A guide to ecosystem models and their environmental applications
1.
Lindenmayer, D. et al. The complementarity of single-species and ecosystem-oriented research in conservation research. Oikos 116, 1220–1226 (2007).
Google Scholar
2.
Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).
Google Scholar
3.
Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13427 (2019).
4.
Buckley, Y. M. & Han, Y. Managing the side effects of invasion control. Science 344, 975–976 (2014).
CAS Google Scholar
5.
Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).
Google Scholar
6.
DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).
CAS Google Scholar
7.
Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079 (2011).
CAS Google Scholar
8.
Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Embrace complexity to improve conservation decision making. Nat. Ecol. Evol. 1, 1588 (2017).
Google Scholar
9.
Dorresteijn, I. et al. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape. Proc. R. Soc. B, https://doi.org/10.1098/rspb.2015.1602 (2015).
10.
Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).
Google Scholar
11.
Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765 (2013).
CAS PubMed Central PubMed Google Scholar
12.
Peters, D. P. C. & Okin, G. S. A Toolkit for ecosystem ecologists in the time of big science. Ecosystems 20, 259–266 (2017).
Google Scholar
13.
Fulton, E. A. Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171–183 (2010).
Google Scholar
14.
Waltner-Toews, D., Kay James, J., Neudoerffer, C. & Gitau, T. Perspective changes everything: managing ecosystems from the inside out. Front. Ecol. Environ. 1, 23–30 (2003).
Google Scholar
15.
Evans, M. R., Norris, K. J. & Benton, T. G. Predictive ecology: systems approaches. Philos. Trans. R. Soc. B 367, 163–169 (2012).
Google Scholar
16.
Smith, A. D. M., Fulton, E. J., Hobday, A. J., Smith, D. C. & Shoulder, P. Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES J. Mar. Sci. 64, 633–639 (2007).
Google Scholar
17.
Baker, C. M. et al. A novel approach to assessing the ecosystem-wide impacts of reintroductions. Ecol. Appl. 29, https://doi.org/10.1002/eap.1811 (2018).
18.
Purves, D. et al. Ecosystems: time to model all life on Earth. Nature 493, 295 (2013).
CAS Google Scholar
19.
Sutherland, W. J. Predicting the ecological consequences of environmental change: a review of the methods. J. Appl. Ecol. 43, 599–616 (2006).
Google Scholar
20.
Seidl, R. To model or not to model, that is no longer the question for ecologists. Ecosystems 20, 222–228 (2017).
PubMed Central PubMed Google Scholar
21.
Rastetter, E. B. Modeling for understanding v. modeling for numbers. Ecosystems 20, 215–221 (2017).
Google Scholar
22.
Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).
Google Scholar
23.
Schweiger, E. W., Grace, J. B., Cooper, D., Bobowski, B. & Britten, M. Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere 7, e01548 (2016).
Google Scholar
24.
Evans, M. R. Modelling ecological systems in a changing world. Philos. Trans. R. Soc. B 367, 181–190 (2012).
Google Scholar
25.
Fulton, E. A., Smith, A. D. M. & Johnson, C. R. Effect of complexity on marine ecosystem models. Mar. Ecol. Prog. Ser. 253, 1–16 (2003).
Google Scholar
26.
Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12097–12912 (2019).
Google Scholar
27.
Lindenmayer, D. et al. A checklist for ecological management of landscapes for conservation. Ecol. Lett. 11, 78–91 (2007).
Google Scholar
28.
Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
Google Scholar
29.
Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).
Google Scholar
30.
Dambacher, J. M., Li, H. W. & Rossignol, P. A. Qualitative predictions in model ecosystems. Ecol. Model. 161, 79–93 (2003).
Google Scholar
31.
Baker, C. M., Holden, M. H., Plein, M., McCarthy, M. A. & Possingham, H. P. Informing network management using fuzzy cognitive maps. Biol. Conserv. 224, 122–128 (2018).
Google Scholar
32.
Dexter, N., Ramsey, D. S., MacGregor, C. & Lindenmayer, D. Predicting ecosystem wide impacts of wallaby management using a fuzzy cognitive map. Ecosystems 15, 1363–1379 (2012).
Google Scholar
33.
Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).
CAS PubMed Google Scholar
34.
McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).
CAS PubMed Central PubMed Google Scholar
35.
Harfoot, M. B. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).
PubMed Central PubMed Google Scholar
36.
Fulton, E. A. et al. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188 (2011).
Google Scholar
37.
Priester, C. R., Melbourne-Thomas, J., Klocker, A. & Corney, S. Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts. Ecol. Model. 359, 372–382 (2017).
CAS Google Scholar
38.
McCann, R. K., Marcot, B. G. & Ellis, R. Bayesian belief networks: applications in ecology and natural resource management. Can. J. Res. 36, 3053–3062 (2006).
Google Scholar
39.
Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).
Google Scholar
40.
Lester, R. E. & Fairweather, P. G. Ecosystem states: creating a data-derived, ecosystem-scale ecological response model that is explicit in space and time. Ecol. Model. 222, 2690–2703 (2011).
CAS Google Scholar
41.
Lester, R. E., Fairweather, P. G., Webster, I. T. & Quin, R. A. Scenarios involving future climate and water extraction: ecosystem states in the estuary of Australia’s largest river. Ecol. Appl. 23, 984–998 (2013).
PubMed Google Scholar
42.
Dubois, D. M. A model of patchiness for prey–predator plankton populations. Ecol. Model. 1, 67–80 (1975).
Google Scholar
43.
Pauly, D., Christensen, V. & Walters, C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697–706 (2000).
Google Scholar
44.
Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. Plos ONE 9, e84242 (2014).
PubMed Central PubMed Google Scholar
45.
Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).
Google Scholar
46.
Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).
Google Scholar
47.
Crabtree, S. A., Bird, D. W. & Bird, R. B. Subsistence transitions and the simplification of ecological networks in the Western Desert of Australia. Hum. Ecol. 47, https://doi.org/10.1007/s10745-019-0053-z (2019).
48.
Planque, B. Projecting the future state of marine ecosystems, “la grande illusion”? ICES J. Mar. Sci. 73, 204–208 (2015).
Google Scholar
49.
Walters, C. & Maguire, J.-J. Lessons for stock assessment from the northern cod collapse. Rev. Fish. Biol. Fish. 6, 125–137 (1996).
Google Scholar
50.
García-Díaz, P. et al. A concise guide to developing and using quantitative models in conservation management. Conserv. Sci. Pract. 1, e11 (2019).
PubMed Central PubMed Google Scholar
51.
Morse, N. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, https://doi.org/10.5751/ES-06192-190212 (2014).
52.
Fulton, E. & Gorton, R. Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations (FRDC/CSIRO, 2014).
53.
Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987 (2008).
CAS Google Scholar
54.
Plagányi, É. E. Models for an Ecosystem Approach to Fisheries (FAO, 2007).
55.
Hunter, D. O., Britz, T., Jones, M. & Letnic, M. Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol. Conserv. 191, 428–435 (2015).
Google Scholar
56.
Baker, C., Bode, M. & McCarthy, M. Models that predict ecosystem impacts of reintroductions should consider uncertainty and distinguish between direct and indirect effects. Biol. Conserv. 196, 211–212 (2016).
Google Scholar
57.
Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447 (2011).
Google Scholar
58.
Morello, E. B. et al. Model to manage and reduce crown-of-thorns starfish outbreaks. Mar. Ecol. Prog. Ser. 512, 167–183 (2014).
Google Scholar
59.
Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: best practices. Fish Fish. 17, 303–334 (2016).
Google Scholar
60.
Edwards, C. T. T., Bunnefeld, N., Balme, G. A. & Milner-Gulland, E. J. Data-poor management of African lion hunting using a relative index of abundance. Proc. Natl Acad. Sci. USA 111, 539–543 (2014).
CAS Google Scholar
61.
Mapstone, B. et al. Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives. Fish. Res. 94, 315–329 (2008).
Google Scholar
62.
Roemer, G. W., Donlan, C. J. & Courchamp, F. Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proc. Natl Acad. Sci. USA 99, 791–796 (2002).
CAS Google Scholar
63.
Lurgi, M., Ritchie, E. G. & Fordham, D. A. Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: the importance of multispecies interactions. J. Appl. Ecol. 55, 2396–2407 (2018).
Google Scholar
64.
Raymond, B., McInnes, J., Dambacher, J. M., Way, S. & Bergstrom, D. M. Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J. Appl. Ecol. 48, 181–191 (2011).
Google Scholar
65.
Levins, R. Discussion paper: the qualitative analysis of partially specified systems. Ann. NY Acad. Sci. 231, 123–138 (1974).
CAS Google Scholar
66.
Baker, C. M., Gordon, A. & Bode, M. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction. Conserv. Biol. 31, 376–384 (2017).
Google Scholar
67.
Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).
CAS Google Scholar
68.
Trifonova, N., Maxwell, D., Pinnegar, J., Kenny, A. & Tucker, A. Predicting ecosystem responses to changes in fisheries catch, temperature, and primary productivity with a dynamic Bayesian network model. ICES J. Mar. Sci. 74, 1334–1343 (2017).
Google Scholar
69.
McCarthy, M. A., Andelman, S. J. & Possingham, H. P. Reliability of relative predictions in population viability analysis. Conserv. Biol. 17, 982–989 (2003).
Google Scholar
70.
Jamiyansharav, K., Fernández-Giménez, M. E., Angerer, J. P., Yadamsuren, B. & Dash, Z. Plant community change in three Mongolian steppe ecosystems 1994–2013: applications to state-and-transition models. Ecosphere 9, https://doi.org/10.1002/ecs2.2145 (2018).
71.
Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K. & Clout, M. N. Spatial heterogeneity of mesopredator release within an oceanic island system. Proc. Natl Acad. Sci. USA 104, 20862–20865 (2007).
CAS Google Scholar
72.
Melbourne-Thomas, J. et al. Regional‐scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. Ecol. Appl. 21, 1380–1398 (2011).
Google Scholar
73.
Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).
Google Scholar
74.
Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3, 899–903 (2013).
Google Scholar
75.
Fedriani, J. M. et al. Assisting seed dispersers to restore oldfields: an individual‐based model of the interactions among badgers, foxes and Iberian pear trees. J. Appl. Ecol. 55, 600–611 (2018).
Google Scholar
76.
Breckling, B., Müller, F., Reuter, H., Hölker, F. & Fränzle, O. Emergent properties in individual-based ecological models—introducing case studies in an ecosystem research context. Ecol. Model. 186, 376–388 (2005).
Google Scholar
77.
Grimm, V., Ayllón, D. & Railsback, S. F. Next-generation individual-based models integrate biodiversity and ecosystems: yes we can, and yes we must. Ecosystems 20, 229–236 (2017).
Google Scholar
78.
Walters, C., Christensen, V. & Pauly, D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish. Biol. Fish. 7, 139–172 (1997).
Google Scholar
79.
Pachzelt, A., Rammig, A., Higgins, S. & Hickler, T. Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecol. Model. 263, 92–102 (2013).
Google Scholar
80.
Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).
Google Scholar
81.
Bodini, A. Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can. J. Fish. Aquat. Sci. 57, 1999–2009 (2000).
Google Scholar
82.
Greenville, A. C., Wardle, G. M. & Dickman, C. R. Desert mammal populations are limited by introduced predators rather than future climate change. R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.170384 (2017).
83.
Pasanen‐Mortensen, M. et al. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change. J. Anim. Ecol. 86, 566–576 (2017).
Google Scholar
84.
Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
CAS Google Scholar
85.
Bliege Bird, R. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, https://doi.org/10.1038/s41559-018-0576-5 (2018).
86.
Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).
Google Scholar
87.
Kuijper, D. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B 283, 20161625 (2016).
Google Scholar
88.
Moran, D., Laycock, H. & White, P. C. L. The role of cost-effectiveness analysis in conservation decision-making. Biol. Conserv. 143, 826–827 (2010).
Google Scholar
89.
Evans, M. R. et al. Predictive systems ecology. Proc. R. Soc. B 280, https://doi.org/10.1098/rspb.2013.1452 (2013).
90.
Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).
Google Scholar
91.
Plagányi, É. E. et al. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22 (2014).
Google Scholar
92.
Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 34, 121–131 (2018).
Google Scholar
93.
Chadès, I., Curtis, J. M. R. & Martin, T. G. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone. Conserv. Biol. 26, 1016–1025 (2012).
Google Scholar
94.
Pesendorfer, M. et al. Oak habitat recovery on California’s largest islands: scenarios for the role of corvid seed dispersal. J. Appl. Ecol. 55, 1185–1194 (2017).
Google Scholar
95.
Schuwirth, N. et al. How to make ecological models useful for environmental management. Ecol. Model. 411, 108784 (2019).
Google Scholar
96.
Davis, K. J., Chadès, I., Rhodes, J. R. & Bode, M. General rules for environmental management to prioritise social–ecological systems research based on a value of information approach. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13425 (2019).
97.
Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2015).
Google Scholar
98.
Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evol. 2, 465–474 (2018).
Google Scholar
99.
Lohr, C. A. et al. Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere 8, e01822 (2017).
Google Scholar
100.
Nicol, S., Fuller Richard, A., Iwamura, T. & Chadès, I. Adapting environmental management to uncertain but inevitable change. Proc. R. Soc. B 282, 20142984 (2015).
Google Scholar
101.
Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).
Google Scholar
102.
Andersen, K. H., Jacobsen, N. S. & Farnsworth, K. D. The theoretical foundations for size spectrum models of fish communities. Can. J. Fish. Aquat. Sci. 73, 575–588 (2015).
Google Scholar
103.
Nicol, S., Sabbadin, R., Peyrard, N. & Chadès, I. Finding the best management policy to eradicate invasive species from spatial ecological networks with simultaneous actions. J. Appl. Ecol. 54, 1989–1999 (2017).
Google Scholar
104.
Milner‐Gulland, E. J., Shea, K. & Punt, A. Embracing uncertainty in applied ecology. J. Appl. Ecol. 54, 2063–2068 (2017).
PubMed Central PubMed Google Scholar
105.
Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).
CAS Google Scholar
106.
Gregr, E. J. & Chan, K. M. A. Leaps of faith: how implicit assumptions compromise the utility of ecosystem models for decision-making. BioScience 65, 43–54 (2015).
Google Scholar
107.
Hill, S. L. et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336 (2007).
Google Scholar
108.
Spence, M. A. et al. A general framework for combining ecosystem models. Fish Fish. 19, 1031–1042 (2018).
Google Scholar
109.
Wood, S. N. & Thomas, M. B. Super-sensitivity to structure in biological models. Proc. R. Soc. B 266, 565–570 (1999).
Google Scholar
110.
Runge, M. C., Converse, S. J. & Lyons, J. E. Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol. Conserv. 144, 1214–1223 (2011).
Google Scholar
111.
Bal, P. et al. Quantifying the value of monitoring species in multi‐species, multi‐threat systems. Methods Ecol. Evol. 9, 1706–1717 (2018).
Google Scholar
112.
Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).
Google Scholar
113.
Wallach, A. D. et al. Trophic cascades in 3D: network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).
Google Scholar
114.
Ruscoe, W. A. et al. Unexpected consequences of control: competitive vs. predator release in a four‐species assemblage of invasive mammals. Ecol. Lett. 14, 1035–1042 (2011).
Google Scholar
115.
Bower, S. D. et al. Making tough choices: picking the appropriate conservation decision‐making tool. Conserv. Lett. 11, e12418 (2017).
Google Scholar
116.
Stouffer, D. B. All ecological models are wrong, but some are useful. J. Anim. Ecol. 88, 192–195 (2019).
Google Scholar
117.
Olsen, E. et al. Ecosystem model skill assessment. Yes we can! PLoS ONE 11, e0146467 (2016).
PubMed Central PubMed Google Scholar
118.
Cattarino, L. et al. Information uncertainty influences conservation outcomes when prioritizing multi‐action management efforts. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13147 (2018).
119.
Greenville, A. C. et al. Biodiversity responds to increasing climatic extremes in a biome-specific manner. Sci. Total Environ. 634, 382–393 (2018).
CAS Google Scholar
120.
de Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).
Google Scholar
121.
Curtsdotter, A. et al. Ecosystem function in predator–prey food webs — confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).
Google Scholar
122.
Greenville, A. C., Nguyen, V., Wardle, G. M. & Dickman, C. R. Making the most of incomplete long-term datasets: the MARSS solution. Aust. Zool. 39, 733–747 (2018).
Google Scholar
123.
Tulloch, A. I. T., Chadès, I. & Possingham, H. P. Accounting for complementarity to maximize monitoring power for species management. Conserv. Biol. 27, 988–999 (2013).
Google Scholar
124.
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
Google Scholar
125.
Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).
PubMed Central PubMed Google Scholar
126.
Tittensor, D., Coll, M. & Walker, N. D. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).
Google Scholar
127.
Prowse, T. A. A. et al. An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere 7, e01238 (2016).
Google Scholar
128.
McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).
Google Scholar
129.
Chee, Y. E. & Wintle, B. A. Linking modelling, monitoring and management: an integrated approach to controlling overabundant wildlife. J. Appl. Ecol. 47, 1169–1178 (2010).
Google Scholar
130.
Plagányi, É. E. & Butterworth, D. S. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey. Ecol. Appl. 22, 748–761 (2012).
Google Scholar
131.
Kinzey, D. & Punt, A. E. Multispecies and single‐species models of fish population dynamics: comparing parameter estimates. Nat. Resour. Model. 22, 67–104 (2009).
Google Scholar
132.
Bode, M. & Possingham, H. Can culling a threatened species increase its chance of persisting? Ecol. Model. 201, 11–18 (2007).
Google Scholar
133.
Poudel, D. & Sandal, L. K. Stochastic optimization for multispecies fisheries in the Barents Sea. Nat. Resour. Model. 28, 219–243 (2015).
Google Scholar
134.
Gray, R. & Wotherspoon, S. Increasing model efficiency by dynamically changing model representations. Environ. Model. Softw. 30, 115–122 (2012).
Google Scholar
135.
Punt, A. E. & Hobday, D. Management strategy evaluation for rock lobster, Jasus edwardsii, off Victoria, Australia: accounting for uncertainty in stock structure. N. Zeal. J. Mar. Freshw. Res. 43, 485–509 (2009).
Google Scholar
136.
Colléter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).
Google Scholar
137.
Angelini, S. et al. An ecosystem model of intermediate complexity to test management options for fisheries: a case study. Ecol. Model. 319, 218–232 (2016).
Google Scholar
138.
Tulloch, V. J., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish. Fish. 19, 117–137 (2018).
Google Scholar
139.
Geary, W. L., Ritchie, E. G., Lawton, J. A., Healey, T. R. & Nimmo, D. G. Incorporating disturbance into trophic ecology: fire history shapes mesopredator suppression by an apex predator. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13125 (2018).
140.
Marcot, B. G., Holthausen, R. S., Raphael, M. G., Rowland, M. M. & Wisdom, M. J. Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement. Ecol. Manag. 153, 29–42 (2001).
Google Scholar
141.
Elmhagen, B., Ludwig, G., Rushton, S. P., Helle, P. & Lindén, H. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. J. Anim. Ecol. 79, 785–794 (2010).
CAS PubMed Google Scholar
142.
Ritchie, E. et al. Ecosystem restoration with teeth: what role for predators? Trends Ecol. Evol. 27, 265–271 (2012).
Google Scholar
143.
Borsuk, M. E., Stow, C. A. & Reckhow, K. H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecol. Model. 173, 219–239 (2004).
Google Scholar
144.
Christensen, V. & Walters, C. J. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).
Google Scholar More
