More stories

  • in

    Survival and regeneration ability of clonal common milkweed (Asclepias syriaca L.) after a single herbicide treatment in natural open sand grasslands

    1.
    Kettunen, M. et al. Technical support to EU strategy on invasive alien species (IAS)—Assesment of the impacts of IAS in Europe and EU. (Institute for European Environmental Policy (IEEP), 2009).
    2.
    Keller, R. P., Geist, J., Jeschke, J. M. & Kühn, I. Invasive species in Europe: ecology, status, and policy. Environ. Sci. Europe 23, 23. https://doi.org/10.1186/2190-4715-23-23 (2011).
    Article  Google Scholar 

    3.
    European Commission. Regulation No 1143/2014 of the European Parliament and of the Council October 22 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union. L174, 5–11; https://publications.europa.eu/en/publication-detail//publication/880597b7-63f6-11e4-9cbe-01aa75ed71a1/lan-guage-en (2014).

    4.
    Olden, J. D., Comte, L. & Giam, X. The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota 37, 23. https://doi.org/10.3897/neobiota.37.22552 (2018).
    Article  Google Scholar 

    5.
    Scalera, R. How much is Europe spending on invasive alien species?. Biol. Invas. 12, 173–177. https://doi.org/10.1007/s10530-009-9440-5 (2010).
    Article  Google Scholar 

    6.
    European Commission. Proposal for a regulation of the European parliament and of the council on the prevention and management of the introduction and spread of invasive alien species. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52013PC0620 (2013).

    7.
    International Union for Conservation of Nature (IUCN). Compilation of costs of prevention and management of invasive alien species in the EU. Technical note prepared by IUCN for the European Commission. https://circabc.europa.eu/sd/a/7b04a898-12e3-48c3-a0e5-f21a165259b4/2018-Compilation%20of%20costs%20of%20prevention%20and%20management%20of%20IAS%20in%20the%20EU.pdf (2018).

    8.
    Zamora, D. L., Thill, D. C. & Eplee, R. E. An eradication plan for plant invasions. Weed. Technol. 3, 2–12. https://doi.org/10.1017/S0890037X00031225 (1989).
    Article  Google Scholar 

    9.
    Caffrey, J. M. et al. Tackling invasive alien species in Europe: the top 20 issues. Manag. Biol. Invas. 5, 1–20. https://doi.org/10.3391/mbi.2014.5.1.01 (2014).
    Article  Google Scholar 

    10.
    Csiszár, Á. & Korda, M. In Practical experiences in invasive alien plant control (ed Csiszár, Á. & Korda, M.) 203–235 (Duna-Ipoly Nemzeti Park Igazgatóság, 2015).

    11.
    Shannon, C., Quinn, C. H., Stebbing, P. D., Hassall, C. & Dunn, A. M. The practical application of hot water to reduce the introduction and spread of aquatic invasive alien species. Manag. Biol. Invas. 9, 417–423. https://doi.org/10.3391/mbi.2018.9.4.05 (2018).
    Article  Google Scholar 

    12.
    Mauvisseau, Q. et al. detection of an emerging invasive species: eDNA monitoring of a parthenogenetic crayfish in freshwater systems. Manag. Biol. Invas. 10, 461–472. https://doi.org/10.3391/mbi.2019.10.3.04 (2019).
    Article  Google Scholar 

    13.
    Sepulveda, A., Amberg, J. & Hanson, E. Using environmental DNA to extend the window of early detection for dreissenid mussels. Manag. Biol. Invas. 10, 342–358. https://doi.org/10.3391/mbi.2019.10.2.09 (2019).
    Article  Google Scholar 

    14.
    Guo, S. L., Jiang, H. W., Fang, F. & Chen, G. Q. Influences of herbicides, uprooting and use as cut flowers on sexual reproduction of Solidago canadensis. Weed Res. 49, 291–299. https://doi.org/10.1111/j.1365-3180.2009.00693.x (2009).
    CAS  Article  Google Scholar 

    15.
    Rudenko, M. & Hulting, A. Integration of chemical control with restoration techniques for management of Fallopia japonica populations. Manag. Biol. Invas. 1, 37–49 (2010).
    Article  Google Scholar 

    16.
    Badalamenti, E., Barone, E. & La Mantia, T. Seasonal effects on mortality rates and resprouting of stems treated with glyphosate in the invasive tree of heaven (Ailanthus altissima (Mill.) Swingle). Arboricult. J. 37, 180–195. https://doi.org/10.1080/03071375.2015.1112163 (2015).
    Article  Google Scholar 

    17.
    Boyd, N. S., White, S. N. & Larsen, T. Sequential aminopyralid and imazapyr applications for Japanese knotweed (Fallopia japonica) management. Invasive. Plant. Sci. Manag. 10, 277–283. https://doi.org/10.1017/inp.2017.31 (2017).
    Article  Google Scholar 

    18.
    Caudill, J. et al. Aquatic plant community restoration following the long-term management of invasive Egeria densa with fluridone treatments. Manag. Biol. Invas. 10, 473–485. https://doi.org/10.3391/mbi.2019.10.3.05 (2019).
    Article  Google Scholar 

    19.
    Gibson, D. J., Shupert, L. A. & Liu, X. Do no harm: efficacy of a single herbicide application to control an invasive shrub while minimizing collateral damage to native species. Plants 8, 426. https://doi.org/10.3390/plants8100426 (2019).
    CAS  Article  PubMed Central  Google Scholar 

    20.
    Szitár, K. & Török, K. Short-term effects of herbicide treatment on the vegetation of semiarid sandy oldfields invaded by Asclepias syriaca L. Extended abstract in the Proceedings of the 6th European Conference on Ecological Restoration, 9, 8–12 (2008).

    21.
    Stark, J. D., Chen, X. D. & Johnson, C. S. Effects of herbicides on Behr’s metalmark butterfly, a surrogate species for the endangered butterfly, Lange’s metalmark. Environ. Pollut. 164, 24–27. https://doi.org/10.1016/j.envpol.2012.01.011 (2012).
    CAS  Article  PubMed  Google Scholar 

    22.
    Commission, E. Regulation No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union. 50, 1–50 (2009).
    Google Scholar 

    23.
    Working Group on Invasive Alien Species. Management of Invasive Alien Species of Union Concern. https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp (2017).

    24.
    Pyšek, P. In The Ecology and Evolution of Clonal Plants (ed de Kroon, H. & van Groenendael, J.) 405–427 (Backhuys Publishers, 1997).

    25.
    Pyšek, P. & Richardson, D. M. In Biological invasions (ed Nentwig, W.) 97–126 (Springer, Berlin 2007).

    26.
    Speek, T. A. et al. Factors relating to regional and local success of exotic plant species in their new range. Divers. Distrib. 17, 542–551. https://doi.org/10.1111/j.1472-4642.2011.00759.x (2011).
    Article  Google Scholar 

    27.
    Douhovnikoff, V. & Hazelton, E. L. Clonal growth: invasion or stability? A comparative study of clonal architecture and diversity in native and introduced lineages of Phragmites australis (Poaceae). Am. J. Bot. 101, 1577–1584. https://doi.org/10.3732/ajb.1400177 (2014).
    Article  PubMed  Google Scholar 

    28.
    Wang, N. et al. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress. Ann. Bot. 101, 671–678. https://doi.org/10.1093/aob/mcn005 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Xu, L. & Zhou, Z. F. Effects of Cu pollution on the expansion of an amphibious clonal herb in aquatic-terrestrial ecotones. PLoS ONE 11, e0164361. https://doi.org/10.1371/journal.pone.0164361 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    You, W.-H. et al. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability. Sci. Rep. 6, 29767. https://doi.org/10.1038/srep29767 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Smith, J. M. D., Ward, J. P., Child, L. E. & Owen, M. R. A simulation model of rhizome networks for Fallopia japonica (Japanese knotweed) in the United Kingdom. Ecol. Model. 200, 421–432. https://doi.org/10.1016/j.ecolmodel.2006.08.004 (2007).
    Article  Google Scholar 

    32.
    Balogh, L. In The most important invasive plants in Hungary. (ed Botta Dukát, Z., Balogh, L.) 13–33 (Institute of Ecology and Botany HAS, 2008).

    33.
    Padula, M. et al. Prime segnalazioni di Reynoutria× bohemica Chrtek and Chrtková (Polygonaceae) per l’Italia e analisi della distribuzione del genere Reynoutria Houtt. Atti. Soc. It. Sci. Nat. Museo Civ. Stor. Nat. Milano. 149, 77–108 (2008) (in Italian)

    34.
    Jones, D. et al. Optimising physiochemical control of invasive Japanese knotweed. Biol. Invasions. 20, 2091–2105. https://doi.org/10.1007/s10530-018-1684-5 (2018).
    Article  Google Scholar 

    35.
    Martin, F. M., Dommanget, F., Lavallée, F. & Evette, A. Clonal growth strategies of Reynoutria japonica in response to light, shade, and mowing, and perspectives for management. NeoBiota 56, 89–110. https://doi.org/10.3897/neobiota.56.47511 (2020).
    Article  Google Scholar 

    36.
    Szymura, M. & Szymura, T. H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant. Spec. Biol. 30, 245–256. https://doi.org/10.1111/1442-1984.12059 (2015).
    Article  Google Scholar 

    37.
    Tiley, G. E. D. Biological Flora of the British Isles: Cirsium arvense (L.) Scop. J. Ecol. 98, 938–983. https://doi.org/10.1111/j.1365-2745.2010.01678.x (2010).
    Article  Google Scholar 

    38.
    Nentwig, W. & Müller, E. Plant pathogens as biocontrol agents of Cirsium arvense—an overestimated approach?. NeoBiota 11, 1–24. https://doi.org/10.3897/neobiota.11.1803 (2011).
    Article  Google Scholar 

    39.
    Alpert, P. Nitrogen sharing among ramets increases clonal growth in Fragaria chiloensis. Ecology 72, 69–80. https://doi.org/10.2307/1938903 (1991).
    Article  Google Scholar 

    40.
    Oborny, B. & Bartha, S. Clonality in plant communities—an overview. Abstr. Bot. 19, 115–127 (1995).
    Google Scholar 

    41.
    de Kroon, H., van der Zalm, E., van Rheenen, J. W., van Dijk, A. & Kreulen, R. The interaction between water and nitrogen translocation in a rhizomatous sedge (Carex flacca). Oecologia 116, 38–49. https://doi.org/10.1007/s004420050561 (1998).
    ADS  Article  PubMed  Google Scholar 

    42.
    de Kroon, H. & van Groenendael, J. The ecology and evolution of clonal plants. (Backhuys Publishers, London 1997).

    43.
    Zhang, Y. C., Zhang, Q. Y., Yirdaw, E., Luo, P. & Wu, N. Clonal integration of Fragaria orientalis driven by contrasting water availability between adjacent patches. Bot. Stud. 49, 373–383 (2008).
    Google Scholar 

    44.
    Wang, Y. J. et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol. 216, 1072–1078. https://doi.org/10.1111/nph.14820 (2017).
    Article  PubMed  Google Scholar 

    45.
    Frantzen, J. The role of clonal growth in the pathosystem Cirsium arvense–Puccinia punctiformis. Can. J. Bot. 72, 832–836. https://doi.org/10.1139/b94-107 (1994).
    Article  Google Scholar 

    46.
    D’hertefeldt, T. & van der Putten, W. Physiological integration of the clonal plant Carex arenaria and its response to soil-borne pathogens. Oikos 81, 229–237. https://doi.org/10.2307/3547044 (1998).
    Article  Google Scholar 

    47.
    Stuefer, J. F., Gómez, S. & van Mölken, T. Clonal integration beyond resource sharing: implications for defense signaling and disease transmission in clonal plant networks. Evol. Ecol. 18, 647–667. https://doi.org/10.1007/s10682-004-5148-2 (2004).
    Article  Google Scholar 

    48.
    Bankó, L., Ördög, M. & Erdei, L. The role of rhizome system in the distribution of cadmium load among ramets of Phragmites australis. Acta. Biol. Szeged. 46, 81–82 (2002).
    Google Scholar 

    49.
    Xu, L., Wu, X. & Zhou, Z. F. Effects of physiological integration and fertilization on heavy metal remediation in soil by a clonal grass. Pol. J. Environ. Stud. 25, 1, https://doi.org/10.15244/pjoes/60374 (2016).

    50.
    Chang, F. Y. & Born, W. V. Translocation of dicamba in Canada thistle. Weed Sci. 16, 176–181. https://doi.org/10.1017/S0043174500046841 (1968).
    CAS  Article  Google Scholar 

    51.
    Wyrill, I. I. I. J. B. & Burnside, O. C. Absorption, translocation, and metabolism of 2,4 D and glyphosate in common milkweed and hemp dogbane. Weed Sci. 24, 557–566, https://doi.org/10.1017/S0043174500062949 (1976).

    52.
    Savini, G., Giorgi, V., Scarano, E. & Neri, D. Strawberry plant relationship through the stolon. Physiol. Plant. 134, 421–429. https://doi.org/10.1111/j.1399-3054.2008.01145.x (2008).
    CAS  Article  PubMed  Google Scholar 

    53.
    Saunders, L. E. & Pezeshki, R. Morphological differences in response to physiological integration and spatial heterogeneity of root zone glyphosate exposure in connected ramets of Ludwigia peploides (Creeping water primrose). Water Air Soil Pollut. 226, 171. https://doi.org/10.1007/s11270-015-2435-1 (2015).
    ADS  CAS  Article  Google Scholar 

    54.
    Klimešová, J. & Herben, T. Clonal and bud bank traits: patterns across temperate plant communities. J. Veg. Sci. 26, 243–253. https://doi.org/10.1111/jvs.12228 (2015).
    Article  Google Scholar 

    55.
    Klimešová, J., Martínková, J. & Herben, T. Horizontal growth: an overlooked dimension in plant trait space. Perspect. Plant Ecol. 32, 18–21. https://doi.org/10.1016/j.ppees.2018.02.002 (2018).
    Article  Google Scholar 

    56.
    Inghe, O. Genet and ramet survivorship under different mortality regimes—a cellular automata model. J. Theor. Biol. 138, 257–270. https://doi.org/10.1016/S0022-5193(89)80142-0 (1989).
    MathSciNet  Article  Google Scholar 

    57.
    Tuomi, J. & Vuorisalo, T. Hierarchical selection in modular organisms. Trends Ecol. Evol. 4, 209–213. https://doi.org/10.1016/0169-5347(89)90075-X (1989).
    CAS  Article  PubMed  Google Scholar 

    58.
    Eriksson, O. & Jerling, L. In Clonal growth in plants: regulation and function (ed van Groenendael, J. & de Kroon, H.) 79–94 (SPB Academic Publishing, 1990).

    59.
    Watkinson, A. R. & Powell, J. C. Seedling recruitment and the maintenance of clonal diversity in plant populations–a computer simulation of Ranunculus repens. J. Ecol. 81, 707–717 (1993).
    Article  Google Scholar 

    60.
    Newton, P. C. D. & Hay, M. J. M. Non-viability of axillary buds as a possible constraint on effective foraging of Trifolium repens L. Abstr. Bot. 19, 83–88 (1995).
    Google Scholar 

    61.
    Latzel, V., Mihulka, S. & Klimešová, J. Plant traits and regeneration of urban plant communities after disturbance: Does the bud bank play any role?. Appl. Veg. Sci. 11, 387–394. https://doi.org/10.3170/2008-7-18487 (2008).
    Article  Google Scholar 

    62.
    Scherrer, D., Stoll, P. & Stöcklin, J. Colonization dynamics of a clonal pioneer plant on a glacier foreland inferred from spatially explicit and size-structured matrix models. Folia Geobot. 52, 1–14. https://doi.org/10.1007/s12224-017-9294-z (2017).
    Article  Google Scholar 

    63.
    Schiffleithner, V. & Essl, F. It is worth the effort? Spread and management success of invasive alien plant species in a Central European National Park. NeoBiota 31, 43–61. https://doi.org/10.3897/neobiota.31.8071 (2016).
    Article  Google Scholar 

    64.
    Blossey, B. Before, during and after: the need for long-term monitoring in invasive plant species management. Biol. Invas. 1, 301–311. https://doi.org/10.1023/A:1010084724526 (1999).
    Article  Google Scholar 

    65.
    Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979. https://doi.org/10.1111/j.1365-2664.2011.01979.x (2011).
    Article  Google Scholar 

    66.
    Delbart, E. et al. Can land managers control Japanese knotweed? Lessons from control tests in Belgium. Environ. Manag. 50, 1089–1097. https://doi.org/10.1007/s00267-012-9945-z (2012).
    ADS  Article  Google Scholar 

    67.
    Clements, D., Dugdale, T. M., Butler, K. L. & Hunt, T. D. Management of aquatic alligator weed (Alternanthera philoxeroides) in an early stage of invasion. Manage. Biol. Invas. 5, 327–339. https://doi.org/10.3391/mbi.2014.5.4.03 (2014).
    Article  Google Scholar 

    68.
    Tokarska-Guzik, B. & Pisarczyk, E. Risk Assessment of Asclepias syriaca. https://www.codeplantesenvahissantes.fr/fileadmin/PEE_Ressources/TELECHARGEMENT/Asclepias_syriaca_RA.pdf (2015).

    69.
    Bagi, I. In The most important invasive plants in Hungary. (ed Botta-Dukát, Z., Balogh, L.) 151–159 (Institute of Ecology and Botany HAS, 2008).

    70.
    Commonwealth Agricultural Bureau International (CABI). Asclepias syriaca (common milkweed). https://www.cabi.org/isc/datasheet/7249 (2011).

    71.
    European Invasive Alien Species Gateway (DAISIE). https://www.europe-aliens.org/speciesFactsheet.do?speciesId=17716# (2015).

    72.
    Szilassi, P. et al. Understanding the environmental background of an invasive plant species (Asclepias syriaca) for the future: an application of LUCAS field photographs and machine learning algorithm methods. Plants 8, 593. https://doi.org/10.3390/plants8120593 (2019).
    Article  PubMed Central  Google Scholar 

    73.
    Kelemen, A. et al. The invasion of common milkweed (Asclepias syriaca) in sandy old-fields–is it a threat to the native flora?. Appl. Veg. Sci. 19, 218–224. https://doi.org/10.1111/avsc.12225 (2016).
    Article  Google Scholar 

    74.
    Bakacsy, L. Invasion impact is conditioned by initial vegetation states. Commun. Ecol. 20, 11–19. https://doi.org/10.1556/168.2019.20.1.2 (2019).
    Article  Google Scholar 

    75.
    European Commissions. List of Invasive Alien Species of Union concern. https://ec.europa.eu/environment/nature/invasivealien/list/index_en.htm (2017).

    76.
    Wilbur, H. M. Life history evolution in seven milkweeds of the genus Asclepias. J. Ecol. 64, 223–240 (1976).
    Article  Google Scholar 

    77.
    Pellissier, L. et al. Different rates of defense evolution and niche preferences in clonal and nonclonal milkweeds (Asclepias spp.). New Phytol. 209, 1230–1239, https://doi.org/10.1111/nph.13649 (2016).

    78.
    Balogh, Á., Penksza, K. & Benécsné, B. G. Kísérletek a selyemkóróval fertőzött természetközeli gyepek mentesítésére I. (Experiments for immunization of Asclepias syriaca infected turfs) Tájökológiai lapok 4, 385–394 (2006).

    79.
    Papka, O. S. Agro-ecological effectivness of soil technologies as controling tool for common wilkweed (Asclepias syriaca L.). Acta Biolol. Sibirica 1, 244–257 (2015).

    80.
    Zalai, M. et al. Developing control strategies against common milkweed (Asclepias syriaca L.) on ruderal habitats. Herbologia 16, 69–84, https://doi.org/10.5644/Herb.16.2.07 (2017).

    81.
    Bolla, B. Invasive control at Csengődi Plain. Természetvédelmi Közlemények 18, 77–81 (2012).
    Google Scholar 

    82.
    Molnár, Z. & Kun, A. Magyarország élőhelyei: vegetációtipusok leirása és határozója: ÁNÉR 2011. (MTA Ökológiai és Botanikai Kutatóintézete, 2011).

    83.
    Zsákovics, G., Kovács, F., Kiss, A. & Pócsik, E. Risk analysis of the aridification-endangered sand-ridge area in the Danube-Tisza Interfluve. Acta Climatol. Chorol. Univ. Szeged 40, 169–178 (2007).
    Google Scholar 

    84.
    Zsákovics, G., Kovács, F. & Kiss, A. Complex analysis of an aridification-endangered area: case study from the Danube-Tisza Interfluve. Tájökológiai Lapok 7, 117–126 (2009).
    Google Scholar 

    85.
    Kovács-Láng, E. et al. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30, 385–407. https://doi.org/10.1127/phyto/30/2000/385 (2000).
    Article  Google Scholar 

    86.
    Kun, A. Analysis of precipitation year and their regional frequency distributions in the Danube-Tisza mid-region, Hungary . Acta. Bot. Hung. 43, 175–187. https://doi.org/10.1556/ABot.43.2001.1-2.10 (2001).
    Article  Google Scholar 

    87.
    Bartha, S. et al. Beta diversity and community differentiation in dry perennial sand grassland. Ann. Bot. 9–18, 2011. https://doi.org/10.4462/annbotrm-9118 (2011).
    Article  Google Scholar 

    88.
    Mihály, B. & Botta-Dukát, Z. Biológiai inváziók Magyarországon: Özönnövények. (Biological invasions in Hungary: Invasive plants). (TermészetBÚVÁR Alapítvány Kiadó, 2004).

    89.
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211. https://doi.org/10.2307/1942661 (1984).
    Article  Google Scholar 

    90.
    Oksanen, L. Logic of experiments in ecology: is pseudoreplication a pseudoissue?. Oikos 94, 27–38. https://doi.org/10.1034/j.1600-0706.2001.11311.x (2001).
    Article  Google Scholar 

    91.
    Davies, G. M. & Gray, A. Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring). Ecol. Evol. 5, 5295–5304. https://doi.org/10.1002/ece3.1782 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    92.
    Colegrave, N. & Ruxton, G. D. Using biological insight and pragmatism when thinking about pseudoreplication. Trends. Ecol. Evol. 33, 28–35. https://doi.org/10.1016/j.tree.2017.10.007 (2018).
    Article  PubMed  Google Scholar 

    93.
    Jordan, C. Y. Population sampling affects pseudoreplication. PLoS Biol. 16, e2007054. https://doi.org/10.1371/journal.pbio.2007054 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    94.
    Gratton, P. & Mundry, R. Accounting for pseudoreplication is not possible when the source of nonindependence is unknown. Anim. Behav. 154, e1–e5. https://doi.org/10.1016/j.anbehav.2019.05.014 (2019).
    Article  Google Scholar 

    95.
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org (2019).

    96.
    Doğramacı, M., Anderson, J. V., Chao, W. S. & Foley, M. E. Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns. Weed Sci. 62, 217–229. https://doi.org/10.1614/WS-D-13-00156.1 (2014).
    CAS  Article  Google Scholar 

    97.
    McAllister, R. S. & Haderlie, L. C. Translocation of 14C-glyphosate and 14CO 2-labeled photoassimilates in Canada thistle (Cirsium arvense). Weed Sci. 33, 153–159. https://doi.org/10.1017/S0043174500082011 (1985).
    CAS  Article  Google Scholar 

    98.
    Carlson, S. J. & Donald, W. W. Glyphosate effects on Canada thistle (Cirsium arvense) roots, root buds, and shoots. Weed Res. 28, 37–45. https://doi.org/10.1111/j.1365-3180.1988.tb00783.x (1988).
    CAS  Article  Google Scholar 

    99.
    Hunter, J. H. Effect of bud vs rosette growth stage on translocation of 14C-glyphosate in Canada thistle (Cirsium arvense). Weed Sci. 43, 347–351. https://doi.org/10.1017/S0043174500081303 (1995).
    CAS  Article  Google Scholar 

    100.
    Polowick, P. L. & Raju, M. V. S. The origin and development of root buds in Asclepias syriaca. Can. J. Bot. 60, 2119–2125. https://doi.org/10.1139/b82-260 (1982).
    Article  Google Scholar 

    101.
    Stamm-Katovich, E. J., Wyse, D. L. & Biesboer, D. D. Development of common milkweed (Asclepias syriaca) root buds following emergence from lateral roots. Weed Sci. 36, 758–763. https://doi.org/10.1017/S0043174500075780 (1988).
    Article  Google Scholar 

    102.
    Eckert, C.G. In Ecology and evolutionary biology of clonal plants (ed Stuefer J.F., Erschbamer B., Huber H., Suzuki J.-I.) 279–298. (Springer, Dordrecht, 2002).

    103.
    Barrett, S. C. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. USA 112, 8859–8866. https://doi.org/10.1073/pnas.1501712112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    104.
    Herben, T., Šerá, B. & Klimešová, J. Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos 124, 469–476. https://doi.org/10.1111/oik.01692 (2015).
    Article  Google Scholar 

    105.
    Doust, L. L. Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. The dynamics of ramets in contrasting habitats. J. Ecol. 69, 743–755. https://doi.org/10.2307/2259633 (1981).

    106.
    Chen, X. S., Xie, Y. H., Deng, Z. M., Li, F. & Hou, Z. Y. A change from phalanx to guerrilla growth form is an effective strategy to acclimate to sedimentation in a wetland sedge species Carex brevicuspis (Cyperaceae). Flora 206, 347–350. https://doi.org/10.1016/j.flora.2010.07.006 (2011).
    Article  Google Scholar 

    107.
    Ye, X. et al. Multiple adaptations to light and nutrient heterogeneity in the clonal plant Leymus secalinus with a combined growth form. Flora 213, 49–56. https://doi.org/10.1016/j.flora.2015.04.006 (2015).
    Article  Google Scholar 

    108.
    Schmid, B. Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Trend. Plant. 4, 25–34 (1990).
    Google Scholar 

    109.
    Hsiao, A. I. & McIntyre, G. I. Evidence of competition for water as a factor in the mechanism of root-bud inhibition in milkweed (Asclepias syriaca). Can. J. Bot. 62, 379–384. https://doi.org/10.1139/b84-057 (1984).
    Article  Google Scholar 

    110.
    Watson, M. A. In Clonal growth in plants: regulation and function (ed van Groenendael, J. & de Kroon, H.) 43–56 (SPB Academic Publishing, London 1990).

    111.
    Willson, M. F. & Price, P. W. Resource limitation of fruit and seed production in some Asclepias species. Can. J. Bot. 58, 2229–2233. https://doi.org/10.1139/b80-257 (1980).
    Article  Google Scholar 

    112.
    Waldecker, M. A. & Wyse, D. L. Soil moisture effects on glyphosate absorption and translocation in common milkweed (Asclepias syriaca). Weed Sci. 33, 299–305. https://doi.org/10.1017/S0043174500082321 (1985).
    CAS  Article  Google Scholar  More

  • in

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes

    1.
    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220 (2017).
    ADS  Google Scholar 
    2.
    Jia, G. et al. Land–Climate Interactions. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (Springer, Berlin, 2019).
    Google Scholar 

    3.
    Harper, A. B. et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 9(1), 2938 (2018).
    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

    4.
    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882), 1444–1449 (2008).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Davin, E. L. & de Noblet-Ducoudre, N. Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Clim. 23(1), 97–112 (2010).
    ADS  Google Scholar 

    6.
    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 8 (2015).
    Google Scholar 

    7.
    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351(6273), 600–604 (2016).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296 (2017).
    ADS  Google Scholar 

    9.
    Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9(1), 679 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    10.
    Augusto, L. et al. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 90(2), 444–466 (2015).
    PubMed  Google Scholar 

    11.
    Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351(6273), 597–600 (2016).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562(7726), 259–262 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Thom, D., Rammer, W. & Seidl, R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 87(4), 665–684 (2017).
    PubMed  PubMed Central  Google Scholar 

    14.
    Hans Pretzsch, D. I. F. J. B. Mixed-Species Forests (Springer, Berlin Heidelberg, 2017).
    Google Scholar 

    15.
    Astrup, R. et al. A sensible climate solution for the boreal forest. Nat. Clim. Change 8(1), 11–12 (2018).
    ADS  Google Scholar 

    16.
    Pukkala, T. Effect of species composition on ecosystem services in European boreal forest. J. For. Res. 29(2), 261–272 (2018).
    Google Scholar 

    17.
    Felton, A. et al. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. For. Ecol. Manage. 260(6), 939–947 (2010).
    Google Scholar 

    18.
    Renaud, V. & Rebetez, M. Comparison between open-site and below-canopy climatic conditions in Switzerland during the exceptionally hot summer of 2003. Agric. For. Meteorol. 149(5), 873–880 (2009).
    ADS  Google Scholar 

    19.
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058), 529–533 (2005).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Robine, J.-M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C.R. Biol. 331(2), 171–178 (2008).
    PubMed  Google Scholar 

    21.
    Wood, S. N. Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC Texts in Statistical Science (CRC Press/Taylor & Francis Group, Boca Raton, 2017).
    Google Scholar 

    22.
    Otto, J. et al. Forest summer albedo is sensitive to species and thinning: how should we account for this in Earth system models?. Biogeosciences 11(8), 2411–2427 (2014).
    ADS  Google Scholar 

    23.
    Rydsaa, J. H., Stordal, F. & Tallaksen, L. M. Sensitivity of the regional European boreal climate to changes in surface properties resulting from structural vegetation perturbations. Biogeosciences 12(10), 3071–3087 (2015).
    ADS  Google Scholar 

    24.
    Baldocchi, D. D. & Vogel, C. A. Energy and CO2 flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiol. 16(1–2), 5–16 (1996).
    PubMed  Google Scholar 

    25.
    Carnicer, J. et al. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 19 (2013).
    Google Scholar 

    26.
    Davin, E. L. et al. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 111(27), 9757–9761 (2014).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Baldocchi, D. D. & Xu, L. What limits evaporation from Mediterranean oak woodlands: the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?. Adv. Water Resour. 30(10), 2113–2122 (2007).
    ADS  Google Scholar 

    28.
    Grossiord, C. et al. Influence of species interactions on transpiration of Mediterranean tree species during a summer drought. Eur. J. For. Res. 134(2), 365–376 (2015).
    CAS  Google Scholar 

    29.
    Denissen, J. M. C. et al. Critical soil moisture derived from satellite observations over Europe. J. Geophys. Res. 125(6), e2019 (2020).
    Google Scholar 

    30.
    Dezsi, Ş et al. High-resolution projections of evapotranspiration and water availability for Europe under climate change. Int. J. Climatol. 38(10), 3832–3841 (2018).
    Google Scholar 

    31.
    Pita, G. et al. Carbon and water vapor fluxes over four forests in two contrasting climatic zones. Agric. For. Meteorol. 180, 211–224 (2013).
    ADS  Google Scholar 

    32.
    EEA. Europe’s Biodiversity: Biogeographical Regions and Seas. Biogeographical Regions in Europe. The Atlantic Region—MILD and Green, Fragmented and Close to the Rising Sea (EEA, Copenhagen, 2003).
    Google Scholar 

    33.
    Marshall, J. D. & Waring, R. H. Conifers and broadleaf species: stomatal sensitivity differs in western Oregon. Can. J. For. Res. 14(6), 905–908 (1984).
    Google Scholar 

    34.
    EEA. Climate Change, Impacts and Vulnerability in Europe 2016: An Indicator-Based Report, EEA Report No 1/2017 (EEA, Copenhagen, 2017).
    Google Scholar 

    35.
    Vilà-Cabrera, A. et al. Forest management for adaptation to climate change in the Mediterranean basin: a synthesis of evidence. For. Ecol. Manage. 407, 16–22 (2018).
    Google Scholar 

    36.
    Cardil, A. et al. Temporal interactions among throughfall, type of canopy and thinning drive radial growth in an Iberian mixed pine-beech forest. Agric. For. Meteorol. 252, 62–74 (2018).
    ADS  Google Scholar 

    37.
    Belyazid, S. & Giuliana, Z. Water limitation can negate the effect of higher temperatures on forest carbon sequestration. Eur. J. Forest Res. 138(2), 287–297 (2019).
    Google Scholar 

    38.
    Schume, H., Jost, G. & Hager, H. Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J. Hydrol. 289(1), 258–274 (2004).
    ADS  Google Scholar 

    39.
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3(10), 722–727 (2010).
    ADS  CAS  Google Scholar 

    40.
    Gebhardt, T. et al. The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric. For. Meteorol. 197, 235–243 (2014).
    ADS  Google Scholar 

    41.
    Calev, A. et al. High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. Eur. J. For. Res. 135(3), 551–563 (2016).
    Google Scholar 

    42.
    Goisser, M. et al. Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies?. For. Ecol. Manage. 375, 268–278 (2016).
    Google Scholar 

    43.
    Brinkmann, N. et al. Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biol. 21(1), 71–81 (2019).
    CAS  PubMed  Google Scholar 

    44.
    McGloin, R. et al. Available energy partitioning during drought at two Norway spruce forests and a European Beech forest in Central Europe. J. Geophys. Res. 124(7), 3726–3742 (2019).
    Google Scholar 

    45.
    Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. Journal of Geophysical Research: Biogeosciences 122(4), 903–917 (2017).
    ADS  Google Scholar 

    46.
    Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 111(8), 2915–2919 (2014).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Zweifel, R., Rigling, A. & Dobbertin, M. Species-specific stomatal response of trees to drought: a link to vegetation dynamics?. J. Veg. Sci. 20(3), 442–454 (2009).
    Google Scholar 

    48.
    Renaud, V. et al. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theoret. Appl. Climatol. 105(1), 119–127 (2011).
    ADS  Google Scholar 

    49.
    Barr, A. G. et al. Intercomparison of BOREAS northern and southern study area surface fluxes in 1994. J. Geophys. Res. 106(D24), 33543–33550 (2001).
    ADS  Google Scholar 

    50.
    Rebetez, M. et al. Meteorological data series from Swiss long-term forest ecosystem research plots since 1997. Ann. For. Sci. 75(2), 41 (2018).
    Google Scholar 

    51.
    Good, E. J. An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures. J. Geophys. Res. 121(15), 8801–8819 (2016).
    Google Scholar 

    52.
    Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Change 10(2), 155–161 (2020).
    ADS  Google Scholar 

    53.
    Zabret, K., Rakovec, J. & Šraj, M. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. J. Hydrol. 558, 29–41 (2018).
    ADS  Google Scholar 

    54.
    Li, X. et al. Process-based rainfall interception by small trees in Northern China: the effect of rainfall traits and crown structure characteristics. Agric. For. Meteorol. 218–219, 65–73 (2016).
    ADS  Google Scholar 

    55.
    Xiao, Q. & McPherson, E. G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 45(1), 188–198 (2016).
    CAS  PubMed  Google Scholar 

    56.
    Leuschner, C. In Ecology of Central European Forests: Vegetation Ecology of Central Europe (ed. Ellenberg, H.) (Springer International Publishing, Cham, 2017).
    Google Scholar 

    57.
    Knoke, T. et al. Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur. J. For. Res. 127(2), 89–101 (2008).
    Google Scholar 

    58.
    Ellenberg, H. & Strutt, G. K. Vegetation Ecology of Central Europe 4th edn. (Cambridge University Press, Cambridge, 2009).
    Google Scholar 

    59.
    Schutz, J. P. et al. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur. J. For. Res. 125(3), 291–302 (2006).
    Google Scholar 

    60.
    Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Change Biol. 24(9), 4304–4315 (2018).
    ADS  Google Scholar 

    61.
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395 (2017).
    ADS  Google Scholar 

    62.
    IPCC Climate Change 2014: Synthesis Report. In Contribution of Working Groups I II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri, R. K. & Meyer, L. A.) 151 (IPCC, Geneva, 2014).
    Google Scholar 

    63.
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 106(37), 15594–15598 (2009).
    ADS  CAS  PubMed  Google Scholar 

    64.
    Anderson, G. B. & Bell, M. L. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. Communities. Environ Health Perspect 119(2), 210–218 (2011).
    PubMed  Google Scholar 

    65.
    Zivin, J. G. & Neidell, M. Temperature and the allocation of time: implications for climate change. J. Labor Econ. 32(1), 1–26 (2014).
    Google Scholar 

    66.
    Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).
    ADS  Google Scholar 

    67.
    Trigo, I. F. et al. Thermal land surface emissivity retrieved from SEVIRI/meteosat. IEEE Trans. Geosci. Remote Sens. 46(2), 307–315 (2008).
    ADS  Google Scholar 

    68.
    Gottsche, F. M. et al. Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote Sens. 8, 27 (2016).
    Google Scholar 

    69.
    Freitas, S. C. et al. Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens. 48, 523–534 (2010).
    ADS  Google Scholar 

    70.
    Langanke, T. Copernicus Land Monitoring Service: High Resolution Layer Forest: Product Specification Document (Copernicus team at EEA, European Environment Agency, Copenhagen, 2018).
    Google Scholar 

    71.
    EEA, EU-DEM Statistical Validation (Copenhagen, Denmark, 2014).

    72.
    Kosztra, B. et al. Updated CLC Illustrated Nomenclature Guidelines (European Environment Agency, Vienna, 2017).
    Google Scholar 

    73.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar 

    74.
    Wood, S. N., Goude, Y. & Shaw, S. Generalized additive models for large data sets. J. R. Stat. Soc. C 64(1), 139–155 (2015).
    MathSciNet  Google Scholar 

    75.
    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111(516), 1548–1563 (2016).
    MathSciNet  CAS  Google Scholar 

    76.
    Götmark, F. et al. Broadleaved tree species in conifer-dominated forestry: Regeneration and limitation of saplings in southern Sweden. For. Ecol. Manage. 214(1), 142–157 (2005).
    Google Scholar 

    77.
    von Arx, G. et al. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J. Ecol. 101(5), 1201–1213 (2013).
    Google Scholar  More

  • in

    The concept and future prospects of soil health

    1.
    Ladyman, J., Lambert, J. & Wiesner, K. What is a complex system? Eur. J. Philos. Sci. 3, 33–67 (2013).
    Google Scholar 
    2.
    Brevik, E. C. et al. The interdisciplinary nature of SOIL. Soil 1, 117–129 (2015).
    Google Scholar 

    3.
    Blum, W. E. Functions of soil for society and the environment. Rev. Environ. Sci. Biotechnol. 4, 75–79 (2005).
    Google Scholar 

    4.
    Baveye, P. C., Baveye, J. & Gowdy, J. Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Front. Environ. Sci. 4, 41 (2016).
    Google Scholar 

    5.
    Keith, A. M., Schmidt, O. & McMahon, B. J. Soil stewardship as a nexus between ecosystem services and one health. Ecosyst. Serv. 17, 40–42 (2016).
    Google Scholar 

    6.
    Bünemann, E. K. et al. Soil quality–a critical review. Soil Biol. Biochem. 120, 105–125 (2018).
    Google Scholar 

    7.
    Patzel, N., Sticher, H. & Karlen, D. L. Soil fertility – phenomenon and concept. J. Plant Nutr. Soil Sci. 163, 129–142 (2000).
    Google Scholar 

    8.
    Doran, J. W. & Parkin, T. B. in Defining Soil Quality for a Sustainable Environment Vol. 32 (eds Doran, J. W., Coleman, D. C., Bezdicek, D. F. & Stewart, B. A.) 1–21 (Soil Science Society of America, 1994).

    9.
    Pankhurst, C. E., Doube, B. M. & Gupta, V. V. S. R. in Biological Indicators of Soil Health (eds Pankhurst, C., Doube, B. & Gupta, V.) 419–435 (CAB International, 1997).

    10.
    McBratney, A., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).
    Google Scholar 

    11.
    Koch, A. et al. Soil security: solving the global soil crisis. Glob. Policy 4, 434–441 (2013).
    Google Scholar 

    12.
    Stankovics, P., Tóth, G. & Tóth, Z. Identifying gaps between the legislative tools of soil protection in the EU member states for a common European soil protection legislation. Sustainability 10, 2886 (2018).
    Google Scholar 

    13.
    Montanarella, L. Agricultural policy: govern our soils. Nature 528, 32–33 (2015).
    Google Scholar 

    14.
    Jian, J., Du, X. & Stewart, R. D. A database for global soil health assessment. Sci. Data 7, 16 (2020).
    Google Scholar 

    15.
    Karlen, D. L., Veum, K. S., Sudduth, K. A., Obrycki, J. F. & Nunes, M. R. Soil health assessment: past accomplishments, current activities, and future opportunities. Soil Tillage Res. 195, 104365 (2019).
    Google Scholar 

    16.
    Norris, C. E. & Congreves, K. A. Alternative management practices improve soil health indices in intensive vegetable cropping systems: a review. Front. Environ. Sci. 6, 50 (2018).
    Google Scholar 

    17.
    O’Dell, R. E. & Claassen, V. P. Vertical distribution of organic amendment influences the rooting depth of revegetation species on barren, subgrade serpentine substrate. Plant Soil 285, 19–29 (2006).
    Google Scholar 

    18.
    Congreves, K. A., Hayes, A., Verhallen, E. A. & Van Eerd, L. L. Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil Tillage Res. 152, 17–28 (2015).
    Google Scholar 

    19.
    Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).
    Google Scholar 

    20.
    Jenkinson, D. S. The Rothamsted long-term experiments: Are they still of use? Agron. J. 83, 2–10 (1991).
    Google Scholar 

    21.
    Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
    Google Scholar 

    22.
    Chaparro, J. M., Sheflin, A. M., Manter, D. K. & Vivanco, J. M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
    Google Scholar 

    23.
    Bonanomi, G., Lorito, M., Vinale, F. & Woo, S. L. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 56, 1–20 (2018).
    Google Scholar 

    24.
    Chen, X. D. et al. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 58, 1–20 (2020).
    Google Scholar 

    25.
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
    Google Scholar 

    26.
    Ogle, S. M., Swan, A. & Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 149, 37–49 (2012).
    Google Scholar 

    27.
    Zimnicki, T. et al. On quantifying water quality benefits of healthy soils. BioScience 70, 343–352 (2020).
    Google Scholar 

    28.
    Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E. & Ippolito, A. Agricultural water pollution: key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 36, 20–27 (2019).
    Google Scholar 

    29.
    Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).
    Google Scholar 

    30.
    Lamichhane, S., Krishna, K. B. & Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148, 336–353 (2016).
    Google Scholar 

    31.
    Tournebize, J., Chaumont, C. & Mander, Ü. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng. 103, 415–425 (2017).
    Google Scholar 

    32.
    Hanson, J. R., Macalady, J. L., Harris, D. & Scow, K. M. Linking toluene degradation with specific microbial populations in soil. Appl. Environ. Microbiol. 65, 5403–5408 (1999).
    Google Scholar 

    33.
    Li, G., Sun, G. X., Ren, Y., Luo, X. S. & Zhu, Y. G. Urban soil and human health: a review. Eur. J. Soil Sci. 69, 196–215 (2018).
    Google Scholar 

    34.
    Laurenson, G., Laurenson, S., Bolan, N., Beecham, S. & Clark, I. The role of bioretention systems in the treatment of stormwater. Adv. Agron. 120, 223–274 (2013).
    Google Scholar 

    35.
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).
    Google Scholar 

    36.
    Kadam, A. M., Oza, G. H., Nemade, P. D. & Shankar, H. S. Pathogen removal from municipal wastewater in constructed soil filter. Ecol. Eng. 33, 37–44 (2008).
    Google Scholar 

    37.
    Welch, R. M. & Graham, R. D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364 (2004).
    Google Scholar 

    38.
    Barrett, C. B. & Bevis, L. E. The self-reinforcing feedback between low soil fertility and chronic poverty. Nat. Geosci. 8, 907–912 (2015).
    Google Scholar 

    39.
    Wood, S. A., Tirfessa, D. & Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 266, 100–108 (2018).
    Google Scholar 

    40.
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).
    Google Scholar 

    41.
    Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. & Kopriva, S. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front. Plant Sci. 8, 1617 (2017).
    Google Scholar 

    42.
    Schlatter, D., Kinkel, L., Thomashow, L., Weller, D. & Paulitz, T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107, 1284–1297 (2017).
    Google Scholar 

    43.
    Rillig, M. C., Lehmann, A., Lehmann, J., Camenzind, T. & Rauh, C. Soil biodiversity effects from field to fork. Trends Plant Sci. 23, 17–24 (2018).
    Google Scholar 

    44.
    Oliver, M. A. & Gregory, P. J. Soil, food security and human health: a review. Eur. J. Soil Sci. 66, 257–276 (2015).
    Google Scholar 

    45.
    Hussein, H. S. & Brasel, J. M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167, 101–134 (2001).
    Google Scholar 

    46.
    Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).
    Google Scholar 

    47.
    Schatz, A., Bugle, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).
    Google Scholar 

    48.
    Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).
    Google Scholar 

    49.
    Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).
    Google Scholar 

    50.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
    Google Scholar 

    51.
    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
    Google Scholar 

    52.
    Denef, K. & Six, J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. Eur. J. Soil Sci. 56, 469–479 (2005).
    Google Scholar 

    53.
    Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).
    Google Scholar 

    54.
    Van Wesemael, B. et al. An indicator for organic matter dynamics in temperate agricultural soils. Agric. Ecosyst. Environ. 274, 62–75 (2019).
    Google Scholar 

    55.
    Bouma, J. et al. in Global Soil Security (eds Field, D. J., Morgan, C. L. S. & McBratney, A. B.) 27–44 (Springer, 2017).

    56.
    Schoenholtz, S. H., Van Miegroet, H. & Burger, J. A. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For. Ecol. Manag. 138, 335–356 (2000).
    Google Scholar 

    57.
    Andrews, S. S. & Carroll, C. R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 11, 1573–1585 (2001).
    Google Scholar 

    58.
    Lilburne, L. R., Hewitt, A. E., Sparling, G. P. & Selvarajah, N. Soil quality in New Zealand: policy and the science response. J. Environ. Qual. 31, 1768–1773 (2002).
    Google Scholar 

    59.
    Idowu, O. J. et al. Use of an integrative soil health test for evaluation of soil management impacts. Renew. Agric. Food Syst. 24, 214–224 (2009).
    Google Scholar 

    60.
    Cherubin, M. R. et al. A Soil Management Assessment Framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 80, 215–226 (2016).
    Google Scholar 

    61.
    E.U. Mission Board Soil Health and Food. Caring for Soil is Caring for Life. The Publications Office of the European Union https://op.europa.eu/en/web/eu-law-and-publications/publication-detail/-/publication/32d5d312-b689-11ea-bb7a-01aa75ed71a1 (European Commission, 2020).

    62.
    Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).
    Google Scholar 

    63.
    Kaiser, E. A. et al. Nitrous oxide release from arable soil: importance of N-fertilization, crops and temporal variation. Soil Biol. Biochem. 30, 1553–1563 (1998).
    Google Scholar 

    64.
    Baldock, J. A., Beare, M. H., Curtin, D. & Hawke, B. Stocks, composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy. Soil Res. 56, 468–480 (2018).
    Google Scholar 

    65.
    Rossel, R. V. et al. Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls. Nat. Geosci. 12, 547–552 (2019).
    Google Scholar 

    66.
    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
    Google Scholar 

    67.
    Pietrelli, A., Bavasso, I., Lovecchio, N., Ferrara, V. & Allard, B. in 8th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI) 302–306 (IEEE, 2019).

    68.
    Shaikh, F. K. & Zeadally, S. Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016).
    Google Scholar 

    69.
    Tan, X., Sun, Z., Wang, P. & Sun, Y. Environment-aware localization for wireless sensor networks using magnetic induction. Ad Hoc Netw. 98, 102030 (2020).
    Google Scholar 

    70.
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).
    Google Scholar 

    71.
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1078 (2014).
    Google Scholar 

    72.
    Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
    Google Scholar 

    73.
    Rillig, M. C., Bonneval, K. & Lehmann, J. Sounds of soil: a new world of interactions under our feet? Soil Syst. 3, 45 (2019).
    Google Scholar 

    74.
    Smolka, M. et al. A mobile lab-on-a-chip device for on-site soil nutrient analysis. Precision Agric. 18, 152–168 (2017).
    Google Scholar 

    75.
    Rossel, R. A. V. & Bouma, J. Soil sensing: a new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).
    Google Scholar 

    76.
    Ali, M. A., Dong, L., Dhau, J., Khosla, A. & Kaushik, A. Perspective — electrochemical sensors for soil quality assessment. J. Electrochem. Soc. 167, 037550 (2020).
    Google Scholar 

    77.
    Enell, A. et al. Combining leaching and passive sampling to measure the mobility and distribution between porewater, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil. Environ. Sci. Technol. 50, 11797–11805 (2016).
    Google Scholar 

    78.
    Sismaet, H. J. & Goluch, E. D. Electrochemical probes of microbial community behaviour. Annu. Rev. Anal. Chem. 11, 441–461 (2018).
    Google Scholar 

    79.
    Chabrillat, S. et al. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 40, 361–399 (2019).
    Google Scholar 

    80.
    Mohanty, B. P., Cosh, M. H., Lakshmi, V. & Montzka, C. Soil moisture remote sensing: state-of-the-science. Vadose Zone J. 16, 1–9 (2017).
    Google Scholar 

    81.
    Paustian, K. et al. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manage. 10, 567–587 (2019).
    Google Scholar 

    82.
    Duckett, T. et al. Agricultural robotics: the future of robotic agriculture. Preprint arXiv https://arxiv.org/abs/1806.06762 (2018).

    83.
    Hussain, I., Olson, K. R., Wander, M. M. & Karlen, D. L. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Tillage Res. 50, 237–249 (1999).
    Google Scholar 

    84.
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589–601 (2017).
    Google Scholar 

    85.
    Svoray, T., Hassid, I., Atkinson, P. M., Moebius-Clune, B. N. & van Es, H. M. Mapping soil health over large agriculturally important areas. Soil Sci. Soc. Am. J. 79, 1420–1434 (2015).
    Google Scholar 

    86.
    Moebius-Clune, B. N. et al. Comprehensive Assessment of Soil Health – The Cornell Framework, Edition 3.1 (Cornell Univ. Press, 2016).

    87.
    Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).
    Google Scholar 

    88.
    Lima, A. C. R., Brussaard, L., Totola, M. R., Hoogmoed, W. B. & de Goede, R. G. M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 64, 194–200 (2013).
    Google Scholar 

    89.
    Verheijen, F. G., Bellamy, P. H., Kibblewhite, M. G. & Gaunt, J. L. Organic carbon ranges in arable soils of England and Wales. Soil Use Manage. 21, 2–9 (2005).
    Google Scholar 

    90.
    Bucka, F. B., Kölbl, A., Uteau, D., Peth, S. & Kögel-Knabner, I. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma 354, 113881 (2019).
    Google Scholar 

    91.
    Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 6, 33696 (2016).
    Google Scholar 

    92.
    Jordan-Meille, L. et al. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soil Use Manage. 28, 419–435 (2012).
    Google Scholar 

    93.
    McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. Bioscience 68, 194–203 (2018).
    Google Scholar 

    94.
    Brevik, E. C. & Sauer, T. J. The past, present, and future of soils and human health studies. Soil 1, 35–46 (2015).
    Google Scholar 

    95.
    Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).
    Google Scholar 

    96.
    Bampa, F. et al. Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manage. 35, 6–20 (2019).
    Google Scholar 

    97.
    Schulte, R. P. et al. Demands on land: mapping competing societal expectations for the functionality of agricultural soils in Europe. Environ. Sci. Policy 100, 113–125 (2019).
    Google Scholar 

    98.
    Ward, M. O., Grinstein, G. & Keim, D. Interactive Data Visualization: Foundations, Techniques, and Applications (AK Peters/CRC Press, 2015).

    99.
    Villamil, M. B., Miguez, F. E. & Bollero, G. A. Multivariate analysis and visualization of soil quality data for no-till systems. J. Environ. Qual. 37, 2063–2069 (2008).
    Google Scholar 

    100.
    Börner, K., Bueckle, A. & Ginda, M. Data visualization literacy: definitions, conceptual frameworks, exercises, and assessments. Proc. Natl Acad. Sci. USA 116, 1857–1864 (2019).
    Google Scholar 

    101.
    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
    Google Scholar 

    102.
    Tian, R. & Wu, J. Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in Northwest China. Hum. Ecol. Risk Assess. Int. J. 25, 132–157 (2019).
    Google Scholar 

    103.
    Finger, R., Swinton, S. M., Benni, N. E. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).
    Google Scholar 

    104.
    van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E. R. & Manlove, S. Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning. Comput. Hum. Behav. 21, 671–688 (2005).
    Google Scholar 

    105.
    Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03 (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).

    106.
    Haberern, J. A soil health index. J. Soil Water Conserv. 47, 6 (1992).
    Google Scholar 

    107.
    Pankhurst, C. E. et al. Evaluation of soil biological properties as potential bioindicators of soil health. Austr. J. Exp. Agric. 35, 1015–1028 (1995).
    Google Scholar 

    108.
    Doran, J. W. & Zeiss, M. R. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).
    Google Scholar 

    109.
    Winiwarter, V. & Blum, W. E. in Footprints in the Soil. People and Ideas in Soil History (ed. Warkentin, B.) 107–122 (Elsevier, 2006).

    110.
    Capra, G. F., Ganga, A. & Moore, A. F. Songs for our soils. How soil themes have been represented in popular song. Soil Sci. Plant Nutr. 63, 517–525 (2017).
    Google Scholar 

    111.
    Jenny, H. in Study Week on Organic Matter and Soil Fertility. Pontificiae Academiae Scientarium Scripta, Varia 32. 947–979 (North Holland Publ. Co and Wiley Interscience Division, 1968).

    112.
    Feller, C., Landa, E. R., Toland, A. & Wessolek, G. Case studies of soil in art. Soil 1, 543–559 (2015).
    Google Scholar 

    113.
    Brevik, E. C. & Hartemink, A. E. Early soil knowledge and the birth and development of soil science. Catena 83, 23–33 (2010).
    Google Scholar 

    114.
    Carson, R. Silent Spring (Houghton Mifflin, 1962).

    115.
    Lovelock, J. E. Gaia, a New Look at Life on Earth (Oxford Univ. Press, 1979).

    116.
    Keesstra, S. D. et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2, 111–128 (2016).
    Google Scholar 

    117.
    Mausel, P. W. Soil quality in Illinois — an example of a soils geography resource analysis. Prof. Geogr. 23, 127–136 (1971).
    Google Scholar 

    118.
    Sojka, R. E. & Upchurch, D. R. Reservations regarding the soil quality concept. Soil Sci. Soc. Am. J. 63, 1039–1054 (1999).
    Google Scholar 

    119.
    Rumpel, C. et al. Put more carbon in soils to meet Paris climate pledges. Nature 564, 32–34 (2018).
    Google Scholar 

    120.
    Freidberg, S. Assembled but unrehearsed: corporate food power and the ‘dance’ of supply chain sustainability. J. Peasant Stud. 47, 383–400 (2020).
    Google Scholar 

    121.
    Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).
    Google Scholar 

    122.
    Puig de la Bellacasa, M. Re-animating soils: transforming human–soil affections through science, culture and community. Sociol. Rev. 67, 391–407 (2019).
    Google Scholar  More

  • in

    A national macroinvertebrate dataset collected for the biomonitoring of Ireland’s river network, 2007–2018

    Sampling rational and design
    The EPA in conjunction with local authorities and other public bodies in Ireland has undertaken a substantial characterization of the physical water environment and the impact of human activities on waters17. Therefore, the monitored river water bodies in Ireland and the national river monitoring program are designed to obtain sufficiently representative information across river typologies and on significant pressures to assign a WFD status to each water body across our entire river network (Fig. 1).
    Fig. 1

    (a) Map of hydrometric areas (HA) in the dataset and (b) locations of all river biomonitoring stations 2007–2018 in Ireland. Both maps created using EPA data. See Table 5 for more details.

    Full size image

    The data collected covers the range of ecological conditions found in Irish rivers to assist the assignment of an ecological status as required by the WFD. Ecological status is an assessment of the quality of the structure and functioning of surface water ecosystems and it highlights the influence of pressures (e.g. pollution and habitat degradation) on several identifiable quality elements. As part of the WFD, ecological status is determined for each of the surface water body categories (i.e. rivers, lakes, transitional waters and coastal waters) using intercalibrated (see Technical Validation for further details) biological quality elements (BQEs) and supported by physico-chemical and hydromorphological quality elements. Ecological status for surface water bodies is primarily driven by the BQEs, namely fish, aquatic flora, macroinvertebrates and phytoplankton. The overall ecological status classification for any water body is determined, according to the ‘one out, all out’ principle, by the element with the worst status out of all the biological and supporting quality elements. In Ireland, macroinvertebrates are the main BQE determining the ecological status in rivers3.
    The WFD requires BQE scores to be expressed as an Ecological Quality Ratio (EQR) to standardize and provide a common scale of ecological quality across participatory Member States using differing national methods18. The EQR is determined by expressing the observed result over the expected result which calculates a ratio score (Table 1). The ‘expected’ or ‘reference’ condition (EQR close to 1) is the natural, undisturbed environment, i.e. the benchmark. The assessment of the scale of anthropogenic pollution in any water body is based on the extent of deviation from expected reference conditions and follows the definitions as outlined in the WFD (Table 1). For example, ‘High status’ is defined as the biological, chemical and morphological conditions associated with no or very low human pressure, and therefore, little or no deviation from reference, ‘Good status’ means ‘slight’ deviation, ‘Moderate status’ means ‘moderate’ deviation, and so on. EQRs provide a common scale to ensure comparability across different pressures, allowing water managers to easily recognise and characterize impact facilitating the development of mitigation measures to restore or preserve ecological status17. To assess the network of rivers in Ireland, monitoring stations cover all 37 hydrometric areas (HA) providing a full national coverage (Fig. 1).
    Table 1 The Q-value, ecological quality ratio (EQR)*, and corresponding WFD status and pollution gradient resulting from anthropogenic pressures.
    Full size table

    Field sampling and data collection
    River macroinvertebrates are collected from June to September each year, when flows are likely to be relatively low. Occasionally, for operational or weather-related reasons, surveys may occur outside of this period. Two approached are used. The first, and principal methodology used (96.7% of surveys in dataset), is by kick-sampling with a standard pond net (230 × 225 mm frame with 1 mm mesh). In this approach a semi-quantitative two-minute macroinvertebrate kick-sample is collected from the riverbed preferably from the faster flowing riffle habitats19. A further one-minute hand search is carried out to locate macroinvertebrates that remain attached to the underside of the cobbles19. Depending upon the proportion of various habitats (e.g. glides, margins, pools), time may also be spent sampling these habitats with operators moving location approximately every 4 to 5-seconds over a 50 m stretch. Similar studies in Ireland and elsewhere have found that this sampling approach is sufficient to achieve a suitable representation of taxa for bioassessment of lotic habitats20,21. Occasionally, when the substratum (e.g. bedrock) or flow conditions make kick-sampling difficult, or the abundance of macroinvertebrates collected is extremely low (e.g. toxic pollution, see Kelly-Quinn et al.7), it may have been necessary to spend a longer amount of time sampling the river to accumulate a sufficient diversity and abundance of macroinvertebrates. In fast flowing steep rivers, it may have been necessary to kick deeper into the riverbed to disturb the organisms and include more of the marginal areas to ensure taxa are recorded19. This sampling approach requires avoidance of obvious localized disturbance (e.g. cattle access points) which may adversely influence the sample taken.
    If the river depth is too deep to wade, a separate approach is taken. In this scenario, a bankside extension net sampling approach for deep (non-wadable) rivers is used to collect macroinvertebrates. It must be noted that this methodology is used less frequently than the kick-sampling approach. If employed, the depth and number of extension poles attached to a modified hand net will vary on a site by site basis. The net (frame and mesh dimensions as above) is then pulled upstream along the riverbed, generally at a perpendicular angle to the bank to cover as much surface area as possible with operators moving location after every pull over a 20 to 50 m stretch. The net may also need to be emptied between pulls to ensure that macroinvertebrates already collected are not lost inadvertently during the next pull. The extension net is also used to sweep along the water surface and marginal vegetation. This approach is conducted for a minimum of five minutes or until a representative sample is obtained (see Technical Validation for more details).
    Once a live sample is collected it is assessed on the riverbank and the EPA Q-value classification is assigned (see Toner et al.1 for more details). This involves recording the taxa present at a suitable and attainable (under field conditions) taxonomic resolution (Table 2) and their categorical relative abundance (Table 3), determined using approximate counts. Once all taxa and their relative abundance have been recorded, the sample is returned to the river. Potential users should note that actual numbers of taxa have not been recorded and are therefore unavailable within the dataset. Similarly, taxonomic resolution may vary from what is outlined in Table 2. Indeterminate specimens may be brought back to the laboratory for identification under a microscope. Taxa are also occasionally returned to the laboratory and identified by microscope as a quality control measure. A brief description of the Q-value ecological quality rating (EQR) is outlined in Table 1. The typology of each river station is described in Table 4, after Kelly-Quinn et al.22,23.
    Table 2 The level of macroinvertebrate identification carried out in the field during WFD biomonitoring assessments.
    Full size table

    Table 3 Abundance categories for macroinvertebrates recorded in the field during WFD biomonitoring assessments.
    Full size table

    Table 4 Typologies of Irish rivers.
    Full size table

    Each hydrometric area (Table 5 and Fig. 1) is generally surveyed on a three-year cycle; however, full surveys of certain hydrometric areas may be spilt across two concurrent years (e.g. HA 25), and on occasion a subset of stations were surveyed/resurveyed outside of the main survey year to closely track any progress in status changes following the implementation of a program of measures (Table 6). Certain stations were sampled on a more frequent basis such as seriously polluted sites (i.e. Red dot sites – Fanning et al.24), WFD high status objective sites, priority areas for action identified in Ireland’s national river basin plan17 and occasional sites of interest to local authorities and the EPA Office of Environmental Enforcement.
    Table 5 Hydrometric area (HA) codes and HA names on the island of Ireland.
    Full size table

    Table 6 The number of river biomonitoring stations assessed by year and hydrometric area (HA), held by the EPA* 2007 to 2018.
    Full size table

    Within each hydrometric area, water bodies may have one or more sampling stations along their continuum. The number of stations may also vary between survey years, although, unless health and safety, or other unforeseen circumstances arise, the EPA attempt to sample the same stations in each survey cycle. Similarly, the numbers of water bodies and stations sampled within each hydrometric area will reflect the geographical area and length of river network. More

  • in

    Responses of global waterbird populations to climate change vary with latitude

    1.
    Chen, I. C. et al. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    CAS  Google Scholar 
    2.
    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
    CAS  Google Scholar 

    3.
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).
    CAS  Google Scholar 

    4.
    Pearce-Higgins, J. W. et al. Geographical variation in species’ population responses to changes in temperature and precipitation. Proc. R. Soc. Lond. B 282, 20151561 (2015).
    Google Scholar 

    5.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 

    6.
    Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).
    CAS  Google Scholar 

    7.
    Feeley, K. J., Stroud, J. T., Perez, T. M. & Kühn, I. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23, 231–234 (2017).
    Google Scholar 

    8.
    Stroud, J. T. & Thompson, M. E. Looking to the past to understand the future of tropical conservation: the importance of collecting basic data. Biotropica 51, 293–299 (2019).
    Google Scholar 

    9.
    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).
    Google Scholar 

    10.
    IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2001).

    11.
    Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
    Google Scholar 

    12.
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 0067 (2017).
    Google Scholar 

    13.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887 (2015).
    Google Scholar 

    14.
    Lowe, J. R. et al. Responses of coral reef wrasse assemblages to disturbance and marine reserve protection on the Great Barrier Reef. Mar. Biol. 166, 119 (2019).
    Google Scholar 

    15.
    Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151 (2017).
    Google Scholar 

    16.
    Khaliq, I. et al. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. Lond. B 281, 20141097 (2014).
    Google Scholar 

    17.
    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).
    CAS  Google Scholar 

    18.
    Ramsar Convention on Wetlands Global Wetland Outlook: State of the World’s Wetlands and Their Services to People (Ramsar Convention Secretariat, 2018).

    19.
    Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Aust. J. Ecol. 21, 224–228 (1996).
    Google Scholar 

    20.
    Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. Lond. B 279, 194–201 (2012).
    Google Scholar 

    21.
    Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. Lond. B 283, 20162104 (2016).
    Google Scholar 

    22.
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).
    Google Scholar 

    23.
    Maclean, I. M. D., Rehfisch, M. M., Delany, S. & Robinson, R. A. The Effects of Climate Change on Migratory Waterbirds within the African-Eurasian Flyway (AEWA, 2007).

    24.
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
    Google Scholar 

    25.
    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. Lond. B 280, 20121890 (2013).
    Google Scholar 

    26.
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).
    Google Scholar 

    27.
    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. Lond. B 283, 20152458 (2016).
    Google Scholar 

    28.
    Betts, M. G. et al. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, 186 (2019).
    Google Scholar 

    29.
    Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).
    Google Scholar 

    30.
    Canepuccia, A. D. et al. Waterbird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon. Waterbirds 30, 541–553 (2007).
    Google Scholar 

    31.
    Delany, S. Guidance on Waterbird Monitoring Methodology: Field Protocol for Waterbird Counting (Wetlands International, 2010).

    32.
    van Roomen, M., van Winden, E. & van Turnhout, C. Analyzing Population Trends at the Flyway Level for Bird Populations Covered by the African Eurasian Waterbird Agreement: Details of a Methodology (SOVON Dutch Centre for Field Ornithology, 2011).

    33.
    LeBaron, G. S. The 115th Christmas Bird Count (National Audubon Society, 2015).

    34.
    Gill, F. & Donsker, D. (eds) IOC World Bird List Version 5.1 (IOC, 2015).

    35.
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 

    36.
    R Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    37.
    Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 6 (2005).
    Google Scholar 

    38.
    Walsh, C. & Nally, R. M. hier.part: Hierarchical Partitioning: R package v.1.0-4 (R Foundation for Statistical Computing, 2013).

    39.
    Link, W. A. & Sauer, J. R. Seasonal components of avian population change: joint analysis of two large-scale monitoring programs. Ecology 88, 49–55 (2007).
    Google Scholar 

    40.
    Stroud, J. T. & Feeley, K. J. Neglect of the tropics is widespread in ecology and evolution: a comment on Clarke et al. Trends Ecol. Evol. 32, 626–628 (2017).
    Google Scholar 

    41.
    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. Lond. B 280, 20122649 (2013).
    Google Scholar 

    42.
    Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
    Google Scholar 

    43.
    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 

    44.
    de Villemereuil, P., Wells, J., Edwards, R. & Blomberg, S. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).
    Google Scholar 

    45.
    Abadi, F. et al. Importance of accounting for phylogenetic dependence in multi-species mark-recapture studies. Ecol. Modell. 273, 236–241 (2014).
    Google Scholar 

    46.
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
    CAS  Google Scholar 

    47.
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).
    CAS  Google Scholar 

    48.
    Donoghue, M. J. & Ackerly, D. D. Phylogenetic uncertainties and sensitivity analyses in comparative biology. Phil. Trans. R. Soc. Lond. B 351, 1241–1249 (1996).
    Google Scholar 

    49.
    Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    CAS  Google Scholar 

    50.
    Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. OpenBUGS User Manual Version 3.2.3 (2014).

    51.
    Sturtz, S., Ligges, U. & Gelman, A. R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12, 3 (2005).
    Google Scholar 

    52.
    The BirdLife Checklist of the Birds of the World Version 7 (BirdLife International, 2014); http://www.birdlife.org/datazone/userfiles/file/Species/Taxonomy/BirdLife_Checklist_Version_70.zip

    53.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Google Scholar 

    54.
    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’: R package v.1.10.4-3 (R Foundation for Statistical Computing, 2017).

    55.
    Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A Grammar of Data Manipulation: R package v.0.7.4 (R Foundation for Statistical Computing, 2017).

    56.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    57.
    Auguie, B. gridExtra: Miscellaneous Functions for “grid” Graphics: R package v.2.3 (R Foundation for Statistical Computing, 2017).

    58.
    Brownrigg, R. mapdata: Extra Map Databases: R package v.2.3.0 (R Foundation for Statistical Computing, 2018).

    59.
    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1 (2011).
    Google Scholar 

    60.
    Urbanek, S. png: Read and Write PNG Images: R package v.0.1-7 (R Foundation for Statistical Computing, 2013).

    61.
    Neuwirth, E. RColorBrewer: ColorBrewer Palettes: R package v.1.1-2 (R Foundation for Statistical Computing, 2014).

    62.
    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library: R package v.1.2-8 (R Foundation for Statistical Computing, 2017).

    63.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling: R package v.2.6-7 (R Foundation for Statistical Computing, 2017).

    64.
    Garnier, S. viridis: Default Color Maps from ‘matplotlib’: R package v.0.5.1 (R Foundation for Statistical Computing, 2018).

    65.
    Nadeau, C. P., Urban, M. C. & Bridle, J. R. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol. Evol. 32, 786–800 (2017).
    Google Scholar 

    66.
    Breed, G. A., Stichter, S. & Crone, E. E. Climate-driven changes in northeastern US butterfly communities. Nat. Clim. Change 3, 142–145 (2012).
    Google Scholar 

    67.
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
    Google Scholar 

    68.
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
    Google Scholar 

    69.
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
    Google Scholar 

    70.
    Mills, S. C. et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 26, 1374–1385 (2017).
    Google Scholar 

    71.
    Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).
    Google Scholar 

    72.
    Faragó, S. & Hangya, K. Effects of water level on waterbird abundance and diversity along the middle section of the Danube River. Hydrobiologia 697, 15–21 (2012).
    Google Scholar 

    73.
    Kleijn, D. et al. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).
    Google Scholar 

    74.
    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).
    Google Scholar 

    75.
    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).
    Google Scholar 

    76.
    Dhanjal-Adams, K. L. et al. Distinguishing local and global correlates of population change in migratory species. Divers. Distrib. 25, 797–808 (2019).
    Google Scholar 

    77.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
    Google Scholar  More

  • in

    Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria

    1.
    Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem. 2003;54:1–29.
    CAS  Google Scholar 
    2.
    Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Férard C. Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci. 2011;343:160–7.
    CAS  Google Scholar 

    3.
    Lowenstam HA. Minerals formed by organisms. Science. 1981;211:1126–31.
    CAS  PubMed  Google Scholar 

    4.
    Blakemore R. Magnetotactic bacteria. Science. 1975;190:377–9.
    CAS  PubMed  Google Scholar 

    5.
    Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.
    CAS  PubMed  Google Scholar 

    6.
    Grant CR, Wan J, Komeili A. Organelle formation in bacteria and archaea. Annu Rev Cell Dev Biol. 2018;34:217–38.
    CAS  PubMed  Google Scholar 

    7.
    Schewiakoff W. Über einen neuen bacterienahnlichen organismus des Süsswassers. Heidelb Habilit. 1893;1–38.

    8.
    West GS, Griffiths BM. The lime-sulphur bacteria of the genus hillhousia. Ann Bot. 1913;os-27:83–91.
    Google Scholar 

    9.
    Head IM, Gray ND, Clarke KJ, Pickup RW, Jones JG. The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. Microbiol Read Engl. 1996;142(Pt 9):2341–54.
    CAS  Google Scholar 

    10.
    Salman V, Yang T, Berben T, Klein F, Angert E, Teske A. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh. ISME J. 2015;9:2503–14.
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Mansor M, Hamilton TL, Fantle MS, Macalady J. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front Microbiol. 2015;6:822.
    PubMed  PubMed Central  Google Scholar 

    12.
    Gray N, Head I. The family achromatiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Gammaproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 1–14.

    13.
    Head IM, Gray ND, Howarth R, Pickup RW, Clarke KJ, Jones JG. Achromatium oxaliferum Understanding the Unmistakable. In: Schink B, editor. Advances in microbial ecology. Boston, MA: Springer US; 2000. p. 1–40.

    14.
    Babenzien H-D, Sass H. The sediment-water interface—habitat of the unusual bacterium Achromatium oxaliferum. Adv Limnol. 1996;48:247–51.
    Google Scholar 

    15.
    Gray ND, Pickup RW, Jones JG, Head IM. Ecophysiological evidence that achromatium oxaliferum is responsible for the oxidation of reduced sulfur species to sulfate in a freshwater sediment. Appl Environ Microbiol. 1997;63:1905–10.
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Gray ND, Howarth R, Pickup RW, Jones JG, Head IM. Substrate uptake by uncultured bacteria from the genus Achromatium determined by microautoradiography. Appl Environ Microbiol. 1999;65:5100–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Babenzien H-D. Achromatium oxaliferum and its ecological niche. Zentralblatt Für Mikrobiol. 1991;146:41–49.
    Google Scholar 

    18.
    Gray ND, Comaskey D, Miskin IP, Pickup RW, Suzuki K, Head IM. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria. Environ Microbiol. 2004;6:669–77.
    CAS  PubMed  Google Scholar 

    19.
    Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE, et al. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science. 2012;336:459–62.
    CAS  PubMed  Google Scholar 

    20.
    Cam N, Benzerara K, Georgelin T, Jaber M, Lambert J-F, Poinsot M, et al. Selective Uptake of Alkaline Earth Metals by Cyanobacteria Forming Intracellular Carbonates. Environ Sci Technol. 2016;50:11654–62.
    CAS  PubMed  Google Scholar 

    21.
    Blondeau M, Sachse M, Boulogne C, Gillet C, Guigner J-M, Skouri-Panet F, et al. Amorphous calcium carbonate granules form within an intracellular compartment in calcifying cyanobacteria. Front Microbiol. 2018;9:1768.
    PubMed  PubMed Central  Google Scholar 

    22.
    Li J, Margaret Oliver I, Cam N, Boudier T, Blondeau M, Leroy E, et al. Biomineralization patterns of intracellular carbonatogenesis in cyanobacteria: molecular hypotheses. Minerals. 2016;6:10.

    23.
    Benzerara K, Skouri-Panet F, Li J, Férard C, Gugger M, Laurent T, et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci USA. 2014;111:10933–8.
    CAS  PubMed  Google Scholar 

    24.
    Bradley JA, Daille LK, Trivedi CB, Bojanowski CL, Stamps BW, Stevenson BS, et al. Carbonate-rich dendrolitic cones: insights into a modern analog for incipient microbialite formation, Little Hot Creek, Long Valley Caldera, California. NPJ Biofilms Microbiomes. 2017;3:32.
    PubMed  PubMed Central  Google Scholar 

    25.
    Moreira D, Tavera R, Benzerara K, Skouri-Panet F, Couradeau E, Gérard E, et al. Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov. Int J Syst Evol Microbiol. 2017;67:653–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Mehta N, Benzerara K, Kocar BD, Chapon V. Sequestration of radionuclides radium-226 and strontium-90 by cyanobacteria forming intracellular calcium carbonates. Environ Sci Technol. 2019;53:12639–47.
    CAS  PubMed  Google Scholar 

    27.
    Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol CB. 2017;27:386–91.
    CAS  PubMed  Google Scholar 

    28.
    la Rivière JWM, Schmidt K. Morphologically Conspicuous Sulfur-Oxidizing Eubacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, editors. The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Berlin Heidelberg: Springer; 1981. p. 1037–48.

    29.
    Gray ND. The unique role of intracellular calcification in the genus achromatium. In: Shively JM, editor. Inclusions in prokaryotes. Berlin, Heidelberg: Springer; 2006. p. 299–309.

    30.
    Miot J, Jezequel D, Benzerara K, Cordier L, Rivas-Lamelo S, Skouri-Panet F, et al. Mineralogical diversity in lake pavin: connections with water column chemistry and biomineralization processes. Minerals. 2016;6:UNSP 24.
    Google Scholar 

    31.
    Podda F, Michard G. Mesure colorimétrique de l’alcalinité. Comptes Rendus Acad Sci – Sér II. 1994;319:651–7.
    CAS  Google Scholar 

    32.
    Sarazin G, Michard G, Prevot F. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 1999;33:290–4.
    CAS  Google Scholar 

    33.
    Zeyen N, Daval D, Lopez-Garcia P, Moreira D, Gaillardet J, Benzerara K. Geochemical conditions allowing the formation of modern lacustrine microbialites. Procedia Earth Planet Sci. 2017;17:380–3.
    Google Scholar 

    34.
    Purgstaller B, Goetschl KE, Mavromatis V, Dietzel M. Solubility investigations in the amorphous calcium magnesium carbonate system. CrystEngComm. 2018;21:155–64.
    PubMed  PubMed Central  Google Scholar 

    35.
    Schüler D. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol J Span Soc Microbiol. 2002;5:209–14.
    Google Scholar 

    36.
    Lane DJ. 16S/23S sequencing. In: Stackebrandt E, Goodfellow M, editor. Nucleic acid techniques in bacterial systematics. New York: John Wiley & Sons; 1991. p. 115–75.

    37.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Edgar RC. UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv 2016. https://www.biorxiv.org/content/10.1101/074252v1.

    39.
    Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14:685–95.
    CAS  PubMed  Google Scholar 

    40.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.
    CAS  PubMed  Google Scholar 

    42.
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Pernthaler J, Glockner FO, Schonhuber W, Amann R. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol Vol 30. 2001;30:207–26.
    CAS  Google Scholar 

    45.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, et al. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 2003;31:442–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Rivas-Lamelo S, Benzerara K, Lefèvre CT, Jézéquel D, Menguy N, Viollier E, et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochem Perspect Lett. 2017;5:35–41.
    Google Scholar 

    47.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20.
    CAS  Google Scholar 

    48.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Google Scholar 

    49.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Belkhou R, Stanescu S, Swaraj S, Besson A, Ledoux M, Hajlaoui M, et al. HERMES: a soft X-ray beamline dedicated to X-ray microscopy. J Synchrotron Radiat. 2015;22:968–79.
    PubMed  Google Scholar 

    51.
    Swaraj S, Belkhou R, Stanescu S, Rioult M, Besson A, Hitchcock AP. Performance of the HERMES beamline at the carbon K-edge. J Phys Conf Ser. 2017;849:012046.
    Google Scholar 

    52.
    Le Nagard L, Zhu X, Yuan H, Benzerara K, Bazylinski DA, Fradin C, et al. Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study. Chem Geol. 2019;530:119348.
    Google Scholar 

    53.
    Cosmidis J, Benzerara K. Soft x-ray scanning transmission spectro-microscopy. In: Elaine DiMasi, Laurie B. Gower, editors. Biomineralization sourcebook: characterization of biominerals and biomimetic materials. CRC Press; 2014.

    54.
    Lefèvre CT. Genomic insights into the early-diverging magnetotactic bacteria. Environ Microbiol. 2016;18:1–3.
    PubMed  Google Scholar 

    55.
    Benzerara K, Yoon TH, Tyliszczak T, Constantz B, Spormann AM, Brown GE. Scanning transmission X-ray microscopy study of microbial calcification. Geobiology. 2004;2:249–59.
    Google Scholar 

    56.
    Michard G, Viollier E, Jézéquel D, Sarazin G. Geochemical study of a crater lake: Pavin Lake, France — Identification, location and quantification of the chemical reactions in the lake. Chem Geol. 1994;115:103–15.
    CAS  Google Scholar 

    57.
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
    PubMed  PubMed Central  Google Scholar 

    58.
    Cai H, Wang Y, Xu H, Yan Z, Jia B, Majid Maszenan A, et al. Niveispirillum cyanobacteriorum sp. nov., a nitrogen-fixing bacterium isolated from cyanobacterial aggregates in a eutrophic lake. Int J Syst Evol Microbiol. 2015;65:2537–41.
    CAS  PubMed  Google Scholar 

    59.
    Zhang D, Yang H, Zhang W, Huang Z, Liu S-J. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol. 2003;53:1111–4.
    CAS  PubMed  Google Scholar 

    60.
    Chung EJ, Park TS, Kim KH, Jeon CO, Lee H-I, Chang W-S, et al. Nitrospirillum irinus sp. nov., a diazotrophic bacterium isolated from the rhizosphere soil of Iris and emended description of the genus Nitrospirillum. Antonie Van Leeuwenhoek. 2015;108:721–9.
    CAS  PubMed  Google Scholar 

    61.
    Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol. 2004;50:521–77.
    CAS  PubMed  Google Scholar 

    62.
    Guo Q, Zhou Z, Zhang L, Zhang C, Chen M, Wang B, et al. Skermanella pratensis sp. nov., isolated from meadow soil, and emended description of the genus Skermanella. Int J Syst Evol Microbiol. 2020;70:1605–9.
    PubMed  Google Scholar 

    63.
    Lefèvre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013;77:497–526.
    PubMed  PubMed Central  Google Scholar 

    64.
    Lin W, Bazylinski DA, Xiao T, Wu L-F, Pan Y. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol. 2014;16:2646–58.
    CAS  PubMed  Google Scholar 

    65.
    Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol. 2004;182:373–87.
    CAS  PubMed  Google Scholar 

    66.
    Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D. The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol. 2005;187:2416–25.
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu L-F. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol. 2009;11:1646–57.
    PubMed  Google Scholar 

    68.
    Qian X-X, Liu J, Menguy N, Li J, Alberto F, Teng Z, et al. Identification of novel species of marine magnetotactic bacteria affiliated with Nitrospirae phylum. Environ Microbiol Rep. 2019;11:330–7.
    CAS  PubMed  Google Scholar 

    69.
    Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol. 2011;13:538–49.
    PubMed  Google Scholar 

    70.
    Cox BL, Popa R, Bazylinski DA, Lanoil B, Douglas S, Belz A, et al. Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiol J. 2002;19:387–406.
    CAS  Google Scholar 

    71.
    Byrne ME, Ball DA, Guerquin-Kern J-L, Rouiller I, Wu T-D, Downing KH, et al. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc Natl Acad Sci USA. 2010;107:12263–8.
    CAS  PubMed  Google Scholar 

    72.
    Keim CN, Solórzano G, Farina M, Lins U. Intracellular inclusions of uncultured magnetotactic bacteria. Int Microbiol J Span Soc Microbiol. 2005;8:111–7.
    CAS  Google Scholar 

    73.
    Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Beier S, Bahlo R, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 2019;13:1198–208.
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Blondeau M, Benzerara K, Ferard C, Guigner J-M, Poinsot M, Coutaud M, et al. Impact of the cyanobacterium Gloeomargarita lithophora on the geochemical cycles of Sr and Ba. Chem Geol. 2018;483:88–97.
    CAS  Google Scholar 

    75.
    Anbu P, Kang C-H, Shin Y-J, So J-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus. 2016;5:250.
    PubMed  PubMed Central  Google Scholar 

    76.
    Cam N, Benzerara K, Georgelin T, Jaber M, Lambert J-F, Poinsot M, et al. Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. Geobiology. 2018;16:49–61.
    CAS  PubMed  Google Scholar 

    77.
    Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 2016;14:88.
    PubMed  PubMed Central  Google Scholar 

    78.
    Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko JM, Bramkamp M, et al. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat Microbiol. 2019;4:1978–89.
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Lefèvre CT, Bennet M, Klumpp S, Faivre D. Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity. mBio. 2015;6:e02286.
    PubMed  PubMed Central  Google Scholar 

    80.
    Judd EM, Ryan KR, Moerner WE, Shapiro L, McAdams HH. Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc Natl Acad Sci USA. 2003;100:8235–40.
    CAS  PubMed  Google Scholar 

    81.
    Klumpp S, Lefèvre CT, Bennet M, Faivre D. Swimming with magnets: From biological organisms to synthetic devices. Phys Rep. 2019;789:1–54.
    Google Scholar 

    82.
    Lefèvre CT, Abreu F, Lins U, Bazylinski DA. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol. 2010;76:3220–7.
    PubMed  PubMed Central  Google Scholar 

    83.
    Walsby AE. Gas vesicles. Microbiol Rev. 1994;58:94–144.
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Walsby A. The properties and buoyancy-providing role of gas vacuoles in trichodesmium ehrenberg. Br Phycol J. 1978;13:103–16.
    Google Scholar 

    85.
    Monteil CL, Menguy N, Prévéral S, Warren A, Pignol D, Lefèvre CT. Accumulation and dissolution of magnetite crystals in a magnetically responsive ciliate. Appl Environ Microbiol. 2018;84:e02865-17.
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Monteil CL, Vallenet D, Menguy N, Benzerara K, Barbe V, Fouteau S, et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat Microbiol. 2019;4:1088–95.
    CAS  PubMed  PubMed Central  Google Scholar 

    87.
    Leão P, Nagard LL, Yuan H, Cypriano J, Silva‐Neto ID, Bazylinski DA, et al. Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes. Environ Microbiol. 2020;22:1495–506.
    PubMed  Google Scholar 

    88.
    Isambert A, Menguy N, Larquet E, Guyot F, Valet J-P. Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am Miner. 2007;92:621–30.
    CAS  Google Scholar 

    89.
    Taoka A, Kondo J, Oestreicher Z, Fukumori Y. Characterization of uncultured giant rod-shaped magnetotactic Gammaproteobacteria from a freshwater pond in Kanazawa, Japan. Microbiol Read Engl. 2014;160:2226–34.
    CAS  Google Scholar 

    90.
    Monteil CL, Perrière G, Menguy N, Ginet N, Alonso B, Waisbord N, et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ Microbiol. 2018;20:4415–30.
    CAS  PubMed  Google Scholar  More

  • in

    A preliminary study of mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest Malaysia

    1.
    Gallup, G. G. Jr. Chimpanzees: self-recognition. Science 167, 86–87 (1970).
    ADS  Google Scholar 
    2.
    Gallup, G. G. Jr., McClure, M. K., Hill, S. D. & Bundy, R. A. Capacity for self-recognition in differentially reared chimpanzees. Psychol. Rec. 21, 69–74 (1971).
    Google Scholar 

    3.
    Gallup, G. G. Jr. et al. Further reflections on self-recognition in primates. Anim. Behav. 50, 1525–1532 (1995).
    Google Scholar 

    4.
    Prior, H., Schwarz, A. & Gunturkun, O. Mirror-induced behaviour in the magpie (pica pica): evidence of self-recognition. PLoS Biol. 6, e202 (2008).
    PubMed  PubMed Central  Google Scholar 

    5.
    De Groot, B. & Cheyne, S. M. Does mirror enrichment improve primate well-being?. Anim. Welf. 25(2), 163–170 (2016).
    Google Scholar 

    6.
    Ma, X. et al. Giant pandas failed to show mirror self-recognition. Anim. Cogn. 18(3), 713–721 (2015).
    PubMed  Google Scholar 

    7.
    Plotnik, J. M., de Waal, F. B. M. & Reiss, D. Self-recognition in an Asian elephant. PNAS 103(45), 17053–17057 (2006).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Reiss, D. & Marino, L. Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. PNAS 98, 5937–5942 (2001).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Leavens, D. A., Aureli, F. & Hopkins, W. D. Scratching and cognitive stress: performance and reinforcement effects on hand use, scratch type, and afferent cutaneous pathways during computer cognitive testing by a chimpanzee (Pan troglodytes). Am. J. Primatol. 42, 126–127 (1997).
    Google Scholar 

    10.
    Leavens, D. A., Aureli, F., Hopkins, W. D. & Hyatt, C. W. Effects of cognitive challenge on self-directed behaviors by chimpanzees (Pan troglodytes). Am. J. Primatol. 55(1), 1–14 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Heschl, A. & Burkart, J. A new mark test for mirror self-recognition in non-human primates. Primates 47, 187–198 (2006).
    PubMed  Google Scholar 

    12.
    Hecht, E. E., Mahovetz, L. M., Preuss, T. M. & Hopkins, W. D. A neuroanatomical predictor of mirror self-recognition in chimpanzees. Soc. Cogn. Affect. Neurosci. 12(1), 37–48 (2017).
    CAS  PubMed  Google Scholar 

    13.
    Parker, S. T. A developmental approach to the origins of self- recognition in great apes. Hum. Evol. 6, 435–449 (1991).
    Google Scholar 

    14.
    Hafandi, A. et al. The preliminary study of mirror self-recognition (MSR) on Malayan sunbear (Helarctos malayanus). J. Vet. Malaysia 30(1), 23–25 (2018).
    Google Scholar 

    15.
    Povinelli, D. J. Failure to find self-recognition in Asian elephants (Elephas maximus) in contrast to their use of mirror cues to discover hidden food. J. Comp. Psychol. 103(2), 122–131 (1989).
    Google Scholar 

    16.
    Cammaerts, M.-C. & Cammaerts, R. Are ants (hymenoptera, formicidae) capable of selfrecognition?. J. Sci. 5, 521–532 (2015).
    Google Scholar 

    17.
    Kohda, M. et al. If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals?. PLoS Biol. 17(2), e3000021 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Buniyaadi, A., Taufque, S. K. T. & Kumar, V. Self-recognition in corvids: evidence from the mirror-mark test in Indian house crows (Corvus splendens). J. Ornithol. 161, 341–350 (2020).
    Google Scholar 

    19.
    Schwabe, K. A. et al. Creation of Malaysia’s Royal Belum State Park: a case study of conservation in a developing country. J. Environ. Dev. 24(1), 54–81 (2015).
    Google Scholar 

    20.
    Matsubayashi, H. et al. Importance of natural licks for mammals in Bornean Inland tropical rainforest. Ecol. Res. 22, 742 (2007).
    Google Scholar 

    21.
    Lazarus, B. A. et al. Topographical differences impacting wildlife dynamics at natural saltlicks in the Royal Belum rainforest. Asian J. Conserv. Biol. 8(2), 97–101 (2019).
    Google Scholar 

    22.
    Oli, M. K. & Jacobson, H. A. Vocalizations of barking deer (Muntiacus muntjac). Mammalia 59(2), 179–186 (1995).
    Google Scholar 

    23.
    Odden, M. & Wegge, P. Predicting spacing behavior and mating systems of solitary cervids: a study of hog deer and Indian muntjac. Zoology 110, 261–270 (2007).
    PubMed  Google Scholar 

    24.
    Pokharel, K. & Chalise, M. K. Status and distribution pattern of barking deer (Muntiacus muntjac Zimmermann) in Hemja VDC, Kaski. Nepal J. Sci. Technol. 11, 223–228 (2010).
    Google Scholar 

    25.
    de Waal, F. B. M., Dindo, M., Freeman, C. A. & Hall, M. J. The monkey in the mirror: hardly a stranger. PNAS 102(32), 11140–11147 (2005).
    ADS  PubMed  Google Scholar 

    26.
    Morgan, K. N. & Tromborg, C. T. Sources of stress in captivity. Appl. Anim. Behav. Sci. 102(3), 262–302 (2007).
    Google Scholar 

    27.
    Tobler, M. W., Carrillo-Percategui, S. E. & Powell, G. Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. J. Trop. Ecol. 25, 261–270 (2009).
    Google Scholar 

    28.
    Cruz, P., Paviolo, A., Bo, R. F., Thompson, J. J. & Di Bitetti, M. S. Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest. Mamm. Biol. 79, 376–383 (2014).
    Google Scholar 

    29.
    Houpt, K. A. & McDonnell, S. M. Equine stereotypies. Comp. Cont. Educ. Pract. Vet. 15, 1265–1271 (1993).
    Google Scholar 

    30.
    Arumugam, K. A., Buesching, C. D. & Annavi, G. Lip licking behavior in captive Malayan tapirs (Tapirus indicus): Manifestation of a stereotypic or stress related response?. Int. J. Recent Adv. Multidiscip. Res. 6(3), 4724–4727 (2019).
    Google Scholar 

    31.
    Hranchuk, K. B. & Webster, W. G. Interocular transfer of lateral mirror-image discrimination by cats. J. Comp. Physiol. Psychol. 88(1), 368–372 (1975).
    CAS  PubMed  Google Scholar 

    32.
    Rayan, M. D. & Linkie, M. Conserving tigers in Malaysia: a science-driven approach for eliciting conservation policy change. Biol. Cons. 184, 18–26 (2015).
    Google Scholar 

    33.
    Breton, G. & Barrot, S. Influence of enclosure size on the distances covered and paced by captive tigers (Panthera tigris). Appl. Anim. Behav. Sci. 154, 66–75 (2014).
    Google Scholar 

    34.
    Biolatti, C. et al. Behavioural analysis of captive tigers (Panthera tigris): a water pool makes the difference. Appl. Anim. Behav. Sci. 174, 173–180 (2016).
    Google Scholar 

    35.
    Williams, E., Carter, A., Hall, C. & Bremner-Harrison, S. Social interactions in zoo-housed elephants: factors affecting social relationships. Animals 9, 747 (2019).
    Google Scholar 

    36.
    Williams, M. F. Primate encephalization and intelligence. Med. Hypotheses 58(4), 284–290 (2002).
    CAS  PubMed  Google Scholar 

    37.
    Anderson, J. R. & Gallup, G. G. Jr. Mirror self-recognition: a review and critique of attemps to promote and engineer self-recognition in primates. Primates 56, 317–326 (2015).
    PubMed  Google Scholar 

    38.
    Deaner, R. O., Isler, K., Burkart, J. & van Schaik, C. Overall brain size and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124 (2007).
    PubMed  Google Scholar 

    39.
    Matiju, J. et al. Absolute, not relative brain size correlates with sociality in ground squirrels. Proc. Biol. Sci. 30(283), 1827 (2016).
    Google Scholar 

    40.
    Caravaggi, A. et al. A review of camera trapping for conservation behaviour research. Conservation 3(3), 109–122 (2017).
    Google Scholar  More

  • in

    Signatures of local adaptation in the spatial genetic structure of the ascidian Pyura chilensis along the southeast Pacific coast

    1.
    Cárdenas, L., Castilla, J. C. & Viard, F. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. J. Biogeogr. 36, 969–981 (2009).
    Google Scholar 
    2.
    Kelly, R. P. & Palumbi, S. R. Genetic structure among 50 species of the northeastern pacific rocky intertidal community. PLoS ONE 5, e8594 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    3.
    Haye, P. A. et al. Phylogeographic structure in benthic marine invertebrates of the southeast pacific coast of Chile with differing dispersal potential. PLoS ONE 9, e88613 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Hellberg, M. E., Burton, R. S., Neigel, J. E. & Palumbi, S. R. Genetic assessment of connectivity among marine populations. B. Mar. Sci. 70, 273–290 (2002).
    Google Scholar 

    5.
    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).
    Google Scholar 

    6.
    Marko, P. B. ‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol. Ecol. 13, 597–611 (2004).
    PubMed  CAS  Google Scholar 

    7.
    Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393, 1–12 (2009).
    ADS  Google Scholar 

    8.
    Haye, P. A. & Muñoz-Herrera, N. C. Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis. BMC Evol. Biol. 13, 252 (2013).
    PubMed  PubMed Central  Google Scholar 

    9.
    Mercier, A. et al. Pelagic propagule duration and developmental mode: reassessment of a fading link. Glob. Ecol. Biogeogr. 22, 517–530 (2013).
    Google Scholar 

    10.
    Waters, J. M. & Roy, M. S. Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow?. Mol. Ecol. 13, 2797–2806 (2004).
    PubMed  CAS  Google Scholar 

    11.
    Teske, P. R. et al. Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Mar. Ecol. Prog. Ser. 286, 249–260 (2005).
    ADS  CAS  Google Scholar 

    12.
    McGovern, T. M., Keever, C. A., Hart, M. W., Saski, C. & Marko, P. B. Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species. Mol. Ecol. 19, 5043–5060 (2010).
    PubMed  Google Scholar 

    13.
    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends. Ecol. Evol. 27, 47–56 (2012).
    PubMed  Google Scholar 

    14.
    Brante, A., Fernandez, M. & Viard, F. Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (Calyptraeidae) along the Southeastern Pacific coast. J. Hered. 103, 630–663 (2012).
    PubMed  Google Scholar 

    15.
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
    Google Scholar 

    16.
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype-environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).
    PubMed  CAS  Google Scholar 

    17.
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).
    PubMed  Google Scholar 

    18.
    Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).
    PubMed  Google Scholar 

    19.
    Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P. & Treml, E. A. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr. Zool. 62, 581–601 (2016).
    PubMed  PubMed Central  Google Scholar 

    20.
    Selkoe, K. A. et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).
    ADS  Google Scholar 

    21.
    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of individual-based genetic distance metrics for landscape genetics. Mol. Ecol. Res. 17, 1308–1317 (2017).
    CAS  Google Scholar 

    22.
    Martins, K. et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol. App. 11, 1842–1858 (2018).
    CAS  Google Scholar 

    23.
    Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Res. 18, 18–31 (2018).
    Google Scholar 

    24.
    Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?. Bull. Mar. Sci. 39, 550–564 (1986).
    Google Scholar 

    25.
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 15, 787–792 (1987).
    ADS  Google Scholar 

    26.
    Attard, C. R. M. et al. Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): implications for management and resilience to climate change. Mol. Ecol. 27, 196–215 (2017).
    PubMed  Google Scholar 

    27.
    Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).
    PubMed  Google Scholar 

    28.
    Banks, S. C. et al. Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88, 3055–3064 (2007).
    PubMed  Google Scholar 

    29.
    Galindo, H. M. et al. Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Mol. Ecol. 19, 3692–3707 (2010).
    PubMed  Google Scholar 

    30.
    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).
    PubMed  Google Scholar 

    31.
    Schiavina, M., Marino, J. A. M., Zane, L. & Mellà, P. Matching oceanography and genetics at the basin scale. Seascape connectivity of the Mediterranean shore crab in the Adriatic Sea. Mol. Ecol. 23, 5496–5507 (2014).
    PubMed  CAS  Google Scholar 

    32.
    Giles, E. C., Saenz-Agudelo, P., Hussey, N. E., Ravasi, T. & Berumen, M. L. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecol. Evol. 5, 2487–2502 (2015).
    PubMed  PubMed Central  Google Scholar 

    33.
    Pardo-Gandarillas, M. C. et al. Phylogeography and species distribution modelling reveal the effects of the Pleistocene ice ages on an intertidal limpet from the south-eastern Pacific. J. Biogeogr. 45, 1751–1767 (2018).
    Google Scholar 

    34.
    Pujolar, J. M. et al. Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol. Ecol. 23, 2514–2528 (2014).
    PubMed  CAS  Google Scholar 

    35.
    Tepolt, C. K. & Palumbi, S. R. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol. Ecol. 24, 4145–4158 (2015).
    PubMed  CAS  Google Scholar 

    36.
    Sandoval-Castillo, J., Robinson, N. A., Hart, A. M., Strain, L. W. S. & Beheregaray, L. B. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol. Ecol. 27, 1603–1020 (2018).
    PubMed  Google Scholar 

    37.
    Carreras, C. et al. East is east and west is west: population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Div. Dis. 26, 382–398 (2020).
    Google Scholar 

    38.
    Tellier, F., Meynard, A. P., Correa, J. A., Faugeron, S. & Valero, M. Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establishes the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry?. Mol. Phyl. Evol. 53, 679–693 (2009).
    CAS  Google Scholar 

    39.
    Haye, P. A. et al. Genetic and morphological divergence at a biogeographic break in the beach-dwelling brooder Excirolana hirsuticauda Menzies (Crustacea, Peracarida). BMC Evol. Biol. 19, 118 (2019).
    PubMed  PubMed Central  Google Scholar 

    40.
    Sánchez, R., Sepúlveda, R. D., Brante, A. & Cárdenas, L. Spatial patterns of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Mar. Ecol. Prog. Ser. 434, 121–131 (2011).
    ADS  Google Scholar 

    41.
    Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).
    Google Scholar 

    42.
    Lancellotti, D. & Vásquez, J. A. Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: contribución para la conservación marina. Rev. Chil. Hist. Nat. 73, 99–129 (2000).
    Google Scholar 

    43.
    Cea, G. Contribución al conocimiento de algunos aspectos de la biología de Pyura chilensis Molina, 1782 (Chordata, Tunicata, Ascidiacea). Tesis de Licenciatura en Biología, Universidad de Concepción, Concepción, Chile. 205 pp. (1970).

    44.
    Davis, A. R. Association among ascidians: facilitation of recruitment in Pyura spinifera. Mar. Biol. 126, 35–41 (1996).
    Google Scholar 

    45.
    Manríquez, P. & Castilla, J. Role of larval behaviour and microhabitat traits in determining spatial aggregations in the ascidian Pyura chilensis. Mar. Ecol. Prog. Ser. 332, 155–165 (2007).
    ADS  Google Scholar 

    46.
    Astorga, M. O. & Ortiz, J. C. Genetic variability and population structure in the tunicate Pyura chilensis Molina, 1782, in the coast of Chile. Rev. Chil. Hist. Nat. 79, 423–434 (2006).
    Google Scholar 

    47.
    Segovia, N. I., Gallardo-Escárate, C., Poulin, E. & Haye, P. A. Lineage divergence, local adaptation across a biogeographic break, and artificial transport, shape the genetic structure in the ascidian Pyura chilensis. Sci. Rep. 7, 44559 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    48.
    Hudson, J., Viard, F., Roby, C. & Rius, M. Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biol. Lett. 12, 20160620 (2016).
    PubMed  PubMed Central  Google Scholar 

    49.
    Ordoñez, V., Pascual, M., Rius, M. & Turon, X. Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Mar. Biol. 160, 1645–1660 (2013).
    Google Scholar 

    50.
    Valdivia, N., Heidemann, A., Thiel, M., Molis, M. & Wahl, M. Effects of disturbance on diversity of hard-bottom macrobenthic communities at the coast of Chile. Mar. Ecol. Prog. Ser. 299, 45–54 (2005).
    ADS  Google Scholar 

    51.
    Cifuentes, M., Kamlah, C., Thiel, M., Lenz, M. & Wahl, M. Effects of temporal variability of disturbance on the succession in marine fouling communities in northern-central Chile. J. Exp. Mar. Biol. 352, 280–294 (2007).
    Google Scholar 

    52.
    Aravena, G., Broitman, B. & Stenseth, N. C. Twelve years of change in coastal upwelling along the Central-Northern Coast of Chile: spatially heterogeneous responses to climatic variability. PLoS ONE 9, e90276 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    53.
    Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006 (2011).
    ADS  Google Scholar 

    54.
    Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    55.
    Montecinos, A. et al. Species replacement along a lineal coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south-east Pacific. BMC Evol. Biol. 12, 97 (2012).
    PubMed  PubMed Central  Google Scholar 

    56.
    Araneda, C. et al. Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol. Evol. https://doi.org/10.1002/ece3.2110 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Cahill, A. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).
    PubMed  Google Scholar 

    58.
    Xu, T. et al. Genome-wide discovery of single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) in deep-sea mussels: potential use in population genomics and cross-species application. Deep-sea. Res. PT II. https://doi.org/10.1016/j.dsr2.2016.03.011 (2016).
    Article  Google Scholar 

    59.
    Lal, M. M. et al. A parallel population genomic and hydrodynamic approach to fishery management of highly-dispersive marine invertebrates: the case of the Fijian Black-Lip Pearl Oyster Pinctada margaritifera. PLoS ONE 11, e0161390 (2016).
    PubMed  PubMed Central  Google Scholar 

    60.
    Arcos, D. & Navarro, N. Análisis de un índice de surgencia para la zona de Talcahuano, Chile (Lat. 37°S). Inv. Pesqueras. 33, 91–98 (1986).
    Google Scholar 

    61.
    Broitman, B. R., Navarrete, S. A., Smith, F. & Gaines, S. D. Geographic variation of southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser. 224, 21–34 (2001).
    ADS  Google Scholar 

    62.
    Blanchette, C. A. et al. Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J. Biogeogr. 35, 1593–1607 (2008).
    Google Scholar 

    63.
    Espinoza, P. et al. Trophic structure in the northern Humboldt Current system: new perspectives from stable isotope analysis. Mar. Biol. 164, 86 (2017).
    Google Scholar 

    64.
    Menge, B. A. & Menge, D. N. L. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).
    Google Scholar 

    65.
    Fenberg, P. B., Menge, B. A., Raimondi, P. T. & Rivadeneira, M. M. Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography 38, 93–95 (2015).
    Google Scholar 

    66.
    Gaitán-Espitia, J. D. et al. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline. J. Therm. Biol. 68, 14–20 (2014).
    Google Scholar 

    67.
    Gaitán-Espitia, J. D. et al. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol. 217, 4379–4386 (2017).
    Google Scholar 

    68.
    Tapia, F. J. & Gallardo-Escárate, C. Spatio-temporal transcriptome analysis in the marine snail Tegula atra along central-northern Chile (28–31°S). Mar. Genomics. 61, 5 (2015).
    Google Scholar 

    69.
    Ambler, R. P. & Cañete, J. I. Asentamiento y reclutamiento de Pyura chilensis Molina, 1782 (Urochordata: Ascidiacea) sobre placas artificiales suspendidas en Bahía La Herradura, Coquimbo Chille. Rev. Biol. Mar. 26, 403–413 (1991).
    Google Scholar 

    70.
    Pérez-Valdés, M., Figueroa-Aguilera, D. & Rojas-Perez, C. Reproductive cycle of sea squirt Pyura chilensis (Urochordata: Ascidiacea) originating from aquaculture mussel systems. Rev. Biol. Mar. Oceanogr. 52, 333–342 (2017).
    Google Scholar 

    71.
    Giles, E. C., Petersen-Zúñiga, C., Morales-González, S., Quesada-Calderón, S. & Saenz-Agudelo, P. Novel microsatellite markers for Pyura chilensis reveal fine-scale genetic structure along the southern coast of Chile. Mar. Biodiv. 23, 1–10 (2017).
    Google Scholar 

    72.
    Morales-González, S., Giles, E. C., Quesada-Calderón, S. & Saenz-Agudelo, P. Fine-scale hierarchical genetic structure and kinship analysis of the ascidian Pyura chilensis in the southeastern Pacific. Ecol. Evol. 10, 15–20. https://doi.org/10.1002/ece3.5526 (2019).
    Article  Google Scholar 

    73.
    Gaggiotti, O. E. et al. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63, 2939–2951 (2009).
    PubMed  Google Scholar 

    74.
    Gagnaire, P. A. et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol. Appl 8, 769–786 (2015).
    PubMed  PubMed Central  Google Scholar 

    75.
    Gagnaire, P. A. & Gaggiotti, O. E. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr. Zool. 62, 603–616 (2016).
    PubMed  PubMed Central  Google Scholar 

    76.
    Gili, J. O. & Coma, R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol. Evol. 13, 316–321 (1998).
    PubMed  CAS  Google Scholar 

    77.
    Riisgård, H. U. & Larsen, P. S. Minireview: ciliary filter feeding and bio-fluid mechanics—present understanding and unsolved problems. Limnol. Ocenogr. 46, 882–891 (2001).
    ADS  Google Scholar 

    78.
    Petersen, J. K., Mayer, M. & Knudsen, A. Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar. Biol. 133, 185–192 (1999).
    Google Scholar 

    79.
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
    Google Scholar 

    80.
    Thiel, M. et al. The Humboldt current system of Northern and Central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. 45, 195–344 (2007).
    Google Scholar 

    81.
    Riginos, C. & Liggins, L. Seascape genetics: populations, individuals, and genes Marooned and Adrift. Geograph. Comp. 7, 197–216 (2013).
    Google Scholar 

    82.
    De Donato, M., Peters, S. O., Mitchell, S. E., Hussain, T. & Imumorin, I. G. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS ONE 8, e62137 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    83.
    Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).
    ADS  PubMed  PubMed Central  CAS  Google Scholar 

    84.
    Lu, F. et al. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network- based SNP discovery protocol. PLoS Genet. 9, e1003215 (2013).
    PubMed  PubMed Central  CAS  Google Scholar 

    85.
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol. Biogeogr. 21, 272–328 (2012).
    Google Scholar 

    86.
    Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecol. Biogeogr. 27, 277–284 (2017).
    Google Scholar 

    87.
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).
    PubMed  PubMed Central  Google Scholar 

    88.
    Jeffreys, H. The Theory of Probability 3rd edn. (Oxford University Press, Oxford, UK, 1961).
    Google Scholar 

    89.
    Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. Am. Nat. 186, 24–36 (2015).
    Google Scholar 

    90.
    Luu, K., Bazin, E. & Blum, M. G. PCADAPT: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Res. 17, 67–77 (2017).
    CAS  Google Scholar 

    91.
    Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).
    PubMed  Google Scholar 

    92.
    Dray, S., Legendre, P. & Peres-Neto, P. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Mod. 96, 483–493 (2006).
    Google Scholar 

    93.
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, The Netherlands, 2012).
    Google Scholar 

    94.
    Oksanen, J. et al. VEGAN: community Ecology Package—R package version 2.4–3. https://CRAN.R-project.org/package=vegan (2017)

    95.
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Google Scholar 

    96.
    de Villemereuil, P., Frichot, E., Bazin, E., François, O. & Gaggiotti, O. Genome scan methods against more complex models: when and how much should we trust them?. Mol. Ecol. 23, 2006–2019 (2014).
    PubMed  Google Scholar 

    97.
    Frichot, E., Schoville, S. D., de Villermeuil, P., Gaggiotti, O. E. & François, O. Detecting adaptive evolution based on association with ecological gradients: orientation matters!. Heredity 115, 22–28 (2015).
    PubMed  PubMed Central  CAS  Google Scholar 

    98.
    Jombart, T. ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    PubMed  PubMed Central  CAS  Google Scholar 

    99.
    Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for Associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).
    PubMed  PubMed Central  CAS  Google Scholar 

    100.
    Guenther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
    Google Scholar 

    101.
    Stucki, S. et al. High performance computation of landscape genomic models integrating local indices of spatial association. Mol. Ecol. Res. 17, 1072–1089 (2016).
    Google Scholar 

    102.
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TREMBL in 2000. Nucleic. Acids. Res. 28, 45–48 (2000).
    PubMed  PubMed Central  CAS  Google Scholar  More