccumulation of toxoplasma and cryptosporidium by the freshwater crustacean Gammarus fossarum: involvement in biomonitoring surveys and trophic transfer. Ecotoxicol. Environ. Saf. 133, 188–194 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Chen, H.-Y., Grabner, D. S., Nachev, M., Shih, H.-H. & Sures, B. Effects of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum. PeerJ 3, e1353. https://doi.org/10.7717/peerj.1353 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Müller, J. Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types. Mol. Phylogenet. Evol. 15, 260–268 (2000).
    PubMed  Article  CAS  Google Scholar 

    55.
    Weiss, M., Macher, J. N., Seefeldt, M. A. & Leese, F. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721, 165–184 (2014).
    CAS  Article  Google Scholar 

    56.
    Weiss, M. & Leese, F. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol. 16, 153 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Lagrue, C. et al. Confrontation of cryptic diversity and mate discrimination within Gammarus pulex and Gammarus fossarum species complexes. Freshw. Biol. 59, 2555–2570 (2014).
    Article  Google Scholar 

    58.
    Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992 (2015).
    PubMed  Article  Google Scholar 

    59.
    Copilaş-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229 (2017).
    PubMed  Article  Google Scholar 

    60.
    Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 270, S96–S99 (2003).
    CAS  Google Scholar 

    61.
    Kekkonen, M. & Hebert, P. D. N. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol. Ecol. Resour. 14, 706–715 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432 (2017).
    Article  Google Scholar 

    63.
    Grabner, D. S. et al. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8, 419 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Copilaș-Ciocianu, D., Zimța, A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. Evol. Res. 57, 272–297 (2019).
    Article  Google Scholar 

    65.
    Copilaş-Ciocianu, D., Zimţa, A.-A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372 (2018).
    Article  Google Scholar 

    66.
    Hou, Z., Li, J. & Li, S. Diversification of low dispersal crustaceans through mountain uplift: a case study of Gammarus (Amphipoda: Gammaridae) with descriptions of four novel species: Diversification of Gammarus species. Zool. J. Linn. Soc. 170, 591–633 (2014).
    Article  Google Scholar 

    67.
    Wellborn, G. A. & Cothran, R. D. Niche diversity in crustacean cryptic species: complementarity in spatial distribution and predation risk. Oecologia 154, 175–183 (2007).
    ADS  PubMed  Article  Google Scholar 

    68.
    Delić, T., Švara, V., Coleman, C. O., Trontelj, P. & Fišer, C. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool. Scr. 46, 740–752 (2017).
    Article  Google Scholar 

    69.
    McInerney, C. E. et al. The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Mol. Ecol. 23, 1153–1166 (2014).
    PubMed  Article  Google Scholar 

    70.
    Cooper, S. J. B. et al. Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia: Phylogeography of subterranean amphipods. Mol. Ecol. 16, 1533–1544 (2007).
    CAS  PubMed  Article  Google Scholar 

    71.
    Ethridge, J. Z., Gibson, J. R. & Nice, C. C. Cryptic diversity within and amongst spring-associated Stygobromus amphipods (Amphipoda: Crangonyctidae): Stygobromus amphipod cryptic diversity. Zool. J. Linn. Soc. 167, 227–242 (2013).
    Article  Google Scholar 

    72.
    Beermann, J. et al. Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida). Sci. Rep. 8, 6893. https://doi.org/10.1038/s41598-018-25225-x (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    73.
    Baird, H. P., Miller, K. J. & Stark, J. S. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods: Genetic diversity in antarticamphipods. Mol. Ecol. 20, 3439–3454 (2011).
    PubMed  Article  Google Scholar 

    74.
    Havermans, C. et al. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8, e74218. https://doi.org/10.1371/journal.pone.0074218 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Havermans, C. Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity 17, 12–25 (2016).
    Article  Google Scholar 

    76.
    Coleman, C. O. Taxonomy in times of the taxonomic impediment—examples from the community of experts on amphipod crustaceans. J. Crustac. Biol. 35, 729–740 (2015).
    Article  Google Scholar 

    77.
    Arfianti, T., Wilson, S. & Costello, M. J. Progress in the discovery of amphipod crustaceans. PeerJ 6, e5187 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Popov, S. V. et al. Lithological-Paleogeographic maps of Partethys—10 maps late Eocene to Plioccene. Courier Foschung-Intitut Senckberg 1–46 (2004).

    79.
    Frenzel, B., Pécsi, M. & Velichko, A. A. Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere: Late Pleistocene, Holocene (Geographical Research Institute Hungarian Academy of Science; G. Fischer, Budapest, 1992).
    Google Scholar 

    80.
    Macneil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp (Crustacea; Amphipoda): Problems and perspective concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (2007).
    Article  Google Scholar 

    81.
    Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarusjazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603 (2018).
    Article  Google Scholar 

    82.
    Westram, A. M., Jokela, J., Baumgartner, C. & Keller, I. Spatial distribution of cryptic species diversity in European freshwater amphipods (Gammarus fossarum) as revealed by pyrosequencing. PLoS ONE 6, e23879. https://doi.org/10.1371/journal.pone.0023879 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    83.
    Lefébure, T. et al. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments: cryptic and dynamic evolution in subsurface. Mol. Ecol. 15, 1797–1806 (2006).
    PubMed  Article  CAS  Google Scholar 

    84.
    Lefébure, T., Douady, C. J., Malard, F. & Gibert, J. Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Mol. Phylogenet. Evol. 42, 676–686 (2007).
    PubMed  Article  CAS  Google Scholar 

    85.
    Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis: the ecological effects of intraspecific diversity. Biol. Rev. 94, 648–661 (2019).
    PubMed  Article  Google Scholar 

    86.
    Jabłońska, A., Wrzesińska, W., Zawal, A., Pešić, V. & Grabowski, M. Long-term within-basin isolation patterns, different conservation units, and interspecific mitochondrial DNA introgression in an amphipod endemic to the ancient Lake Skadar system, Balkan Peninsula. Freshw. Biol. 65, 209–225 (2020).
    Article  CAS  Google Scholar 

    87.
    Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    88.
    Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).
    PubMed  Article  Google Scholar 

    89.
    Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    90.
    Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 3391. https://doi.org/10.1038/s41598-017-02938-z (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    91.
    Wysocka, A. et al. Origin of the Lake Ohrid gammarid species flock: ancient local phylogenetic lineage diversification. J. Biogeogr. 41, 1758–1768 (2014).
    Article  Google Scholar 

    92.
    Esmaeili-Rineh, S., Sari, A., Delić, T., Moškrič, A. & Fišer, C. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European Niphargids. Zool. J. Linn. Soc. 175, 812–826 (2015).
    Article  Google Scholar 

    93.
    Hou, Z., Sket, B., Fiser, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    94.
    AltschuP, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic Local Alignment Search Tool. 8.

    95.
    Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part I. Gammarus pulex-group and related species. Bijdragen tot de Dierkunde 1–97 (1977).

    96.
    Piscart, C. & Bollache, L. Crustacés amphipodes de surface : gammares d’eau douce (Association Française de Limnologie, Thonon-les-Bains, 2012).
    Google Scholar 

    97.
    Eggers, T. & Martens, A. A key of the freshwater Amphipods of Germany. Lauterbornia 1–68 (2001).

    98.
    Jazdzewski, K. Morfologia, taksonomia i wystepowanie w Polsce kielzy z rodzajów Gammarus Fabr. i Chaetogammarus Mart. (Crustacea, Amphipoda). Acta Universitatis Lodziensis 1–187 (1975).

    99.
    Karaman, G. S. Crustacea (Amphipoda di acqua dolce. Calderini, Bologna, 1993).
    Google Scholar 

    100.
    Hillis, D. M., Moritz, C. & Mable, B. K. Molecular Systematics (Sinauer Associates Inc, Sunderland, 1996).
    Google Scholar 

    101.
    Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders: Quick and easy dsDNA extraction for barcoding. Mol. Ecol. Resour. 12, 136–141 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol 6, 294–299 (1994).
    Google Scholar 

    103.
    Costa, F. O., Henzler, C. M., Lunt, D. H., Whiteley, N. M. & Rock, J. Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst. Biodivers. 7, 365–379 (2009).
    Article  Google Scholar 

    104.
    Astrin, J. J. & Stüben, P. E. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera:Curculionidae). Invertebr. Syst. 22, 503–522 (2008).
    Article  Google Scholar 

    105.
    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    106.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  Article  Google Scholar 

    107.
    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the barcode index number (BIN) System. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    110.
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    111.
    Puillandre, N. et al. Large-scale species delimitation method for hyperdiverse groups: large-scale species delimitation. Mol. Ecol. 21, 2671–2691 (2012).
    CAS  PubMed  Article  Google Scholar 

    112.
    Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of life data system (https://www.barcodinglife.org). Mol. Ecol. Notes7, 355–364 (2007).

    113.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    114.
    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    115.
    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    116.
    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinform. 14, 85 (2013).
    Article  Google Scholar 

    117.
    Brower, A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. 91, 6491–6495 (1994).
    ADS  CAS  PubMed  Article  Google Scholar 

    118.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Felsenstein, J. Confidence limits on phylogenies: an approach using the boostrap. Evolution 39, 783–791 (1985).
    PubMed  Article  Google Scholar 

    120.
    Miller, M. P. Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724 (2005).
    CAS  PubMed  Article  Google Scholar  More

  • in

    A global class reunion with multiple groups feasting on the declining insect smorgasbord

    1.
    Darwin, C. On the Origin of Species (John Murray, London, 1859).
    Google Scholar 
    2.
    Gause, G. F. The Struggle for Existence (Williams & Wilkins, Philadelphia, 1934).
    Google Scholar 

    3.
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Article  Google Scholar 

    4.
    Vamosi, S. M., Heard, S. B., Vamosi, J. C. & Webb, C. O. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18, 572–592 (2009).
    CAS  Article  Google Scholar 

    5.
    Biere, A. & Bennett, A. E. Three-way interactions between plants, microbes and insects. Funct. Ecol. 27, 567–573 (2013).
    Article  Google Scholar 

    6.
    Biesmeijer, J. C. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
    ADS  CAS  Article  Google Scholar 

    7.
    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-1079-8 (2020).
    Article  Google Scholar 

    8.
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    9.
    Leather, S. R. “Ecological Armageddon”—more evidence for the drastic decline in insect numbers: Insect declines. Ann. Appl. Biol. 172, 1–3 (2018).
    Article  Google Scholar 

    10.
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Article  Google Scholar 

    11.
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
    Article  Google Scholar 

    12.
    Ford, H. A., Barrett, G. W., Saunders, D. A. & Recher, H. F. Why have birds in the woodlands of Southern Australia declined?. Biol. Conserv. 97, 71–88 (2001).
    Article  Google Scholar 

    13.
    Córdoba-Aguilar, A. & Rocha-Ortega, M. Damselfly (Odonata: Calopterygidae) population decline in an urbanizing watershed. J. Insect Sci. 19, 30 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    14.
    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018).
    Article  Google Scholar 

    15.
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science https://doi.org/10.1126/science.aaw1313 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Rodhouse, T. J. et al. Evidence of region-wide bat population decline from long-term monitoring and Bayesian occupancy models with empirically informed priors. Ecol. Evol. https://doi.org/10.1002/ece3.5612 (2019).
    Article  PubMed Central  PubMed  Google Scholar 

    17.
    Kaunisto, K. M. et al. Threats from the air: Damselfly predation on diverse prey taxa. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13184 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    19.
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean?. PLoS Biol. 9, e1001127 (2011).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    20.
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl. Acad. Sci. 115, 6506–6511 (2018).
    CAS  Article  Google Scholar 

    21.
    Nyffeler, M., Şekercioğlu, ÇH. & Whelan, C. J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47 (2018).
    Article  CAS  Google Scholar 

    22.
    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).
    CAS  Article  Google Scholar 

    23.
    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. & Lilley, T. M. Table for five, please: Dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).
    PubMed Central  Article  PubMed  Google Scholar 

    24.
    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Data from: Table for five, please: Dietary partitioning in boreal bats. Dryad Dataset https://doi.org/10.5061/dryad.6880rf1 (2019).
    Article  Google Scholar 

    25.
    Kaunisto, K. M., Roslin, T., Sääksjärvi, I. E. & Vesterinen, E. J. Pellets of proof: First glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Ecol. Evol. 7, 8588–8598 (2017).
    PubMed Central  Article  PubMed  Google Scholar 

    26.
    Kaunisto, K. M., Roslin, T. L., Sääksjärvi, I. E. & Vesterinen, E. J. Data from: Pellets of proof: first glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Dryad Dataset https://doi.org/10.5061/dryad.5n92p (2018).
    Article  Google Scholar 

    27.
    Vesterinen, E. J. et al.Threats from the air: damselfly predation on diverse prey taxa. 1438406240 bytes (2019) https://doi.org/10.5061/DRYAD.ZS7H44J4Z.

    28.
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).
    Article  Google Scholar 

    29.
    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).
    Article  Google Scholar 

    30.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

    31.
    Oksanen, J. et al. vegan: Community Ecology Package. (2013).

    32.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  Article  Google Scholar 

    33.
    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).
    ADS  CAS  Article  Google Scholar 

    34.
    Fuszara, E. et al. Population changes in Natterer’s bat (Myotis nattereri) and Daubenton’s bat (M. daubentonii) in winter roosts of central Poland. Pol. J. Ecol. 58, 769–781 (2010).
    Google Scholar 

    35.
    Kim, K. C. & Byrne, L. B. Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol. Res. 21, 794 (2006).
    Article  Google Scholar 

    36.
    Sekercioglu, C. H. et al. Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl. Acad. Sci. USA. 99, 263–267 (2002).
    ADS  CAS  Article  Google Scholar 

    37.
    Spiller, K. J. & Dettmers, R. Evidence for multiple drivers of aerial insectivore declines in North America. Condor 121, 10 (2019).
    Article  Google Scholar 

    38.
    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).
    CAS  Article  Google Scholar 

    39.
    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Ochieng, H., de Ruyter van Steveninck, E. D. & Wanda, F. M. Mouthpart deformities in Chironomidae (Diptera) as indicators of heavy metal pollution in northern Lake Victoria, Uganda. Afr. J. Aquat. Sci. 33, 135–142 (2008).
    CAS  Article  Google Scholar 

    41.
    Luoto, T. P. Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set. Ecol. Monogr. 80, 303–329 (2010).
    Article  Google Scholar 

    42.
    Aquatic insects of North Europe—A Taxonomic Handbook. vol. 2 (Apollo Books, 1997).

    43.
    Wirta, H. K. et al. Exposing the structure of an Arctic food web. Ecol. Evol. 5, 3842–3856 (2015).
    PubMed Central  Article  PubMed  Google Scholar 

    44.
    Vesterinen, E. J., Lilley, T., Laine, V. N. & Wahlberg, N. Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton’s bat (Myotis daubentonii) in southwestern Finland. PLoS ONE 8, e82168 (2013).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    45.
    Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B. & Hebert, P. D. N. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Mol. Ecol. 18, 2532–2542 (2009).
    Article  Google Scholar 

    46.
    Clare, E. L. et al. The diet of Myotis lucifugus across Canada: Assessing foraging quality and diet variability. Mol. Ecol. 23, 3618–3632 (2014).
    Article  Google Scholar 

    47.
    Rytkönen, S. et al. From feces to data: A metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecol. Evol. 9, 631–639 (2019).
    Article  Google Scholar 

    48.
    Eitzinger, B. et al. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis—variable environment, stable diet. Mol. Ecol. 28, 266–280 (2019).
    CAS  Article  Google Scholar 

    49.
    Schmidt, N. M., Mosbacher, J. B., Eitzinger, B., Vesterinen, E. J. & Roslin, T. High resistance towards herbivore-induced habitat change in a high Arctic arthropod community. Biol. Lett. 14, 20180054 (2018).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    50.
    Schmidt, N. M., Mosbacher, J. B., Vesterinen, E. J., Roslin, T. & Michelsen, A. Limited dietary overlap amongst resident Arctic herbivores in winter: Complementary insights from complementary methods. Oecologia 187, 689–699 (2018).
    ADS  Article  Google Scholar 

    51.
    Gripenberg, S. et al. A highly resolved food web for insect seed predators in a species-rich tropical forest: Host use by insect seed predators. Ecol. Lett. https://doi.org/10.1111/ele.13359 (2019).
    Article  PubMed Central  PubMed  Google Scholar 

    52.
    Basset, Y. et al. A cross-continental comparison of assemblages of seed- and fruit-feeding insects in tropical rain forests: Faunal composition and rates of attack. J. Biogeogr. 45, 1395–1407 (2018).
    Article  Google Scholar 

    53.
    Raitif, J., Plantegenest, M., Agator, O., Piscart, C. & Roussel, J.-M. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape. Sci. Total Environ. 644, 594–601 (2018).
    ADS  CAS  Article  Google Scholar 

    54.
    Rogers, L. E., Buschbom, R. L. & Watson, C. R. Length-weight relationships of shrub-steppe invertebrates1. Ann. Entomol. Soc. Am. 70, 51–53 (1977).
    Article  Google Scholar 

    55.
    De Felici, L., Piersma, T. & Howison, R. A. Abundance of arthropods as food for meadow bird chicks in response to short- and long-term soil wetting in Dutch dairy grasslands. PeerJ 7, e7401 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    56.
    Aziz, M. A. et al. Using non-invasively collected genetic data to estimate density and population size of tigers in the Bangladesh Sundarbans. Glob. Ecol. Conserv. 12, 272–282 (2017).
    Article  Google Scholar 

    57.
    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: A meta-analysis. Ecology 99, 1771–1782 (2018).
    PubMed Central  Article  PubMed  Google Scholar 

    58.
    Kissick, A. L., Dunning, J. B., Fernandez-Juricic, E. & Holland, J. D. Different responses of predator and prey functional diversity to fragmentation. Ecol. Appl. 28, 1853–1866 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
    Article  PubMed  PubMed Central  Google Scholar  More