Philippa Kaur
More stories
113 Shares169 Views
in EcologyClimate change, tropical fisheries and prospects for sustainable development
1.
Dyck, A. J. & Sumaila, U. R. Economic impact of ocean fish populations in the global fishery. J. Bioeconomics 12, 227–243 (2010).
Google Scholar
2.
Golden, C. D. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317–320 (2016).
Google Scholar3.
Teh, L. C. L. & Pauly, D. Who brings in the fish? The relative contribution of small-scale and industrial fisheries to food security in Southeast Asia. Front. Mar. Sci. 5, 44 (2018).
Google Scholar4.
Gillett, R. Fisheries in the Economies of Pacific Island Countries and Territories (Pacific Community, 2016).5.
Kawarazuka, N. & Béné, C. Linking small-scale fisheries and aquaculture to household nutritional security: an overview. Food Secur. 2, 343–357 (2010).
Google Scholar6.
Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).
Google Scholar7.
Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).
Google Scholar8.
Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).
Google Scholar9.
Kennedy, G., Nantel, G. & Shetty, P. The scourge of “hidden hunger”: global dimensions of micronutrient deficiencies. Food Nutr. Agric. 32, 8–16 (2003).
Google Scholar10.
Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. Quantifying the overlooked socio-economic contribution of small-scale fisheries in Sabah, Malaysia. Fish. Res. 110, 450–458 (2011).
Google Scholar11.
Pauly, D. & Zeller, D. Sea Around Us Concepts, Design and Data. Sea Around Us http://www.seaaroundus.org (2015).12.
Béné, C. Small-scale fisheries: assessing their contribution to rural livelihoods in developing countries. FAO Fish. Circ. 1008, 46 (2006).
Google Scholar13.
Williams, P. & Reid, C. Overview of tuna fisheries in the western and central Pacific Ocean, including economic conditions-2017. WCPFC Sci. Comm. SC14-2018/GN-WP-01 66pp (2018).14.
Pacific Islands Forum Fisheries Agency (FFA). Tuna Development Indicators 2016. https://ffa.int/system/files/FFA Tuna Development Indicators Brochure.pdf (Pacific Islands Forum Fisheries Agency, 2017).15.
Teh, L. C. L. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).
Google Scholar16.
Jentoft, S. Life above water—essays on human experiences of small-scale fisheries. TBTI Global Book Series 1 (2019).17.
Kurien, J. SSF guidelines: the beauty of the small. Samudra Rep. 72, 30–36 (2016).
Google Scholar18.
Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. A global estimate of the number of coral reef fishers. PLoS One 8, e65397 (2013).
Google Scholar19.
Alberti, M. et al. Research on coupled human and natural systems (CHANS): approach, challenges, and strategies. Bull. Ecol. Soc. Am. 92, 218–228 (2011).
Google Scholar20.
Liu, J., Hull, V., Luo, J., Yang, W. & Liu, W. Multiple telecouplings and their complex interrelationships. Ecol. Soc. 20, 44 (2015).
Google Scholar21.
Cinner, J. & McClanahan, T. R. Socioeconomic factors that lead to overfishing in small-scale coral reef fisheries of Papua New Guinea. Environ. Conserv. 33, 73–80 (2006).
Google Scholar22.
McClanahan, T. R., Hicks, C. C. & Darling, E. S. Malthusian overfishing and efforts to overcome it on Kenyan coral reefs. Ecol. Appl. 18, 1516–1529 (2008).
Google Scholar23.
Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).
Google Scholar24.
Islam, M. S. & Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar. Pollut. Bull. 48, 624–649 (2004).
Google Scholar25.
Hodgson, G. & Dixon, J. A. Logging Versus Fisheries and Tourism in Palawan: An Environmental and Economic Analysis (East-West Environment and Policy Institute, 1988).26.
Hodgson, G. & Dixon, J. A. in Resources & Environment in Asia’s Marine Sector (ed. Marsh, J. B.) 421–446 (CRC, 1992).27.
Côté, I. M., Green, S. J. & Hixon, M. A. Predatory fish invaders: insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biol. Conserv. 164, 50–61 (2013).
Google Scholar28.
Lehodey, P., Senina, I., Calmettes, B., Hampton, J. & Nicol, S. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Clim. Change 119, 95–109 (2013).
Google Scholar29.
Asch, R. G., Cheung, W. W. L. & Reygondeau, G. Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Policy 88, 285–294 (2018).
Google Scholar30.
Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741–752 (2015).
Google Scholar31.
Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).
Google Scholar32.
Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).
Google Scholar33.
Barange, M. et al. Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation and Mitigation Options (Food and Agriculture Organization of the United Nations, 2018).34.
Pörtner, H.-O. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Intergovernmental Panel on Climate Change (IPCC), 2019).35.
Bindoff, N. L. et al. Detection and Attribution of Climate Change: From Global to Regional (Intergovernmental Panel on Climate Change (IPCC), 2013).36.
Bindoff, N. L., Cheung, W. W. L. & Kairo, J. G. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 5 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2019).37.
Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).
Google Scholar38.
Frölicher, T. L., Rodgers, K. B., Stock, C. A. & Cheung, W. W. L. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Glob. Biogeochem. Cycles 30, 1224–1243 (2016).
Google Scholar39.
Pörtner, H.-O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 6 (eds Field, C. B. et al.) 411–484 (Cambridge Univ. Press, 2014).40.
Abram, N. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 1 (Intergovernmental Panel on Climate Change (IPCC), 2019).41.
Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).
Google Scholar42.
Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).
Google Scholar43.
Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming. Science 363, 128–129 (2019).
Google Scholar44.
Intergovernmental Panel on Climate Change (IPCC). in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (ed. Pörtner, H.-O. et al) (Intergovernmental Panel on Climate Change (IPCC), 2019).45.
Xie, S.-P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).
Google Scholar46.
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Google Scholar47.
Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).
Google Scholar48.
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Google Scholar49.
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Google Scholar50.
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
Google Scholar51.
Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-0068-4 (2020).
Article Google Scholar52.
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Google Scholar53.
Collins, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 6 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2019).54.
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).
Google Scholar55.
Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 117, C04031 (2012).
Google Scholar56.
Ganachaud, A. S. et al. in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 101–187 (Secretariat of the Pacific Community, 2011).57.
Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).
Google Scholar58.
Ito, T., Minobe, S., Long, M. C. & Deutsch, C. Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett. 44, 4214–4223 (2017).
Google Scholar59.
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).
Google Scholar60.
Helm, K. P., Bindoff, N. L. & Church, J. A. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38, L23602 (2011).
Google Scholar61.
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
Google Scholar62.
Cocco, V. et al. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10, 1849–1868 (2013).
Google Scholar63.
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).
Google Scholar64.
Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
Google Scholar65.
Burger, F. A., Frölicher, T. L. & John, J. G. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-22 (2020).66.
Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 4 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2019).67.
Moon, J. H., Song, Y. T., Bromirski, P. D. & Miller, A. J. Multidecadal regional sea level shifts in the Pacific over 1958–2008. J. Geophys. Res. Oceans 118, 7024–7035 (2013).
Google Scholar68.
Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357–1379 (2014).
Google Scholar69.
Thompson, P. R. & Mitchum, G. T. Coherent sea level variability on the North Atlantic western boundary. J. Geophys. Res. Oceans 119, 5676–5689 (2014).
Google Scholar70.
England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).
Google Scholar71.
Hamlington, B. D. et al. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat. Clim. Change 4, 782–785 (2014).
Google Scholar72.
McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).
Google Scholar73.
Le Borgne, R. et al. in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 189–249 (Secretariat of the Pacific Community, 2011).74.
Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7, 979–1005 (2010).
Google Scholar75.
Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).
Google Scholar76.
Stock, C. A., Dunne, J. P. & John, J. G. Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences 11, 7125–7135 (2014).
Google Scholar77.
Cheung, W. W. L. & Pauly, D. in Explaining Ocean Warming: Causes, Scale, Effects and Consequences (eds Laffoley D. & Baxter J. M.) 239–253 (IUCN, 2016).78.
Hoegh-Guldberg, O. et al. The Coral Triangle and Climate Change: Ecosystems, People and Societies at Risk (WWF Australia, 2009).79.
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
Google Scholar80.
Hoegh-Guldberg, O. et al. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2018).81.
Li, X., Bellerby, R., Craft, C. & Widney, S. E. Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts 1, 1–15 (2018).
Google Scholar82.
Pörtner, H.-O. et al. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont. Shelf Res. 21, 1975–1997 (2001).
Google Scholar83.
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
Google Scholar84.
Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24, e15–e26 (2018).
Google Scholar85.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).
Google Scholar86.
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
Google Scholar87.
Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).
Google Scholar88.
Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
Google Scholar89.
Cheung, W. W. L., Lam, V. W. Y. & Pauly, D. in Modelling Present and Climate-shifted Distribution of Marine Fishes and Invertebrates 5–50 (Fisheries Centre, 2008).90.
Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).
Google Scholar91.
Mueter, F. J. & Litzow, M. A. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl. 18, 309–320 (2008).
Google Scholar92.
Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).
Google Scholar93.
Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
Google Scholar94.
Pauly, D. & Kinne, O. Gasping Fish and Panting Squids: Oxygen, Temperature and the Growth of Water-Breathing Animals Vol. 22 (International Ecology Institute, 2010).95.
Mackenzie, C. L. et al. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS One 9, e86764 (2014).
Google Scholar96.
Rosas-Navarro, A., Langer, G. & Ziveri, P. Temperature affects the morphology and calcification of Emiliania huxleyi strains. Biogeosciences 13, 2913–2926 (2016).
Google Scholar97.
Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).
Google Scholar98.
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).
Google Scholar99.
Baudron, A. R., Needle, C. L. & Marshall, C. T. Implications of a warming North Sea for the growth of haddock Melanogrammus aeglefinus. J. Fish. Biol. 78, 1874–1889 (2011).
Google Scholar100.
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
Google Scholar101.
Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).
Google Scholar102.
Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).
Google Scholar103.
Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Model. 325, 57–66 (2016).
Google Scholar104.
Food and Agriculture Organization of the United Nations (FAO) The State of World Fisheries and Aquaculture 2018. Meeting the Sustainable Development Goals (Food and Agriculture Organization of the United Nations (FAO), 2018).105.
Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).
Google Scholar106.
Swartz, W., Sumaila, R. & Watson, R. Global ex-vessel fish price database revisited: a new approach for estimating ‘missing’ prices. Environ. Resour. Econ. 56, 467–480 (2013).
Google Scholar107.
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).
Google Scholar108.
Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).
Google Scholar109.
Costello, C. et al. Status and solutions for the world’s unassessed fisheries. Science 338, 517–520 (2012).
Google Scholar110.
Garcia, S. M. & Rosenberg, A. A. Food security and marine capture fisheries: characteristics, trends, drivers and future perspectives. Philos. Trans. R. Soc. B Biol. Sci. 365, 2869–2880 (2010).
Google Scholar111.
Anderson, S. C., Branch, T. A., Ricard, D. & Lotze, H. K. Assessing global marine fishery status with a revised dynamic catch-based method and stock-assessment reference points. ICES J. Mar. Sci. 69, 1491–1500 (2012).
Google Scholar112.
Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).
Google Scholar113.
Thorson, J. T., Branch, T. A. & Jensen, O. P. Using model-based inference to evaluate global fisheries status from landings, location, and life history data. Can. J. Fish. Aquat. Sci. 69, 645–655 (2012).
Google Scholar114.
McOwen, C. J., Cheung, W. W. L., Rykaczewski, R. R., Watson, R. A. & Wood, L. J. Is fisheries production within large marine ecosystems determined by bottom-up or top-down forcing? Fish Fish. 16, 623–632 (2015).
Google Scholar115.
Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA 114, E1441–E1449 (2017).
Google Scholar116.
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).
Google Scholar117.
Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).
Google Scholar118.
Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5 C global warming target. Science 354, 1591–1594 (2016).
Google Scholar119.
Cheung, W. W. L., Jones, M. C., Reygondeau, G. & Frölicher, T. L. Opportunities for climate-risk reduction through effective fisheries management. Glob. Change Biol. 24, 5149–5163 (2018).
Google Scholar120.
Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).
Google Scholar121.
Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).
Google Scholar122.
Bell, J. D. et al. Adaptations to maintain the contributions of small-scale fisheries to food security in the Pacific Islands. Mar. Policy 88, 303–314 (2018).
Google Scholar123.
The Pacific Community (SPC) Implications of Climate-driven Redistribution of Tuna for Pacific Island Economies (The Pacific Community (SPC), 2019).124.
Blasiak, R. et al. Climate change and marine fisheries: least developed countries top global index of vulnerability. PLoS One 12, e0179632 (2017).
Google Scholar125.
Srinivasan, U., Cheung, W., Watson, R. & Sumaila, U. Food security implications of global marine catch losses due to overfishing. J. Bioeconomics 12, 183–200 (2010).
Google Scholar126.
Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C. & Cheung, W. W. L. Projecting global mariculture diversity under climate change. Glob. Change Biol. 26, 2134–2148 (2020).
Google Scholar127.
Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).
Google Scholar128.
Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 7 (eds Field, C. B. et al.) 485–533 (Cambridge Univ. Press, 2014).129.
Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).
Google Scholar130.
Smith, M. D. et al. Sustainability and global seafood. Science 327, 784–786 (2010).
Google Scholar131.
Asche, F., Bellemare, M. F., Roheim, C., Smith, M. D. & Tveteras, S. Fair enough? Food security and the international trade of seafood. World Dev. 67, 151–160 (2015).
Google Scholar132.
Kurien, J. Responsible Fish Trade and Food Security (Food and Agriculture Organization of the United Nations (FAO), 2005).133.
Watson, R. A., Nichols, R., Lam, V. W. Y. & Sumaila, U. R. Global seafood trade flows and developing economies: Insights from linking trade and production. Mar. Policy 82, 41–49 (2017).
Google Scholar134.
Food and Agriculture Organization of the United Nations (FAO) FAO Yearbook of Fishery and Aquaculture Statistics (Food and Agriculture Organization of the United Nations (FAO), 2017).135.
Gorez, B. West Africa: fishmeal, mealy deal. Samudra Rep. 78, 33–35 (2018).
Google Scholar136.
Corten, A., Braham, C.-B. & Sadegh, A. S. The development of a fishmeal industry in Mauritania and its impact on the regional stocks of sardinella and other small pelagics in Northwest Africa. Fish. Res. 186, 328–336 (2017).
Google Scholar137.
Merino, G., Barange, M., Mullon, C. & Rodwell, L. Impacts of global environmental change and aquaculture expansion on marine ecosystems. Glob. Environ. Change 20, 586–596 (2010).
Google Scholar138.
Naylor, R. L. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 15103–15110 (2009).
Google Scholar139.
Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).
Google Scholar140.
New, M. B. & Wijkström, U. N. Use of fishmeal and fish oil in aquafeeds: further thoughts on the fishmeal trap. FAO Fisheries Circular No. 975 (2002).141.
Jackson, A. & Shepherd, J. in Advancing the Aquaculture Agenda: Workshop Proceedings 331–343 (OECD, 2010).142.
Kristofersson, D. & Anderson, J. L. Is there a relationship between fisheries and farming? Interdependence of fisheries, animal production and aquaculture. Mar. Policy 30, 721–725 (2006).
Google Scholar143.
Deutsch, L. et al. Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Glob. Environ. Change 17, 238–249 (2007).
Google Scholar144.
Mullon, C. et al. Modeling the global fishmeal and fish oil markets. Nat. Resour. Model. 22, 564–609 (2009).
Google Scholar145.
Merino, G. et al. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob. Environ. Change 22, 795–806 (2012).
Google Scholar146.
Liu, Y. & Sumaila, U. R. Can farmed salmon production keep growing? Mar. Policy 32, 497–501 (2008).
Google Scholar147.
Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).
Google Scholar148.
Jacobs, A. China’s appetite pushes fisheries to the brink. New York Times (30 Apr 2017).149.
Tickler, D., Meeuwig, J. J., Palomares, M.-L., Pauly, D. & Zeller, D. Far from home: Distance patterns of global fishing fleets. Sci. Adv. 4, eaar3279 (2018).
Google Scholar150.
Campling, L. Trade politics and the global production of canned tuna. Mar. Policy 69, 220–228 (2016).
Google Scholar151.
Eurofish. Overview of the Spanish fisheries and aquaculture sector. https://www.eurofish.dk/spain (2019).152.
Arrizabalaga, H. et al. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 102–112 (2015).
Google Scholar153.
Erauskin-Extramiana, M. et al. Large-scale distribution of tuna species in a warming ocean. Glob. Change Biol. 25, 2043–2060 (2019).
Google Scholar154.
FFA and SPC. Future of Fisheries: A Regional Roadmap for Sustainable Pacific Fisheries (FFA and SPC, 2015).155.
Heltberg, R., Siegel, P. B. & Jorgensen, S. L. Addressing human vulnerability to climate change: toward a ‘no-regrets’ approach. Glob. Environ. Change 19, 89–99 (2009).
Google Scholar156.
Brouwer, S. et al. The Western and Central Pacific Tuna Fishery: 2018 Overview and Status of Stocks (Pacific Community, 2019).157.
Bell, J. D. et al. Diversifying the use of tuna to improve food security and public health in Pacific Island countries and territories. Mar. Policy 51, 584–591 (2015).
Google Scholar158.
Senina, I. et al. Predicting skipjack tuna dynamics and effects of climate change using SEAPODYM with fishing and tagging data. Scientific Committee Twelfth Regular Session, Western and Central Pacific Fisheries Commission 1–70 (2016).159.
Robinson, M. Climate Justice: Hope, Resilience, and the Fight for a Sustainable Future (Bloomsbury Publishing, 2018).160.
United Nations. Transforming Our World: the 2030 agenda for sustainable development https://doi.org/10.1891/9780826190123.ap02 (2015).161.
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Google Scholar162.
Singh, G. G. et al. Climate impacts on the ocean are making the Sustainable Development Goals a moving target travelling away from us. People Nat. 1, 317–330 (2019).
Google Scholar163.
Guillaumont, P. Assessing the economic vulnerability of small island developing states and the least developed countries. J. Dev. Stud. 46, 828–854 (2010).
Google Scholar164.
Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One 11, e0154735 (2016).
Google Scholar165.
Moosavi, S. Ecological coastal protection: pathways to living shorelines. Procedia Eng. 196, 930–938 (2017).
Google Scholar166.
Mutombo, K. & Ölçer, A. A three-tier framework for port infrastructure adaptation to climate change: balancing breadth and depth of knowledge. Ocean Yearb. Online 30, 564–577 (2016).
Google Scholar167.
Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48, 97–107 (2018).
Google Scholar168.
Beiler, M. O., Marroquin, L. & McNeil, S. State-of-the-practice assessment of climate change adaptation practices across metropolitan planning organizations pre-and post-Hurricane Sandy. Transp. Res. Part A Policy Pract. 88, 163–174 (2016).
Google Scholar169.
Thorne, J. H. et al. The impact of climate change uncertainty on California’s vegetation and adaptation management. Ecosphere 8, e02021 (2017).
Google Scholar170.
Ziervogel, G. & Ericksen, P. J. Adapting to climate change to sustain food security. Wiley Interdiscip. Rev. Clim. Change 1, 525–540 (2010).
Google Scholar171.
Heenan, A. et al. A climate-informed, ecosystem approach to fisheries management. Mar. Policy 57, 182–192 (2015).
Google Scholar172.
Poulain, F., Himes-Cornell, A. & Shelton, C. in Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation and Mitigation Options FAO Fisheries and Aquaculture Technical Paper 627 Ch. 25 535–566 (Food and Agriculture Organization of the United Nations (FAO), 2018).173.
Bell, J. et al. Impacts and effects of ocean warming on the contributions of fisheries and aquaculture to food security (IUCN, 2016).174.
Cochrane, K. L., Andrew, N. L. & Parma, A. M. Primary fisheries management: a minimum requirement for provision of sustainable human benefits in small-scale fisheries. Fish Fish. 12, 275–288 (2011).
Google Scholar175.
Free, C. M. et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS One 15, e0224347 (2020).
Google Scholar176.
Armitage, D. Adaptive capacity and community-based natural resource management. Environ. Manage. 35, 703–715 (2005).
Google Scholar177.
MECM/MFMR. Solomon Islands National Plan of Action. Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security (Solomon Islands Government, 2010).178.
Bell, J. D. et al. Optimising the use of nearshore fish aggregating devices for food security in the Pacific Islands. Mar. Policy 56, 98–105 (2015).
Google Scholar179.
Tilley, A. et al. Nearshore fish aggregating devices show positive outcomes for sustainable fisheries development in Timor-Leste. Front. Mar. Sci. 6, 487 (2019).
Google Scholar180.
Mills, D. J. et al. Developing Timor-Leste’s Coastal Economy: Assessing Potential Climate Change Impacts and Adaptation Options. Final Report to the Australian Government Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security National Initiative (WorldFish, 2013).181.
Pomeroy, R. S. Community-based and co-management institutions for sustainable coastal fisheries management in Southeast Asia. Ocean Coast. Manag. 27, 143–162 (1995).
Google Scholar182.
Foale, S., Cohen, P., Januchowski-Hartley, S., Wenger, A. & Macintyre, M. Tenure and taboos: origins and implications for fisheries in the Pacific. Fish Fish. 12, 357–369 (2011).
Google Scholar183.
Tompkins, E. L. & Adger, W. N. Does adaptive management of natural resources enhance resilience to climate change? Ecol. Soc. 9, 10 (2004).
Google Scholar184.
Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).
Google Scholar185.
Cohen, P. J. & Foale, S. J. Sustaining small-scale fisheries with periodically harvested marine reserves. Mar. Policy 37, 278–287 (2013).
Google Scholar186.
Carvalho, P. G. et al. Optimized fishing through periodically harvested closures. J. Appl. Ecol. 56, 1927–1936 (2019).
Google Scholar187.
Cinner, J. E. et al. Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS One 8, e74321 (2013).
Google Scholar188.
Ford, J. D. et al. Including indigenous knowledge and experience in IPCC assessment reports. Nat. Clim. Change 6, 349–353 (2016).
Google Scholar189.
McNamara, K. E. & Westoby, R. Local knowledge and climate change adaptation on Erub Island, Torres Strait. Local Environ. 16, 887–901 (2011).
Google Scholar190.
Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros-Montemayor, A. M. & Cheung, W. W. L. Adaptation strategies to climate change in marine systems. Glob. Change Biol. 24, e1–e14 (2018).
Google Scholar191.
Weeks, R. & Jupiter, S. D. Adaptive comanagement of a marine protected area network in Fiji. Conserv. Biol. 27, 1234–1244 (2013).
Google Scholar192.
Ogier, E. M. et al. Fisheries management approaches as platforms for climate change adaptation: comparing theory and practice in Australian fisheries. Mar. Policy 71, 82–93 (2016).
Google Scholar193.
Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307–334 (2019).
Google Scholar194.
Oremus, K. L. et al. Governance challenges for tropical nations losing fish species due to climate change. Nat. Sustain. 3, 277–280 (2020).
Google Scholar195.
Mendenhall, E. et al. Climate change increases the risk of fisheries conflict. Mar. Policy 117, 103954 (2020).
Google Scholar196.
Moore, B. R. et al. Defining the stock structures of key commercial tunas in the Pacific Ocean I: current knowledge and main uncertainties. Fish. Res. https://doi.org/10.1016/j.fishres.2020.105525 (2020).197.
Moore, B. R. et al. Defining the stock structures of key commercial tunas in the Pacific Ocean II: Sampling considerations and future directions. Fish. Res. https://doi.org/10.1016/j.fishres.2020.105524 (2020).198.
Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).
Google Scholar199.
Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).
Google Scholar200.
Gallo, N. D., Victor, D. G. & Levin, L. A. Ocean commitments under the Paris Agreement. Nat. Clim. Change 7, 833–838 (2017).
Google Scholar201.
Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).
Google Scholar202.
Herr, D. & Landis, E. Coastal Blue Carbon Ecosystems. Opportunities for Nationally Determined Contributions. Policy Brief (IUCN, 2016).203.
Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).
Google Scholar204.
Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7, e43542 (2012).
Google Scholar205.
Zarate-Barrera, T. G. & Maldonado, J. H. Valuing blue carbon: carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS One 10, e0126627 (2015).
Google Scholar206.
Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).
Google Scholar207.
Locatelli, T. et al. Turning the tide: how blue carbon and payments for ecosystem services (PES) might help save mangrove forests. Ambio 43, 981–995 (2014).
Google Scholar208.
Barbesgaard, M. C. Blue carbon: ocean grabbing in disguise? Transnational Institute https://www.tni.org/en/publication/blue-carbon-ocean-grabbing-in-disguise (2016).209.
Sharp, M. The benefits of fish aggregating devices in the Pacific. SPC Fish. Newsl. 135, 28–36 (2011).
Google Scholar210.
Grafton, R. Q. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).
Google Scholar211.
Kurien, J. Voluntary guidelines for securing sustainable small-scale fisheries in the context of food security and poverty eradication: summary (Food and Agriculture Organization of the United Nations (FAO), 2015).212.
Castree, N. et al. Changing the intellectual climate. Nat. Clim. Change 4, 763–768 (2014).
Google Scholar213.
Allison, E. H. & Bassett, H. R. Climate change in the oceans: Human impacts and responses. Science 350, 778–782 (2015).
Google Scholar214.
Bobrowsky, P., Cronin, V. S., Di Capua, G., Kieffer, S. W. & Peppoloni, S. 11. The emerging field of geoethics. Sci. Integr. Ethics Geosci. 73, 175 (2017).
Google Scholar215.
Bohle, M. One realm: thinking geoethically and guiding small-scale fisheries? Eur. J. Dev. Res. 31, 253–270 (2019).
Google Scholar216.
UNEP-WCMC, WorldFish Centre, WRI & TNC. Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project. Version 4.0. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001) (UN Environment World Conservation Monitoring Centre, 2018).217.
UNEP-WCMC & Short, F. T. Global distribution of seagrasses (version 5.0). Fourth update to the data layer used in Green and Short (2003) (UNEP World Conservation Monitoring Centre, 2017).218.
Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data (version 1.3, updated by UNEP-WCMC). Glob. Ecol. Biogeogr. 20, 154–159 (2011).
Google Scholar219.
Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).
Google Scholar220.
Lehodey, P. et al. in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 433–492 (Secretariat of the Pacific Community, 2011).221.
Lehodey, P. et al. Modelling the impact of climate change including ocean acidification on Pacific yellowfin tuna. Scientific Committee Thirteenth Regular Session, Western and Central Pacific Fisheries Commission 1–25 (2017).222.
Senina, I. et al. Impact of climate change on tropical Pacific tuna and their fisheries in Pacific Islands waters and high seas areas. Scientific Committee Fourteenth Regular Session, Western and Central Pacific Fisheries Commission 1–43 (2018).223.
Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591–599 (2013).
Google Scholar224.
Bell, J. D. et al. in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 733–801 (Secretariat of the Pacific Community, 2011).225.
Bell, J. D. et al. in Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation and Mitigation Options FAO Fisheries and Aquaculture Technical Paper 627 Ch. 14 305–324 (Food and Agriculture Organization of the United Nations (FAO), 2018).226.
Scott, F., Scott, R., Yao, N., Pilling, G. M. & Hampton, J. Considering uncertainty when testing and monitoring WCPFC harvest strategies. Scientific Committee Fifteenth Regular Session, Western Central Pacific Fisheries Commission 1–23 (2019).227.
Pratchett, M. S. et al. Vulnerabilty of coastal fisheries in the tropical Pacific to climate change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change 493–576 (Secretariat of the Pacific Community, 2011).228.
Gasalla, M. A., Abdallah, P. R. & Lemos, D. in Climate Change Impacts on Fisheries and Aquaculture. A Global Analysis. Vol. 1 (eds Philips, B. F. & Pérez-Ramírez, M.) 455–477 (Wiley, 2017).229.
Popova, E. et al. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Glob. Change Biol. 22, 2038–2053 (2016).
Google Scholar230.
Schulz, C. et al. Physical, ecological and human dimensions of environmental change in Brazil’s Pantanal wetland: synthesis and research agenda. Sci. Total Environ. 687, 1011–1027 (2019).
Google Scholar231.
Barros, D. F. & Albernaz, A. L. M. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon. Braz. J. Biol. 74, 810–820 (2014).
Google Scholar232.
Johnson, J. E. et al. Climate change adaptation: vulnerability and challenges facing small-scale fisheries on small islands. FAO Fish. Aquacult. Proc. 61, 65–80 (2019).
Google Scholar233.
Martins, I. M. & Gasalla, M. A. Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim. Change 147, 441–456 (2018).
Google Scholar234.
Martins, I. M., Gammage, L. C., Jarre, A. & Gasalla, M. A. Different but similar? Exploring vulnerability to climate change in Brazilian and South African small-scale fishing communities. Hum. Ecol. 47, 515–526 (2019).
Google Scholar235.
Gasalla, M. A. Six decades of change in the South Brazil Bight Ecosystem in Proc. 3rd GLOBEC Open Science Meeting: From Ecosystem Function to Ecosystem Prediction (2008).236.
Dahlet, L. I., Downey-Breedt, N., Arce, G., Sauer, W. H. H. & Gasalla, M. A. Comparative study of skipjack tuna Katsuwonus pelamis (Scombridae) fishery stocks from the South Atlantic and western Indian oceans. Sci. Mar. 83, 19–30 (2019).
Google Scholar237.
Araújo, F. G., Teixeira, T. P., Guedes, A. P. P., de Azevedo, M. C. C. & Pessanha, A. L. M. Shifts in the abundance and distribution of shallow water fish fauna on the southeastern Brazilian coast: a response to climate change. Hydrobiologia 814, 205–218 (2018).
Google Scholar238.
Gasalla, M. A. An overview of climate change effects in South Brazil Bight fisheries in Proc. 6th World Fisheries Congress (2012).239.
Santos, L. C. M., Gasalla, M. A., Dahdouh-Guebas, F. & Bitencourt, M. D. Socio-ecological assessment for environmental planning in coastal fishery areas: a case study in Brazilian mangroves. Ocean Coast. Manag. 138, 60–69 (2017).
Google Scholar240.
Zou, D. & Gao, K. in Seaweeds and Their Role in Globally Changing Environments (eds Seckbach, J., Einav, R. & Israel, A.) 115–126 (Springer, 2010).241.
Ramaglia, A. C., de Castro, L. M. & Augusto, A. Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans. J. Comp. Physiol. B 188, 729–738 (2018).
Google Scholar242.
Freduah, G., Fidelman, P. & Smith, T. F. The impacts of environmental and socio-economic stressors on small scale fisheries and livelihoods of fishers in Ghana. Appl. Geogr. 89, 1–11 (2017).
Google Scholar243.
Bunce, M., Rosendo, S. & Brown, K. Perceptions of climate change, multiple stressors and livelihoods on marginal African coasts. Environ. Dev. Sustain. 12, 407–440 (2010).
Google Scholar244.
Burke, L.M., Reytar, K., Spalding, M. & Perry, A. Reefs at risk revisited: World Resources Institute. (2017).245.
Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).
Google Scholar246.
Lam, V. W. Y., Cheung, W. W. L., Swartz, W. & Sumaila, U. R. Climate change impacts on fisheries in West Africa: implications for economic, food and nutritional security. Afr. J. Mar. Sci. 34, 103–117 (2012).
Google Scholar247.
Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).
Google Scholar248.
Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2979–2989 (2012).
Google Scholar249.
Belhabib, D., Lam, V. W. Y. & Cheung, W. W. L. Overview of West African fisheries under climate change: impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Mar. Policy 71, 15–28 (2016).
Google Scholar More125 Shares169 Views
in EcologyExtreme hyperthermia tolerance in the world’s most abundant wild bird
1.
Sears, M. W., Raskin, E. & Angilletta, M. J. Jr. The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr. Comp. Biol. 51, 666–675 (2011).
PubMed Google Scholar
2.
du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).
ADS Google Scholar3.
Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
PubMed Google Scholar4.
Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).
PubMed Google Scholar5.
Daghir, N. J. Poultry production in hot climates 2nd edn. (CAB International, Wallingford, 2008).
Google Scholar6.
Nyoni, N. M. B., Grab, S. & Archer, E. R. M. Heat stress and chickens: climate risk effects on rural poultry farming in low-income countries. Clim. Dev. 11, 83–90. https://doi.org/10.1080/17565529.2018.1442792 (2018).
Article Google Scholar7.
Laszlo, A. The effects of hyperthermia on mammalian cell structure and function. Cell Prolif. 25, 59–87 (1992).
CAS PubMed Google Scholar8.
Roti Roti, J. L. Cellular responses to hyperthermia (40–46 C): Cell killing and molecular events. Int. J. Hyperthermia 24, 3–15 (2008).
ADS PubMed Google Scholar9.
Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).
CAS PubMed Google Scholar10.
Hochachka, P. W. & Somero, G. N. Biochemical Adaptation (Princeton University Press, Princeton, 1984).
Google Scholar11.
Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
ADS PubMed Google Scholar12.
Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
PubMed Google Scholar13.
Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).
PubMed Google Scholar14.
McKechnie, A. E. & Wolf, B. O. The physiology of heat tolerance in small endotherms. Physiology 34, 302–313 (2019).
CAS PubMed Google Scholar15.
Arad, Z. & Marder, J. Strain differences in heat resistance to acute heat stress, between the bedouin desert fowl, the white leghorn and their crossbreeds. Comp. Biochem. Physiol. A 72, 191–193 (1982).
Google Scholar16.
Randall, W. C. Factors influencing the temperature regulation of birds. Am. J. Physiol. 139, 56–63 (1943).
Google Scholar17.
Tieleman, B. I., Williams, J. B., LaCroix, F. & Paillat, P. Physiological responses of Houbara bustards to high ambient temperatures. J. Exp. Biol. 205, 503–511 (2002).
PubMed Google Scholar18.
Chappell, M. A. & Bartholomew, G. A. Activity and thermoregulation of the antelope ground squirrel Ammospermophilus leucurus in winter and summer. Physiol. Zool. 54, 215–223 (1981).
Google Scholar19.
Lovegrove, B. G., Heldmaier, G. & Ruf, T. Perspectives of endothermy revisited: the endothermic temperature range. J. Therm. Biol 16, 185–197 (1991).
Google Scholar20.
Cory Toussaint, D. & McKechnie, A. E. Interspecific variation in thermoregulation among three sympatric bats inhabiting a hot, semi-arid environment. J. Comp. Physiol. B 182, 1129–1140 (2012).
PubMed Google Scholar21.
Dawson, W. R. In University of California Publications in Zoology Vol. 59 (eds Bartholomew, G. A. et al.) 81–123 (University of California Press, California, 1954).
Google Scholar22.
Paulissen, M. A. Ontogenetic comparison of body temperature selection and thermal tolerance of Cnemidophorus sexlineatus. J. Herpetol. 22, 473–476 (1988).
Google Scholar23.
Weathers, W. W. Energetics and thermoregulation by small passerines of the humid, lowland tropics. Auk 114, 341–353 (1997).
Google Scholar24.
Southwick, E. E. Remote sensing of body temperature in a captive 25-g bird. Condor 75, 464–466 (1973).
Google Scholar25.
Elliott, C. C. H. In Quelea quelea: Africa’s bird pest (eds Bruggers, R. L. & Elliott, C. C. H.) (Oxford University Press, Oxford, 1989).
Google Scholar26.
Craig, A. J. F. K. In Roberts birds of southern Africa (eds Hockey, P. A. R. et al.) 1025–1026 (The Trustees of the John Voelcker Bird Book Fund, Cape Town, 2005).
Google Scholar27.
Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).
PubMed Google Scholar28.
McKechnie, A. E. et al. Avian thermoregulation in the heat: efficient evaporative cooling allows for extreme heat tolerance in four southern Hemisphere columbids. J. Exp. Biol. 219, 2145–2155 (2016).
PubMed Google Scholar29.
Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).
PubMed Google Scholar30.
Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).
PubMed Google Scholar31.
Karasov, W. H. In Studies in Avian Biology (eds Morrison, M. L. et al.) 391–415 (Cooper Ornithological Society, California, 1990).
Google Scholar32.
Swanson, D. L., Drymalski, M. W. & Brown, J. R. Sliding vs static cold exposure and the measurement of summit metabolism in birds. J. Therm. Biol 21, 221–226 (1996).
Google Scholar33.
Kemp, R. & McKechnie, A. E. Thermal physiology of a range-restricted desert lark. J. Comp. Physiol. B 189, 131–141. https://doi.org/10.1007/s00360-018-1190-1 (2019).
Article PubMed Google Scholar34.
Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, Oxford, 2008).
Google Scholar35.
Walsberg, G. E. & Wolf, B. O. Variation in the respirometry quotient of birds and implications for indirect calorimetry using measurements of carbon dioxide production. J. Exp. Biol. 198, 213–219 (1995).
CAS PubMed Google Scholar36.
Tracy, C. R., Welch, W. R., Pinshow, B. & Porter, W. P. Properties of air: a manual for use in biophysical ecology. 4th Ed. The University of Wisconsin Laboratory for Biophysical Ecology: Technical Report (2010).37.
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).38.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3. 57. (2009).39.
Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8(1), 20–25 (2008).
Google Scholar40.
McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220, 2436–2444 (2017).
PubMed Google Scholar41.
O’Connor, R. S., Wolf, B. O., Brigham, R. M. & McKechnie, A. E. Avian thermoregulation in the heat: efficient evaporative cooling in two southern African nightjars. J Comp Physiol B 187, 477–491 (2017).
PubMed Google Scholar42.
Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).
Google Scholar43.
Tieleman, B. I., Williams, J. B. & Bloomer, P. Adaptation of metabolic rate and evaporative water loss along an aridity gradient. Proc. R. Soc. Lond. 270, 207–214 (2003).
Google Scholar44.
Xie, S., Tearle, R. & McWhorter, T. J. Heat shock protein expression is upregulated after acute heat exposure in three species of Australian desert birds. Avian Biol. Res. 11, 263–273 (2018).
Google Scholar45.
Czenze, Z. J. et al. Regularly-drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. https://doi.org/10.1111/1365-2435.13573 (2020).
Article Google Scholar46.
Midtgård, U. Scaling of the brain and the eye cooling system in birds: a morphometric analysis of the rete ophthalmicum. J. Exp. Zool. 225, 197–207 (1983).
PubMed Google Scholar47.
Kilgore, D. L., Bernstein, M. H. & Hudson, D. M. Brain temperatures in birds. J Comp Physiol 110, 209–215 (1976).
Google Scholar48.
Bernstein, M. H., Curtis, M. B. & Hudson, D. M. Independence of brain and body temperatures in flying American kestrels, Falco sparverius. Am. J. Physiol. 237, R58–R62 (1979).
CAS PubMed Google Scholar49.
Kregel, K. C. Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177–2186 (2002).
CAS PubMed Google Scholar50.
McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling capacity in an archetypal desert specialist, Burchell’s sandgrouse (Pterocles burchelli). J. Exp. Biol. 219, 2137–2144 (2016).
PubMed Google Scholar51.
Talbot, W. A., McWhorter, T. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents. J. Exp. Biol. 220, 3488–3498 (2017).
PubMed Google Scholar52.
McWhorter, T. J. et al. Avian thermoregulation in the heat: evaporative cooling capacity and thermal tolerance in two Australian parrots. J. Exp. Biol. 221, jeb168930 (2018).
PubMed Google Scholar53.
Talbot, W. A., Gerson, A. R., Smith, E. K., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: metabolism, evaporative cooling and gular flutter in two small owls. J. Exp. Biol. 221, jeb171108 (2018).
PubMed Google Scholar54.
Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).
PubMed Google Scholar More