Synchronized moulting behaviour in trilobites from the Cambrian Series 2 of South China
1.
Owen, A. W. Trilobite abnormalities. Earth Environ. Sci. Trans. R. Soc. Edinb. 76(2–3), 255–272 (1985).
Google Scholar
2.
Daley, A. C. & Drage, H. B. The fossil record of ecdysis, and trends in the moulting behaviour of trilobites. Arthropod Struct. Dev. 45(2), 71–96 (2016).
ADS PubMed Google Scholar
3.
Clarkson, E. N. On the schizochroal eyes of three species of Reedops (Trilobita: Phacopidae) from the Lower Devonian of Bohemia. Earth Environ. Sci. Trans. R. Soc. Edinb. 68(8), 183–205 (1969).
Google Scholar
4.
Henningsmoen, G. Moulting in trilobites. Fossils Strata. 4(1), 79–200 (1975).
Google Scholar
5.
Howe, N. R. Partial molting synchrony in the giant Malaysian prawn, Macrobrachium rosenbergii: A chemical communication hypothesis. J. Chem. Ecol. 7(3), 487–500 (1981).
PubMed CAS Google Scholar
6.
Drage, H. B. Quantifying intra-and interspecific variability in trilobite moulting behaviour across the Palaeozoic. Paleontol. Electron. 22(2) (2019).
7.
Pates, S. & Bicknell, R. D. Elongated thoracic spines as potential predatory deterrents in olenelline trilobites from the lower Cambrian of Nevada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 516, 295–306 (2019).
Google Scholar
8.
Webster, S. G. Seasonal anecdysis and moulting synchrony in field populations of Palaemon elegans (Rathke). Estuar. Coast. Shelf Sci. 15(1), 85–94 (1982).
ADS Google Scholar
9.
Leinaas, H. P. Synchronized moulting controlled by communication in group-living Collembola. Science 219(4581), 193–195 (1983).
ADS PubMed CAS Google Scholar
10.
Stone, R. P. Mass molting of tanner crabs Chionoecetes bairdi in a Southeast Alaska-Estuary. Alaska Fish. Res. Bull. 6(1), 19–28 (1999).
Google Scholar
11.
Kim, K. W. Social facilitation of synchronized molting behavior in the spider Amaurobius ferox (Araneae, Amaurobiidae). J. Insect Behav. 14(3), 401–409 (2001).
CAS Google Scholar
12.
Haug, J. T., Caron, J. B. & Haug, C. Demecology in the Cambrian: Synchronized molting in arthropods from the Burgess Shale. BMC Biol. 11(1), 64 (2013).
PubMed PubMed Central Google Scholar
13.
Braddy, S. J. Eurypterid palaeoecology: Palaeobiological, ichnological and comparative evidence for a ‘mass–moult–mate’ hypothesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172(1–2), 115–132 (2001).
Google Scholar
14.
Karim, T. & Westrop, S. R. Taphonomy and paleoecology of Ordovician trilobite clusters, Bromide Formation, south-central Oklahoma. Palaios 17, 394–402 (2002).
ADS Google Scholar
15.
Vrazo, M. B. & Braddy, S. J. Testing the ‘mass-moult-mate’hypothesis of eurypterid palaeoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 311(1–2), 63–73 (2011).
Google Scholar
16.
Paterson, J. R., Jago, J. B., Brock, G. A. & Gehling, J. G. Taphonomy and palaeoecology of the emuellid trilobite Balcoracania dailyi (early Cambrian, South Australia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 249(3–4), 302–321 (2007).
Google Scholar
17.
Błażejowski, B., Brett, C. E., Kin, A., Radwański, A. & Gruszczyński, M. Ancient animal migration: A case study of eyeless, dimorphic Devonian trilobites from Poland. Palaeontology 59(5), 743–751 (2016).
Google Scholar
18.
Vannier, J. et al. Collective behaviour in 480-million-year-old trilobite arthropods from Morocco. Sci. Rep. 9(1), 1–10 (2019).
CAS Google Scholar
19.
Pocock, K. J. The Emuellidae, a new family of trilobites from the Lower Cambrian of South Australia. Palaeontology 13(4), 522–562 (1970).
Google Scholar
20.
Esker, G. C. New species of trilobites from the Bromide Formation (Pooleville Member) of Oklahoma. Oklahoma Geology Notes. 24(9), 195–209 (1964).
Google Scholar
21.
Thoral, M. Contribution à l’étude paléontologique de l’Ordovicien inférieur de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire. (Imprimerie de la Charité, Montpellier, 1935).
22.
Passano, L. M. Molting and its control. In Metabolism and Growth (1960).
23.
Webster, M., Gaines, R. R. & Hughes, N. C. Microstratigraphy, trilobite biostratinomy, and depositional environment of the “lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264(1–2), 100–122 (2008).
Google Scholar
24.
Esteve, J. & Zamora, S. Enrolled agnostids from Cambrian of Spain provide new insights about the mode of life in these forms. Bull. Geosci. 89(2), 283–291 (2014).
Google Scholar
25.
Speyer, S. E. Comparative taphonomy and palaeoecology of trilobite lagerstätten. Alcheringa 11(3), 205–232 (1987).
Google Scholar
26.
Geyer, G. & Peel, J. S. The Henson Gletscher Formation, North Greenland, and its bearing on the global Cambrian Series 2–Series 3 boundary. Bull. Geosci. 86(3), 465–534 (2011).
Google Scholar
27.
Zhou, T. M., Liu, Y. R., Meng, X. S & Sun, Z. H. Palaeontological atlas of central and southern China. In Early Palaeonzoic, vol. 1 (eds. Hubei Institute of Geological Sciences, Geological Bureau of Henan Province, Geological Bureau of Hubei Province, Geological Bureau of Hunan Province, Geological Bureau of Guangdong Province & Geological Bureau of Guangxi Province) 104–266 (Geological Publishing House, Beijing, 1977).
28.
Yuan, J. L. & Esteve, J. The earliest species of Burlingia Walcott, 1908 (Trilobita) from South China: Biostratigraphical and palaeogeographical significance. Geol. Mag. 152(2), 358–366 (2015).
ADS Google Scholar
29.
Hughes, N. C., Minelli, A. & Fusco, G. The ontogeny of trilobite segmentation: A comparative approach. Paleobiology. 32(4), 602–627 (2006).
Google Scholar
30.
Brett, C. E. & Baird, G. C. Taphonomic approaches to temporal resolution in stratigraphy: Examples from Paleozoic marine mudrocks. Short Courses Paleontol. 6, 251–274 (1993).
Google Scholar
31.
Brandt, D. S. Taphonomic grades as a classification for fossiliferous assemblages and implications for paleoecology. Palaios 4(4), 303–309 (1989).
ADS Google Scholar
32.
Schäfer, W. & Oertel, I. Ecology and Palaeoecology of Marine Environments (University of Chicago Press, Illinois, 1972).
Google Scholar
33.
Brett, C. E. & Baird, G. C. Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios 1(3), 207–227 (1986).
ADS Google Scholar
34.
Plotnick, R. E. Taphonomy of a modern shrimp: Implications for the arthropod fossil record. Palaios. 286–293 (1986).
35.
Plotnick, R. E., Baumiller, T. & Wetmore, K. L. Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 63(1–3), 27–43 (1988).
Google Scholar
36.
Babcock, L. E. & Chang, W. Comparative taphonomy of two nonmineralized arthropods: Naraoia (Nektaspida; Early Cambrian, Chengjiang Biota, China) and Limulus (Xiphosurida; Holocene, Atlantic Ocean). Collect. Res. 10, 233–250 (1997).
Google Scholar
37.
Speyer, S. E. & Brett, C. E. Clustered trilobite assemblages in the Middle Devonian Hamilton group. Lethaia. 18(2), 85–103 (1985).
Google Scholar
38.
Paterson, J. R. et al. Trilobite clusters: What do they tell us? A preliminary investigation. Adv. Trilobite Res. 9, 313–318 (2008).
Google Scholar
39.
Gaines, R. R. & Droser, M. L. Paleoecology of the familiar trilobite Elrathia kingii: An early exaerobic zone inhabitant. Geology 31(11), 941–944 (2003).
ADS Google Scholar
40.
Gutiérrez-Marco, J. C., Sá, A. A., García-Bellido, D. C., Rábano, I. & Valério, M. Giant trilobites and trilobite clusters from the Ordovician of Portugal. Geology 37(5), 443–446 (2009).
ADS Google Scholar
41.
Esteve, J., Hughes, N. C. & Zamora, S. Purujosa trilobite assemblage and the evolution of trilobite enrollment. Geology 39(6), 575–578 (2011).
ADS Google Scholar
42.
Brett, C. E., Zambito, J. J. IV., Schindler, E. & Becker, R. T. Diagenetically-enhanced trilobite obrution deposits in concretionary limestones: The paradox of “rhythmic events beds”. Palaeogeogr. Palaeoclimatol. Palaeoecol. 367, 30–43 (2012).
Google Scholar
43.
Hoare, B. Animal Migration: Remarkable Journeys in the Wild. (University of California Press, 2009).
44.
Chatterton, B. D. E. & Fortey, R. A. Linear clusters of articulated trilobites from Lower Ordovician (Arenig) strata at Bini Tinzoulin, North Zagora, Southern Morocco. Adv. Trilobite Res. (Cuadernos del Museo Geominero) 9, 73–77 (2008).
45.
Trenchard, H., Brett, C. E. & Perc, M. Trilobite ‘pelotons’: Possible hydrodynamic drag effects between leading and following trilobites in trilobite queues. Palaeontology 60(4), 557–569 (2017).
Google Scholar
46.
Kim, K. W. & Horel, A. Matriphagy in the spider Amaurobius ferox (Araneidae, Amaurobiidae): an example of mother-offspring interactions. Ethology 104(12), 1021–1037 (1998).
Google Scholar
47.
Kim, K. W. & Roland, C. Trophic egg laying in the spider, Amaurobius ferox: mother–offspring interactions and functional value. Behav. Proc. 50(1), 31–42 (2000).
CAS Google Scholar
48.
Drage, H. B., Holmes, J. D., García-Bellido, D. C. & Daley, A. C. An exceptional record of Cambrian trilobite moulting behaviour preserved in the Emu Bay Shale, South Australia. Lethaia 51(4), 473–492 (2018).
Google Scholar
49.
Zhao, Y. L. et al. Balang section, Guizhou, China: Stratotype section for the Taijiangian Stage and candidate for GSSP of an unnamed Cambrian Series. Camb. Syst. China Korea Guide Field Excursions 62–83 (2005).
50.
Zhao, Y. L. et al. Kaili Biota: A taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geol. Sin.-English Ed. 79(6), 751–765 (2005).
Google Scholar
51.
Yang, X. L., Zhao, Y. L., Peng, J., Yang, Y. N. & Yang, K. D. Discovery of Oryctocephalid trilobites from the Tsinghsutung Formation (Duyunian Stage, Qiandongian Series, Cambrian), Jianhe County, Guizhou Province. Geol. J. China Univ. 16(3), 309–316 (2010).
Google Scholar
52.
Yuan, J. L., Esteve, J. & Ng, T. W. Articulation, interlocking devices and enrolment in Monkaspis daulis (W alcott, 1905) from the Guzhangian, middle Cambrian of North China. Lethaia. 47(3), 405–417 (2014).
Google Scholar
53.
Zhao, Y. L., Yuan, J. L., Esteve, J. & Peng, J. The oryctocephalid trilobite zonation across the Cambrian Series 2-Series 3 boundary at Balang, South China: A reappraisal. Lethaia. 50(3), 400–406 (2017).
Google Scholar
54.
Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11(7), 36–42 (2004).
Google Scholar
55.
Esteve, J., Zhao, Y. L., Maté-González, M. A., Gómez-Heras, M. & Peng, J. A new high-resolution 3-D quantitative method for analysing small morphological features: An example using a Cambrian trilobite. Sci. Rep. 8(1), 1–10 (2018).
CAS Google Scholar
56.
Lask, P. B. The hydrodynamic behavior of sclerites from the trilobite Flexicalymene meeki. Palaios, 219–225 (1993).
57.
Hesselbo, S. P. The biostratinomy of Dikelocephalus sclerites: implications for the use of trilobite attitude data. Palaios. 605–608 (1987).
58.
Mikulic, D. G. The arthropod fossil record: biologic and taphonomic controls on its composition. Short Courses Paleontol. 3, 1–23 (1990).
Google Scholar
59.
Speyer, S. E. & Donovan, S. K. Trilobite taphonomy: A basis for comparative studies of arthropod preservation, functional anatomy and behaviour. Processes Fossil., 194–219 (1991).
60.
Speyer, S. E. & Brett, C. E. Trilobite taphonomy and Middle Devonian taphofacies. Palaios., 312–327 (1986).
61.
Schumacher, G. A. & Shrake, D. L. Paleoecology and comparative taphonomy of an Isotelus (Trilobita) fossil lagerstätten from the Waynesville Formation (Upper Ordovician, Cincinnatian Series) of southwestern Ohio. In Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. 131–161 (Columbia University Press, New York, 1997).
62.
Hickerson, W. J. Middle Devonian (Givetian) trilobite clusters from eastern Iowa and northwestern Illinois. In Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. 224–246 (Columbia University Press, New York, 1997).
63.
Hughes, N. C. & Cooper, D. L. Paleobiologic and taphonomic aspects of the “granulosa” trilobite cluster, Kope Formation (Upper Ordovician, Cincinnati region). J. Paleontol. 73(2), 306–319 (1999).
Google Scholar
64.
Hunda, B. R., Hughes, N. C. & Flessa, K. W. Trilobite taphonomy and temporal resolution in the Mt. Orab shale bed (Upper Ordovician, Ohio, USA). Palaios. 21(1), 26–45 (2006).
65.
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007).
Google Scholar
66.
Davis, J. C. Statistics and data analysis In Geology 289–291 (Wiley, New York, 1986).
67.
Roubeyrie, L. & Celles, S. Windrose: A Python Matplotlib, Numpy library to manage wind and pollution data, draw windrose. J Open Source Softw. 3(29), 268 (2018).
ADS Google Scholar
68.
Sun, H.-J., Zhao, Y.-L., Peng, J. & Yang, Y.-N. New Wiwaxia material from the Tsinghsutung Formation (Cambrian Series 2) of Eastern Guizhou, China. Geol. Mag. 151(2), 339–348 (2014).
ADS CAS Google Scholar More