More stories

  • in

    Satellites find penguins by following the poo

    A space-based sensor has detected new colonies of emperor penguins on Antarctic sea ice. Credit: Christopher Walton

    Ecology
    07 August 2020

    Images from space bolster the population count, but the birds remain vulnerable to climate change.

    From their vantage point high above Antarctica, sharp-eyed satellites have spotted eight previously unknown colonies of emperor penguins. The discovery boosts emperor penguin numbers by 5–10%.
    The iconic birds breed and raise their young on sea ice frozen to Antarctica’s shoreline. These habitats are threatened by climate change, so scientists have been working to get a complete census of emperor penguins (Aptenodytes forsteri) to assess how the bird’s populations might change.
    Peter Fretwell and Philip Trathan at the British Antarctic Survey in Cambridge, UK, used the European Space Agency’s Sentinel-2 satellites to search for dark smudges of guano-stained ice. They identified eight newfound penguin colonies located around the rim of the continent; one was on sea ice frozen around icebergs grounded far offshore. Using the images, the authors also pinpointed three colonies that had been reported in the 1960s and 1980s but not confirmed since.
    The findings bring the total number of emperor penguin colonies to 61. Many are in areas vulnerable to climate change. More

  • in

    Bacterial mock communities as standards for reproducible cytometric microbiome analysis

    1.
    Müller, S. & Nebe-von-Caron, G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 34, 554–587 (2010).
    Article  Google Scholar 
    2.
    Günther, S. et al. Species-sorting and mass-transfer paradigms control managed natural metacommunities. Environ. Microbiol. 18, 4862–4877 (2016).
    Article  Google Scholar 

    3.
    Props, R., Monsieurs, P., Mysara, M., Clement, L. & Boon, N. Measuring the biodiversity of microbial communities by flow cytometry. Methods Ecol. Evol. 7, 1376–1385 (2016).
    Article  Google Scholar 

    4.
    Liu, Z. et al. Ecological stability properties of microbial communities assessed by flow cytometry. mSphere 3, e00564–17 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Liu, Z. et al. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ. Microbiol. 21, 164–181 (2019).
    CAS  Article  Google Scholar 

    6.
    De Vrieze, J., Boon, N. & Verstrate, W. Taking the technical microbiome into the next decade. Environ. Microbiol. 20, 1991–2000 (2018).
    Article  Google Scholar 

    7.
    Koch, C. et al. Cytometric fingerprinting for analyzing microbial intracommunity structure variation and identifying subcommunity function. Nat. Protoc. 8, 190–202 (2013).
    CAS  Article  Google Scholar 

    8.
    Mage, L. M. et al. Shape-based separation of synthetic microparticles. Nat. Mater. 18, 82–89 (2019).
    CAS  Article  Google Scholar 

    9.
    Müller, S. Modes of cytometric bacterial DNA pattern: a tool for pursuing growth. Cell Prolif. 40, 621–639 (2007).
    Article  Google Scholar 

    10.
    Ludwig, J., Höner zu Siederdissen, C., Liu, Z., Stadler, P. F. & Müller, S. flowEMMi: an automated model-based clustering tool for microbial cytometric data. BMC Bioinforma. 20, 643 (2019).
    CAS  Article  Google Scholar 

    11.
    Koch, C., Fetzer, I., Harms, H. & Müller, S. CHIC-an automated approach for the detection of dynamic variations in complex microbial communities. Cytom. A 83, 561–567 (2013).
    Article  Google Scholar 

    12.
    Liu, Z. & Müller, S. Bacterial community diversity dynamics highlight degrees of nestedness and turnover patterns. Cytom. Part A https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23965 (2020)

    13.
    Aghaeepour, N. et al. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10, 228–238 (2013).
    CAS  Article  Google Scholar 

    14.
    Peters, J. M. & Ansari, M. Q. Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Arch. Pathol. Lab. Med. 135, 44–54 (2011).
    PubMed  Google Scholar 

    15.
    Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).
    CAS  Article  Google Scholar 

    16.
    Spitzer, H. M. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).
    CAS  Article  Google Scholar 

    17.
    Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annu. Rev. Microbiol. 8, 711–730 (2017).
    Article  Google Scholar 

    18.
    Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).
    CAS  Article  Google Scholar 

    19.
    Roesch, L. F. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290 (2007).
    CAS  Article  Google Scholar 

    20.
    Singer, E. et al. Next generation sequencing data of a defined microbial mock community. Sci. Data 3, 160081 (2016).
    Article  Google Scholar 

    21.
    Hallmaier-Wacker, L. K., Lueert, S., Roos, C. & Knauf, S. The impact of storage buffer, DNA extraction method, and polymerase on microbial analysis. Sci. Rep. 8, 6292 (2018).
    Article  Google Scholar 

    22.
    Hardwick, S. A. et al. Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nat. Commun. 9, 3096 (2018).
    Article  Google Scholar 

    23.
    Hornung, B. V. H., Zwittink, R. D. & Kuijper, E. J. Issues and current standards of controls in microbiome research. FEMS Microbiol. Ecol. 95, fiz045 (2019).
    CAS  Article  Google Scholar 

    24.
    Sze, M. A. & Schloss, P. D. The impact of DNA polymerase and number of rounds of amplification in PCR on 16S rRNA gene sequence data. mSphere 4, e00163–19 (2019).
    CAS  Article  Google Scholar 

    25.
    Clingenpeel, S., Clum, A., Schwientel, P., Rinke, C. & Woyke, T. Reconstructing each cell’s genome within complex communities—dream or reality? Front. Microbiol. 8, 771 (2015).
    Google Scholar 

    26.
    Stepanauskas, R. et al. Improved genome recovery and intergrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).
    Article  Google Scholar 

    27.
    De Bruin, O. M. & Birnboim, H. C. A method for assessing efficiency of bacterial cell disruption and DNA release. BMC Microbiol. 16, 197 (2016).
    Article  Google Scholar 

    28.
    Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 25, 377–445 (1908).
    CAS  Article  Google Scholar 

    29.
    Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).
    CAS  Article  Google Scholar 

    30.
    Jahn, M. et al. Subpopulation-proteomics in prokaryotic populations. Curr. Opin. Biotech. 24, 79–87 (2013).
    CAS  Article  Google Scholar 

    31.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  Article  Google Scholar 

    32.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    CAS  Article  Google Scholar 

    33.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    34.
    Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds. Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, 1991).

    35.
    Lambrecht, J. et al. Flow cytometric quantification, sorting and sequencing of methanogenic archaea based on F420 autofluorescence. Microb. Cell Fact. 16, 180 (2017).
    Article  Google Scholar 

    36.
    Besmer, M. D. et al. The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems. Front. Microbiol 5, 265 (2014).
    Article  Google Scholar 

    37.
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).
    Article  Google Scholar 

    38.
    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).
    CAS  Article  Google Scholar  More

  • in

    Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought

    1.
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309:570–4.
    CAS  PubMed  Google Scholar 
    2.
    Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, et al. A safe operating space for humanity. Nature. 2009;461:472–5.
    Google Scholar 

    3.
    Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:1–10.
    Google Scholar 

    4.
    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, et al. Impacts of 1.5 °C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, et al., editors. Geneva, Switzerland: World Meteorological Organization Technical Document; 2018.

    6.
    Dieleman WIJ, Vicca S, Tingey D, De Angelis P, Hagedorn F, Morgan JA, et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO 2 and temperature. Glob Chang Biol. 2012;18:2681–93.
    PubMed  Google Scholar 

    7.
    Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol. 2019;3:1309–20.
    PubMed  Google Scholar 

    8.
    Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263–76. Nature Publishing Group.
    CAS  PubMed  Google Scholar 

    9.
    Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.

    10.
    Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.
    CAS  PubMed  Google Scholar 

    11.
    Fuchslueger L, Kastl EM, Bauer F, Kienzl S, Hasibeder R, Ladreiter-Knauss T, et al. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences. 2014;11:6003–15.
    Google Scholar 

    12.
    Kits KD, Pjevac P, Daebeler A, Han P, Albertsen M, Romano S, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 2017;549:269–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Di HJ, Cameron KC, Shen JP, Winefield CS, Ocallaghan M, Bowatte S, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci. 2009;2:621–4.
    CAS  Google Scholar 

    14.
    Jia Z, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol. 2009;11:1658–71.
    CAS  PubMed  Google Scholar 

    15.
    Zhalnina K, Dörr de Quadros P, Camargo FAO, Triplett EW. Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol. 2012;3:1–9.
    Google Scholar 

    16.
    Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T, et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 2015;9:643–55.
    CAS  PubMed  Google Scholar 

    17.
    Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    van Kessel MAHJ, Kartal B, MSM Jetten, Albertsen M, Op den Camp HJM, Lücker S, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.
    PubMed  PubMed Central  Google Scholar 

    19.
    Poghosyan L, Koch H, Lavy A, Frank J, van Kessel MAHJ, Jetten MSM, et al. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ Microbiol. 2019;00:1–11.
    Google Scholar 

    20.
    Wang Z, Cao Y, Zhu-Barker X, Nicol GW, Wright AL, Jia Z, et al. Comammox Nitrospira clade B contributes to nitrification in soil. Soil Biol Biochem. 2019;135:392–5.
    CAS  Google Scholar 

    21.
    Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 2019;221:32–49. John Wiley & Sons, Ltd.
    CAS  Google Scholar 

    22.
    de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol. 2006;12:2077–91.
    Google Scholar 

    23.
    Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol Biochem. 2019;128:66–78.
    CAS  Google Scholar 

    24.
    Luo Y, Su B, Currie WS, Dukes J. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience. 2004;54:731–9.

    25.
    Liang J, Qi X, Souza L, Luo Y. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences. 2016;13:2689–99.
    CAS  Google Scholar 

    26.
    He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett. 2010;13:564–75.
    PubMed  Google Scholar 

    27.
    Horz HP, Barbrook A, Field CB, Bohannan BJM. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA. 2004;101:15136–41.
    CAS  PubMed  Google Scholar 

    28.
    Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett. 2008;11:1316–27.
    PubMed  Google Scholar 

    29.
    Liu Q, Piao S, Janssens IA, Fu Y, Peng S, Lian X, et al. Extension of the growing season increases vegetation exposure to frost. Nat Commun. 2018;9:426.
    PubMed  PubMed Central  Google Scholar 

    30.
    Lax S, Abreu CI, Gore J. Higher temperatures generically favour slower-growing bacterial species in multispecies communities. Nat Ecol Evol. 2020;4:560–657.
    PubMed  Google Scholar 

    31.
    Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol. 2008;10:1357–64.
    CAS  PubMed  Google Scholar 

    32.
    Fierer N, Carney KM, Horner-Devine MC, Megonigal JP. The biogeography of ammonia-oxidizing bacterial communities in soil. Micro Ecol. 2009;58:435–45.
    Google Scholar 

    33.
    Schimel JP. Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst. 2018;49:409–32.
    Google Scholar 

    34.
    Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol Biochem. 2019;128:66–78.

    35.
    Yue K, Peng Y, Fornara DA, Van Meerbeek K, Vesterdal L, Yang W, et al. Responses of nitrogen concentrations and pools to multiple environmental change drivers: a meta-analysis across terrestrial ecosystems. Glob Ecol Biogeogr. 2019;28:690–724.
    Google Scholar 

    36.
    Bai E, Li S, Xu W, Li W, Dai W, Jiang P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. N. Phytol. 2013;199:431–40.
    CAS  Google Scholar 

    37.
    Piepho HP, Herndl M, Pötsch EM, Bahn M. Designing an experiment with quantitative treatment factors to study the effects of climate change. J Agron Crop Sci. 2017;203:584–92.
    CAS  Google Scholar 

    38.
    Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.
    CAS  Google Scholar 

    39.
    Hood-Nowotny R, Umana NH-N, Inselbacher E, Oswald- Lachouani P, Wanek W. Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil. Soil Sci Soc Am J. 2010;74:1018–27.
    CAS  Google Scholar 

    40.
    Wanek W, Mooshammer M, Blöchl A, Hanreich A, Richter A. Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biol Biochem. 2010;42:1293–302.
    CAS  Google Scholar 

    41.
    Sørensen P, Jensen ES. Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination. Anal Chim Acta. 1991;252:201–3.
    Google Scholar 

    42.
    Lachouani P, Frank AH, Wanek W. A suite of sensitive chemical methods to determine the δ 15N of ammonium, nitrate and total dissolved N in soil extracts. Rapid Commun Mass Spectrom. 2010;24:3615–23.
    CAS  PubMed  Google Scholar 

    43.
    Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 2012;6:847–62.
    CAS  PubMed  Google Scholar 

    44.
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.
    Google Scholar 

    45.
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
    CAS  PubMed  Google Scholar 

    46.
    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol. 2015;6:1–8.
    Google Scholar 

    47.
    Purkhold U, Wagner M, Timmermann G, Pommerening-Röser A, Koops HP. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol. 2003;53:1485–94.
    CAS  PubMed  Google Scholar 

    48.
    Alves RJE, Minh BQ, Urich T, Von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1–17.
    CAS  Google Scholar 

    49.
    Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60:291–302.
    PubMed  PubMed Central  Google Scholar 

    50.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Aigle A, Prosser JI, Gubry-Rangin C. The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environ Microbiome. 2019;14:3.
    Google Scholar 

    52.
    Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol. 2017;8:1–11.
    Google Scholar 

    53.
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ Microbiol. 2014;16:3055–71.
    CAS  PubMed  Google Scholar 

    59.
    Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Correction: cultivation and characterization of Candidatus nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2020.

    60.
    Kozak M, Piepho HP. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J Agron Crop Sci. 2018;204:86–98.
    Google Scholar 

    61.
    Langsrud Ø. ANOVA for unbalanced data: use type II instead of Type III sums of squares. Stat Comput. 2003;13:163–7.
    Google Scholar 

    62.
    McMurdie PJ, Holmes S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan.

    64.
    Stier AC, Geange SW, Hanson KM, Bolker BM. Predator density and timing of arrival affect reef fish community assembly. Ecology. 2013;94:1057–68.
    PubMed  Google Scholar 

    65.
    Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. Chichester, UK: John Wiley & Sons, Ltd; 2017. p 1–15.

    66.
    Fierer N, Schimel JP. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J. 2010;67:798.
    Google Scholar 

    67.
    Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:1–9.
    Google Scholar 

    68.
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:1–11.
    Google Scholar 

    69.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Google Scholar 

    70.
    Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, et al. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob Chang Biol. 2011;17:1884–99.
    Google Scholar 

    71.
    Brenzinger K, Kujala K, Horn MA, Moser G, Guillet C, Kammann C, et al. Soil conditions rather than long-term exposure to elevated CO2 affect soil microbial communities associated with N-cycling. Front Microbiol. 2017;8:1–14.
    Google Scholar 

    72.
    Rütting T, Hovenden MJ. Soil nitrogen cycle unresponsive to decadal long climate change in a Tasmanian grassland. Biogeochemistry. 2020;147:99–107.
    Google Scholar 

    73.
    Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126:543–62.
    CAS  PubMed  Google Scholar 

    74.
    Fuchslueger L, Wild B, Mooshammer M, Takriti M, Kienzl S, Knoltsch A, et al. Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biol Biochem. 2019;135:144–53.
    CAS  Google Scholar 

    75.
    Coskun D, Britto DT, Shi W, Kronzucker HJ. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants. 2017;3:17074.
    CAS  PubMed  Google Scholar 

    76.
    Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, et al. Suppression of soil nitrification by plants. Plant Sci. 2015;233:155–64.
    CAS  PubMed  Google Scholar 

    77.
    Canarini A, Dijkstra FA. Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol Biochem. 2015;81:195–203.
    CAS  Google Scholar 

    78.
    Karlowsky S, Augusti A, Ingrisch J, Akanda MKU, Bahn M, Gleixner G. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front Plant Sci. 2018;871:1–16.
    Google Scholar 

    79.
    Manzoni S, Schimel JP, Barbara S. Results from a responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 2017;93:930–8.
    Google Scholar 

    80.
    Canarini A, Merchant A, Dijkstra FA. Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere. 2016;2:85–97.
    Google Scholar 

    81.
    Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani A-BF, Singh G, et al. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci. 2019;26:614–24.
    CAS  PubMed  Google Scholar 

    82.
    Williams A, de Vries FT. Plant root exudation under drought: implications for ecosystem functioning. N. Phytol. 2020;225:1899–1905.
    Google Scholar 

    83.
    Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, et al. Biological nitrification inhibition (BNI)—Is it a widespread phenomenon? Plant Soil. 2007;294:5–18.
    CAS  Google Scholar 

    84.
    Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J Geophys Res Biogeosci. 2017;122:3260–72.
    CAS  Google Scholar 

    85.
    Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. N. Phytol. 2014;201:916–27.
    CAS  Google Scholar 

    86.
    Thion C, Prosser JI. Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol Ecol. 2014;90:380–9.
    CAS  PubMed  Google Scholar 

    87.
    Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PSG, et al. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol. 2008;74:3559–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    88.
    Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing CandidatusNitrososphaera gargensis: Insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.
    CAS  PubMed  Google Scholar 

    89.
    Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–46.
    CAS  PubMed  Google Scholar 

    90.
    Nicol GW, Hink L, Gubry-Rangin C, Prosser JI, Lehtovirta-Morley LE. Genome Sequence of “ Candidatus Nitrosocosmicus franklandus” C13, a terrestrial ammonia-oxidizing archaeon. Microbiol Resour Announc. 2019;8:1–3.
    Google Scholar 

    91.
    Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.
    CAS  PubMed  PubMed Central  Google Scholar 

    92.
    Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Nicol GW, Prosser JI. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiol Ecol. 2014;89:542–52.
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Stieglmeier M, Klingl A, Alves RJE, Rittmann SKMR, Melcher M, Leisch N, et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2014;64:2738–52.
    CAS  PubMed  PubMed Central  Google Scholar 

    94.
    Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, et al. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environ Microbiol Rep. 2016;8:983–92.
    CAS  PubMed  Google Scholar 

    95.
    Gwak JH, Jung MY, Hong H, Kim JG, Quan ZX, Reinfelder JR, et al. Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME J. 2020;14:335–46.
    CAS  PubMed  Google Scholar 

    96.
    Nowka B, Daims H, Spieck E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl Environ Microbiol. 2015;81:745–53.
    PubMed  PubMed Central  Google Scholar 

    97.
    Prosser JI. The ecology of nitrifying bacteria. In: Bothe H, Ferguson SJ, editors. Newton WEBT-B of the NC. Biology of the Nitrogen Cycle. Amsterdam: Elsevier; 2007. p 223–43.

    98.
    Norton JM, Stark JM. Regulation and measurement of nitrification in terrestrial systems. In: Klotz MGBT-M in E. Research on nitrification and related processes, Part A. 2011. Academic Press, United States, p 343–68.

    99.
    Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lücker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052 LP–1054.
    Google Scholar 

    100.
    Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.
    CAS  PubMed  Google Scholar 

    101.
    Daebeler A, Bodelier PLE, Yan Z, Hefting MM, Jia Z, Laanbroek HJ. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J. 2014;8:2397–410.
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences. 2012;9:2459–83.
    CAS  Google Scholar 

    103.
    Wrage N, Velthof GL, Van Beusichem ML, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem. 2001;33:1723–32.
    CAS  Google Scholar 

    104.
    Stein LY. Surveying N2O-producing pathways in bacteria. In: Klotz MGBT-M in E. Research on nitrification and related processes, Part A. 2011. Academic Press, United States, pp 131–52.

    105.
    Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 2016;10:1836–45.
    CAS  PubMed  PubMed Central  Google Scholar 

    106.
    Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun. 2019;10:1–12.
    CAS  Google Scholar  More