Southern Ocean carbon export efficiency in relation to temperature and primary productivity
1.
Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science305, 367–371 (2004).
ADS CAS PubMed Google Scholar
2.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature427, 56–60 (2004).
ADS CAS PubMed Google Scholar
3.
Devries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the biological pump. Geophys. Res. Lett.39, 1–5 (2012).
Google Scholar
4.
Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature466, 47–55 (2010).
ADS CAS PubMed Google Scholar
5.
Honjo, S. et al. Understanding the role of the biological pump in the global carbon cycle: An imperative for ocean science. Oceanography27, 10–16 (2014).
Google Scholar
6.
Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science359, 1139–1143 (2018).
ADS CAS PubMed Google Scholar
7.
Laws, E. A., Falkowski, P. G., Smith, W. O. J., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Global Biogeochem. Cycles14, 1231–1246 (2000).
ADS CAS Google Scholar
8.
Dunne, J. P., Armstrong, R. A., Gnnadesikan, A. & Sarmiento, J. L. Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cycles19, 1–16 (2005).
Google Scholar
9.
Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles21, 1–16 (2007).
Google Scholar
10.
Henson, S. A. et al. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys. Res. Lett.38, 10–14 (2011).
Google Scholar
11.
Laws, E. A., D’Sa, E. & Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods9, 593–601 (2011).
Google Scholar
12.
Maiti, K., Charette, M. A., Buesseler, K. O. & Kahru, M. An inverse relationship between production and export efficiency in the Southern Ocean. Geophys. Res. Lett.40, 1557–1561 (2013).
ADS Google Scholar
13.
Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles28, 181–196 (2014).
ADS CAS Google Scholar
14.
Britten, G. L., Wakamatsu, L. & Primeau, F. W. The temperature-ballast hypothesis explains carbon export efficiency observations in the Southern Ocean. Geophys. Res. Lett.44, 1831–1838 (2017).
ADS Google Scholar
15.
Morris, P. J., Sanders, R., Turnewitsch, R. & Thomalla, S. 234Th-derived particulate organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean. Deep. Res. Part II Top. Stud. Oceanogr.54, 2208–2232 (2007).
16.
Jacquet, S. H. M., Lam, P. J., Trull, T. & Dehairs, F. Carbon export production in the subantarctic zone and polar front zone south of Tasmania. Deep. Res. Part II Top. Stud. Oceanogr.58, 2277–2292 (2011).
17.
Laurenceau-Cornec, E. C. et al. The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: Insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen Plateau. Biogeosciences12, 1007–1027 (2015).
ADS Google Scholar
18.
Planchon, F. et al. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach. Biogeosciences12, 3831–3848 (2015).
ADS CAS Google Scholar
19.
Roca-Martí, M. et al. High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean. Deep. Res. PartII(138), 102–115 (2017).
Google Scholar
20.
Henson, S. A., Yool, A. & Sanders, R. Variability in efficiency of particulate organic carbon export: A model study. Global Biogeochem. Cycles29, 33–45 (2015).
ADS CAS Google Scholar
21.
Savoye, N., Trull, T. W., Jacquet, S. H. M., Navez, J. & Dehairs, F. 234Th-based export fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS). Deep. Res. Part II Top. Stud. Oceanogr.55, 841–855 (2008).
22.
Puigcorbé, V. et al. Particulate organic carbon export across the Antarctic Circumpolar Current at 10° E : Differences between north and south of the Antarctic Polar Front. Deep. Res. PartII(138), 86–101 (2017).
Google Scholar
23.
Le Moigne, F. A. C. et al. What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?. Geophys. Res. Lett.43, 4457–4466 (2016).
ADS Google Scholar
24.
Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett.42, 821–830 (2015).
ADS CAS Google Scholar
25.
Cavan, E. L., Henson, S. A., Belcher, A. & Sanders, R. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences14, 177–186 (2017).
ADS CAS Google Scholar
26.
Arteaga, L., Haëntjens, N., Boss, E., Johnson, K. S. & Sarmiento, J. L. Assessment of export efficiency equations in the southern ocean applied to satellite-based net primary production. J. Geophys. Res. Ocean.123, 2945–2964 (2018).
ADS Google Scholar
27.
Cael, B. B., Bisson, K. & Follett, C. L. Can rates of ocean primary production and biological carbon export be related through their probability distributions?. Global Biogeochem. Cycles32, 954–970 (2018).
ADS CAS PubMed PubMed Central Google Scholar
28.
Le Moigne, F. A. C., Pabortsava, K., Marcinko, C. L. J., Martin, P. & Sanders, R. J. Where is mineral ballast important for surface export of particulate organic carbon in the ocean?. Geophys. Res. Lett.41, 8460–8468 (2014).
ADS PubMed PubMed Central Google Scholar
29.
Passow, U. & Rocha, C. L. D. L. Accumulation of mineral ballast on organic aggregates. Global Biogeochem. Cycles20, GB1013 (2006).
ADS Google Scholar
30.
De La Rocha, C. L., Nowald, N. & Passow, U. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further implications for the ballast hypothesis. Global Biogeochem. Cycles22, 1–10 (2008).
Google Scholar
31.
Fay, A. R. & McKinley, G. A. Global open-ocean biomes: Mean and temporal variability. Earth Syst. Sci. Data6, 273–284 (2014).
ADS Google Scholar
32.
Lopez-Urrutia, A., Martin, E. S., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl. Acad. Sci.103, 8739–8744 (2006).
ADS CAS PubMed Google Scholar
33.
Wohlers, J. et al. Changes in biogenic carbon flow in response to sea surface warming. Proc. Natl. Acad. Sci.106, 7067–7072 (2009).
ADS CAS PubMed Google Scholar
34.
Carranza, M. M. et al. When mixed layers are not mixed. Storm-driven mixing and bio-optical vertical gradients in mixed layers of the Southern Ocean. J. Geophys. Res. Ocean.123, 7264–7289 (2018).
35.
Gregg, W. W. & Casey, N. W. Modeling coccolithophores in the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr.54, 447–477 (2007).
36.
Rousseaux, C. S. & Gregg, W. W. Recent decadal trends in global phytoplankton composition. Global Biogeochem. Cycles29, 1674–1688 (2015).
ADS CAS Google Scholar
37.
Rosengard, S. Z. et al. Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt. Biogeosciences12, 3953–3971 (2015).
ADS Google Scholar
38.
Buesseler, K. O. The decoupling of production and particle export in the surface ocean. Global Biogeochem. Cycles12, 297–310 (1998).
ADS CAS Google Scholar
39.
Ducklow, H. W. et al. Spring-summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Philos. Trans. R Soc. A376, 20170177 (2018).
ADS Google Scholar
40.
Cael, B. B. & Follows, M. J. On the temperature dependence of oceanic carbon efficiency. Geophys. Res. Lett.43, 5170–5175 (2016).
ADS Google Scholar
41.
Cael, B. B., Bisson, K. & Follows, M. J. How have recent temperature changes affected the efficiency of ocean biological carbon export?. Limnol. Oceanogr. Lett.2, 113–118 (2017).
Google Scholar
42.
Sigman, D. M. & Hain, M. P. The biological productivity of the ocean. Nat. Educ.3, 1–16 (2012).
Google Scholar
43.
Verdy, A. & Mazloff, M. R. A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Ocean.122, 6968–6988 (2017).
ADS CAS Google Scholar
44.
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C. & Misumi, K. Marine ecosystem dynamics and biogeochemical cycling in the community Earth system model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5. J. Clim.26, 9291–9312 (2013).
45.
Llort, J. et al. Evaluating Southern Ocean carbon eddy-pump from biogeochemical-argo floats. J. Geophys. Res. Ocean.123, 971–984 (2018).
ADS Google Scholar
46.
Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun.10, 889 (2019).
ADS CAS PubMed PubMed Central Google Scholar
47.
Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol.40, 2001–2013 (2017).
CAS PubMed PubMed Central Google Scholar
48.
Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun.5, 3271 (2014).
ADS PubMed PubMed Central Google Scholar
49.
Carlson, C. A. & Hansell, D. A. DOM sources, sinks, reactivity, and budgets. in Biogeochemistry of Marine Dissolved Organic Matter, 2nd Edn. 65–126 (2014).
50.
Letscher, R. T., Moore, J. K., Teng, Y. & Primeau, F. Variable C:N:P stoichiometry of dissolved organic matter cycling in the community Earth system model. Biogeosciences12, 209–221 (2015).
ADS CAS Google Scholar
51.
Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun.8, 2036 (2017).
ADS PubMed PubMed Central Google Scholar
52.
Schlitzer, R. Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates. Deep. Res. Part II Top. Stud. Oceanogr.49, 1623–1644 (2002).
53.
Nevison, C. et al. Net community production in the Southern Ocean: Insights from comparing atmospheric potential oxygen to satellite ocean color algorithms and ocean models. Geophys. Res. Lett.45, 10549–10559 (2018).
ADS CAS Google Scholar
54.
Letscher, R. T. et al. Microbial community composition and nitrogen availability influence DOC remineralization in the South Pacific Gyre. Mar. Chem.177, 325–334 (2015).
CAS Google Scholar
55.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature568, 327–335 (2019).
ADS CAS PubMed Google Scholar
56.
Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci.9, 820–823 (2016).
57.
Stukel, M. R. & Ducklow, H. W. Stirring up the biological pump: Vertical mixing and carbon export in the Southern Ocean. Global Biogeochem. Cycles31, 1420–1434 (2017).
ADS CAS Google Scholar
58.
Riley, J. S. et al. The relative contribution of fast and slow sinking particles to ocean carbon export. Global Biogeochem. Cycles26, GB1026 (2012).
ADS Google Scholar
59.
Baker, C. A. et al. Slow-sinking particulate organic carbon in the Atlantic Ocean: Magnitude, flux, and potential controls. Global Biogeochem. Cycles31, 1051–1065 (2017).
ADS CAS Google Scholar
60.
Sweeney, C. et al. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica. Deep Sea Res.II(47), 3369–3394 (2000).
ADS Google Scholar
61.
Yager, P. et al. A carbon budget for the Amundsen Sea Polynya, Antarctica: Estimating net community production and export in a highly productive polar ecosystem. Elem. Sci. Anthr.4, 140 (2016).
Google Scholar
62.
Morris, P. J. & Sanders, R. A carbon budget for a naturally iron fertilized bloom in the Southern Ocean. Global Biogeochem. Cycles25, 1–14 (2011).
Google Scholar
63.
Deppeler, S. L. & Davidson, A. T. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci.4, 40 (2017).
Google Scholar
64.
Lemaitre, N. et al. High variability of export fluxes along the North Atlantic GEOTRACES section GA01: Particulate organic carbon export deduced from the 234Th method. Biogeosciences15, 6417–6437 (2018).
ADS CAS Google Scholar
65.
Maiti, K. et al. Export fluxes in northern Gulf of Mexico—Comparative evaluation of direct, indirect and satellite-based estimates. Mar. Chem.184, 60–77 (2016).
CAS Google Scholar
66.
Anand, S. S., Rengarajan, R. & Sarma, V. V. S. S. 234Th-based carbon export flux along the Indian GEOTRACES GI02 section in the Arabian Sea and the Indian Ocean. Global Biogeochem. Cycles32, 417–436 (2018).
ADS Google Scholar
67.
Kelly, T. B., Kahru, M., Goericke, R., Song, H. & Stukel, M. R. Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection. Deep Sea Res. Part I Oceanogr. Res. Pap.140, 14–25 (2018).
68.
Treguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci.11, 27–37 (2018).
ADS CAS Google Scholar
69.
Palevsky, H. I. & Doney, S. C. How choice of depth horizon influences the estimated spatial patterns and global magnitude of ocean carbon export flux. Geophys. Res. Lett.45, 4171–4179 (2018).
ADS Google Scholar
70.
Buesseler, K. O. et al. Thorium-234 as a tracer of spatial, temporal and vertical variability in particle flux in the North Pacific. Deep. Res. PartI(56), 1143–1167 (2009).
Google Scholar
71.
Buesseler, K. O., McDonnell, A. M. P., Schofield, O. M. E., Steinberg, D. K. & Ducklow, H. W. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett.37, 1–5 (2010).
Google Scholar
72.
Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr.54, 1210–1232 (2009).
ADS CAS Google Scholar
73.
Stange, P. et al. Quantifying the time lag between organic matter production and export in the surface ocean: Implications for estimates of export efficiency. Geophys. Res. Lett.44, 268–276 (2017).
ADS CAS Google Scholar
74.
Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr.42, 1–20 (1997).
ADS CAS Google Scholar
75.
Carr, M.-E. et al. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res. Part II Top. Stud. Oceanogr.53, 741–770 (2006).
76.
Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles22, GB2024 (2008).
ADS Google Scholar
77.
Rohr, T., Long, M. C., Kavanaugh, M. T., Lindsay, K. & Doney, S. C. Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations. Global Biogeochem. Cycles31, 922–940 (2017).
ADS CAS Google Scholar
78.
Negrete-garcía, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M. & Lauvset, S. K. Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean. Nat. Clim. Chang.9, 313–317 (2019).
ADS Google Scholar More