More stories

  • in

    Human practices promote presence and abundance of disease-transmitting mosquito species

    1.
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science348, 1217 (2015).
    ADS  PubMed  Google Scholar 
    2.
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature574, 671–674 (2019).
    ADS  CAS  Article  Google Scholar 

    3.
    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science (80).349, 1259504 (2015).
    Article  Google Scholar 

    4.
    Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C. & Soti, V. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr.9, 54 (2010).
    Article  Google Scholar 

    5.
    Muturi, E. J., Costanzo, K., Kesavaraju, B., Lampman, R. & Alto, B. W. Interaction of a pesticide and larval competition on life history traits of Culex pipiens. Acta Trop.116, 141–146 (2010).
    CAS  Article  Google Scholar 

    6.
    Krol, L. et al. Eutrophication mediates consequences of predator-prey interactions and temperature for Aedes aegypti. Parasit. Vectors12, 179 (2019).
    Article  Google Scholar 

    7.
    Samuel, M., Brooke, B. D. & Oliver, S. V. Effects of inorganic fertilizer on larval development, adult longevity and insecticide susceptibility in the malaria vector Anopheles arabiensis (Diptera: Culicidae). Pest Manag. Sci. https://doi.org/10.1002/ps.5676 (2020).
    Article  PubMed  Google Scholar 

    8.
    Jeanrenaud, A. C. S. N., Brooke, B. D. & Oliver, S. V. The effects of larval organic fertiliser exposure on the larval development, adult longevity and insecticide tolerance of zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). PLoS ONE https://doi.org/10.1371/journal.pone.0215552 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Roche, B., Rohani, P., Dobson, A. P. & Guégan, J.-F. The impact of community organization on vector-borne pathogens. Am. Nat.181, 1–11 (2012).
    Article  Google Scholar 

    10.
    Lord, J. S. et al. Sampling design influences the observed dominance of Culex tritaeniorhynchus: considerations for future studies of japanese encephalitis virus transmission. PLoS Negl. Trop. Dis. https://doi.org/10.1371/journal.pntd.0004249 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Takahashi, M. The effects of environmental and physiological conditions of Culex tritaeniorhynchus on the pattern of transmission of Japanese encephalitis virus. J. Med. Entomol. https://doi.org/10.1093/jmedent/13.3.275 (1976).
    Article  PubMed  Google Scholar 

    12.
    Hauser, G., Thiévent, K. & Koella, J. C. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae. Parasit. Vectors https://doi.org/10.1186/s13071-020-3983-9 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Reiskind, M. H. & Lounibos, L. P. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med. Vet. Entomol. https://doi.org/10.1111/j.1365-2915.2008.00782.x (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis.19, 302–312 (2019).
    Article  Google Scholar 

    15.
    Li, R. et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Natl. Acad. Sci.116, 3624–3629 (2019).
    CAS  Article  Google Scholar 

    16.
    Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis.5, (2011).

    17.
    Patz, J. A. & Olson, S. H. Malaria risk and temperature: influences from global climate change and local land use practices. Proc. Natl. Acad. Sci. USA103, 5635–5636 (2006).
    ADS  CAS  Article  Google Scholar 

    18.
    Afrane, Y. A., Githeko, A. K. & Yan, G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/j.1749-6632.2011.06432.x (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Murdock, C. C., Evans, M. V., McClanahan, T. D., Miazgowicz, K. L. & Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis.11, e0005640 (2017).
    Article  Google Scholar 

    20.
    Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis.67, 25–35 (2018).
    Article  Google Scholar 

    21.
    Beck-Johnson, L. M. et al. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. R. Soc. Open Sci.4, 160969 (2017).
    ADS  Article  Google Scholar 

    22.
    Johnson, M. F., Gómez, A. & Pinedo-Vasquez, M. Land use and mosquito diversity in the Peruvian amazon. J. Med. Entomol. https://doi.org/10.1603/0022-2585(2008)45[1023:luamdi]2.0.co;2 (2008).
    Article  PubMed  Google Scholar 

    23.
    Versteirt, V. et al. Nationwide inventory of mosquito biodiversity (Diptera: Culicidae) in Belgium Europe. Bull. Entomol. Res. https://doi.org/10.1017/S0007485312000521 (2013).
    Article  PubMed  Google Scholar 

    24.
    Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep.6, 29002 (2016).
    ADS  CAS  Article  Google Scholar 

    25.
    Ibañez-Justicia, A., Stroo, A., Dik, M., Beeuwkes, J. & Scholte, E. J. National mosquito (Diptera: Culicidae) survey in the Netherlands 2010–2013. J. Med. Entomol. https://doi.org/10.1093/jme/tju058 (2015).
    Article  PubMed  Google Scholar 

    26.
    Johnson, T., Braack, L., Guarido, M., Venter, M. & Gouveia Almeida, A. P. Mosquito community composition and abundance at contrasting sites in northern South Africa, 2014–2017. J. Vector Ecol. https://doi.org/10.1111/jvec.12378 (2020).
    Article  PubMed  Google Scholar 

    27.
    Cornel, A. J. et al. Mosquito community composition in South Africa and some neighboring countries. Parasit. Vectors https://doi.org/10.1186/s13071-018-2824-6 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Sedda, L. et al. Improved spatial ecological sampling using open data and standardization: an example from malaria mosquito surveillance. J. R. Soc. Interface https://doi.org/10.1098/rsif.2018.0941 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Thongsripong, P. et al. Mosquito vector diversity across habitats in central thailand endemic for dengue and other arthropod-borne diseases. PLoS Negl. Trop. Dis.7, e2507 (2013).
    Article  Google Scholar 

    30.
    Meyer Steiger, D. B., Ritchie, S. A. & Laurance, S. G. W. Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics. Parasit. Vectors9, (2016).

    31.
    Gorsich, E. E. et al. A comparative assessment of adult mosquito trapping methods to estimate spatial patterns of abundance and community composition in southern Africa. Parasit. Vectors12, 462 (2019).
    Article  Google Scholar 

    32.
    Braack, L., Gouveia De Almeida, A. P., Cornel, A. J., Swanepoel, R., & De Jager, C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasit. Vectors11, (2018).

    33.
    Do Manh, C. et al. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam. Malar. J. https://doi.org/10.1186/1475-2875-9-259 (2010).
    Article  PubMed Central  Google Scholar 

    34.
    Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2017.09.012 (2018).
    Article  Google Scholar 

    35.
    Barros, F. S. M. & Honório, N. A. Deforestation and malaria on the amazon frontier: larval clustering of anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.15-0042 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature468, 647–652 (2010).
    ADS  CAS  Article  Google Scholar 

    37.
    MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA.116, 22212–22218 (2019).
    CAS  Article  Google Scholar 

    38.
    Wiens, J. A. Ecological Flows Across Landscape Boundaries: A Conceptual Overview. In Landscape boundaries (eds. Hansen, A. J. & di Castri, F.) 217–235 (Springer, 1992).

    39.
    Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2008.06.006 (2008).
    Article  Google Scholar 

    40.
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology https://doi.org/10.1890/07-1206.1 (2008).
    Article  PubMed  Google Scholar 

    41.
    Mabidi, A., Bird, M. S. & Perissinotto, R. Distribution and diversity of aquatic macroinvertebrate assemblages in a semiarid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa). PLoS ONE12, e0178559 (2017).
    Article  Google Scholar 

    42.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol.18, 117–143 (1993).
    Article  Google Scholar 

    43.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–2. Cran R (2019).

    44.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar  More

  • in

    Within-individual phenotypic plasticity in flowers fosters pollination niche shift

    Field sampling design
    To determine if there was within-individual plasticity in floral traits between spring and summer conditions, 50 plants of each of four populations from SE Spain (Supplementary Table 1) were marked at the onset of the flowering period in late February–early March 2018. The phenotype of two flowers per individual was quantified (see below). We revisited each population during summer (June 2018) and the same floral traits were quantified in the summer flowers of those plants still flowering (117 plants; Supplementary Table 1).
    Experimental design
    We performed an experiment testing the effect of temperature and photoperiod in floral plasticity. It included three treatments: (1) Treatment 1, where 30 plants flowered first in conditions mimicking the spring temperature and photoperiod of Mediterranean Spain (day/night = 10/14 h, temperature = 20/10 °C, average daily temperature = 14.2 °C; see Supplementary Table 1), and afterwards in conditions mimicking a mild summer (day/night = 16/8 h, temperature = 30/20 °C, average daily temperature = 23.8 °C). (2) Treatment 2, where 30 plants flowered first in spring conditions and afterwards in hot summer conditions (day/night = 16/8 h, temperature = 35/25 °C, average daily temperature = 28.8 °C). (3) Treatment 3 (control) where 15 plants flowered first in spring conditions, and afterwards they flowered again in spring conditions. For all treatments, we removed flowers before starting the second round of flowering.
    We experimentally tested the occurrence of reverse plasticity by performing a Treatment 4 in which 15 plants from Treatment 1 that flowered both during spring and summer conditions were again submitted to a period mimicking spring conditions (Supplementary Table 1).
    Floral traits
    We measured, both in field and experimental conditions, three floral traits during spring (or under experimental spring conditions) and in summer (or under experimental hot summer conditions). These traits were corolla size, corolla shape and corolla colour.
    Corolla size of each studied flower was estimated by means of two traits: (1) corolla diameter, estimated as the distance in mm between the edge of two opposite petals. (2) Corolla tube length, the distance in mm between the corolla tube aperture and the base of the sepals. These variables were measured by using a digital calliper with ±0.1 mm of error.
    Corolla shape variation was studied using geometric morphometric tools based on a landmark-based methodology43. For this, in each of the two selected flowers per individual plant studied in each of the four populations, we took a digital photo of the front view and planar position. We defined 32 co-planar landmarks covering the corolla shape and using midrib, primary and secondary veins and petal extremes and connections21,44. From the two-dimensional coordinates of landmarks, we extracted shape information and computed the generalized orthogonal least-squares Procrustes averages using the generalized procrustes analysis (GPA) superposition method. Due to the intrinsic symmetry pattern exhibited by Brassicaceae flowers, we did the analyses considering both the symmetric and asymmetric components of the shape45,46,47. We performed a principal component analysis (PCA) on the GPA-aligned specimens, and afterwards, we did a canonical variate analysis (CVA) to explore the difference in shape between season and populations43,47. Geometric morphometric analyses were performed in the R packages ‘geomorph’48, ‘Morpho’47 and ‘shapes’49,50.
    To explore the relative position of the corolla shape of spring and summer flowers in the morphospace created by the species most related phylogenetically with M. arvensis, we performed a phylomorphospace. This analysis creates a plot of the main principal dimensions (the three first principal components in this case) of a tangent space for the Procrustes shape variables of the pool of species considered in the analysis and superimposed the phylogenetic tree relating this species in this plot51,52. By doing this, this analysis reveals how the shape evolves. To perform this analysis, we collected information on the corolla shape of 72 additional species belonging to the Brassicaceae tribe Brassiceae, the tribe to which M. arvensis belongs (Supplementary Table 3). We followed the same procedure as with M. arvensis, using the same number of landmarks and computing the generalized orthogonal least-squares Procrustes averages using GPA superposition method. In this analysis, we kept separate the spring and summer flowers of M. arvensis. The phylogenetic relationship between these 72 species was obtained by making a supertree using Brassicaceae trees hosted in the repository TreeBASE Web (TreeBase.org)53. We first downloaded individual phylogenetic trees from TreeBASE. Second, we concatenated all these individual trees and made a skeleton supertree. Finally, we pruned this supertree, keeping only the species included in the geometric morphometric analysis, and insert the two ‘pseudospecies’ of M. arvensis (spring and summer) as sister species. Afterwards, we projected the value of the three first components of each species on a 3D phylogenetically explicit plot. The phylogenetic analysis was performed in the R packages ‘treeman’54, ‘phangorn’55, ‘phytools’56 and ‘treebase’53, whereas the phylomorphospace analysis was performed in the R packages ‘geomorph’48.
    The corolla colour of M. arvensis is produced by the accumulation of flavonoids57,58. Anthocyanin and non-anthocyanin flavonoids present in the petals of M. arvensis were analysed by ultra-performance liquid chromatography (UPLC) (ACQUITY System I-Class, Waters) coupled with quadrupole time-of-flight mass spectrometry (SYNAPT G2 HDMS Q-TOF, Waters). Analytical separation of flavonoids was performed on an Acquity HSST33 analytical column (150 mm × 2.1 mm internal diameter, 1.8 μm). A mobile phase with a gradient programme combining deionized water with 0.5% of acetic acid as solvent A and acetonitrile with 0.5% of acetic acid as solvent B was used. The initial conditions were 95% A and 5% B and a linear gradient was then established to reach 95% (v/v) of B. The total run time was 15 min and the post-delay time was 5 min. The mobile phase flow rate was 0.4 mL min−1. After chromatographic separation, a high-resolution mass spectrometry analysis was carried out in positive electrospray ionization (ESI+). The ionization source parameters using high-purity nitrogen were set at 600 L h−1 for desolvation gas flow and 30 L h−1 for cone gas flow. Spectra were recorded over the mass/charge (m/z) range of 50–1500. Data were recorded and processed using MassLynx software. The flavonoids present in the petal extracts were characterized according to their retention times, mass spectra and molecular formula, and compared with published data when available. We calculated the relative abundance of each compound in both lilac and white petal samples (N = 5 and 2, respectively) using peak intensities.
    Quantification of flavonoids present in flowers of M. arvensis was performed spectrophotometrically. Two flowers of each plant used in field and experimental studies were analysed in each blooming period. We collected the four petals of a flower. Flavonoids were extracted in 1.5 ml of MeOH:HCl (99:1% v-v) and stored at −80 °C in the dark, following the procedure described in ref. 34. Two replicas of 200 μL for each sample were measured in a Multiskan GO microplate spectrophotometer (Thermo Fisher Scientific Inc., MA, USA). Main flavonoid classes present in the petals of M. arvensis are anthocyanins (cyanidin derivatives) and flavonols (kaempferol, quercetin and isorhamnetin derivatives; Supplementary Table 4)57,58. Thus, total anthocyanins and flavonols were quantified as absorbance at 520 and 350 nm, respectively. Their concentrations were calculated using five-point calibration curves of cyanidin-3-glucoside chloride (Sigma-Aldrich, Steinheim, Germany) and kaempferol-3-glucoside standards (Extrasynthese, Genay, France) and expressed as cyanidin-3-glucoside and kaempferol-3-glucoside equivalents in fresh weight (mg g−1 FW), respectively.
    Objective quantification of petal colour of lilac and white petals of M. arvensis was performed by measuring their UV–Vis spectral reflectance. A petal of a flower of each colour morph (N = 10) were measured with a Jaz portable spectrometer (Ocean Optics Inc., Dunedin, FL, USA) equipped with a deuterium–tungsten halogen light source (200–2000 nm) and a black metal probe holder (6 mm diameter opening at 45°). Reflectance, relative to a white standard (WS-1-SL), was analysed with SpectraSuite v.10.7.1 software (Ocean Optics). To maximize the amount of light used in reflectance measurements and to reduce occasionally erratic reflectance values at individual nm, we set an integration time of 2 s and smoothing boxcar width of 12, respectively59.
    Foliar traits
    We measured, both in field and experimental conditions, five leaf traits during spring (or under experimental spring conditions) and in summer (or under experimental hot summer conditions). These traits were the specific leaf area (SLA, m2 kg−1), the leaf dry matter content (LDMC, mg g−1), the carbon-to-nitrogen content of leaves (C:N ratio), the isotopic signature of 13C in leaves (δ13C, ‰), and the CO2 compensation point and the slope of the A–Ci curve.
    SLA and LDMC were measured following standard protocols60. For SLA and LDMC we collected three fully expanded and mature leaves without any visible damage (e.g., herbivory, pathogen attack) from the base, midsection and apical part of outer stems (that is, leaves were not shaded by other leaves) and at random aspects. Leaves were rehydrated overnight in the dark and subsequently weighted and scanned. Leaf area was measured using the Midebmp software (Almería, Spain). Leaves were dried in the oven at 60 °C and weighted after 72 h. From these measurements, we calculated the SLA as the one-sided area of the fully rehydrated fresh leaf divided by its dry mass, while the LDMC is the ratio between the leaf dry mass and the fully rehydrated fresh mass.
    Carbon isotopic signature (δ13C), as well as the C and N relative content in leaves, were analysed in a couple of fully expanded leaves per plant without any visible damage. Oven-dry leaves were ground in a ball mill MM400 (Retsch GmbH, Haan, Germany) at 3000 rpm for 1 min to obtain a fine powder, which was stored in Eppendorf tubes. We wrapped 0.003 g of each sample in tin capsules D1008 (Elemental Microanalysis, United Kingdom). Leaf δ13C and leaf C and N relative content (in mass percentage) were determined at the Stable Isotope Analysis Lab—Centro de Instrumentación Científica (CIC) of the University of Granada (Spain) with a GC IsoLink—MS—Delta V continuous flow mass spectrometer (MS) system that includes a ISQ-QD single quadrupole MS and a gas chromatographer Trace 1310 (Thermo Fisher Scientific™, Spain). The isotopic abundance was expressed in parts per thousand (‰) as

    $$delta = left( {{R}_{{mathrm{sample}}}/{R}_{{mathrm{standard}}}-1} right) times 1000$$
    (1)

    where Rsample and Rstandard are the molar ratios of heavy (13C) to light (12C) stable isotopes of the sample (Rsample) and an international standard (Rstandard). MS precision was 0.15‰ for carbon, based on replicate analyses of standard reference materials.
    We measured responses of CO2 assimilation rate (A) versus calculated substomatal or intercellular CO2 concentration (Ci) (henceforth, A–Ci curves) to determine the instantaneous photosynthetic metabolism of plants of the intermediate C3–C4 species M. arvensis on plants grown under the two experimental conditions (N= 22 plants, spring and hot summer conditions). Gas exchange measurements were performed on one to two mature, fully expanded leaves per plant and experimental condition using a LICOR 6400 (LI-COR Biosciences, Lincoln, USA) and following the standard recommendations to correct leakage errors61,62,63. Cuvette conditions were maintained at a constant photosynthetic photon flux density (PPFD) of 1500 µmol m−2 s−1, a vapour pressure deficit (VPD) that ranged from 1.0 to More

  • in

    Chemical profile and phytotoxic action of Onopordum acanthium essential oil

    1.
    Rother, C. Administration of Cardiodoron® in patients with functional cardiovascular disorders and/or sleep disorder-results of a prospective, non-interventional study. Forsch. Komplementmed.20, 334–344 (2013).
    PubMed  Google Scholar 
    2.
    Cavers, P. B., Qaderi, M. M., Threadgill, P. F. & Steel, M. G. The biology of Canadian weeds. 147. Onopordum acanthium L. Can. J. Plant Sci.91, 739–758 (2011).
    Google Scholar 

    3.
    An et al. Flora of Xinjiangensis. Volume 5: Asteraceae.5, 334–336 (1999).

    4.
    Mucina, L. Syntaxonomy of the Onopordum acanthium communities in temperate and continental Europe. Vegetatio81, 107–115 (1989).
    Google Scholar 

    5.
    Zahed, N., Hosni, K., Brahim, N. B., Kallel, M. & Sebei, H. Allelopathic effect of Schinus molle essential oils on wheat germination. Acta Physiol. Plant.32, 1221–1227 (2010).
    CAS  Google Scholar 

    6.
    Abusamra, Y. A. K. et al. Evaluation of putative cytotoxic activity of crude extracts from Onopordum acanthium leaves and Spartium junceum flowers against the U-373 glioblastoma cell line. Pak. J. Pharm. Sci.28, 1225–1232 (2015).
    PubMed  Google Scholar 

    7.
    Csupor-Löffler, B., Zupkó, I., Molnár, J., Forgo, P. & Hohmann, J. Bioactivity-guided isolation of antiproliferative compounds from the roots of Onopordum acanthium. Nat. Prod. Commun.9, 337–340 (2014).
    PubMed  Google Scholar 

    8.
    Daci, A., Gold-Binder, M., Garzon, D., Patea, A. & Beretta, G. Standardization of solvent extracts from Onopordum acanthium fruits by GC-MS, HPLC-UV/DAD, HPLC-TQMS and 1H-NMR and evaluation of their inhibitory effects on the expression of IL-8 and e-selectin in immortalized endothelial cells (HUVECtert). Nat. Prod. Commun.9, 945–948 (2014).
    CAS  PubMed  Google Scholar 

    9.
    Lajter, I. et al. Anti-inflammatory activity of Onopordum acanthium extracts and isolated compounds. Planta Med.80, 255 (2014).
    Google Scholar 

    10.
    Réthy, B. et al. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part I. Phytother. Res.21, 1200–1208 (2007).
    PubMed  Google Scholar 

    11.
    Shao, H. et al. Chemical composition and phytotoxic activity of Seriphidiumterrae-albae (Krasch.) Poljakov (Compositae) essential oil. Chem. Biodivers.15, e1800348 (2018).
    PubMed  Google Scholar 

    12.
    Tsuneki, H. et al. Antiangiogenic activity of β-eudesmol in vitro and in vivo. Eur. J. Pharmacol.512, 105–115 (2005).
    CAS  PubMed  Google Scholar 

    13.
    Garsiya, E. R., Konovalov, D. A., Shamilov, A. A., Glushko, M. P. & Orynbasarova, K. K. Traditional medicine plant, Onopordumacanthium L. (Asteraceae): chemical composition and pharmacological research. Plants.8(2), 40 (2019).
    CAS  PubMed Central  Google Scholar 

    14.
    Wei, C. et al. Chemical composition and allelopathic, phytotoxic and pesticidal activities of Atriplexcana LEDEB. (Amaranthaceae) essential oil. Chem. Biodivers. https://doi.org/10.1002/cbdv.201800595 (2019).
    Article  PubMed  Google Scholar 

    15.
    Brutti, C. B., Pardo, M. F., Caffini, N. O. & Natalucci, C. L. Onopordumacanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT Food Sci. Technol.45, 172–179 (2012).
    CAS  Google Scholar 

    16.
    Fernald, M. L., Kinsey, A. C. & Rollins, R. C. Edible Wild Plants of Eastern North America (Courier Corporation, Chelmsford, 1996).
    Google Scholar 

    17.
    Arfaoui, M. O., Renaud, J., Ghazghazi, H., Boukhchina, S. & Mayer, P. Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development. Nat. Prod. Res.28, 2293–2300 (2014).
    CAS  PubMed  Google Scholar 

    18.
    Gerçel, H. F. The effects of different catalysts on the pyrolysis of thistle, Onopordum acanthium L. Energy Sources35, 791–799 (2013).
    Google Scholar 

    19.
    Matthaus, B., Ozcan, M. M. & Al-Juhaimi, F. Fatty acid, tocopherol, and mineral contents of Onopordum acanthium seed and oil. Chem. Nat. Compd.50, 1092–1093 (2014).
    CAS  Google Scholar 

    20.
    Verdeguer, M. et al. Herbicidal activity of Peumus boldus and Drimys winterii essential oils from Chile. Molecules16, 403–411 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    El Ayeb-Zakhama, A. et al. Chemical composition and allelopathic potential of essential oils from Citharexylumspinosum L. grown in Tunisia. Chem. Biodivers. https://doi.org/10.1002/cbdv.201600225 (2017).
    Article  PubMed  Google Scholar 

    22.
    De, J., Lu, Y., Ling, L., Peng, N. & Zhong, Y. Essential oil composition and bioactivities of Waldheimia glabra (Asteraceae) from Qinghai-Tibet plateau. Molecules22, 460–466 (2017).
    PubMed Central  Google Scholar 

    23.
    Gilani, S. A., Fujii, Y., Sugano, M. & Watanabe, K. N. Chemotypic variations and phytotoxic studies of essential oils of endemic medicinal plant, Seriphidium kurramense, from Pakistan. J. Med. Plants Res.4, 309–315 (2010).
    CAS  Google Scholar 

    24.
    Gruľová, D. et al. Composition and bioactivity of essential oils of Solidago spp. and their impact on radish and garden cress. Allelopathy J39, 129–142 (2016).
    Google Scholar 

    25.
    Kaur, S., Singh, H. P., Mittal, S., Batish, D. R. & Kohli, R. K. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crops Prod.32, 54–61 (2010).
    CAS  Google Scholar 

    26.
    Bouazzi, S. et al. Chemical composition and antioxidant activity of essential oils and hexane extract of Onopordumarenarium from Tunisia. J. Chromatogr. Sci.58, 287–293 (2020).
    PubMed  Google Scholar 

    27.
    Polatoğlu, K., Demirci, B. & Başer, K. H. C. High amounts of n-alkanes in the composition of Asphodelusaestivus Brot. flower essential oil from Cyprus. J. Oleo Sci.65, 867–870 (2016).
    PubMed  Google Scholar 

    28.
    Lazari, D. M., Skaltsa, H. D. & Constantinidis, T. Volatile constituents of Centaurearaphanina Sm. Subsp. mixta (DC.) Runemark and C. spruneri Boiss. & Heldr. (Asteraceae), growing wild in Greece. Flavour. Frag. J.14, 415–418 (1999).
    CAS  Google Scholar 

    29.
    Klocke, J. A., Balandrin, M. F., Adams, R. P. & Kingsford, E. Insecticidal chromenes from the volatile oil of Hemizonia fitchii. J. Chem. Ecol.11, 701–712 (1985).
    CAS  PubMed  Google Scholar 

    30.
    Heinrich, G., Pfeifhofer, H. W., Stabentheiner, E. & Sawidis, T. Glandular hairs of Sigesbeckia jorullensis Kunth (Asteraceae): morphology, histochemistry and composition of essential oil. Ann. Bot.89, 459–469 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    El Ayeb-Zakhama, A. et al. Chemical composition and allelopathic potential of essential oils from Tipuanatipu (Benth.) Kuntze cultivated in Tunisia. Chem. Biodivers.13, 309–318 (2016).
    CAS  PubMed  Google Scholar 

    32.
    Guleria, S. et al. Chemical composition, antioxidant activity and inhibitory effects of essential oil of Eucalyptus teretecornis grown in north-western Himalaya against Alternaria alternata. J. Plant Biochem. Biotechnol.21, 44–50 (2012).
    CAS  Google Scholar 

    33.
    Miyazawa, M., Shimamura, H., Nakamura, S. I. & Kameoka, H. Antimutagenic activity of (+)-β-eudesmol and paeonol from Dioscorea japonica. J. Agric. Food Chem.44, 1647–1650 (1996).
    CAS  Google Scholar 

    34.
    Plengsuriyakarn, T., Karbwang, J. & Na-Bangchang, K. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Clin. Exp. Pharmacol. Physiol.42, 293–304 (2015).
    CAS  PubMed  Google Scholar 

    35.
    Ul’chenko, N. T., Gusakova, S. D. & Glishenkova, A. I. Oxygenated triacylglycerols of the lipids of Onopordum acanthium seeds. Chem. Nat. Compd.29, 578–581 (1993).
    Google Scholar 

    36.
    Watanabe, Y. et al. Phytotoxic potential of Onopordumacanthium L. (Asteraceae). Chem. Biodivers.11, 1247–1255 (2014).
    CAS  PubMed  Google Scholar 

    37.
    Çakır, A. et al. Phytotoxic and insecticidal properties of essential oils and extracts of four Achillea species. Rec. Nat. Prod.10, 154–167 (2015).
    Google Scholar 

    38.
    Mancini, E., De Martino, L., Marandino, A., Scognamiglio, M. R. & De Feo, V. Chemical composition and possible in vitro phytotoxic activity of Helichrsyumitalicum (Roth) Don ssp. italicum. Molecules16, 7725–7735 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Rammohan, A., Reddy, G. M., Bhaskar, B. V., Gunasekar, D. & Zyryanov, G. V. Phytochemistry and pharmacological activities of the genus Rhynchosia: a comprehensive review. Planta251, 9 (2020).
    CAS  Google Scholar 

    40.
    Martino, L. D., Mancini, E., Almeida, L. F. R. D. & Feo, V. D. The antigerminative activity of twenty-seven monoterpenes. Molecules15, 6630–6637 (2010).
    PubMed  PubMed Central  Google Scholar 

    41.
    Zhou, S. et al. Chemical composition, phytotoxic, antimicrobial and insecticidal activity of the essential oils of Dracocephalum integrifolium. Toxins11, 598 (2019).
    CAS  PubMed Central  Google Scholar 

    42.
    Ahuja, N., Batish, D. R., Singh, H. P. & Kohli, R. K. Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. J. Pest Sci.88(1), 209–218 (2015).
    Google Scholar 

    43.
    Grayson, B. T. et al. The physical and chemical properties of the herbicide cinmethylin (SD 95481). Pestic. Sci.21, 143–153 (1987).
    CAS  Google Scholar 

    44.
    Qaderi, M. M., Cavers, P. B. & Bernards, M. A. Isolation and structural characterization of a water-soluble germination inhibitor from Scotch thistle (Onopordum acanthium) cypselas. J. Chem. Ecol.29, 2425–2438 (2003).
    CAS  PubMed  Google Scholar 

    45.
    Young, J. A. & Evans, R. A. Control and ecological studies of scotch thistle. Weed Sci.17, 60–63 (1969).
    Google Scholar 

    46.
    Sharifi, N. et al. Isolation, identification and molecular docking studies of a new isolated compound, from Onopordon acanthium: a novel angiotensin converting enzyme (ACE) inhibitor. J. Ethnopharmacol.148, 934–939 (2013).
    CAS  PubMed  Google Scholar  More

  • in

    Population genetic variation characterization of the boreal tree Acer ginnala in Northern China

    1.
    Sreekanth, P. M., Balasundaran, M., Nazeem, P. A. & Suma, T. B. Genetic diversity of nine natural Tectona grandis L.f. populations of the Western Ghats in Southern India. Conserv. Genet.13, 1409–1419. https://doi.org/10.1007/s10592-012-0383-5 (2012).
    Article  Google Scholar 
    2.
    Zhang, Y., Zhang, X., Chen, X., Sun, W. & Li, J. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers. Hereditas155, 22. https://doi.org/10.1186/s41065-018-0058-4 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Yang, S., Xue, S., Kang, W., Qian, Z. & Yi, Z. Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China. PLoS ONE14, e0211471–e0211471. https://doi.org/10.1371/journal.pone.0211471 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Abebe, T. D., Bauer, A. M. & Léon, J. Morphological diversity of Ethiopian barleys (Hordeum vulgare L.) in relation to geographic regions and altitudes. Hereditas147, 154–164. https://doi.org/10.1111/j.1601-5223.2010.02173.x (2010).
    Article  PubMed  Google Scholar 

    5.
    Rinaldi, R. et al. The influence of a relict distribution on genetic structure and variation in the Mediterranean tree, Platanus orientalis. AoB Plants https://doi.org/10.1093/aobpla/plz002 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep.9, 6239. https://doi.org/10.1038/s41598-019-41886-8 (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    7.
    Tóth, E. G., Tremblay, F., Housset, J. M., Bergeron, Y. & Carcaillet, C. Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps. BMC Evol. Biol.19, 190. https://doi.org/10.1186/s12862-019-1510-4 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv.5, eaay9969. https://doi.org/10.1126/sciadv.aay9969 (2019).
    Article  PubMed  PubMed Central  ADS  Google Scholar 

    9.
    Hamilton, J. A., Royauté, R., Wright, J. W., Hodgskiss, P. & Ledig, F. T. Genetic conservation and management of the California endemic, Torrey pine (Pinus torreyana Parry): Implications of genetic rescue in a genetically depauperate species. Ecol. Evol.7, 7370–7381. https://doi.org/10.1002/ece3.3306 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley, New York, 2009).
    Google Scholar 

    11.
    Cohen, J. I., Williams, J. T., Plucknett, D. L. & Shands, H. Ex situ conservation of plant genetic resources: global development and environmental concerns. Science253, 866–872. https://doi.org/10.1126/science.253.5022.866 (1991).
    CAS  Article  PubMed  ADS  Google Scholar 

    12.
    Li, M., Zhao, Z., Miao, X. & Zhou, J. Genetic diversity and population structure of Siberian apricot (Prunus sibirica L.) in China. Int. J. Mol. Sci.15, 377–400. https://doi.org/10.3390/ijms15010377 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Bao, W. et al. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies. PLoS ONE12, e0188685–e0188685. https://doi.org/10.1371/journal.pone.0188685 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Zhang, X. Vegetation Regionalization Map of China (Geological Publishing House, Beijing, 2007).
    Google Scholar 

    15.
    Huang, D., Wang, J. & Li, D. Biological characteristics and planting technology of Acer ginnala Maxim. Mod. Agric. Sci.16, 112–113 (2009).
    Google Scholar 

    16.
    Tian, X., Jin, Q., Li, D., Wei, Z. & Xu, T. Pollen morphology of Aceraceae and its systematic implication. Acta Bot. Yunnanica23, 457–465 (2001).
    Google Scholar 

    17.
    Zhou, Y. et al. Inhibiting effects of 3 antioxidants on contamination and browning of tissue culture of Acer ginnala Maxim. Acta Agric. Shanghai23, 5–7 (2007).
    Google Scholar 

    18.
    Li, H. Y., Song, J. Y., Dong, J. & Zhan, Y. G. Establishment of callus regeneration system for Acer ginnala maxim and determination of gallic acid in callus. Chin. Bull. Bot.25, 212–219 (2008).
    CAS  Google Scholar 

    19.
    Wang, R. B., Wang, C. Q., Liu, X. L. & Li, L. H. Advances in the research of chemical constituents and medicine and edible function of Acer ginnala. J. Anhui Agric. Sci.39, 5387–5388+5517 (2011).

    20.
    Xie, Y. F., Li, Q., Zou, H. & Yuan, H. L. Analysis of polyphenols from the leaves of Acer ginnala Maxim by reversed-phase high performance liquid chromatography. J. Anal. Sci.27, 443–446 (2011).
    CAS  Article  Google Scholar 

    21.
    Dong, J., Zhan, Y. & Ren, J. Kinetics in suspension culture of Acer ginnala. Sci. Silvae Sin.48, 18–23 (2012).
    CAS  Google Scholar 

    22.
    Park, K. H. et al. Antioxidative and anti-inflammatory activities of galloyl derivatives and antidiabetic activities of Acer ginnala. Evid. Based Complement Altern. Med.2017, 6945912. https://doi.org/10.1155/2017/6945912 (2017).
    Article  Google Scholar 

    23.
    Ma, Z. H., Zhang, M. S., Ma, C. E. & Hao, Y. H. Key points of cultivation technology of special economic forest of Acer ginnala. Spec. Econ. Anim. Plant5, 22 (2005).

    24.
    Wang, D., Pang, C. H., Gao, Y. H., Hao, X. J. & Wang, Y. L. Phenotypic diversity of Acer ginnala (Aceraceae) populations at different altitude. Acta Bot. Yunnanica32, 117–125 (2010).
    CAS  Article  Google Scholar 

    25.
    Yan, N., Wang, D., Gao, Y. H., Hao, X. J. & Wang, Y. L. Genetic diversity of Acer ginnala populations at different elevation in Qiliyu based on ISSR markers. Sci. Silvae Sin.46, 50–56 (2010).
    Google Scholar 

    26.
    Chiang, T. Y. et al. Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE https://doi.org/10.1371/journal.pone.0211342 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Zane, L., Bargelloni, L. & Patarnello, T. Strategies for microsatellite isolation: a review. Mol. Ecol.11, 1–16. https://doi.org/10.1046/j.0962-1083.2001.01418.x (2002).
    CAS  Article  PubMed  Google Scholar 

    28.
    Geng, Q. et al. Understanding population structure and historical demography of Litsea auriculata (Lauraceae), an endangered species in east China. Sci. Rep.7, 17343. https://doi.org/10.1038/s41598-017-16917-x (2017).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    29.
    Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet. Res. Int.2014, 691759. https://doi.org/10.1155/2014/691759 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Li, G. & Quiros, C. F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet.103, 455–461. https://doi.org/10.1007/s001220100570 (2001).
    CAS  Article  Google Scholar 

    31.
    Ferriol, M., Picó, B. & Nuez, F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet.107, 271–282. https://doi.org/10.1007/s00122-003-1242-z (2003).
    CAS  Article  PubMed  Google Scholar 

    32.
    Budak, H. et al. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor. Appl. Genet.108, 328–334. https://doi.org/10.1007/s00122-003-1428-4 (2004).
    CAS  Article  PubMed  ADS  Google Scholar 

    33.
    Masmoudi, M. B. et al. Contrasted levels of genetic diversity in a benthic Mediterranean octocoral: consequences of different demographic histories?. Ecol. Evol.6, 8665–8678. https://doi.org/10.1002/ece3.2490 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Li, X. et al. De novo transcriptome assembly and population genetic analyses for an endangered Chinese endemic Acer miaotaiense (Aceraceae). Genes9, 378 (2018).
    Article  Google Scholar 

    35.
    Goudet, J. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered.86, 485–486 (1995).
    Article  Google Scholar 

    36.
    Gomory, D., Szczecińska, M., Sramko, G., Wołosz, K. & Sawicki, J. Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) Mill in East Central Europe. PLoS ONE https://doi.org/10.1371/journal.pone.0151730 (2016).
    Article  Google Scholar 

    37.
    Lowrey, B. et al. Characterizing population and individual migration patterns among native and restored bighorn sheep (Ovis canadensis). Ecol. Evol.9, 8829–8839. https://doi.org/10.1002/ece3.5435 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Wang, S. H., Bao, L., Wang, T. M., Wang, H. F. & Ge, J. P. Contrasting genetic patterns between two coexisting Eleutherococcus species in northern China. Ecol. Evol.6, 3311–3324. https://doi.org/10.1002/ece3.2118 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Matsui, K. Pollination ecology of four Acer species in Japan with special reference to bee pollinators. Plant Spec. Biol.6, 117–120. https://doi.org/10.1111/j.1442-1984.1991.tb00218.x (1991).
    Article  Google Scholar 

    40.
    Rosado, A., Vera-Vélez, R. & Cota-Sánchez, J. H. Floral morphology and reproductive biology in selected maple (Acer L.) species (Sapindaceae). Braz. J. Bot.41, 361–374. https://doi.org/10.1007/s40415-018-0452-1 (2018).
    Article  Google Scholar 

    41.
    Lönn, M. & Prentice, H. C. Gene diversity and demographic turnover in central and peripheral populations of the perennial herb Gypsophila fastigiata. Oikos99, 489–498. https://doi.org/10.1034/j.1600-0706.2002.11907.x (2002).
    Article  Google Scholar 

    42.
    Kearns, C. A., Inouye, D. W. & Waser, N. M. Endangered mutualisms: the conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst.29, 83–112. https://doi.org/10.1146/annurev.ecolsys.29.1.83 (1998).
    Article  Google Scholar 

    43.
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science313, 351–354. https://doi.org/10.1126/science.1127863 (2006).
    CAS  Article  ADS  Google Scholar 

    44.
    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol.25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).
    Article  Google Scholar 

    45.
    Booy, G., Hendriks, R. J. J., Smulders, M. J. M., Van Groenendael, J. M. & Vosman, B. Genetic diversity and the survival of populations. Plant Biol.2, 379–395. https://doi.org/10.1055/s-2000-5958 (2000).
    Article  Google Scholar 

    46.
    Nosil, P., Funk, D. J. & Ortiz-Barrientos, D. Divergent selection and heterogeneous genomic divergence. Mol. Ecol.18, 375–402. https://doi.org/10.1111/j.1365-294X.2008.03946.x (2009).
    Article  PubMed  Google Scholar 

    47.
    Shih, K. M., Chang, C. T., Chung, J. D., Chiang, Y. C. & Hwang, S. Y. Adaptive genetic divergence despite significant isolation-by-distance in populations of Taiwan Cow-Tail Fir (Keteleeria davidiana var. formosana). Front. Plant Sci. https://doi.org/10.3389/fpls.2018.00092 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    48.
    Lu, Z., Wang, Y., Peng, Y., Korpelainen, H. & Li, C. Genetic diversity of Populus cathayana Rehd populations in southwestern china revealed by ISSR markers. Plant Sci.170, 407–412. https://doi.org/10.1016/j.plantsci.2005.09.009 (2006).
    CAS  Article  Google Scholar 

    49.
    Liu, C. et al. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China. PLoS ONE9, e87187. https://doi.org/10.1371/journal.pone.0087187 (2014).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    50.
    Tian, H. Z. et al. Genetic diversity in the endangered terrestrial orchid Cypripedium japonicum in East Asia: insights into population history and implications for conservation. Sci. Rep.8, 6467. https://doi.org/10.1038/s41598-018-24912-z (2018).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    51.
    Rasmussen, I. R. & Brødsgaard, B. Gene flow inferred from seed dispersal and pollinator behaviour compared to DNA analysis of restriction site variation in a patchy population of Lotus corniculatus L. Oecologia89, 277–283. https://doi.org/10.1007/BF00317228 (1992).
    CAS  Article  PubMed  ADS  Google Scholar 

    52.
    Šmídová, A., Münzbergová, Z. & Plačková, I. Genetic diversity of a relict plant species, Ligularia sibirica (L.) Cass. (Asteraceae). Flora206, 151–157. https://doi.org/10.1016/j.flora.2010.03.003 (2011).
    Article  Google Scholar 

    53.
    Ilves, A., Lanno, K., Sammul, M. & Tali, K. Genetic variability, population size and reproduction potential in Ligularia sibirica (L.) populations in Estonia. Conserv. Genet.14, 661–669. https://doi.org/10.1007/s10592-013-0459-x (2013).
    Article  Google Scholar 

    54.
    Tian, Z. & Jiang, D. Revisiting last glacial maximum climate over China and East Asian monsoon using PMIP3 simulations. Paleogeogr. Paleoclimatol. Paleoecol.453, 115–126. https://doi.org/10.1016/j.palaeo.2016.04.020 (2016).
    Article  ADS  Google Scholar 

    55.
    Manel, S., Poncet, B. N., Legendre, P., Gugerli, F. & Holderegger, R. Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol. Ecol.19, 3824–3835. https://doi.org/10.1111/j.1365-294X.2010.04716.x (2010).
    Article  PubMed  Google Scholar 

    56.
    Manel, S. et al. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol.21, 3729–3738. https://doi.org/10.1111/j.1365-294X.2012.05656.x (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Bothwell, H. et al. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conserv. Genet.14, 467–481. https://doi.org/10.1007/s10592-012-0411-5 (2013).
    Article  Google Scholar 

    58.
    Fang, J. Y. et al. Divergent selection and local adaptation in disjunct populations of an endangered conifer, Keteleeria davidiana var. formosana (Pinaceae). PLoS ONE. https://doi.org/10.1371/journal.pone.0070162 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Hsieh, Y. C. et al. Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity111, 147–156. https://doi.org/10.1038/hdy.2013.31 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Huang, C. L. et al. Genetic relationships and ecological divergence in Salix species and populations in Taiwan. Tree Genet. Genomes11, 39. https://doi.org/10.1007/s11295-015-0862-1 (2015).
    Article  Google Scholar 

    61.
    Li, Y. L., Xue, D. X., Zhang, B. D. & Liu, J. X. Population genomic signatures of genetic structure and environmental selection in the Catadromous Roughskin Sculpin Trachidermus fasciatus. Genome Biol. Evol.11, 1751–1764. https://doi.org/10.1093/gbe/evz118 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    62.
    Xue, X. X., Li, W. H. & Liu, L. Y. The northward shift of Weihe river and the uplift of Qinling Mountains. J. Northwest Univ. (Nat. Sci. Ed.)32, 451–454 (2002).
    Google Scholar 

    63.
    Zhang, Y. Q., Yang, N. & Ma, Y. S. Neotectonics in the southern part of the Taihang uplift, North China. J. Geomech.9, 313–329 (2003).
    Google Scholar 

    64.
    Xue, X. X., Li, H. H., Li, Y. X. & Liu, H. J. The new data of the uplifting of Qinling Mountains since the Middle Pleistocene. Quat. Sci.24, 82–87 (2004).
    Google Scholar 

    65.
    Zhang, T.-C., Comes, H. P. & Sun, H. Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol. Phylogenet. Evol.60, 1–12. https://doi.org/10.1016/j.ympev.2011.04.009 (2011).
    CAS  Article  PubMed  Google Scholar 

    66.
    Ye, J. W., Zhang, Z. K., Wang, H. F., Bao, L. & Ge, J. P. Phylogeography of Schisandra chinensis (Magnoliaceae) reveal multiple refugia with ample gene flow in Northeast China. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00199 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Doyle, J. J., Doyle, J. L., Doyle, J. A. & Doyle, F. J. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem. Bull.19, 11–15 (1987).
    MATH  Google Scholar 

    68.
    Russell, D. W. & Sambrook, J. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001).
    Google Scholar 

    69.
    Kikuchi, S. & Shibata, M. Permanent genetic resources: development of polymorphic microsatellite markers in Acer mono Maxim. Mol. Ecol. Resour.8, 339–341. https://doi.org/10.1111/j.1471-8286.2007.01948.x (2008).
    CAS  Article  PubMed  Google Scholar 

    70.
    Terui, H., Lian, C. L., Saito, Y. & Ide, Y. Development of microsatellite markers in Acer capillipes. Mol. Ecol. Notes6, 77–79. https://doi.org/10.1111/j.1471-8286.2005.01144.x (2006).
    CAS  Article  Google Scholar 

    71.
    Liu, X. H. Genetic diversity and relationship of Acer L.germplasm resources detected by SRAP markers. College of Horticulture and Plant Protection, Yangzhou University. The Master Degree of Agricultural Science (2009).

    72.
    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).
    Article  Google Scholar 

    73.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    74.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol.14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
    CAS  Article  PubMed  Google Scholar 

    75.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour.4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
    Article  Google Scholar 

    76.
    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).
    Article  Google Scholar 

    78.
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography37, 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x (2014).
    Article  Google Scholar 

    79.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).

    80.
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci.14, 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x (2003).
    Article  Google Scholar 

    81.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics89, 583–590 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    82.
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).
    Article  PubMed  Google Scholar 

    83.
    Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol.5, 384–387. https://doi.org/10.1111/2041-210X.12158 (2014).
    Article  Google Scholar  More

  • in

    Science diplomacy for plant health

    European and Mediterranean Plant Protection Organization (EPPO)-Euphresco, Paris, France
    Baldissera Giovani & Nico Horn

    Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production, Vienna, Austria
    Sylvia Blümel

    Food Department, Ministry of Agriculture and Forestry of Finland, Helsinki, Finland
    Ralf Lopian

    Better Border Biosecurity (B3), Plant and Food Research, Christchurch, New Zealand
    David Teulon

    North American Plant Protection Organization (NAPPO), Raleigh, NC, USA
    Stephanie Bloem

    Comite Regional de Sanidad Vegetal del Cono Sur (COSAVE), Dirección de Protección Vegetal, del Servicio Nacional y Sanidad Vegetal y Semillas, Asuncion, Paraguay
    Cristina Galeano Martínez

    Comunidad Andina (CAN), Secretaría General de la Comunidad Andina, Lima, Peru
    Camilo Beltrán Montoya

    Organismo Internacional Regional de Sanidad Agropecuaria (OIRSA), San Salvador, El Salvador
    Carlos Ramon Urias Morales

    Asia and Pacific Plant Protection Commission (APPPC), Bangkok, Thailand
    Sridhar Dharmapuri

    Pacific Plant Protection Organization (PPPO), Pacific Community Land Resources Division, Suva, Fiji
    Visoni Timote

    Near East Plant Protection Organization (NEPPO), Rabat, Morocco
    Mekki Chouibani

    African-Union Interafrican Phytosanitary Council (IAPSC), Yaoundé, Cameroon
    Jean Gérard Mezui M’Ella

    Ministry of Primary Industries (MPI), Wellington, New Zealand
    Veronica Herrera & Aurélie Castinel

    Department of Agriculture, Water and the Environment (DAWE), Canberra, Australian Capital Territory, Australia
    Con Goletsos, Carina Moeller & Ian Naumann

    European Food Safety Authority (EFSA), Parma, Italy
    Giuseppe Stancanelli, Stef Bronzwaer & Sara Tramontini

    Canadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada
    Philip MacDonald & Loren Matheson

    French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Plant Health Laboratory, Angers, France
    Géraldine Anthoine

    Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
    Kris De Jonghe

    Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
    Martijn Schenk

    Julius Kühn Institute (JKI), Braunschweig, Germany
    Silke Steinmöller

    National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
    Elena Rodriguez

    National Institute for Agriculture and Veterinary Research (INIAV), Oeiras, Portugal
    Maria Leonor Cruz

    Plant Biosecurity Research Initiative (PBRI), Hort Innovation, Melbourne, Victoria, Australia
    Jo Luck

    Plant Health Australia (PHA), Deakin, Canberra, Australian Capital Territory, Australia
    Greg Fraser

    International Plant Protection Convention (IPPC), Food and Agriculture Organization of the United Nations, Rome, Italy
    Sarah Brunel, Mirko Montuori, Craig Fedchock & Jingyuan Xia

    Department for Environment, Food & Rural Affairs (DEFRA), London, UK
    Elspeth Steel & Helen Grace Pennington

    Centre for Agriculture and Bioscience International (CABI), Nairobi, Kenya
    Roger Day

    French National Institute for Agricultural Research (INRA), INRA-Montpellier-CBGP, Montferrier-sur-Lez, France
    Jean Pierre Rossi

    B.G. wrote the manuscript. S.B., R.L., D.T., S.B., C.G.M., C.B.M., C.R.U.M., S.D., V.T., N.H., M.C., J.G.M.M., V.H., A.C., C.G., C.M., I.N., G.S., S.B., S.T., P.M.D., L.M., G.A., K.D.J., M.S., S.S., E.R., M.L.C., J.L., G.F., S.B., M.M., C.F., E.S., H.G.P., R.D., J.P.R. and J.X. contributed to the manuscript. More

  • in

    The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon

    1.
    Birkeland, C. & Grosenbaugh, D. Ecological interactions between tropical coastal ecosystems. in UNEP Regional Seas Reports and Studies, Vol. 73 (PNUMA, 1985).
    2.
    Moberg, F. & Rönnbäck, P. Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast. Manag.46, 27–46 (2003).
    Google Scholar 

    3.
    Gladstone, W. Conservation and management of tropical coastal ecosystems. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 565–605 (Springer, Dordrecht, 2009). https://doi.org/10.1007/978-90-481-2406-0_16.
    Google Scholar 

    4.
    Berkström, C. et al. Exploring ‘knowns’ and ‘unknowns’ in tropical seascape connectivity with insights from East African coral reefs. Estuar. Coast. Shelf Sci.107, 1–21 (2012).
    ADS  Google Scholar 

    5.
    Ogden, J. C. The influence of adjacent systems on the structure and function of coral reefs. In Proceedings of the 6th International Coral Reef Symposium, Vol. 1, 123–129 (1988).

    6.
    Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci.51, 31–44 (2000).
    ADS  Google Scholar 

    7.
    Grober-Dunsmore, R., Pittman, S. J., Caldow, C., Kendall, M. S. & Frazer, T. K. A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 493–530 (Springer, Dordrecht, 2009). https://doi.org/10.1007/978-90-481-2406-0_14.
    Google Scholar 

    8.
    Hemminga, M. A. & Duarte, C. M. Seagrass ecology (Cambridge University Press, Cambridge, 2000). https://doi.org/10.1017/CBO9780511525551.
    Google Scholar 

    9.
    Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol.350, 3–20 (2007).
    Google Scholar 

    10.
    Knowles, L. L. & Bell, S. S. The influence of habitat structure in faunal-habitat associations in a Tampa Bay seagrass system Florida. Bull. Mar. Sci.62, 781–794 (1998).
    Google Scholar 

    11.
    Connolly, R. M. & Hindell, J. S. Review of nekton patterns and ecological processes in seagrass landscapes. Estuar. Coast. Shelf Sci.68, 433–444 (2006).
    ADS  Google Scholar 

    12.
    Horinouchi, M. Review of the effects of within-patch scale structural complexity on seagrass fishes. J. Exp. Mar. Biol. Ecol.350, 111–129 (2007).
    Google Scholar 

    13.
    Gacia, E., Duarte, C. M. & Middelburg, J. J. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol. Oceanogr.47, 23–32 (2002).
    ADS  CAS  Google Scholar 

    14.
    Hendriks, I. E., Sintes, T., Bouma, T. J. & Duarte, C. M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser.356, 163–173 (2008).
    ADS  Google Scholar 

    15.
    Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. AIBS Bull.51, 633–641 (2001).
    Google Scholar 

    16.
    Heck, K. L. Jr., Hays, G. & Orth, R. J. Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar. Ecol. Prog. Ser.253, 123–136 (2003).
    ADS  Google Scholar 

    17.
    Boström, C., Jackson, E. L. & Simenstad, C. A. Seagrass landscapes and their effects on associated fauna: a review. Estuar. Coast. Shelf Sci.68, 383–403 (2006).
    ADS  Google Scholar 

    18.
    Unsworth, R. K. F. & Cullen, L. C. Recognising the necessity for Indo-Pacific seagrass conservation. Conserv. Lett.3, 63–73 (2010).
    Google Scholar 

    19.
    Leopardas, V., Uy, W. & Nakaoka, M. Benthic macrofaunal assemblages in multispecific seagrass meadows of the southern Philippines: variation among vegetation dominated by different seagrass species. J. Exp. Mar. Biol. Ecol.457, 71–80 (2014).
    Google Scholar 

    20.
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS106, 12377–12381 (2009).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Short, F. T. & Wyllie-Echeverria, S. Natural and human-induced disturbance of seagrasses. Environ. Conserv.23, 17–27 (1996).
    Google Scholar 

    22.
    Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv.144, 1961–1971 (2011).
    Google Scholar 

    23.
    Duarte, C. M. The future of seagrass meadows. Environ. Conserv.29, 192–206 (2002).
    Google Scholar 

    24.
    Hastings, K., Hesp, P. & Kendrick, G. A. Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast. Manag.26, 225–246 (1995).
    Google Scholar 

    25.
    Orth, R. J., Luckenbach, M. L., Marion, S. R., Moore, K. A. & Wilcox, D. J. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquat. Bot.84, 26–36 (2006).
    Google Scholar 

    26.
    Ruiz, J. M. & Romero, J. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser.215, 107–120 (2001).
    ADS  Google Scholar 

    27.
    Frost, M. T., Rowden, A. A. & Attrill, M. J. Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquat. Conserv. Mar. Freshw. Ecosyst.9, 255–263 (1999).
    Google Scholar 

    28.
    Hovel, K. A. Habitat fragmentation in marine landscapes: relative effects of habitat cover and configuration on juvenile crab survival in California and North Carolina seagrass beds. Biol. Conserv.110, 401–412 (2003).
    Google Scholar 

    29.
    Hovel, K. A. & Lipcius, R. N. Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. J. Exp. Mar. Biol. Ecol.271, 75–98 (2002).
    Google Scholar 

    30.
    Thomas, C. D. & Mallorie, H. C. Rarity, species richness and conservation: butterflies of the Atlas Mountains in Morocco. Biol. Conserv.33, 95–117 (1985).
    Google Scholar 

    31.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Ann. Rev. Ecol. Evol. Syst.34, 487–515 (2003).
    Google Scholar 

    32.
    Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: a synthesis. Glob. Ecol. Biogeogr.16, 265–280 (2007).
    Google Scholar 

    33.
    Link, J. Does food web theory work for marine ecosystems?. Mar. Ecol. Prog. Ser.230, 1–9 (2002).
    ADS  Google Scholar 

    34.
    Peterson, B. J., Thompson, K. R., Cowan, J. H. Jr. & Heck, K. L. Jr. Comparison of predation pressure in temperate and subtropical seagrass habitats based on chronographic tethering. Mar. Ecol. Prog. Ser.224, 77–85 (2001).
    ADS  Google Scholar 

    35.
    Sweatman, J. L., Layman, C. A. & Fourqurean, J. W. Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed. Mar. Environ. Res.126, 95–108 (2017).
    CAS  PubMed  Google Scholar 

    36.
    Williams, J. A. et al. Seagrass fragmentation impacts recruitment dynamics of estuarine-dependent fish. J. Exp. Mar. Biol. Ecol.479, 97–105 (2016).
    Google Scholar 

    37.
    Bell, S. S., Brooks, R. A., Robbins, B. D., Fonseca, M. S. & Hall, M. O. Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol. Conserv.100, 115–123 (2001).
    Google Scholar 

    38.
    McCloskey, R. M. & Unsworth, R. K. F. Decreasing seagrass density negatively influences associated fauna. PeerJ3, e1053 (2015).
    PubMed  PubMed Central  Google Scholar 

    39.
    Ubertini, M. et al. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon. PLoS ONE7, e44155 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Welsh, D. T. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecol. Lett.3, 58–71 (2000).
    Google Scholar 

    41.
    Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia285, 19–32 (1994).
    CAS  Google Scholar 

    42.
    Harrison, P. G. Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat. Bot.35, 263–288 (1989).
    Google Scholar 

    43.
    Mateo, M. A. & Romero, J. Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar. Ecol. Prog. Ser.151, 43–53 (1997).
    ADS  CAS  Google Scholar 

    44.
    Barrón, C., Apostolaki, E. T. & Duarte, C. M. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Front. Mar. Sci.1, 42 (2014).
    Google Scholar 

    45.
    Wetzel, R. G. & Penhale, P. A. Transport of carbon and excretion of dissolved organic carbon by leaves and roots/rhizomes in seagrasses and their epiphytes. Aquat. Bot.6, 149–158 (1979).
    CAS  Google Scholar 

    46.
    Martin, B. C. et al. Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front. Microbiol.8, 2667 (2018).
    PubMed  PubMed Central  Google Scholar 

    47.
    Danovaro, R. Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol.127, 1–13 (1996).
    CAS  Google Scholar 

    48.
    Lohrer, A. M., Thrush, S. F. & Gibbs, M. M. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature431, 1092–1095 (2004).
    ADS  CAS  PubMed  Google Scholar 

    49.
    Rosenberg, R. Marine benthic faunal successional stages and related sedimentary activity. Sci. Marina65, 107–119 (2001).
    Google Scholar 

    50.
    Austen, M. C. et al. Biodiversity links above and below the marine sediment–water interface that may influence community stability. Biodivers. Conserv.11, 113–136 (2002).
    Google Scholar 

    51.
    Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A. & Iribarne, O. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci.92, 629–638 (2011).
    ADS  CAS  Google Scholar 

    52.
    Forster, S. & Graf, G. Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterranea and “piston-pumping” by Lanice conchilega. Mar. Biol.123, 335–346 (1995).
    Google Scholar 

    53.
    Snelgrove, P. V. R. The biodiversity of macrofaunal organisms in marine sediments. Biodivers. Conserv.7, 1123–1132 (1998).
    Google Scholar 

    54.
    Hyndes, G. A. & Lavery, P. S. Does transported seagrass provide an important trophic link in unvegetated, nearshore areas?. Estuar. Coast. Shelf Sci.63, 633–643 (2005).
    ADS  CAS  Google Scholar 

    55.
    Jones, D. A., Ghamrawy, M. & Wahbeh, M. I. Littoral and shallow subtidal environments. In Red Sea (eds Edwards, A. J. & Head, S. M.) 169–193 (Pergamon Press, London, 1987). https://doi.org/10.1016/B978-0-08-028873-4.50014-1.
    Google Scholar 

    56.
    Ruiz-Compean, P. et al. Baseline evaluation of sediment contamination in the shallow coastal areas of Saudi Arabian Red Sea. Mar. Pollut. Bull.123, 205–218 (2017).
    CAS  PubMed  Google Scholar 

    57.
    Bologna, P. A. X. & Heck, K. L. Impact of habitat edges on density and secondary production of seagrass-associated fauna. Estuaries25, 1033–1044 (2002).
    Google Scholar 

    58.
    Calleja, M. L., Al-Otaibi, N. & Morán, X. A. G. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci. Rep.9, 1–12 (2019).
    CAS  Google Scholar 

    59.
    Stedmon, C. A., Markager, S. & Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem.82, 239–254 (2003).
    CAS  Google Scholar 

    60.
    Coble, P. G. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev.107, 402–418 (2007).
    ADS  CAS  PubMed  Google Scholar 

    61.
    Gasol, J. M. & Morán, X. A. G. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In Hydrocarbon and Lipid Microbiology Protocols: Single-Cell and Single-Molecule Methods (eds McGenity, T. J. et al.) 159–1870 (Springer, Berlin, 2015). https://doi.org/10.1007/8623_2015_139.
    Google Scholar 

    62.
    Silva, L. et al. Low abundances but high growth rates of coastal heterotrophic bacteria in the Red Sea. Front. Microbiol.9, 3244 (2019).
    PubMed  PubMed Central  Google Scholar 

    63.
    Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS112, 2076–2081 (2015).
    ADS  CAS  PubMed  Google Scholar 

    64.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res.41, e1 (2013).
    CAS  PubMed  Google Scholar 

    65.
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.5-2, (2018).

    66.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    67.
    Lê, S., Josse, J. & Husson, F. FactoMineR: a package for multivariate analysis. J. Stat. Softw.25, 1–18 (2008).
    Google Scholar 

    68.
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw.22, 1–19 (2007).
    Google Scholar 

    69.
    Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots (2018).

    70.
    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial, PRIMER-E: Plymouth (2015).

    71.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl. Acids Res.35, 7188–7196 (2007).
    CAS  PubMed  Google Scholar 

    73.
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Indic.85, 1044–1057 (2018).
    CAS  Google Scholar 

    75.
    Lobelle, D., Kenyon, E. J., Cook, K. J. & Bull, J. C. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE8, e57072 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Ávila, E., Yáñez, B. & Vazquez-Maldonado, L. E. Influence of habitat structure and environmental regime on spatial distribution patterns of macroinvertebrate assemblages associated with seagrass beds in a southern Gulf of Mexico coastal lagoon. Mar. Biol. Res.11, 755–764 (2015).
    Google Scholar 

    77.
    Barnes, R. S. K. & Hendy, I. W. Seagrass-associated macrobenthic functional diversity and functional structure along an estuarine gradient. Estuar. Coast. Shelf Sci.164, 233–243 (2015).
    Google Scholar 

    78.
    York, P. H., Hyndes, G. A., Bishop, M. J. & Barnes, R. S. K. Faunal assemblages of seagrass ecosystems. In Seagrasses of Australia: Structure, Ecology and Conservation (eds Larkum, A. W. D. et al.) 541–588 (Springer, Berlin, 2018). https://doi.org/10.1007/978-3-319-71354-0_17.
    Google Scholar 

    79.
    Magni, P., Como, S., Kamijo, A. & Montani, S. Effects of Zostera marina on the patterns of spatial distribution of sediments and macrozoobenthos in the boreal lagoon of Furen (Hokkaido, Japan). Mar. Environ. Res.131, 90–102 (2017).
    CAS  PubMed  Google Scholar 

    80.
    Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol.2, 634 (2018).
    PubMed  Google Scholar 

    81.
    Attrill, M. J., Strong, J. A. & Rowden, A. A. Are macroinvertebrate communities influenced by seagrass structural complexity?. Ecography23, 114–121 (2000).
    Google Scholar 

    82.
    Lee, S. Y., Fong, C. W. & Wu, R. S. S. The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J. Exp. Mar. Biol. Ecol.259, 23–50 (2001).
    PubMed  Google Scholar 

    83.
    Nakamura, Y. & Sano, M. Comparison of invertebrate abundance in a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan. Fish. Sci.71, 543–550 (2005).
    CAS  Google Scholar 

    84.
    Barrio Froján, C. R. S. et al. The importance of bare marine sedimentary habitats for maintaining high polychaete diversity and the implications for the design of marine protected areas. Aquat. Conserv. Mar. Freshw. Ecosyst.19, 748–757 (2009).
    Google Scholar 

    85.
    Barnes, R. S. K. & Barnes, M. K. S. Spatial uniformity of biodiversity is inevitable if the available species are distributed independently of each other. Mar. Ecol. Prog. Ser.516, 263–266 (2014).
    ADS  Google Scholar 

    86.
    Webster, P. J., Rowden, A. A. & Attrill, M. J. Effect of shoot density on the infaunal macro-invertebrate community within a Zostera marina seagrass bed. Estuar. Coast. Shelf Sci.47, 351–357 (1998).
    ADS  Google Scholar 

    87.
    Bowden, D. A., Rowden, A. A. & Attrill, M. J. Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. J. Exp. Mar. Biol. Ecol.259, 133–154 (2001).
    PubMed  Google Scholar 

    88.
    Turner, S. J. et al. Seagrass patches and landscapes: the influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries22, 1016–1032 (1999).
    Google Scholar 

    89.
    Tanner, J. E. Edge effects on fauna in fragmented seagrass meadows. Austral Ecol.30, 210–218 (2005).
    Google Scholar 

    90.
    Włodarska-Kowalczuk, M., Jankowska, E., Kotwicki, L. & Balazy, P. Evidence of season-dependency in vegetation effects on macrofauna in temperate seagrass meadows (Baltic Sea). PLoS ONE9, e100788 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    91.
    Calleja, M. L., Barrón, C., Hale, J. A., Frazer, T. K. & Duarte, C. M. Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. Estuar. Coasts J ERF29, 1255–1264 (2006).
    CAS  Google Scholar 

    92.
    Barnes, R. S. K. & Barnes, M. K. S. Shore height and differentials between macrobenthic assemblages in vegetated and unvegetated areas of an intertidal sandflat. Estuar. Coast. Shelf Sci.106, 112–120 (2012).
    ADS  Google Scholar 

    93.
    Agawin, N. S. R., Duarte, C. M., Fortes, M. D., Uri, J. S. & Vermaat, J. E. Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses. J. Exp. Mar. Biol. Ecol.260, 217–239 (2001).
    PubMed  Google Scholar 

    94.
    Pereg, L. L., Lipkin, Y. & Sar, N. Different niches of the Halophila stipulacea seagrass bed harbor distinct populations of nitrogen fixing bacteria. Mar. Biol.119, 327–333 (1994).
    CAS  Google Scholar 

    95.
    Holmer, M., Duarte, C., Boschker, H. & Barrón, C. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat. Microb. Ecol.36, 227–237 (2004).
    Google Scholar 

    96.
    Barberá-Cebrián, C., Sánchez-Jerez, P. & Ramos-Esplá, A. Fragmented seagrass habitats on the Mediterranean coast, and distribution and abundance of mysid assemblages. Mar. Biol.141, 405–413 (2002).
    Google Scholar 

    97.
    Ringold, P. Burrowing, root mat density, and the distribution of fiddler crabs in the eastern United States. J. Exp. Mar. Biol. Ecol.36, 11–21 (1979).
    Google Scholar 

    98.
    Ricart, A. M. et al. Variability of sedimentary organic carbon in patchy seagrass landscapes. Mar. Pollut. Bull.100, 476–482 (2015).
    CAS  PubMed  Google Scholar 

    99.
    Samper-Villarreal, J., Lovelock, C. E., Saunders, M. I., Roelfsema, C. & Mumby, P. J. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnol. Oceanogr.61, 938–952 (2016).
    ADS  Google Scholar 

    100.
    Serra, T., Oldham, C. & Colomer, J. Local hydrodynamics at edges of marine canopies under oscillatory flows. PLoS ONE13, e0201737 (2018).
    PubMed  PubMed Central  Google Scholar 

    101.
    Choat, J. H. & Kingett, P. D. The influence of fish predation on the abundance cycles of an algal turf invertebrate fauna. Oecologia54, 88–95 (1982).
    ADS  CAS  PubMed  Google Scholar 

    102.
    Nakamura, Y., Horinouchi, M., Nakai, T. & Sano, M. Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyol. Res.50, 0015–0022 (2003).
    Google Scholar 

    103.
    Eklöf, J. S., de la Torre Castro, M., Adelsköld, L., Jiddawi, N. S. & Kautsky, N. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar. Coast. Shelf Sci.63, 385–396 (2005).
    ADS  Google Scholar 

    104.
    Díaz-Cárdenas, C., Patel, B. K. C. & Baena, S. Tistlia consotensisgen. nov., sp. an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring. Int. J. Syst. Evol. Microbiol.60, 1437–1443 (2010).
    PubMed  Google Scholar 

    105.
    Sun, F. et al. Seagrass (Zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling. Appl. Environ. Microbiol.81, 6901–6914 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    106.
    Brown, S. M. & Jenkins, B. D. Profiling gene expression to distinguish the likely active diazotrophs from a sea of genetic potential in marine sediments. Environ. Microbiol.16, 3128–3142 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    107.
    Santos, R., Lirman, D. & Pittman, S. Long-term spatial dynamics in vegetated seascapes: fragmentation and habitat loss in a human-impacted subtropical lagoon. Mar. Ecol.37(1), 200–214. https://doi.org/10.1111/maec.12259 (2015).
    ADS  Article  Google Scholar 

    108.
    Irlandi, E. & Crawford, M. Habitats linkages: the effect of intertidal saltmarshes and adjacent habitats on abundance, movement and growth of an estuarine fish. Oecologia110, 222–230 (1997).
    ADS  CAS  PubMed  Google Scholar 

    109.
    Boström, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser.427, 191–218 (2011).
    ADS  Google Scholar 

    110.
    Mumby, P. J. Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol. Conserv.128, 215–222 (2006).
    Google Scholar 

    111.
    Haila, Y. A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol. Appl.12, 321–334 (2002).
    Google Scholar 

    112.
    Barnes, R. S. K. Distribution patterns of macrobenthic biodiversity in the intertidal seagrass beds of an estuarine system, and their conservation significance. Biodivers. Conserv.22, 357–372 (2013).
    Google Scholar 

    113.
    Barnes, R. S. K. & Hamylton, S. On the very edge: faunal and functional responses to the interface between benthic seagrass and unvegetated sand assemblages. Mar. Ecol. Prog. Ser.553, 33–48 (2016).
    ADS  Google Scholar  More

  • in

    Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of southern China

    1.
    Börjesson, G., Menichetti, L., Kirchmann, H. & Kätterer, T. Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol. Fertil. Soils48, 245–257 (2012).
    Article  Google Scholar 
    2.
    Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming. Soil Biol. Biochem.142, 107720 (2020).
    CAS  Article  Google Scholar 

    3.
    Xiao, D. et al. Microbial biomass, metabolic functional diversity, and activity are affected differently by tillage disturbance and maize planting in a typical karst calcareous soil. J. Soil. Sediment.19, 809–821 (2019).
    CAS  Article  Google Scholar 

    4.
    Dangi, S., Gao, S., Duan, Y. H. & Wang, D. Soil microbial community structure affected by biochar and fertilizer sources. Appl. Soil Ecol.150, 103452 (2020).
    Article  Google Scholar 

    5.
    Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms: a review. Soil Biol. Biochem.75, 54–63 (2014).
    CAS  Article  Google Scholar 

    6.
    Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol.19, 3070–3086 (2017).
    CAS  Article  Google Scholar 

    7.
    Jia, X., Li, X. D., Zhao, Y. H., Wang, L. & Zhang, C. Y. Soil microbial community structure in the rhizosphere of Robinia pseudoacacia L. seedlings exposed to elevated air temperature and cadmium-contaminated soils for 4 years. Sci. Total Environ.650, 2355–2363 (2019).
    ADS  CAS  Article  Google Scholar 

    8.
    Zhong, W. et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil326, 511–522 (2010).
    CAS  Article  Google Scholar 

    9.
    Hartmann, M., Frey, B., Mayer, J., Maeder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J.9, 1177–1194 (2015).
    Article  Google Scholar 

    10.
    Francioli, D. et al. Mineral versus organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol.14, 1446 (2016).
    Google Scholar 

    11.
    Wang, Y. et al. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ.609, 341–347 (2017).
    ADS  CAS  Article  Google Scholar 

    12.
    Treonis, A. M. et al. Effects of organic amendment and tillage on soil microorganisms and microfauna. Appl. Soil Ecol.46, 103–110 (2010).
    Article  Google Scholar 

    13.
    Forge, T. A., Hogue, E. J., Neilsen, G. & Neilsen, D. Organic mulches alter nematode communities, root growth and fluxes of phosphorus in the root zone of apple. Appl. Soil Ecol.39, 15–22 (2008).
    Article  Google Scholar 

    14.
    Ahn, J. et al. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. J. Microbiol.54, 724–731 (2016).
    CAS  Article  Google Scholar 

    15.
    Zhu, X. C. et al. Soil microbial community and activity are affected by integrated agricultural practices in China. Eur. J. Soil Sci.69, 924–935 (2018).
    Article  Google Scholar 

    16.
    Yang, X. Y., Ren, W. D., Sun, B. H. & Zhang, S. L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma177–178, 49–56 (2012).
    ADS  Article  Google Scholar 

    17.
    Chen, Z. D., Ti, F. S. & Chen, F. Soil aggregates response to tillage and residue management in a double paddy rice soil of the southern China. Nutr. Cycl. Agroecosyst.109, 103–114 (2017).
    Article  Google Scholar 

    18.
    Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere10, 100145 (2019).
    Article  Google Scholar 

    19.
    Tang, H. M. et al. Effects of different soil tillage systems on soil carbon management index under double-cropping rice field in southern China. Agron. J.111, 440–446 (2019).
    CAS  Article  Google Scholar 

    20.
    Tang, H. M. et al. Organic manure managements increases soil microbial community structure and diversity in double-cropping paddy field of southern China. Agric. Ecosyst. Environ. https://doi.org/10.1101/2020.04.08.031609 (2020).
    Article  Google Scholar 

    21.
    Zhao, J. et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol.67, 443–453 (2014).
    Article  Google Scholar 

    22.
    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass by fumigation–extraction-an automated procedure. Soil Biol. Biochem.20, 1167–1169 (1990).
    Article  Google Scholar 

    23.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS110, 6548–6553 (2013).
    ADS  CAS  Article  Google Scholar 

    24.
    Wang, Z. T., Liu, L., Chen, Q., Wen, X. X. & Liao, Y. C. Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron. Sustain. Dev.36, 28 (2016).
    Article  Google Scholar 

    25.
    Bazzicalupo, A. L., Bálint, M. & Schmitt, I. Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyper diverse fungal communities. Fungal Ecol.6, 102–109 (2013).
    Article  Google Scholar 

    26.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26, 2460–2461 (2010).
    CAS  Article  Google Scholar 

    27.
    SAS. SAS Software of the SAS System for Windows (SAS Institute Inc, Cary, 2008).
    Google Scholar 

    28.
    Blanco-Canqui, H., Ferguson, R. B., Shapiro, C. A., Drijber, R. A. & Walters, D. T. Does inorganic nitrogen fertilization improve soil aggregation? Insights from two long-term tillage experiments. J. Environ. Qual.43, 995–1003 (2014).
    Article  Google Scholar 

    29.
    Neumann, D., Heuer, A., Hemkemeyer, M., Martens, R. & Tebbe, C. C. Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol. Ecol.86, 71–84 (2013).
    CAS  Article  Google Scholar 

    30.
    Jenkins, S. N. et al. Taxon specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem.42, 1624–1631 (2010).
    CAS  Article  Google Scholar 

    31.
    Li, H. et al. Soil bacterial communities of different natural forest types in northeast China. Plant Soil383, 203–216 (2014).
    CAS  Article  Google Scholar 

    32.
    Pascault, N. et al. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems16, 810–822 (2013).
    CAS  Article  Google Scholar 

    33.
    He, J. Z., Zheng, Y., Chen, C. R., He, Y. Q. & Zhang, L. M. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J. Soil. Sediment.8, 349–358 (2008).
    CAS  Article  Google Scholar 

    34.
    Paungfoo-lonhienne, C. et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep.5, 8678 (2015).
    CAS  Article  Google Scholar 

    35.
    Huang, X. M. et al. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biol. Biochem.73, 42–48 (2014).
    CAS  Article  Google Scholar 

    36.
    Desantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microb.72, 5069–5072 (2006).
    CAS  Article  Google Scholar 

    37.
    Iovieno, P., Alfani, A. & Bååth, E. Soil microbial community structure and biomass as affected by Pinus pinea plantation in two mediterranean areas. Appl. Soil Ecol.45, 56–63 (2010).
    Article  Google Scholar  More

  • in

    Colony co-founding in ants is an active process by queens

    1.
    Bourke, A. F. G. & Heinze, J. The ecology of communal breeding: The case of multiple-queen Leptothoracine ants. Philos. Trans. R. Soc. Lond. B Biol. Sci.345, 359–372 (1994).
    ADS  Google Scholar 
    2.
    Bourke, A. F. G. Principles of Social Evolution. Oxford Series in Ecology and Evolution (2011).

    3.
    Cockburn, A. Evolution of helping behavior in cooperatively breeding birds. Annu. Rev. Ecol. Evol. Syst.29, 141–177 (1998).
    Google Scholar 

    4.
    Jennions, M. Cooperative breeding in mammals. Trends Ecol. Evol.9, 89–93 (1994).
    CAS  PubMed  Google Scholar 

    5.
    Lukas, D. & Clutton-Brock, T. Life histories and the evolution of cooperative breeding in mammals. Proc. R. Soc. B279, 4065–4070 (2012).
    PubMed  Google Scholar 

    6.
    Purcell, J. Geographic patterns in the distribution of social systems in terrestrial arthropods. Biol. Rev.86, 475–491 (2011).
    PubMed  Google Scholar 

    7.
    Wong, M. & Balshine, S. The evolution of cooperative breeding in the African cichlid fish, Neolamprologus pulcher. Biol. Rev.86, 511–530 (2011).
    PubMed  Google Scholar 

    8.
    Dugatkin, L. Animal cooperation among unrelated individuals. Naturwissenschaften89, 533–541 (2002).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Emlen, S. The evolution of helping. An ecological constraints model. Am. Nat.119, 29–39 (1982).
    Google Scholar 

    10.
    Nichols, H. J. et al. Food availability shapes patterns of helping effort in a cooperative mongoose. Anim. Behav.83, 1377–1385 (2012).
    Google Scholar 

    11.
    Riehl, C. & Strong, M. J. Stable social relationships between unrelated females increase individual fitness in a cooperative bird. Proc. R. Soc. B285, 20180130 (2018).
    PubMed  Google Scholar 

    12.
    Sharp, S. P., English, S. & Clutton-Brock, T. H. Maternal investment during pregnancy in wild meerkats. Evol. Ecol.27, 1033–1044 (2012).
    Google Scholar 

    13.
    Taborsky, M. Broodcare helpers in the cichlid fish Lamprologus brichardi: Their costs and benefits. Anim. Behav.32, 1236–1252 (1984).
    Google Scholar 

    14.
    Hamilton, W. D. The genetical evolution of social behaviour. J. Theor. Biol.7, 1–52 (1964).
    CAS  PubMed  Google Scholar 

    15.
    Bshary, R. Cooperation between unrelated individuals—a game theoretic approach. In Animal Behaviour: Evolution and Mechanisms (ed. Kappeler, P.) 213–240 (Springer, Berlin, 2010).
    Google Scholar 

    16.
    Dugatkin, L. A. & Mesterton-Gibbons, M. Cooperation among unrelated individuals: Reciprocal altruism, by-product mutualism and group selection in fishes. Biosystems37, 19–30 (1996).
    CAS  PubMed  Google Scholar 

    17.
    Keller, L. Queen Number and Sociality in Insects (Oxford University Press, Oxford, 1993).
    Google Scholar 

    18.
    Matsuura, K., Fujimoto, M., Goka, K. & Nishida, T. Cooperative colony foundation by termite female pairs: Altruism for survivorship in incipient colonies. Anim. Behav.64, 167–173 (2002).
    Google Scholar 

    19.
    Mesterton-Gibbons, M. & Dugatkin, L. A. Cooperation among unrelated individuals: Evolutionary factors. Q. Rev. Biol.67, 267–281 (1992).
    Google Scholar 

    20.
    Bernasconi, G. & Strassmann, J. E. Cooperation among unrelated individuals: The ant foundress case. Trends Ecol. Evol.14, 477–482 (1999).
    CAS  PubMed  Google Scholar 

    21.
    Itô, Y. Behaviour and Social Evolution of Wasps (Oxford University Press, Oxford, 1993).
    Google Scholar 

    22.
    Packer, L. Multiple-foundress associations in sweat bees. In Queen Number and Sociality in Insects (ed. Keller, L.) 215–233 (Oxford University Press, Oxford, 1993).
    Google Scholar 

    23.
    Schwarz, M. P., Bull, N. J. & Hogendoorn, K. Evolution of sociality in the allodapine bees: A review of sex allocation, ecology and evolution. Insectes Soc.45, 349–368 (1998).
    Google Scholar 

    24.
    Shellman-Reeve, J. S. The spectrum of eusociality in termites. In The Evolution of Social Behavior in Insects and Arachnids (eds Choe, J. C. & Crespi, B. J.) 52–93 (Cambridge University Press, Cambridge, 1997).
    Google Scholar 

    25.
    Thorne, B. L. Evolution of eusociality in termites. Annu. Rev. Ecol. Evol. Syst.28, 27–54 (1997).
    Google Scholar 

    26.
    Hölldobler, B. & Wilson, E. O. The Ants (Springer, Berlin, 1990).
    Google Scholar 

    27.
    Schmid-Hempel, P. Parasites in Social Insects (Princeton University Press, Princeton, 1998).
    Google Scholar 

    28.
    Tschinkel, W. R. The Fire Ants (Harvard University Press, Cambridge, 2006).
    Google Scholar 

    29.
    Cole, B. J. The ecological setting of social evolution. In Organization of Insect Societies (eds Gadau, J. & Fewell, J.) 74–104 (Harvard University Press, Cambridge, 2009).
    Google Scholar 

    30.
    Johnson, R. A. Colony founding by pleometrosis in the semi-claustral seed-harvester ant Pogonomyrmex calfornicus (Hymenoptera: Formicidae). Anim. Behav.68, 1189–1200 (2004).
    Google Scholar 

    31.
    Tschinkel, W. R. An experimental study of pleometrotic colony founding in the fire ant, Solenopsis invicta: What is the basis for association?. Behav. Ecol. Sociobiol.43, 247–257 (1998).
    Google Scholar 

    32.
    Jerome, C. A., McInnes, D. A. & Adams, E. S. Group defense by colony-founding queens in the fire ant Solenopsis invicta. Behav. Ecol.9, 301–308 (1998).
    Google Scholar 

    33.
    Helms Cahan, S. & Julian, G. E. Fitness consequences of cooperative colony founding in the desert leaf-cutter ant Acromyrmex versicolor. Behav. Ecol.10, 585–591 (1999).
    Google Scholar 

    34.
    Adams, E. S. & Tschinkel, W. R. Effects of foundress number on brood raids and queen survival in the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol.37, 233–242 (1995).
    Google Scholar 

    35.
    Clark, R. M. & Fewell, J. H. Social dynamics drive selection in cooperative associations of ant queens. Behav. Ecol.25, 117–123 (2014).
    Google Scholar 

    36.
    Offenberg, J., Peng, R. & Nielsen, M. Development rate and brood production in haplo- and pleometrotic colonies of Oecophylla smaragdina. Insectes Soc.59, 307–311 (2012).
    Google Scholar 

    37.
    Rissing, S. W. & Pollock, G. B. An experimental analysis of pleometric advantage in the desert seed-harvester ant Messor pergandei (Hymenoptera; Formicidae). Insectes Soc.38, 205–211 (1991).
    Google Scholar 

    38.
    Sasaki, K., Jibiki, E., Satoh, T. & Obara, Y. Queen phenotype and behaviour during cooperative colony founding in Polyrhachis moesta. Insectes Soc.52, 19–25 (2005).
    Google Scholar 

    39.
    Waloff, N. The effect of the number of queens of the ant Lasius flavus (Fab.) (Hym. Formicidae) on their survival and on the rate of development of the first brood. Insectes Soc.4, 391–408 (1957).
    Google Scholar 

    40.
    Bartz, S. H. & Hölldobler, B. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera, Formicidae) and the evolution of foundress associations. Behav. Ecol. Sociobiol10, 137–147 (1982).
    Google Scholar 

    41.
    Helms Cahan, S. Ecological variation across a transition in colony-founding behavior in the ant Messor pergandei. Oecologia129, 629–635 (2001).
    ADS  Google Scholar 

    42.
    Sommer, K. & Hölldobler, B. Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim. Behav.50, 287–294 (1995).
    Google Scholar 

    43.
    Tschinkel, W. R. & Howard, D. F. Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behav. Ecol. Sociobiol12, 103–113 (1983).
    Google Scholar 

    44.
    Herbers, J. M. Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav. Ecol. Sociobiol19, 115–122 (1986).
    Google Scholar 

    45.
    Nonacs, P. Queen condition and alate density affect pleometrosis in the ant Lasius pallitarsis. Insectes Soc.39, 3–13 (1992).
    Google Scholar 

    46.
    Masoni, A. et al. Pleometrotic colony foundation in the ant Crematogaster scutellaris (Hymenoptera: Formicidae): Better be alone than in bad company. Myrmecol. News25, 51–59 (2016).
    Google Scholar 

    47.
    Sommer, K. & Hölldobler, B. Pleometrosis in Lasius niger. In Biology and Evolution of Social Insects (ed. Billen, J.) 47–50 (Leuven University Press, Leuven, 1992).
    Google Scholar 

    48.
    Pfennig, D. W. Absence of joint nesting advantage in desert seed harvester ants: Evidence from a field experiment. Anim. Behav.49, 567–575 (1995).
    Google Scholar 

    49.
    Tschinkel, W. R. Brood raiding and the population dynamics of founding and incipient colonies of the fire ant Solenopsis invicta. Ecol. Entomol.17, 179–188 (1992).
    Google Scholar 

    50.
    Helms Cahan, S. & Fewell, J. H. Division of labor and the evolution of task sharing in queen associations of the harvester ant Pogonomyrmex californicus. Behav. Ecol. Sociobiol.56, 9–17 (2004).
    Google Scholar 

    51.
    Helmkampf, M., Mikheyev, A. S., Kang, Y., Fewell, J. & Gadau, J. Gene expression and variation in social aggression by queens of the harvester ant Pogonomyrmex californicus. Mol. Ecol.25, 3716–3730 (2016).
    PubMed  Google Scholar 

    52.
    Overson, R. P., Gadau, J., Clark, R. M., Pratt, S. C. & Fewell, J. H. Behavioral transitions with the evolution of cooperative nest founding by harvester ant queens. Behav. Ecol. Sociobiol.68, 21–30 (2014).
    Google Scholar 

    53.
    Shaffer, Z. et al. The foundress’s dilemma: Group selection for cooperation among queens of the harvester ant, Pogonomyrmex californicus. Sci. Rep.6, 29828 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Aron, S., Steinhauer, N. & Fournier, D. Influence of queen phenotype, investment and maternity apportionment on the outcome of fights in cooperative foundations of the ant Lasius niger. Anim. Behav.77, 1067–1074 (2009).
    Google Scholar 

    55.
    Brütsch, T., Avril, A. & Chapuisat, M. No evidence for social immunity in co-founding queen associations. Sci. Rep.7, 16262 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    56.
    Chérasse, S. & Aron, S. Measuring inotocin receptor gene expression in chronological order in ant queens. Horm. Behav.96, 116–121 (2017).
    PubMed  Google Scholar 

    57.
    Dreier, S. & d’Ettorre, P. Social context predicts recognition systems in ant queens. J. Evol. Biol.22, 644–649 (2009).
    CAS  PubMed  Google Scholar 

    58.
    Holman, L., Dreier, S. & d’Ettorre, P. Selfish strategies and honest signalling: Reproductive conflicts in ant queen associations. Proc. R. Soc. B277, 2007–2015 (2010).
    CAS  PubMed  Google Scholar 

    59.
    Pull, C. D. & Cremer, S. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour. BMC Evol. Biol.17, 219 (2017).
    PubMed  PubMed Central  Google Scholar 

    60.
    Pull, C. D., Hughes, W. H. O. & Brown, M. J. F. Tolerating an infection: An indirect benefit of co-founding queen associations in the ant Lasius niger. Naturwissenschaften100, 1125–1136 (2013).
    ADS  CAS  PubMed  Google Scholar 

    61.
    Bernasconi, G. & Keller, L. Phenotype and individual investment in cooperative foundress associations of the fire ant, Solenopsis invicta. Behav. Ecol9, 478–485 (1998).
    Google Scholar 

    62.
    Bernasconi, G. & Keller, L. Effect of queen phenotype and social environment on early queen mortality in incipient colonies of the fire ant, Solenopsis invicta. Anim. Behav.57, 371–377 (1999).
    CAS  PubMed  Google Scholar  More