Philippa Kaur
More stories
100 Shares119 Views
in EcologyPlant–microbiome interactions: from community assembly to plant health
1.
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).
PubMed Google Scholar
2.
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012). This is one of the first studies to use high-throughput sequencing to profile the plant-associated microbiota, suggesting compartment-specific assembly of microbial communities.
CAS PubMed PubMed Central Google Scholar3.
Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).
CAS PubMed Google Scholar4.
Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).
CAS PubMed Google Scholar5.
Ofek-Lalzar, M. et al. Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5, 4950 (2014).
CAS PubMed Google Scholar6.
Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015). In this study, shotgun metagenome analysis was used to elucidate the microbial traits involved in the bacterium–bacteriophage, interbacterial and host–bacterium interactions that govern plant colonization.
CAS PubMed PubMed Central Google Scholar7.
Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015).
CAS PubMed Google Scholar8.
Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio 6, e02527–14 (2015).
PubMed PubMed Central Google Scholar9.
Coleman-Derr, D. et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209, 798–811 (2016).
CAS PubMed Google Scholar10.
De Souza, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 6, 28774 (2016).
PubMed PubMed Central Google Scholar11.
Fonseca-García, C. et al. The cacti microbiome: interplay between habitat-filtering and host-specificity. Front. Microbiol. 7, 150 (2016).
PubMed PubMed Central Google Scholar12.
Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157–E1165 (2018).
CAS PubMed Google Scholar13.
Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140 (2018).
CAS PubMed Google Scholar14.
Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).
CAS PubMed Google Scholar15.
Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 4894 (2018). This study presents one of the most comprehensive investigations on the structure and functional features of the microbiome associated with a particular plant species, identifying the core microbiota and functions that are persistently present at a global scale.
PubMed PubMed Central Google Scholar16.
Bergelson, J., Mittelstrass, J. & Horton, M. W. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Sci. Rep. 9, 24 (2019).
PubMed PubMed Central Google Scholar17.
Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).
CAS PubMed PubMed Central Google Scholar18.
Roman-Reyn, V. et al. The rice leaf microbiome has a conserved community structure controlled by complex host-microbe. Preprint at bioRxiv https://doi.org/10.1101/615278 (2019).19.
Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).
CAS PubMed PubMed Central Google Scholar20.
Lemanceau, P., Blouin, M., Muller, D. & Moënne-Loccoz, Y. Let the core microbiota be functional. Trends Plant Sci. 22, 583–595 (2017).
CAS PubMed Google Scholar21.
Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).
CAS PubMed Google Scholar22.
Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2018).
Google Scholar23.
Levy, A. et al. Genomic features of bacterial adaptation to plants. Nat. Genet. 50, 138–150 (2018). In this study, comparative genomics is used to identify the genes involved in bacterial adaptation to plants, including genes associated with plant colonization, microorganism–microorganism competition and host–microorganism interactions.
CAS Google Scholar24.
Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl Acad. Sci. USA 106, 16428–16433 (2009).
CAS PubMed Google Scholar25.
Liu, Z. et al. A genome-wide screen identifies genes in rhizosphere-associated Pseudomonas required to evade plant defenses. mBio 9, e00433-–18 (2018).
PubMed PubMed Central Google Scholar26.
Cole, B. J. et al. Genome-wide identification of bacterial plant colonization genes. PLoS Biol. 15, e2002860 (2018).
Google Scholar27.
Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156, 989–996 (2011).
CAS PubMed PubMed Central Google Scholar28.
Pieterse, C. M. et al. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 52, 347–375 (2014).
CAS Google Scholar29.
Trivedi, P., Trivedi, C., Grinyer, J., Anderson, I. C. & Singh, B. K. Harnessing host-vector microbiome for sustainable plant disease management of phloem-limited bacteria. Front. Plant Sci. 7, 1423 (2016).
PubMed PubMed Central Google Scholar30.
Backer, R. et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1473 (2018).
PubMed PubMed Central Google Scholar31.
Gouda, S. et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206, 131–140 (2018).
PubMed Google Scholar32.
Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011). This study identifies vital bacterial groups and functional traits that are involved in building disease-suppressive soils, thus demonstrating that selective enrichment of microbial groups in response to pathogen attack protects plants against infections.
CAS PubMed Google Scholar33.
Santhanam, R., Weinhold, A., Goldberg, J., Oh, Y. & Baldwin, I. T. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl Acad. Sci. USA 112, E5013–E5020 (2015).
CAS PubMed Google Scholar34.
Trivedi, P. et al. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil. Biol. Biochem. 111, 10–14 (2017).
CAS Google Scholar35.
Ravanbakhsh, M., Kowalchuk, G. A. & Jousset, A. Root-associated microorganisms reprogram plant life history along the growth–stress resistance tradeoff. ISME J. 13, 3093–3101 (2019).
CAS PubMed Google Scholar36.
Xue, C. et al. Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci. Rep. 5, 11124 (2015).
CAS PubMed PubMed Central Google Scholar37.
Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017). In this study, a synthetic microbial community is used to define the molecular interactions that activate a microbiome-mediated response under nutrient-deficient conditions while repressing host immune output, allowing selective microbial colonization.
CAS PubMed PubMed Central Google Scholar38.
Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019). This study demonstrates that slight variation in single plant genes can result in differential recruitment and enrichment of selected microbial groups and functions that correlate with higher nitrogen use efficiency of indica than of japonica varieties of rice.
CAS PubMed Google Scholar39.
Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018). This study demonstrates that biocontrol traits of root-associated bacteria modulate interkingdom interactions between bacterial and filamentous eukaryotic microorganisms, resulting in a balanced plant–microbiome interaction that favours plant growth and survival against root-derived fungi and/or oomycetes.
PubMed PubMed Central Google Scholar40.
Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).
PubMed PubMed Central Google Scholar41.
Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5, e00682-13 (2014).
PubMed PubMed Central Google Scholar42.
Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015). This study demonstrates a significant overlap between bacterial isolates from plant environments and their representation in culture-independent surveys, suggesting that a substantial proportion of the plant-associated microbiota is culturable.
CAS PubMed Google Scholar43.
Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862 (2018).
PubMed PubMed Central Google Scholar44.
Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2019).
PubMed Google Scholar45.
Moissl-Eichinger, C. et al. Archaea are interactive components of complex microbiomes. Trends Microbiol. 26, 70–85 (2018).
CAS PubMed Google Scholar46.
Taffner, J. et al. What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. MSphere 3, e00122-–18 (2018).
CAS PubMed PubMed Central Google Scholar47.
Taffner, J., Cernava, T., Erlacher, A. & Berg, G. Novel insights into plant-associated archaea and their functioning in arugula (Eruca sativa Mill.). J. Adv. Res. 19, 39–48 (2019).
CAS PubMed PubMed Central Google Scholar48.
Pratama, A. A. & van Elsas, J. D. The ‘neglected’ soil virome — potential role and impact. Trends Microbiol. 26, 649–662 (2018).
CAS PubMed Google Scholar49.
Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).
PubMed PubMed Central Google Scholar50.
Morella, N. M., Gomez, A. L., Wang, G., Leung, M. S. & Koskella, B. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol. Ecol. 27, 2025–2038 (2018).
PubMed Google Scholar51.
Castillo, J. D., Vivanco, J. M. & Manter, D. K. Bacterial microbiome and nematode occurrence in different potato agricultural soils. Microb. Ecol. 74, 888–900 (2017).
PubMed Google Scholar52.
Elhady, A. et al. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS ONE 12, e0177145 (2017).
PubMed PubMed Central Google Scholar53.
Treonis, A. M. et al. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Sci. Rep. 8, 2004 (2018).
PubMed PubMed Central Google Scholar54.
Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2018).
PubMed Google Scholar55.
Larousse, M. & Galiana, E. Microbial partnerships of pathogenic oomycetes. PLoS Pathog. 13, e1006028 (2017).
PubMed PubMed Central Google Scholar56.
Ploch, S. & Thines, M. Obligate biotrophic pathogens of the genus Albugo are widespread as asymptomatic endophytes in natural populations of Brassicaceae. Mol. Ecol. 20, 3692–3699 (2015).
Google Scholar57.
Benhamou, N. et al. Pythium oligandrum: an example of opportunistic success. Microbiol 158, 2679–2694 (2012).
CAS Google Scholar58.
Sapp, M., Ploch, S., Fiore-Donno, A. M., Bonkowski, M. & Rose, L. E. Protists are an integral part of the Arabidopsis thaliana microbiome. Environ. Microbiol. 20, 30–43 (2018).
CAS PubMed Google Scholar59.
Astudillo-García, C. et al. Evaluating the core microbiota in complex communities: a systematic investigation. Environ. Microbiol. 19, 1450–1462 (2017).
PubMed Google Scholar60.
Yeoh, Y. K. et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8, 215 (2017).
PubMed PubMed Central Google Scholar61.
Garrido-Oter, R. et al. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24, 155–167 (2018).
CAS PubMed PubMed Central Google Scholar62.
Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016). This study demonstrates the presence of highly interconnected ‘hub species’ in microbial networks that act as mediators between a host and its associated microbiome.
PubMed PubMed Central Google Scholar63.
Muller, E. E. et al. Using metabolic networks to resolve ecological properties of microbiomes. Curr. Opin. Sys. Biol. 8, 73–80 (2018).
Google Scholar64.
Röttjers, L. & Faust, K. From hairballs to hypotheses — biological insights from microbial networks. FEMS Microbiol. Rev. 42, 761–780 (2018).
PubMed PubMed Central Google Scholar65.
Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22 (2017).
PubMed Google Scholar66.
Gloria, T. C. et al. Functional microbial features driving community assembly during seed germination and emergence. Front. Plant Sci. 9, 902 (2018).
Google Scholar67.
Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).
CAS PubMed PubMed Central Google Scholar68.
Tian, B. et al. Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric. Ecosys. Env. 247, 149–156 (2017).
Google Scholar69.
Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl Acad. Sci. USA. 109, 14058–14062 (2012).
CAS PubMed Google Scholar70.
Gehring, C. A., Sthultz, C. M., Flores-Rentería, L., Whipple, A. V. & Whitham, T. G. Tree genetics defines fungal partner communities that may confer drought tolerance. Proc. Natl Acad. Sci. USA 114, 11169–11174 (2017).
CAS PubMed Google Scholar71.
Zhang, Y. et al. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5, 97 (2017).
CAS PubMed PubMed Central Google Scholar72.
Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).
CAS PubMed Google Scholar73.
Jiménez Bremont, J. F. et al. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front. Plant Sci. 5, 95 (2014).
PubMed PubMed Central Google Scholar74.
Busk, P. K. & Lange, L. Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics 16, 368 (2015).
PubMed PubMed Central Google Scholar75.
Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).
CAS PubMed Google Scholar76.
Jiang, X. et al. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. ISME J. 12, 1443–1456 (2018).
CAS PubMed PubMed Central Google Scholar77.
Blair, P. M. et al. Exploration of the biosynthetic potential of the Populus microbiome. mSystems 3, e00045–18 (2018).
CAS PubMed PubMed Central Google Scholar78.
Sessitsch, A. et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant Microbe Interact. 25, 28–36 (2012).
CAS PubMed Google Scholar79.
Han, G. Z. Origin and evolution of the plant immune system. New Phytol. 222, 70–83 (2019).
PubMed Google Scholar80.
Eitas, T. K. & Dangl, J. L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol. 13, 472–477 (2010).
CAS PubMed PubMed Central Google Scholar81.
Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).
PubMed PubMed Central Google Scholar82.
McCann, H. C. et al. Origin and evolution of the kiwifruit canker pandemic. Genome Biol. Evol. 9, 932–944 (2017).
CAS PubMed PubMed Central Google Scholar83.
Berendsen, R. L. et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 12, 1496–1507 (2018).
CAS PubMed PubMed Central Google Scholar84.
Kwak, M. J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018). This study demonstrates that the disease resistance traits of plant varieties are conferred by selective assembly of a native microbiota to rescue a plant from fungal invasion.
CAS Google Scholar85.
Mendes, L. W., Raaijmakers, J. M., de Hollander, M., Mendes, R. & Tsai, S. M. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 12, 212–224 (2019).
Google Scholar86.
Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019). This study demonstrates a microbiome-mediated, multitiered defence system against fungal pathogens, in which the first defence layer is formed by the rhizosphere microbiota; any subsequent attempt to colonize the plant root activates a second layer of defence through plant endophytes that produce antifungal compounds, including effectors, enzymes and antibiotics.
PubMed Google Scholar87.
Helfrich, E. J. et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 3, 909–919 (2018).
CAS PubMed PubMed Central Google Scholar88.
Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, a012427 (2012).
PubMed PubMed Central Google Scholar89.
Hartmann, A. & Schikora, A. Plant responses to bacterial quorum sensing molecules. Front. Plant Sci. 6, 643 (2015).
PubMed PubMed Central Google Scholar90.
Mousa, W. K. et al. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat. Microbiol. 1, 16167 (2016).
CAS PubMed Google Scholar91.
Trivedi, P., Spann, T. & Wang, N. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb. Ecol. 62, 324–336 (2011).
CAS PubMed Google Scholar92.
Chagas, F. O. et al. Chemical signaling involved in plant–microbe interactions. Chem. Soc. Rev. 47, 1652–1704 (2018).
CAS PubMed Google Scholar93.
Schmidt, R. et al. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 7, 862 (2017).
PubMed PubMed Central Google Scholar94.
Korenblum, E. et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl Acad. Sci. USA 117, 3874–3883 (2020).
CAS PubMed Google Scholar95.
Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).
CAS PubMed PubMed Central Google Scholar96.
Bernal, P., Llamas, M. A., Filloux, A. & Type, V. I. Secretion systems in plant-associated bacteria. Environ. Microbiol. 201, 15–72 (2018).
Google Scholar97.
Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018).
CAS PubMed Google Scholar98.
Vorholt, J. A., Vogel, C., Carlström, C. I. & Mueller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2019).
Google Scholar99.
Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Ann. Rev. Microbiol. 73, 69–88 (2019).
CAS Google Scholar100.
Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233 (2019).
PubMed PubMed Central Google Scholar101.
Averill, C., Bhatnagar, J. M., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).
CAS PubMed Google Scholar102.
Lu, T. et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231 (2018).
PubMed PubMed Central Google Scholar103.
Bodenhausen, K. et al. Petunia- and Arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes J. 3, 112–124 (2019).
Google Scholar104.
Almario, J. et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl Acad. Sci. USA 114, E9403–E9412 (2017).
CAS PubMed Google Scholar105.
Hacquard, S. et al. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun. 7, 1–13 (2016).
Google Scholar106.
Voges, M. J., Bai, Y., Schulze-Lefert, P. & Sattely, E. S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl Acad. Sci. USA 116, 12558–12565 (2019). This study demonstrates that the production of secondary metabolites produced by plants under stress conditions acts as a signalling mechanism to sculpt the rhizosphere microbiome.
PubMed Google Scholar107.
Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci. USA 115, E5213–E5222 (2018).
CAS PubMed Google Scholar108.
Martínez-Medina, A., Van Wees, S. C. & Pieterse, C. M. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defenses in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Env. 40, 2691–2705 (2017).
Google Scholar109.
Penton, C. R. et al. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS ONE 9, e93893 (2014).
PubMed PubMed Central Google Scholar110.
Cha, J. Y. et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10, 119–129 (2016).
CAS PubMed Google Scholar111.
Hol, W. G. et al. Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96, 2042–2048 (2015).
PubMed Google Scholar112.
Carrión, V. J. et al. Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J. 12, 2307–2321 (2018).
PubMed PubMed Central Google Scholar113.
Chialva, M. et al. Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol. 220, 1296–1308 (2018).
CAS PubMed Google Scholar114.
Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).
Google Scholar115.
Kesten, C. et al. Pathogen-induced pH changes regulate the growth–defense balance of plants. EMBO J. 16, e101822550491 (2019).
Google Scholar116.
Yuan, J. et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6, 56 (2018).
Google Scholar117.
Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).
PubMed PubMed Central Google Scholar118.
Kong, H. G., Song, G. C. & Ryu, C. M. Inheritance of seed and rhizosphere microbial communities through plant–soil feedback and soil memory. Environ. Microbiol. Rep. 11, 479–486 (2019).
PubMed Google Scholar119.
Fitzpatrick, C. R., Mustafa, Z. & Viliunas, J. Soil microbes alter plant fitness under competition and drought. J. Evol. Biol. 32, 438–450 (2019).
PubMed Google Scholar120.
Eida, A. A. et al. Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE 13, e0208223 (2018).
PubMed PubMed Central Google Scholar121.
Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).
PubMed PubMed Central Google Scholar122.
Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018). Using a multi-‘omics’ approach, this study demonstrates selective enrichment of monoderms (bacteria with a thick cell wall) that possess transporters connected with specialized metabolites produced by plants under drought stress.
CAS PubMed Google Scholar123.
Timm, C. M. et al. Abiotic stresses shift belowground Populus-associated bacteria toward a core stress microbiome. mSystems 3, e00070-17 (2018).
PubMed PubMed Central Google Scholar124.
Wagner, M. R. et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol. Lett. 17, 717–726 (2014).
PubMed PubMed Central Google Scholar125.
Ravanbakhsh, M., Sasidharan, R., Voesenek, L. A., Kowalchuk, G. A. & Jousset, A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome 6, 52 (2018).
PubMed PubMed Central Google Scholar126.
Giauque, H., Connor, E. W. & Hawkes, C. V. Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants. New Phytol. 221, 2239–2249 (2019).
CAS PubMed Google Scholar127.
Kudjordjie, E. N., Sapkota, R., Steffensen, S. K., Fomsgaard, I. S. & Nicolaisen, M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 7, 59 (2019).
PubMed PubMed Central Google Scholar128.
Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470 (2018).
CAS PubMed Google Scholar129.
Huang, A. C. et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389 (2019).
CAS PubMed Google Scholar130.
McCann, H. C., Nahal, H., Thakur, S. & Guttman, D. S. Identification of innate immunity elicitors using molecular signatures of natural selection. Proc. Natl Acad. Sci. USA 109, 4215–4220 (2012).
CAS PubMed Google Scholar131.
Hacquard, S., Spaepen, S., Garrido-Oter, R. & Schulze-Lefert, P. Interplay between innate immunity and the plant microbiota. Ann. Rev. Phytopathol. 55, 565–589 (2017).
CAS Google Scholar132.
Chen, H. et al. One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation. PLoS ONE 14, e0211310 (2019).
CAS PubMed PubMed Central Google Scholar133.
Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 19, 3070–3086 (2017).
CAS PubMed Google Scholar134.
Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).
PubMed PubMed Central Google Scholar135.
Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).
PubMed PubMed Central Google Scholar More63 Shares149 Views
in EcologyScience diplomacy for plant health
European and Mediterranean Plant Protection Organization (EPPO)-Euphresco, Paris, France
Baldissera Giovani & Nico HornAustrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production, Vienna, Austria
Sylvia BlümelFood Department, Ministry of Agriculture and Forestry of Finland, Helsinki, Finland
Ralf LopianBetter Border Biosecurity (B3), Plant and Food Research, Christchurch, New Zealand
David TeulonNorth American Plant Protection Organization (NAPPO), Raleigh, NC, USA
Stephanie BloemComite Regional de Sanidad Vegetal del Cono Sur (COSAVE), Dirección de Protección Vegetal, del Servicio Nacional y Sanidad Vegetal y Semillas, Asuncion, Paraguay
Cristina Galeano MartínezComunidad Andina (CAN), Secretaría General de la Comunidad Andina, Lima, Peru
Camilo Beltrán MontoyaOrganismo Internacional Regional de Sanidad Agropecuaria (OIRSA), San Salvador, El Salvador
Carlos Ramon Urias MoralesAsia and Pacific Plant Protection Commission (APPPC), Bangkok, Thailand
Sridhar DharmapuriPacific Plant Protection Organization (PPPO), Pacific Community Land Resources Division, Suva, Fiji
Visoni TimoteNear East Plant Protection Organization (NEPPO), Rabat, Morocco
Mekki ChouibaniAfrican-Union Interafrican Phytosanitary Council (IAPSC), Yaoundé, Cameroon
Jean Gérard Mezui M’EllaMinistry of Primary Industries (MPI), Wellington, New Zealand
Veronica Herrera & Aurélie CastinelDepartment of Agriculture, Water and the Environment (DAWE), Canberra, Australian Capital Territory, Australia
Con Goletsos, Carina Moeller & Ian NaumannEuropean Food Safety Authority (EFSA), Parma, Italy
Giuseppe Stancanelli, Stef Bronzwaer & Sara TramontiniCanadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada
Philip MacDonald & Loren MathesonFrench Agency for Food, Environmental and Occupational Health and Safety (ANSES), Plant Health Laboratory, Angers, France
Géraldine AnthoineResearch Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
Kris De JongheNetherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
Martijn SchenkJulius Kühn Institute (JKI), Braunschweig, Germany
Silke SteinmöllerNational Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
Elena RodriguezNational Institute for Agriculture and Veterinary Research (INIAV), Oeiras, Portugal
Maria Leonor CruzPlant Biosecurity Research Initiative (PBRI), Hort Innovation, Melbourne, Victoria, Australia
Jo LuckPlant Health Australia (PHA), Deakin, Canberra, Australian Capital Territory, Australia
Greg FraserInternational Plant Protection Convention (IPPC), Food and Agriculture Organization of the United Nations, Rome, Italy
Sarah Brunel, Mirko Montuori, Craig Fedchock & Jingyuan XiaDepartment for Environment, Food & Rural Affairs (DEFRA), London, UK
Elspeth Steel & Helen Grace PenningtonCentre for Agriculture and Bioscience International (CABI), Nairobi, Kenya
Roger DayFrench National Institute for Agricultural Research (INRA), INRA-Montpellier-CBGP, Montferrier-sur-Lez, France
Jean Pierre RossiB.G. wrote the manuscript. S.B., R.L., D.T., S.B., C.G.M., C.B.M., C.R.U.M., S.D., V.T., N.H., M.C., J.G.M.M., V.H., A.C., C.G., C.M., I.N., G.S., S.B., S.T., P.M.D., L.M., G.A., K.D.J., M.S., S.S., E.R., M.L.C., J.L., G.F., S.B., M.M., C.F., E.S., H.G.P., R.D., J.P.R. and J.X. contributed to the manuscript. More
263 Shares159 Views
in EcologyThe role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon
1.
Birkeland, C. & Grosenbaugh, D. Ecological interactions between tropical coastal ecosystems. in UNEP Regional Seas Reports and Studies, Vol. 73 (PNUMA, 1985).
2.
Moberg, F. & Rönnbäck, P. Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast. Manag.46, 27–46 (2003).
Google Scholar3.
Gladstone, W. Conservation and management of tropical coastal ecosystems. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 565–605 (Springer, Dordrecht, 2009). https://doi.org/10.1007/978-90-481-2406-0_16.
Google Scholar4.
Berkström, C. et al. Exploring ‘knowns’ and ‘unknowns’ in tropical seascape connectivity with insights from East African coral reefs. Estuar. Coast. Shelf Sci.107, 1–21 (2012).
ADS Google Scholar5.
Ogden, J. C. The influence of adjacent systems on the structure and function of coral reefs. In Proceedings of the 6th International Coral Reef Symposium, Vol. 1, 123–129 (1988).6.
Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci.51, 31–44 (2000).
ADS Google Scholar7.
Grober-Dunsmore, R., Pittman, S. J., Caldow, C., Kendall, M. S. & Frazer, T. K. A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 493–530 (Springer, Dordrecht, 2009). https://doi.org/10.1007/978-90-481-2406-0_14.
Google Scholar8.
Hemminga, M. A. & Duarte, C. M. Seagrass ecology (Cambridge University Press, Cambridge, 2000). https://doi.org/10.1017/CBO9780511525551.
Google Scholar9.
Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol.350, 3–20 (2007).
Google Scholar10.
Knowles, L. L. & Bell, S. S. The influence of habitat structure in faunal-habitat associations in a Tampa Bay seagrass system Florida. Bull. Mar. Sci.62, 781–794 (1998).
Google Scholar11.
Connolly, R. M. & Hindell, J. S. Review of nekton patterns and ecological processes in seagrass landscapes. Estuar. Coast. Shelf Sci.68, 433–444 (2006).
ADS Google Scholar12.
Horinouchi, M. Review of the effects of within-patch scale structural complexity on seagrass fishes. J. Exp. Mar. Biol. Ecol.350, 111–129 (2007).
Google Scholar13.
Gacia, E., Duarte, C. M. & Middelburg, J. J. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol. Oceanogr.47, 23–32 (2002).
ADS CAS Google Scholar14.
Hendriks, I. E., Sintes, T., Bouma, T. J. & Duarte, C. M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser.356, 163–173 (2008).
ADS Google Scholar15.
Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. AIBS Bull.51, 633–641 (2001).
Google Scholar16.
Heck, K. L. Jr., Hays, G. & Orth, R. J. Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar. Ecol. Prog. Ser.253, 123–136 (2003).
ADS Google Scholar17.
Boström, C., Jackson, E. L. & Simenstad, C. A. Seagrass landscapes and their effects on associated fauna: a review. Estuar. Coast. Shelf Sci.68, 383–403 (2006).
ADS Google Scholar18.
Unsworth, R. K. F. & Cullen, L. C. Recognising the necessity for Indo-Pacific seagrass conservation. Conserv. Lett.3, 63–73 (2010).
Google Scholar19.
Leopardas, V., Uy, W. & Nakaoka, M. Benthic macrofaunal assemblages in multispecific seagrass meadows of the southern Philippines: variation among vegetation dominated by different seagrass species. J. Exp. Mar. Biol. Ecol.457, 71–80 (2014).
Google Scholar20.
Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS106, 12377–12381 (2009).
ADS CAS PubMed Google Scholar21.
Short, F. T. & Wyllie-Echeverria, S. Natural and human-induced disturbance of seagrasses. Environ. Conserv.23, 17–27 (1996).
Google Scholar22.
Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv.144, 1961–1971 (2011).
Google Scholar23.
Duarte, C. M. The future of seagrass meadows. Environ. Conserv.29, 192–206 (2002).
Google Scholar24.
Hastings, K., Hesp, P. & Kendrick, G. A. Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast. Manag.26, 225–246 (1995).
Google Scholar25.
Orth, R. J., Luckenbach, M. L., Marion, S. R., Moore, K. A. & Wilcox, D. J. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquat. Bot.84, 26–36 (2006).
Google Scholar26.
Ruiz, J. M. & Romero, J. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser.215, 107–120 (2001).
ADS Google Scholar27.
Frost, M. T., Rowden, A. A. & Attrill, M. J. Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquat. Conserv. Mar. Freshw. Ecosyst.9, 255–263 (1999).
Google Scholar28.
Hovel, K. A. Habitat fragmentation in marine landscapes: relative effects of habitat cover and configuration on juvenile crab survival in California and North Carolina seagrass beds. Biol. Conserv.110, 401–412 (2003).
Google Scholar29.
Hovel, K. A. & Lipcius, R. N. Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. J. Exp. Mar. Biol. Ecol.271, 75–98 (2002).
Google Scholar30.
Thomas, C. D. & Mallorie, H. C. Rarity, species richness and conservation: butterflies of the Atlas Mountains in Morocco. Biol. Conserv.33, 95–117 (1985).
Google Scholar31.
Fahrig, L. Effects of habitat fragmentation on biodiversity. Ann. Rev. Ecol. Evol. Syst.34, 487–515 (2003).
Google Scholar32.
Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: a synthesis. Glob. Ecol. Biogeogr.16, 265–280 (2007).
Google Scholar33.
Link, J. Does food web theory work for marine ecosystems?. Mar. Ecol. Prog. Ser.230, 1–9 (2002).
ADS Google Scholar34.
Peterson, B. J., Thompson, K. R., Cowan, J. H. Jr. & Heck, K. L. Jr. Comparison of predation pressure in temperate and subtropical seagrass habitats based on chronographic tethering. Mar. Ecol. Prog. Ser.224, 77–85 (2001).
ADS Google Scholar35.
Sweatman, J. L., Layman, C. A. & Fourqurean, J. W. Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed. Mar. Environ. Res.126, 95–108 (2017).
CAS PubMed Google Scholar36.
Williams, J. A. et al. Seagrass fragmentation impacts recruitment dynamics of estuarine-dependent fish. J. Exp. Mar. Biol. Ecol.479, 97–105 (2016).
Google Scholar37.
Bell, S. S., Brooks, R. A., Robbins, B. D., Fonseca, M. S. & Hall, M. O. Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol. Conserv.100, 115–123 (2001).
Google Scholar38.
McCloskey, R. M. & Unsworth, R. K. F. Decreasing seagrass density negatively influences associated fauna. PeerJ3, e1053 (2015).
PubMed PubMed Central Google Scholar39.
Ubertini, M. et al. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon. PLoS ONE7, e44155 (2012).
ADS CAS PubMed PubMed Central Google Scholar40.
Welsh, D. T. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecol. Lett.3, 58–71 (2000).
Google Scholar41.
Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia285, 19–32 (1994).
CAS Google Scholar42.
Harrison, P. G. Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat. Bot.35, 263–288 (1989).
Google Scholar43.
Mateo, M. A. & Romero, J. Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar. Ecol. Prog. Ser.151, 43–53 (1997).
ADS CAS Google Scholar44.
Barrón, C., Apostolaki, E. T. & Duarte, C. M. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Front. Mar. Sci.1, 42 (2014).
Google Scholar45.
Wetzel, R. G. & Penhale, P. A. Transport of carbon and excretion of dissolved organic carbon by leaves and roots/rhizomes in seagrasses and their epiphytes. Aquat. Bot.6, 149–158 (1979).
CAS Google Scholar46.
Martin, B. C. et al. Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front. Microbiol.8, 2667 (2018).
PubMed PubMed Central Google Scholar47.
Danovaro, R. Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol.127, 1–13 (1996).
CAS Google Scholar48.
Lohrer, A. M., Thrush, S. F. & Gibbs, M. M. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature431, 1092–1095 (2004).
ADS CAS PubMed Google Scholar49.
Rosenberg, R. Marine benthic faunal successional stages and related sedimentary activity. Sci. Marina65, 107–119 (2001).
Google Scholar50.
Austen, M. C. et al. Biodiversity links above and below the marine sediment–water interface that may influence community stability. Biodivers. Conserv.11, 113–136 (2002).
Google Scholar51.
Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A. & Iribarne, O. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci.92, 629–638 (2011).
ADS CAS Google Scholar52.
Forster, S. & Graf, G. Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterranea and “piston-pumping” by Lanice conchilega. Mar. Biol.123, 335–346 (1995).
Google Scholar53.
Snelgrove, P. V. R. The biodiversity of macrofaunal organisms in marine sediments. Biodivers. Conserv.7, 1123–1132 (1998).
Google Scholar54.
Hyndes, G. A. & Lavery, P. S. Does transported seagrass provide an important trophic link in unvegetated, nearshore areas?. Estuar. Coast. Shelf Sci.63, 633–643 (2005).
ADS CAS Google Scholar55.
Jones, D. A., Ghamrawy, M. & Wahbeh, M. I. Littoral and shallow subtidal environments. In Red Sea (eds Edwards, A. J. & Head, S. M.) 169–193 (Pergamon Press, London, 1987). https://doi.org/10.1016/B978-0-08-028873-4.50014-1.
Google Scholar56.
Ruiz-Compean, P. et al. Baseline evaluation of sediment contamination in the shallow coastal areas of Saudi Arabian Red Sea. Mar. Pollut. Bull.123, 205–218 (2017).
CAS PubMed Google Scholar57.
Bologna, P. A. X. & Heck, K. L. Impact of habitat edges on density and secondary production of seagrass-associated fauna. Estuaries25, 1033–1044 (2002).
Google Scholar58.
Calleja, M. L., Al-Otaibi, N. & Morán, X. A. G. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci. Rep.9, 1–12 (2019).
CAS Google Scholar59.
Stedmon, C. A., Markager, S. & Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem.82, 239–254 (2003).
CAS Google Scholar60.
Coble, P. G. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev.107, 402–418 (2007).
ADS CAS PubMed Google Scholar61.
Gasol, J. M. & Morán, X. A. G. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In Hydrocarbon and Lipid Microbiology Protocols: Single-Cell and Single-Molecule Methods (eds McGenity, T. J. et al.) 159–1870 (Springer, Berlin, 2015). https://doi.org/10.1007/8623_2015_139.
Google Scholar62.
Silva, L. et al. Low abundances but high growth rates of coastal heterotrophic bacteria in the Red Sea. Front. Microbiol.9, 3244 (2019).
PubMed PubMed Central Google Scholar63.
Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS112, 2076–2081 (2015).
ADS CAS PubMed Google Scholar64.
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res.41, e1 (2013).
CAS PubMed Google Scholar65.
Oksanen, J. et al. Vegan: community ecology package. R package version 2.5-2, (2018).66.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).67.
Lê, S., Josse, J. & Husson, F. FactoMineR: a package for multivariate analysis. J. Stat. Softw.25, 1–18 (2008).
Google Scholar68.
Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw.22, 1–19 (2007).
Google Scholar69.
Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots (2018).70.
Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial, PRIMER-E: Plymouth (2015).71.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods13, 581–583 (2016).
CAS PubMed PubMed Central Google Scholar72.
Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl. Acids Res.35, 7188–7196 (2007).
CAS PubMed Google Scholar73.
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE8, e61217 (2013).
ADS CAS PubMed PubMed Central Google Scholar74.
Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Indic.85, 1044–1057 (2018).
CAS Google Scholar75.
Lobelle, D., Kenyon, E. J., Cook, K. J. & Bull, J. C. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE8, e57072 (2013).
ADS CAS PubMed PubMed Central Google Scholar76.
Ávila, E., Yáñez, B. & Vazquez-Maldonado, L. E. Influence of habitat structure and environmental regime on spatial distribution patterns of macroinvertebrate assemblages associated with seagrass beds in a southern Gulf of Mexico coastal lagoon. Mar. Biol. Res.11, 755–764 (2015).
Google Scholar77.
Barnes, R. S. K. & Hendy, I. W. Seagrass-associated macrobenthic functional diversity and functional structure along an estuarine gradient. Estuar. Coast. Shelf Sci.164, 233–243 (2015).
Google Scholar78.
York, P. H., Hyndes, G. A., Bishop, M. J. & Barnes, R. S. K. Faunal assemblages of seagrass ecosystems. In Seagrasses of Australia: Structure, Ecology and Conservation (eds Larkum, A. W. D. et al.) 541–588 (Springer, Berlin, 2018). https://doi.org/10.1007/978-3-319-71354-0_17.
Google Scholar79.
Magni, P., Como, S., Kamijo, A. & Montani, S. Effects of Zostera marina on the patterns of spatial distribution of sediments and macrozoobenthos in the boreal lagoon of Furen (Hokkaido, Japan). Mar. Environ. Res.131, 90–102 (2017).
CAS PubMed Google Scholar80.
Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol.2, 634 (2018).
PubMed Google Scholar81.
Attrill, M. J., Strong, J. A. & Rowden, A. A. Are macroinvertebrate communities influenced by seagrass structural complexity?. Ecography23, 114–121 (2000).
Google Scholar82.
Lee, S. Y., Fong, C. W. & Wu, R. S. S. The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J. Exp. Mar. Biol. Ecol.259, 23–50 (2001).
PubMed Google Scholar83.
Nakamura, Y. & Sano, M. Comparison of invertebrate abundance in a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan. Fish. Sci.71, 543–550 (2005).
CAS Google Scholar84.
Barrio Froján, C. R. S. et al. The importance of bare marine sedimentary habitats for maintaining high polychaete diversity and the implications for the design of marine protected areas. Aquat. Conserv. Mar. Freshw. Ecosyst.19, 748–757 (2009).
Google Scholar85.
Barnes, R. S. K. & Barnes, M. K. S. Spatial uniformity of biodiversity is inevitable if the available species are distributed independently of each other. Mar. Ecol. Prog. Ser.516, 263–266 (2014).
ADS Google Scholar86.
Webster, P. J., Rowden, A. A. & Attrill, M. J. Effect of shoot density on the infaunal macro-invertebrate community within a Zostera marina seagrass bed. Estuar. Coast. Shelf Sci.47, 351–357 (1998).
ADS Google Scholar87.
Bowden, D. A., Rowden, A. A. & Attrill, M. J. Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. J. Exp. Mar. Biol. Ecol.259, 133–154 (2001).
PubMed Google Scholar88.
Turner, S. J. et al. Seagrass patches and landscapes: the influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries22, 1016–1032 (1999).
Google Scholar89.
Tanner, J. E. Edge effects on fauna in fragmented seagrass meadows. Austral Ecol.30, 210–218 (2005).
Google Scholar90.
Włodarska-Kowalczuk, M., Jankowska, E., Kotwicki, L. & Balazy, P. Evidence of season-dependency in vegetation effects on macrofauna in temperate seagrass meadows (Baltic Sea). PLoS ONE9, e100788 (2014).
ADS PubMed PubMed Central Google Scholar91.
Calleja, M. L., Barrón, C., Hale, J. A., Frazer, T. K. & Duarte, C. M. Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. Estuar. Coasts J ERF29, 1255–1264 (2006).
CAS Google Scholar92.
Barnes, R. S. K. & Barnes, M. K. S. Shore height and differentials between macrobenthic assemblages in vegetated and unvegetated areas of an intertidal sandflat. Estuar. Coast. Shelf Sci.106, 112–120 (2012).
ADS Google Scholar93.
Agawin, N. S. R., Duarte, C. M., Fortes, M. D., Uri, J. S. & Vermaat, J. E. Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses. J. Exp. Mar. Biol. Ecol.260, 217–239 (2001).
PubMed Google Scholar94.
Pereg, L. L., Lipkin, Y. & Sar, N. Different niches of the Halophila stipulacea seagrass bed harbor distinct populations of nitrogen fixing bacteria. Mar. Biol.119, 327–333 (1994).
CAS Google Scholar95.
Holmer, M., Duarte, C., Boschker, H. & Barrón, C. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat. Microb. Ecol.36, 227–237 (2004).
Google Scholar96.
Barberá-Cebrián, C., Sánchez-Jerez, P. & Ramos-Esplá, A. Fragmented seagrass habitats on the Mediterranean coast, and distribution and abundance of mysid assemblages. Mar. Biol.141, 405–413 (2002).
Google Scholar97.
Ringold, P. Burrowing, root mat density, and the distribution of fiddler crabs in the eastern United States. J. Exp. Mar. Biol. Ecol.36, 11–21 (1979).
Google Scholar98.
Ricart, A. M. et al. Variability of sedimentary organic carbon in patchy seagrass landscapes. Mar. Pollut. Bull.100, 476–482 (2015).
CAS PubMed Google Scholar99.
Samper-Villarreal, J., Lovelock, C. E., Saunders, M. I., Roelfsema, C. & Mumby, P. J. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnol. Oceanogr.61, 938–952 (2016).
ADS Google Scholar100.
Serra, T., Oldham, C. & Colomer, J. Local hydrodynamics at edges of marine canopies under oscillatory flows. PLoS ONE13, e0201737 (2018).
PubMed PubMed Central Google Scholar101.
Choat, J. H. & Kingett, P. D. The influence of fish predation on the abundance cycles of an algal turf invertebrate fauna. Oecologia54, 88–95 (1982).
ADS CAS PubMed Google Scholar102.
Nakamura, Y., Horinouchi, M., Nakai, T. & Sano, M. Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyol. Res.50, 0015–0022 (2003).
Google Scholar103.
Eklöf, J. S., de la Torre Castro, M., Adelsköld, L., Jiddawi, N. S. & Kautsky, N. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar. Coast. Shelf Sci.63, 385–396 (2005).
ADS Google Scholar104.
Díaz-Cárdenas, C., Patel, B. K. C. & Baena, S. Tistlia consotensisgen. nov., sp. an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring. Int. J. Syst. Evol. Microbiol.60, 1437–1443 (2010).
PubMed Google Scholar105.
Sun, F. et al. Seagrass (Zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling. Appl. Environ. Microbiol.81, 6901–6914 (2015).
CAS PubMed PubMed Central Google Scholar106.
Brown, S. M. & Jenkins, B. D. Profiling gene expression to distinguish the likely active diazotrophs from a sea of genetic potential in marine sediments. Environ. Microbiol.16, 3128–3142 (2014).
CAS PubMed PubMed Central Google Scholar107.
Santos, R., Lirman, D. & Pittman, S. Long-term spatial dynamics in vegetated seascapes: fragmentation and habitat loss in a human-impacted subtropical lagoon. Mar. Ecol.37(1), 200–214. https://doi.org/10.1111/maec.12259 (2015).
ADS Article Google Scholar108.
Irlandi, E. & Crawford, M. Habitats linkages: the effect of intertidal saltmarshes and adjacent habitats on abundance, movement and growth of an estuarine fish. Oecologia110, 222–230 (1997).
ADS CAS PubMed Google Scholar109.
Boström, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser.427, 191–218 (2011).
ADS Google Scholar110.
Mumby, P. J. Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol. Conserv.128, 215–222 (2006).
Google Scholar111.
Haila, Y. A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol. Appl.12, 321–334 (2002).
Google Scholar112.
Barnes, R. S. K. Distribution patterns of macrobenthic biodiversity in the intertidal seagrass beds of an estuarine system, and their conservation significance. Biodivers. Conserv.22, 357–372 (2013).
Google Scholar113.
Barnes, R. S. K. & Hamylton, S. On the very edge: faunal and functional responses to the interface between benthic seagrass and unvegetated sand assemblages. Mar. Ecol. Prog. Ser.553, 33–48 (2016).
ADS Google Scholar More263 Shares169 Views
in EcologyEffects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of southern China
1.
Börjesson, G., Menichetti, L., Kirchmann, H. & Kätterer, T. Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol. Fertil. Soils48, 245–257 (2012).
Article Google Scholar
2.
Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming. Soil Biol. Biochem.142, 107720 (2020).
CAS Article Google Scholar3.
Xiao, D. et al. Microbial biomass, metabolic functional diversity, and activity are affected differently by tillage disturbance and maize planting in a typical karst calcareous soil. J. Soil. Sediment.19, 809–821 (2019).
CAS Article Google Scholar4.
Dangi, S., Gao, S., Duan, Y. H. & Wang, D. Soil microbial community structure affected by biochar and fertilizer sources. Appl. Soil Ecol.150, 103452 (2020).
Article Google Scholar5.
Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms: a review. Soil Biol. Biochem.75, 54–63 (2014).
CAS Article Google Scholar6.
Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol.19, 3070–3086 (2017).
CAS Article Google Scholar7.
Jia, X., Li, X. D., Zhao, Y. H., Wang, L. & Zhang, C. Y. Soil microbial community structure in the rhizosphere of Robinia pseudoacacia L. seedlings exposed to elevated air temperature and cadmium-contaminated soils for 4 years. Sci. Total Environ.650, 2355–2363 (2019).
ADS CAS Article Google Scholar8.
Zhong, W. et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil326, 511–522 (2010).
CAS Article Google Scholar9.
Hartmann, M., Frey, B., Mayer, J., Maeder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J.9, 1177–1194 (2015).
Article Google Scholar10.
Francioli, D. et al. Mineral versus organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol.14, 1446 (2016).
Google Scholar11.
Wang, Y. et al. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ.609, 341–347 (2017).
ADS CAS Article Google Scholar12.
Treonis, A. M. et al. Effects of organic amendment and tillage on soil microorganisms and microfauna. Appl. Soil Ecol.46, 103–110 (2010).
Article Google Scholar13.
Forge, T. A., Hogue, E. J., Neilsen, G. & Neilsen, D. Organic mulches alter nematode communities, root growth and fluxes of phosphorus in the root zone of apple. Appl. Soil Ecol.39, 15–22 (2008).
Article Google Scholar14.
Ahn, J. et al. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. J. Microbiol.54, 724–731 (2016).
CAS Article Google Scholar15.
Zhu, X. C. et al. Soil microbial community and activity are affected by integrated agricultural practices in China. Eur. J. Soil Sci.69, 924–935 (2018).
Article Google Scholar16.
Yang, X. Y., Ren, W. D., Sun, B. H. & Zhang, S. L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma177–178, 49–56 (2012).
ADS Article Google Scholar17.
Chen, Z. D., Ti, F. S. & Chen, F. Soil aggregates response to tillage and residue management in a double paddy rice soil of the southern China. Nutr. Cycl. Agroecosyst.109, 103–114 (2017).
Article Google Scholar18.
Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere10, 100145 (2019).
Article Google Scholar19.
Tang, H. M. et al. Effects of different soil tillage systems on soil carbon management index under double-cropping rice field in southern China. Agron. J.111, 440–446 (2019).
CAS Article Google Scholar20.
Tang, H. M. et al. Organic manure managements increases soil microbial community structure and diversity in double-cropping paddy field of southern China. Agric. Ecosyst. Environ. https://doi.org/10.1101/2020.04.08.031609 (2020).
Article Google Scholar21.
Zhao, J. et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol.67, 443–453 (2014).
Article Google Scholar22.
Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass by fumigation–extraction-an automated procedure. Soil Biol. Biochem.20, 1167–1169 (1990).
Article Google Scholar23.
Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS110, 6548–6553 (2013).
ADS CAS Article Google Scholar24.
Wang, Z. T., Liu, L., Chen, Q., Wen, X. X. & Liao, Y. C. Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron. Sustain. Dev.36, 28 (2016).
Article Google Scholar25.
Bazzicalupo, A. L., Bálint, M. & Schmitt, I. Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyper diverse fungal communities. Fungal Ecol.6, 102–109 (2013).
Article Google Scholar26.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26, 2460–2461 (2010).
CAS Article Google Scholar27.
SAS. SAS Software of the SAS System for Windows (SAS Institute Inc, Cary, 2008).
Google Scholar28.
Blanco-Canqui, H., Ferguson, R. B., Shapiro, C. A., Drijber, R. A. & Walters, D. T. Does inorganic nitrogen fertilization improve soil aggregation? Insights from two long-term tillage experiments. J. Environ. Qual.43, 995–1003 (2014).
Article Google Scholar29.
Neumann, D., Heuer, A., Hemkemeyer, M., Martens, R. & Tebbe, C. C. Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol. Ecol.86, 71–84 (2013).
CAS Article Google Scholar30.
Jenkins, S. N. et al. Taxon specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem.42, 1624–1631 (2010).
CAS Article Google Scholar31.
Li, H. et al. Soil bacterial communities of different natural forest types in northeast China. Plant Soil383, 203–216 (2014).
CAS Article Google Scholar32.
Pascault, N. et al. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems16, 810–822 (2013).
CAS Article Google Scholar33.
He, J. Z., Zheng, Y., Chen, C. R., He, Y. Q. & Zhang, L. M. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J. Soil. Sediment.8, 349–358 (2008).
CAS Article Google Scholar34.
Paungfoo-lonhienne, C. et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep.5, 8678 (2015).
CAS Article Google Scholar35.
Huang, X. M. et al. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biol. Biochem.73, 42–48 (2014).
CAS Article Google Scholar36.
Desantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microb.72, 5069–5072 (2006).
CAS Article Google Scholar37.
Iovieno, P., Alfani, A. & Bååth, E. Soil microbial community structure and biomass as affected by Pinus pinea plantation in two mediterranean areas. Appl. Soil Ecol.45, 56–63 (2010).
Article Google Scholar More113 Shares189 Views
in EcologyColony co-founding in ants is an active process by queens
1.
Bourke, A. F. G. & Heinze, J. The ecology of communal breeding: The case of multiple-queen Leptothoracine ants. Philos. Trans. R. Soc. Lond. B Biol. Sci.345, 359–372 (1994).
ADS Google Scholar
2.
Bourke, A. F. G. Principles of Social Evolution. Oxford Series in Ecology and Evolution (2011).3.
Cockburn, A. Evolution of helping behavior in cooperatively breeding birds. Annu. Rev. Ecol. Evol. Syst.29, 141–177 (1998).
Google Scholar4.
Jennions, M. Cooperative breeding in mammals. Trends Ecol. Evol.9, 89–93 (1994).
CAS PubMed Google Scholar5.
Lukas, D. & Clutton-Brock, T. Life histories and the evolution of cooperative breeding in mammals. Proc. R. Soc. B279, 4065–4070 (2012).
PubMed Google Scholar6.
Purcell, J. Geographic patterns in the distribution of social systems in terrestrial arthropods. Biol. Rev.86, 475–491 (2011).
PubMed Google Scholar7.
Wong, M. & Balshine, S. The evolution of cooperative breeding in the African cichlid fish, Neolamprologus pulcher. Biol. Rev.86, 511–530 (2011).
PubMed Google Scholar8.
Dugatkin, L. Animal cooperation among unrelated individuals. Naturwissenschaften89, 533–541 (2002).
ADS CAS PubMed Google Scholar9.
Emlen, S. The evolution of helping. An ecological constraints model. Am. Nat.119, 29–39 (1982).
Google Scholar10.
Nichols, H. J. et al. Food availability shapes patterns of helping effort in a cooperative mongoose. Anim. Behav.83, 1377–1385 (2012).
Google Scholar11.
Riehl, C. & Strong, M. J. Stable social relationships between unrelated females increase individual fitness in a cooperative bird. Proc. R. Soc. B285, 20180130 (2018).
PubMed Google Scholar12.
Sharp, S. P., English, S. & Clutton-Brock, T. H. Maternal investment during pregnancy in wild meerkats. Evol. Ecol.27, 1033–1044 (2012).
Google Scholar13.
Taborsky, M. Broodcare helpers in the cichlid fish Lamprologus brichardi: Their costs and benefits. Anim. Behav.32, 1236–1252 (1984).
Google Scholar14.
Hamilton, W. D. The genetical evolution of social behaviour. J. Theor. Biol.7, 1–52 (1964).
CAS PubMed Google Scholar15.
Bshary, R. Cooperation between unrelated individuals—a game theoretic approach. In Animal Behaviour: Evolution and Mechanisms (ed. Kappeler, P.) 213–240 (Springer, Berlin, 2010).
Google Scholar16.
Dugatkin, L. A. & Mesterton-Gibbons, M. Cooperation among unrelated individuals: Reciprocal altruism, by-product mutualism and group selection in fishes. Biosystems37, 19–30 (1996).
CAS PubMed Google Scholar17.
Keller, L. Queen Number and Sociality in Insects (Oxford University Press, Oxford, 1993).
Google Scholar18.
Matsuura, K., Fujimoto, M., Goka, K. & Nishida, T. Cooperative colony foundation by termite female pairs: Altruism for survivorship in incipient colonies. Anim. Behav.64, 167–173 (2002).
Google Scholar19.
Mesterton-Gibbons, M. & Dugatkin, L. A. Cooperation among unrelated individuals: Evolutionary factors. Q. Rev. Biol.67, 267–281 (1992).
Google Scholar20.
Bernasconi, G. & Strassmann, J. E. Cooperation among unrelated individuals: The ant foundress case. Trends Ecol. Evol.14, 477–482 (1999).
CAS PubMed Google Scholar21.
Itô, Y. Behaviour and Social Evolution of Wasps (Oxford University Press, Oxford, 1993).
Google Scholar22.
Packer, L. Multiple-foundress associations in sweat bees. In Queen Number and Sociality in Insects (ed. Keller, L.) 215–233 (Oxford University Press, Oxford, 1993).
Google Scholar23.
Schwarz, M. P., Bull, N. J. & Hogendoorn, K. Evolution of sociality in the allodapine bees: A review of sex allocation, ecology and evolution. Insectes Soc.45, 349–368 (1998).
Google Scholar24.
Shellman-Reeve, J. S. The spectrum of eusociality in termites. In The Evolution of Social Behavior in Insects and Arachnids (eds Choe, J. C. & Crespi, B. J.) 52–93 (Cambridge University Press, Cambridge, 1997).
Google Scholar25.
Thorne, B. L. Evolution of eusociality in termites. Annu. Rev. Ecol. Evol. Syst.28, 27–54 (1997).
Google Scholar26.
Hölldobler, B. & Wilson, E. O. The Ants (Springer, Berlin, 1990).
Google Scholar27.
Schmid-Hempel, P. Parasites in Social Insects (Princeton University Press, Princeton, 1998).
Google Scholar28.
Tschinkel, W. R. The Fire Ants (Harvard University Press, Cambridge, 2006).
Google Scholar29.
Cole, B. J. The ecological setting of social evolution. In Organization of Insect Societies (eds Gadau, J. & Fewell, J.) 74–104 (Harvard University Press, Cambridge, 2009).
Google Scholar30.
Johnson, R. A. Colony founding by pleometrosis in the semi-claustral seed-harvester ant Pogonomyrmex calfornicus (Hymenoptera: Formicidae). Anim. Behav.68, 1189–1200 (2004).
Google Scholar31.
Tschinkel, W. R. An experimental study of pleometrotic colony founding in the fire ant, Solenopsis invicta: What is the basis for association?. Behav. Ecol. Sociobiol.43, 247–257 (1998).
Google Scholar32.
Jerome, C. A., McInnes, D. A. & Adams, E. S. Group defense by colony-founding queens in the fire ant Solenopsis invicta. Behav. Ecol.9, 301–308 (1998).
Google Scholar33.
Helms Cahan, S. & Julian, G. E. Fitness consequences of cooperative colony founding in the desert leaf-cutter ant Acromyrmex versicolor. Behav. Ecol.10, 585–591 (1999).
Google Scholar34.
Adams, E. S. & Tschinkel, W. R. Effects of foundress number on brood raids and queen survival in the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol.37, 233–242 (1995).
Google Scholar35.
Clark, R. M. & Fewell, J. H. Social dynamics drive selection in cooperative associations of ant queens. Behav. Ecol.25, 117–123 (2014).
Google Scholar36.
Offenberg, J., Peng, R. & Nielsen, M. Development rate and brood production in haplo- and pleometrotic colonies of Oecophylla smaragdina. Insectes Soc.59, 307–311 (2012).
Google Scholar37.
Rissing, S. W. & Pollock, G. B. An experimental analysis of pleometric advantage in the desert seed-harvester ant Messor pergandei (Hymenoptera; Formicidae). Insectes Soc.38, 205–211 (1991).
Google Scholar38.
Sasaki, K., Jibiki, E., Satoh, T. & Obara, Y. Queen phenotype and behaviour during cooperative colony founding in Polyrhachis moesta. Insectes Soc.52, 19–25 (2005).
Google Scholar39.
Waloff, N. The effect of the number of queens of the ant Lasius flavus (Fab.) (Hym. Formicidae) on their survival and on the rate of development of the first brood. Insectes Soc.4, 391–408 (1957).
Google Scholar40.
Bartz, S. H. & Hölldobler, B. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera, Formicidae) and the evolution of foundress associations. Behav. Ecol. Sociobiol10, 137–147 (1982).
Google Scholar41.
Helms Cahan, S. Ecological variation across a transition in colony-founding behavior in the ant Messor pergandei. Oecologia129, 629–635 (2001).
ADS Google Scholar42.
Sommer, K. & Hölldobler, B. Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim. Behav.50, 287–294 (1995).
Google Scholar43.
Tschinkel, W. R. & Howard, D. F. Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behav. Ecol. Sociobiol12, 103–113 (1983).
Google Scholar44.
Herbers, J. M. Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav. Ecol. Sociobiol19, 115–122 (1986).
Google Scholar45.
Nonacs, P. Queen condition and alate density affect pleometrosis in the ant Lasius pallitarsis. Insectes Soc.39, 3–13 (1992).
Google Scholar46.
Masoni, A. et al. Pleometrotic colony foundation in the ant Crematogaster scutellaris (Hymenoptera: Formicidae): Better be alone than in bad company. Myrmecol. News25, 51–59 (2016).
Google Scholar47.
Sommer, K. & Hölldobler, B. Pleometrosis in Lasius niger. In Biology and Evolution of Social Insects (ed. Billen, J.) 47–50 (Leuven University Press, Leuven, 1992).
Google Scholar48.
Pfennig, D. W. Absence of joint nesting advantage in desert seed harvester ants: Evidence from a field experiment. Anim. Behav.49, 567–575 (1995).
Google Scholar49.
Tschinkel, W. R. Brood raiding and the population dynamics of founding and incipient colonies of the fire ant Solenopsis invicta. Ecol. Entomol.17, 179–188 (1992).
Google Scholar50.
Helms Cahan, S. & Fewell, J. H. Division of labor and the evolution of task sharing in queen associations of the harvester ant Pogonomyrmex californicus. Behav. Ecol. Sociobiol.56, 9–17 (2004).
Google Scholar51.
Helmkampf, M., Mikheyev, A. S., Kang, Y., Fewell, J. & Gadau, J. Gene expression and variation in social aggression by queens of the harvester ant Pogonomyrmex californicus. Mol. Ecol.25, 3716–3730 (2016).
PubMed Google Scholar52.
Overson, R. P., Gadau, J., Clark, R. M., Pratt, S. C. & Fewell, J. H. Behavioral transitions with the evolution of cooperative nest founding by harvester ant queens. Behav. Ecol. Sociobiol.68, 21–30 (2014).
Google Scholar53.
Shaffer, Z. et al. The foundress’s dilemma: Group selection for cooperation among queens of the harvester ant, Pogonomyrmex californicus. Sci. Rep.6, 29828 (2016).
ADS CAS PubMed PubMed Central Google Scholar54.
Aron, S., Steinhauer, N. & Fournier, D. Influence of queen phenotype, investment and maternity apportionment on the outcome of fights in cooperative foundations of the ant Lasius niger. Anim. Behav.77, 1067–1074 (2009).
Google Scholar55.
Brütsch, T., Avril, A. & Chapuisat, M. No evidence for social immunity in co-founding queen associations. Sci. Rep.7, 16262 (2017).
ADS PubMed PubMed Central Google Scholar56.
Chérasse, S. & Aron, S. Measuring inotocin receptor gene expression in chronological order in ant queens. Horm. Behav.96, 116–121 (2017).
PubMed Google Scholar57.
Dreier, S. & d’Ettorre, P. Social context predicts recognition systems in ant queens. J. Evol. Biol.22, 644–649 (2009).
CAS PubMed Google Scholar58.
Holman, L., Dreier, S. & d’Ettorre, P. Selfish strategies and honest signalling: Reproductive conflicts in ant queen associations. Proc. R. Soc. B277, 2007–2015 (2010).
CAS PubMed Google Scholar59.
Pull, C. D. & Cremer, S. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour. BMC Evol. Biol.17, 219 (2017).
PubMed PubMed Central Google Scholar60.
Pull, C. D., Hughes, W. H. O. & Brown, M. J. F. Tolerating an infection: An indirect benefit of co-founding queen associations in the ant Lasius niger. Naturwissenschaften100, 1125–1136 (2013).
ADS CAS PubMed Google Scholar61.
Bernasconi, G. & Keller, L. Phenotype and individual investment in cooperative foundress associations of the fire ant, Solenopsis invicta. Behav. Ecol9, 478–485 (1998).
Google Scholar62.
Bernasconi, G. & Keller, L. Effect of queen phenotype and social environment on early queen mortality in incipient colonies of the fire ant, Solenopsis invicta. Anim. Behav.57, 371–377 (1999).
CAS PubMed Google Scholar More