1.
Yang, J., Kloepper, J. W. & Ryu, C. M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14, 1–4 (2009).
ADS CAS PubMed Google Scholar
2.
Kearl, J. et al. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front. Microbiol. 10, 1849. https://doi.org/10.3389/fmicb.2019.01849 (2019).
Article PubMed PubMed Central Google Scholar
3.
Khan, N. et al. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in Chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci. Rep. 9, 2097. https://doi.org/10.1038/s41598-019-38702-8 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
4.
Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).
CAS PubMed PubMed Central Google Scholar
5.
Bruto, M., Prigent-Combaret, C., Muller, D. & Moënne-Loccoz, Y. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci. Rep. 4, 6261. https://doi.org/10.1038/srep06261 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
6.
Timmusk, S. Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci. 8, 49. https://doi.org/10.3389/fpls.2017.00049 (2017).
Article PubMed PubMed Central Google Scholar
7.
Sessitsch, A., Pfaffenbichler, N. & Mitter, B. Microbiome applications from lab to field: facing complexity. Trends Plant Sci. 24, 194–198 (2019).
CAS PubMed Google Scholar
8.
Olanrewaju, O. S., Glick, B. R. & Babalola, O. O. Mechanisms of action of plant growth promoting bacteria. World J. Microb. Biot 33, 197. https://doi.org/10.1007/s11274-017-2364-9 (2017).
CAS Article Google Scholar
9.
Gupta, A. et al. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS ONE 9, e104259. https://doi.org/10.1371/journal.pone.0104259 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
10.
Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M. & Raaijmakers, J. M. The wild side of plant microbiomes. Microbiome 6, 143. https://doi.org/10.1186/s40168-018-0519-z (2018).
Article PubMed PubMed Central Google Scholar
11.
Song, J. Y. et al. Genome sequence of the Plant Growth-Promoting Rhizobacterium Bacillus sp. strain JS. J. Bacteriol. 19, 14. https://doi.org/10.1128/JB.00676-12 (2012).
CAS Article Google Scholar
12.
Duan, J., Jiang, W., Cheng, Z., Heikkila, J. J. & Glick, B. R. The complete genome sequence of the Plant Growth-Promoting bacterium Pseudomonas sp. UW4. PLoS ONE 8, e58640. https://doi.org/10.1371/journal.pone.0058640 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
13.
Li, S. et al. Complete genome sequence of Paenibacillus polymyxa SQR-21, a plant growth-promoting rhizobacterium with antifungal activity and rhizosphere colonization ability. Genome Announc. 2, e00281-e314. https://doi.org/10.1128/genomeA.00281-14 (2014).
Article PubMed PubMed Central Google Scholar
14.
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
CAS PubMed Google Scholar
15.
Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plantarum 118, 10–15 (2003).
CAS Google Scholar
16.
Lo, K. J., Lin, S. S., Lu, C. W., Kuo, C. H. & Liu, C. T. Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3). Sci. Rep. 8, 12769. https://doi.org/10.1038/s41598-018-31128-8 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
17.
Liu, W. et al. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci. Rep. 6, 20–22 (2016).
Google Scholar
18.
Andrés-Barrao, C. et al. Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium. Front. Microbiol. 8, 2023. https://doi.org/10.3389/fmicb.2017.02023 (2017).
Article PubMed PubMed Central Google Scholar
19.
Esmaeel, Q. et al. Draft genome sequence of plant growth-promoting Burkholderia sp. strain BE12, isolated from the rhizosphere of maize. Genome Announc. 6, e00299-18. https://doi.org/10.1128/genomeA.00299-18 (2018).
Article PubMed PubMed Central Google Scholar
20.
Wang, Z. et al. Draft genome analysis offers insights into the mechanism by which Streptomyces chartreusis WZS021 increases drought tolerance in sugarcane. Front. Microbiol. 10, 3262. https://doi.org/10.3389/fmicb.2018.03262 (2019).
Article Google Scholar
21.
Matteoli, F. P. et al. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 19, 750. https://doi.org/10.1186/s12864-018-5130-y (2018).
CAS Article PubMed PubMed Central Google Scholar
22.
Yu, Z. et al. Complete genome sequence of the nitrogen-fixing bacterium Azospirillum humicireducens type strain SgZ-5T. Stand. Genomic Sci. 13, 28. https://doi.org/10.1186/s40793-018-0322-2 (2018).
CAS Article PubMed PubMed Central Google Scholar
23.
Westerman, R. L. Soil Testing and Plant Analysis. SSSA Book Series 3 3rd edn. (Madison, SSSA, 1990).
Google Scholar
24.
Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K. & Kalra, A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 6, 34768. https://doi.org/10.1038/srep34768 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
25.
Sharma, S., Kulkarni, J. & Jha, B. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front. Microbiol. 7, 1600. https://doi.org/10.3389/fmicb.2016.01600 (2016).
Article PubMed PubMed Central Google Scholar
26.
Gupta, S. & Pandey, S. ACC Deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French Bean (Phaseolus vulgaris) plants. Front. Microbiol. 10, 1506. https://doi.org/10.3389/fmicb.2019.01506 (2019).
Article PubMed PubMed Central Google Scholar
27.
Pan, J. et al. The growth promotion of two salt-tolerant plant groups with PGPR inoculation: a meta-analysis. Sustainability 11, 378. https://doi.org/10.3390/su11020378 (2019).
CAS Article Google Scholar
28.
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Multifunctional Pseudomonas putida strain FBKV2 from arid rhizosphere soil and its growth promotional effects on maize under drought stress. Rhizosphere 1, 4–13 (2016).
Google Scholar
29.
Marasco, R. et al. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front. Microbiol. 7, 1286. https://doi.org/10.3389/fmicb.2016.01286 (2016).
Article PubMed PubMed Central Google Scholar
30.
Mukhtar, S. et al. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World J. Microb. Biot. 34, 136. https://doi.org/10.1007/s11274-018-2509-5 (2018).
CAS Article Google Scholar
31.
Patten, C. L. & Glick, B. R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system Appl. Environ. Microbiol. 68(3795), 3801 (2002).
Google Scholar
32.
Etesami, H., Alikhani, H. A. & Hosseini, H. M. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2, 72–78 (2015).
PubMed PubMed Central Google Scholar
33.
Abbamondi, G. R. et al. Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem. Biol. Technol. Agric. 3, 1. https://doi.org/10.1186/s40538-015-0051-3 (2016).
CAS Article Google Scholar
34.
Gupta, S. & Pandey, S. Unravelling the biochemistry and genetics of ACC deaminase-An enzyme alleviating the biotic and abiotic stress in plants. Plant gene 18, 100175. https://doi.org/10.1016/j.plgene.2019.100175 (2019).
CAS Article Google Scholar
35.
Khamna, S., Yokota, A., Peberdy, J. F. & Lumyong, S. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian J. BioSciences 4, 23–32 (2010).
CAS Google Scholar
36.
Spaepen, S. & Vanderleyden, J. Auxin and plant-microbe interactions. C. S. H. Perspect. Biol. 3, a001438. https://doi.org/10.1101/cshperspect.a001438 (2011).
CAS Article Google Scholar
37.
Patten, C. L. & Glick, B. R. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42, 207–220 (1996).
CAS PubMed Google Scholar
38.
Majeed, A., Abbasi, K. M., Hameed, S., Imran, A. & Rahim, N. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 6, 198. https://doi.org/10.3389/fmicb.2015.00198 (2015).
Article PubMed PubMed Central Google Scholar
39.
Apine, O. A. & Jadhav, J. P. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 110, 1235–1244 (2011).
CAS PubMed Google Scholar
40.
Checcucci, A. et al. Role and regulation of ACC deaminase gene in Sinorhizobium melilotr: Is it a symbiotic, rhizospheric or endophytic gene?. Front. Genet. 8, 6. https://doi.org/10.3389/fgene.2017.00006 (2017).
CAS Article PubMed PubMed Central Google Scholar
41.
Belimov, A. A. et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37, 241–250 (2005).
CAS Google Scholar
42.
Khan, N. A., Khan, M. I. R., Ferrante, A. & Poor, P. Editorial: ethylene: a key regulatory molecule in plants. Front. Plant Sci. 8, 1782. https://doi.org/10.3389/fpls.2017.01782 (2017).
Article PubMed PubMed Central Google Scholar
43.
Glick, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 30–39 (2014).
CAS PubMed Google Scholar
44.
Wang, Z. et al. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese Cabbage (Brassica campestris ssp. chinensis). Front. Microbiol. 8, 1270. https://doi.org/10.3389/fmicb.2017.01270 (2017).
Article PubMed PubMed Central Google Scholar
45.
Dinesh, R. et al. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 173, 34–43 (2015).
PubMed Google Scholar
46.
Niu, X., Song, L., Xiao, Y. & Ge, W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 8, 2580. https://doi.org/10.3389/fmicb.2017.02580 (2018).
Article PubMed PubMed Central Google Scholar
47.
Singh, V. K., Singh, A. K., Singh, P. P. & Kumar, A. Interaction of plant growth promoting bacteria with tomato under abiotic stress: a review. Agricult. Ecosyst. Environ. 267, 129–140 (2018).
CAS Google Scholar
48.
Grover, M., Bodhankar, S., Maheswari, M. & Srinivasarao, C. Actinomycetes as mitigators of climate change and abiotic stress. In Plant Growth Promoting Actinobacteria: A New Avenue for Enhancing the Productivity and Soil Fertility of Grain Legumes (eds Subramaniam, G. et al.) 203–212 (Springer, Berlin, 2016).
Google Scholar
49.
Sang, M. K., Jeong, J. J., Kim, J. & Kim, K. D. Growth promotion and root colonisation in pepper plants by phosphate-solubilising Chryseobacterium sp strain ISE14 that suppresses Phytophthora blight. Ann. Appl. Biol. 172, 208–223 (2018).
CAS Google Scholar
50.
Xiao, X., Fan, M., Wang, E., Chen, W. & Wei, G. Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants. Appl. Microbiol. Biot. 101, 8485–8497 (2017).
CAS Google Scholar
51.
Abdelkrim, S. et al. Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J. Basic Microb. 58, 579–589 (2018).
CAS Google Scholar
52.
Liu, Y. et al. Characterization of Lysobacter capsici strain NF87–2 and its biocontrol activities against phytopathogens. Eur. J. Plant Pathol. 155, 859–869 (2019).
CAS Google Scholar
53.
Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ. https://doi.org/10.7717/peerj.4652 (2018).
Article PubMed PubMed Central Google Scholar
54.
Lee, Z. M., Bussema, C. III. & Schmidt, T. M. rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res. 37, D489–D493 (2008).
PubMed PubMed Central Google Scholar
55.
Shen, X., Hu, H., Peng, H., Wang, W. & Zhang, X. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14, 271. https://doi.org/10.1186/1471-2164-14-271 (2013).
CAS Article PubMed PubMed Central Google Scholar
56.
Niazi, A. et al. Genome analysis of Bacillus amyloliquefaciens subsp. Plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. PloS ONE 9, e104651. https://doi.org/10.1371/journal.pone.0104651 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
57.
Riggs, P. J., Chelius, M. K., Leonardo, I. A., Kaeppler, S. M. & Triplett, E. W. Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct. Plant Biol. 28, 829–836 (2001).
Google Scholar
58.
Saleem, M., Arshad, M., Hussain, S. & Bhatti, A. S. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biot. 34, 635–648 (2007).
CAS Google Scholar
59.
Dorjey, S., Gupta, V. & Razdan, V. K. Evaluation of Pseudomonas fluorescens isolates for the management of Fusarium oxysporum f.sp. lycopersici and Rhizoctonia solani causing wilt complex in tomato. Indian Phytopathol. 70, 127–130 (2017).
Google Scholar
60.
Dardanelli, M. S. et al. Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl. Soil Ecol. 75, 31–38 (2012).
Google Scholar
61.
Ogut, M., Er, F. & Brohi, A. Excessive phosphorus fertilization does not increase cadmium concentrations in soil or carrots (Daucus carota L.) grown in Konya (Turkey). Acta Agr. Scand B-S.P. 60, 420–426 (2010).
CAS Google Scholar
62.
Rodríguez, H., Fraga, R., Gonzalez, T. & Bashan, Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287, 15–21 (2006).
Google Scholar
63.
Kalayu, G. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int. J. Agron. 2019, 4917256. https://doi.org/10.1155/2019/4917256 (2019).
CAS Article Google Scholar
64.
Mellidou, I. et al. Silencing S-adenosyl-L-methionine decarboxylase (SAMDC) in Nicotiana tabacum points at a polyamine-dependent trade-off between growth and tolerance responses. Front. Plant Sci. 7, 379. https://doi.org/10.3389/fpls.2016.00379 (2016).
Article PubMed PubMed Central Google Scholar
65.
Michael, A. J. Biosynthesis of polyamines and polyamine-containing molecules. Biochem. J. 473, 2315–2329 (2016).
CAS PubMed Google Scholar
66.
Nascimento, F. X., Hernández, A. G., Glick, B. R. & Rossi, M. J. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol. Rep. 25, e00406. https://doi.org/10.1016/j.btre.2019.e00406 (2020).
Article Google Scholar
67.
Goswami, R. et al. Optimization of growth determinants of a potent cellulolytic bacterium isolated from lignocellulosic biomass for enhancing biogas production. Clean Technol. Envir. 18, 1565–1583 (2016).
CAS Google Scholar
68.
Vokou, D., Giannakou, U., Kontaxi, C. & Vareltzidou, S. Axios. Aliakmon and gallikos delta complex, Νorthern Greece. In Encyclopedia of Wetlands, Vol. 4 World Wetlands (eds Finlayson, M. et al.) (Springer, Berlin, 2016).
Google Scholar
69.
Mellidou, I., Keulemans, J., Kanellis, A. & Davey, M. W. Regulation of fruit ascorbic acid concentrations in high and low vitamin C tomato cultivars during ripening. BMC Plant Biol. 12, 239–258 (2012).
CAS PubMed PubMed Central Google Scholar
70.
Bouyoucos, G. J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54, 464–465 (1962).
Google Scholar
71.
Sparks, D. L. Methods of Soil Analysis – Part 3 – Chemical Methods, SSSA Book Series 5 (ASA. Madison, WI, SSSA, 1996).
Google Scholar
72.
Karamanoli, K., Bouligaraki, P., Constantinidou, H. I. & Lindow, S. E. Polyphenolic compounds on leaves limit iron availability and affect growth of epiphytic bacteria. Ann. Appl. Biol. 159, 99–108 (2011).
CAS Google Scholar
73.
Eevers, N. et al. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microb. Biotechnol. 8, 707–715 (2015).
CAS PubMed PubMed Central Google Scholar
74.
Louden, B. C., Haarmann, D. & Lynne, A. M. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12, 51. https://doi.org/10.1128/jmbe.v12i1.249 (2011).
Article PubMed PubMed Central Google Scholar
75.
García, C. A., De Rossi, B. P., Alcaraz, E., Vay, C. & Franco, M. Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev. Argent. Microbiol. 44, 150–154 (2012).
PubMed Google Scholar
76.
Dworkin, M. & Foster, J. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592–601 (1958).
CAS PubMed PubMed Central Google Scholar
77.
Hontzeas, N., Zoidakis, J., Glick, B. R. & Abu-Omar, M. M. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim. Biophys. Acta 1703, 11–19 (2004).
CAS PubMed Google Scholar
78.
Bradford, M. A rapid and sensitive method for the quantitation of micro gram quantities of protein utilizing the principle of protein—dye binding. Anal. Biochem. 72, 248–258 (1976).
CAS Google Scholar
79.
Nautiyal, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170, 265–270 (1999).
CAS PubMed Google Scholar
80.
Luziatelli, F., Ficca, A. G., Colla, G., Švecová, E. B. & Ruzzi, M. Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 10, 60. https://doi.org/10.3389/fpls.2019.00060 (2019).
Article PubMed PubMed Central Google Scholar
81.
Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).
CAS PubMed PubMed Central Google Scholar
82.
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
CAS PubMed Google Scholar
83.
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2, W537–W544 (2018).
Google Scholar
84.
Li, D. et al. MEGAHIT v.10: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 1, 3–11 (2016).
Google Scholar
85.
Seeman, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 15, 2068–2069 (2014).
Google Scholar
86.
Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi0203s00 (2002).
Article Google Scholar
87.
Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid S. 41, 95–98 (1999).
CAS Google Scholar
88.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
CAS PubMed PubMed Central Google Scholar
89.
Felsenstein, J. Confidence limits on phylogenies: an approach using the Bootstrap. Evolution 39, 783–791 (1985).
PubMed PubMed Central Google Scholar
90.
Wu, S., Zhu, Z., Fu, L., Niu, B. & Li, W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12, 444. https://doi.org/10.1186/1471-2164-12-444 (2011).
Article PubMed PubMed Central Google Scholar
91.
Kamou, N. N. et al. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot. Biocontrol Sci. Technol. 25(8), 928–949 (2015).
Google Scholar More