More stories

  • in

    Trading for climate resilience

    1.
    Myers, S. S. et al. Annu. Rev. Public Health 38, 259–277 (2017).
    Article  Google Scholar 
    2.
    Zhao, C. et al. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).
    CAS  Article  Google Scholar 

    3.
    Sloat, L. L. et al. Nat. Commun. 11, 1243 (2020).
    CAS  Article  Google Scholar 

    4.
    Janssens, C. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0847-4 (2020).

    5.
    Dellink, R., Hwang, H., Lanzi, E. & Chateau, J. International Trade Consequences of Climate Change (OECD Publishing, 2017).

    6.
    Climate Change and Trade Agreements: Friends or Foes? (The Economist Intelligence Unit, 2019).

    7.
    OECD. Regional Trade Agreements and Agriculture OECD Food, Agriculture and Fisheries Papers No. 79 (OECD Publishing, 2015).

    8.
    Foster, V. & Briceño-Garmendia, C. M. Africa’s Infrastructure: a Time for Transformation (The World Bank, 2009).

    9.
    Cagé, J. & Gadenne, L. Explor. Econ. Hist. 70, 1–24 (2018).
    Article  Google Scholar 

    10.
    Hallegatte, S. & Rozenberg, J. Nat. Clim. Change 7, 250–256 (2017).
    Article  Google Scholar  More

  • in

    Altered tropical seascapes influence patterns of fish assemblage and ecological functions in the Western Indian Ocean

    1.
    Turner, M. G. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20, 171–197 (1989).
    Google Scholar 
    2.
    Wiens, J. A. Spatial scaling in ecology. Func. Ecol. 3, 385–397 (1989).
    Google Scholar 

    3.
    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).
    Google Scholar 

    4.
    Dunning, J. B. Jr., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).
    Google Scholar 

    5.
    Boström, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 427, 191–217 (2011).
    ADS  Google Scholar 

    6.
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 99, 16812–16816 (2002).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Robinson, N. M. et al. Refuges for fauna in fire prone landscapes: their ecological function and importance. J. Appl. Ecol. 50, 1321–1329 (2013).
    Google Scholar 

    8.
    Chapin, F. S. III. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).
    CAS  PubMed  Google Scholar 

    9.
    Michel, N., Burel, F. & Butet, A. How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes?. Acta Oecol. 30, 11–20 (2006).
    ADS  Google Scholar 

    10.
    Kirk, D. A., Lindsay, K. E. & Brook, R. W. Risk of agricultural practices and habitat change to farmland birds. Avi. Conserv. Ecol. 6(1), 5 (2011).
    Google Scholar 

    11.
    Connell, S. D. & Glasby, T. M. Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res. 47, 373–387 (1999).
    CAS  Google Scholar 

    12.
    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6(5), e122. https://doi.org/10.1371/journal.pbio.0060122 (2008).
    CAS  Article  PubMed Central  Google Scholar 

    14.
    O’Connor, R. J. & Shrubb, M. Farming and Birds (Cambridge University Press, Cambridge, 1986).
    Google Scholar 

    15.
    Galbraith, H. Effects of agriculture on the breeding ecology of lapwings Vanellus vanellus. J. Appl. Ecol. 25, 487–503 (1988).
    Google Scholar 

    16.
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).
    Google Scholar 

    17.
    Lubchenco, J. et al. The sustainable biosphere initiative: an ecological research agenda. Ecology 72, 371–412 (1991).
    Google Scholar 

    18.
    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).
    Google Scholar 

    19.
    McHugh, D. J. Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221, 19–29 (1991).
    Google Scholar 

    20.
    Jensen, A. Present and future needs for algae and algal products. Hydrobiologia 260, 15–23 (1993).
    Google Scholar 

    21.
    Ask, E. I., Batibasaga, A., Zertuche-Gonzalez, J. A. & de San, M. Three decades of Kappaphycus alvarezii (Rhodophyta) introduction to non-endemic locations. In 17th International Seaweed Symposium (eds Chapman, A. R. O. et al.) 49–57 (Oxford Univ Press, Cape Town, 2001).
    Google Scholar 

    22.
    Rönnbäck, P., Bryceson, I. & Kautsky, N. Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies. Ambio 31, 537–542 (2002).
    PubMed  Google Scholar 

    23.
    Food and Agriculture Organization (FAO). The state of world fisheries and aquaculture. Rome, Italy pp. 243 (2014).

    24.
    Abhilash, K. R. et al. Impact of long-term seaweed farming on water quality: a case study from Palk Bay, India. J. Coast. Conserv. 23, 485–499 (2019).
    Google Scholar 

    25.
    Eggertsen, M. & Halling, C. Knowledge gaps and management recommendations for future paths of sustainable seaweed farming in the Western Indian Ocean. Ambio https://doi.org/10.1007/s13280-020-01319-7 (2020).
    Article  PubMed  Google Scholar 

    26.
    Hehre, E. J. & Meeuwig, J. J. A Global analysis of the relationship between farmed seaweed production and herbivorous fish catch. PLoS ONE 11(2), e148250. https://doi.org/10.1371/journal.pone.0148250 (2016).
    CAS  Article  Google Scholar 

    27.
    Hedberg, N. et al. Habitat preference for seaweed farming—A case study from Zanzibar, Tanzania. Ocean Coast. Manag. 154, 186–195. https://doi.org/10.1016/j.ocecoaman.2018.01.016 (2018).
    Article  Google Scholar 

    28.
    de la Torre-Castro, M. & Rönnbäck, P. Links between humans and seagrasses—an example from tropical east Africa. Ocean Coast. Manag. 47, 361–387 (2004).
    Google Scholar 

    29.
    Halling, C., Wikström, S. A., Lilliesköld-Sjöö Mörk, E., Lundør, E. & Zuccarello, G. C. Introduction of Asian strains and low genetic variation in farmed seaweeds: indications for new management practices. J. Appl. Phycol. 25, 89–95 (2013).
    Google Scholar 

    30.
    Tano, S. A., Halling, C., Eggertsen, L., Buriyo, A. & Wikström, S. A. Extensive spread of farmed seaweeds causes a shift from native to non-native haplotypes in natural seaweed beds. Mar. Biol. 162, 1983–1992 (2015).
    Google Scholar 

    31.
    Conklin, E. J. & Smith, J. E. Abundance and spread of the invasive red algae, Kappaphycus spp., in Kane’ohe Bay, Hawai’i and an experimental assessment of management options. Biol. Invat. 7, 1029–1039 (2005).
    Google Scholar 

    32.
    Keats, D. W., Steele, D. H. & South, G. R. The role of fleshy macroalgae in the ecology of juvenile cod (Gadus morhua L,) in inshore waters off eastern Newfoundland. Can. J. Fish. Aquat. Sci. 65, 49–53. https://doi.org/10.1139/Z87-008 (1987).
    Article  Google Scholar 

    33.
    Carr, M. H. Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecol. Soc. Am. 75, 1320–1333 (1994).
    Google Scholar 

    34.
    Levin, P. & Hay, M. Responses of temperate reef fishes to alterations in algal structure and species composition. Mar. Ecol. Prog. Ser. 134, 37–47 (1996).
    ADS  Google Scholar 

    35.
    Bertocci, I., Araújo, R., Oliveira, P. & Sousa-Pinto, I. Potential effects of kelp species on local fisheries. J. Appl. Ecol. 52, 1216–1226 (2015).
    Google Scholar 

    36.
    Wilson, S. K. et al. Seasonal changes in habitat structure underpin shifts in macroalgae-associated tropical fish communities. Mar. Biol. 161, 2597–2607 (2014).
    Google Scholar 

    37.
    Tano, S. et al. Tropical seaweed beds are important habitats for mobile invertebrate epifauna. Estuar. Coast. Shelf Sci. 183, 1–12 (2016).
    ADS  Google Scholar 

    38.
    Tano, S. A. et al. Tropical seaweed beds as important habitats for juvenile fish. Mar. Freshw. Res. 68, 1921–1934 (2017).
    Google Scholar 

    39.
    Eggertsen, L. et al. Seaweed beds support more juvenile reef fish than seagrass beds: carrying capacity in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf Sci. 196, 97–108. https://doi.org/10.1016/j.ecss.2017.06.041 (2017).
    ADS  Article  Google Scholar 

    40.
    Fulton, C. J. et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33, 989–999 (2019).
    Google Scholar 

    41.
    Garrigue, C. Macrophyte associations on the soft bottoms of the south-west lagoon of New Caledonia: description, structure and biomass. Bot. Mar. 38, 481–492 (1995).
    Google Scholar 

    42.
    Kobryn, H. T., Wouters, K., Beckley, L. E. & Heege, T. Ningaloo Reef: shallow marine habitats mapped using a hyperspectral sensor. PLoS ONE 8, e70105 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Rossier, O. & Kulbicki, M. A comparison of fish assemblages from two types of algal beds and coral reefs in the south-west lagoon of New Caledonia. Cybium 24, 3–26 (2000).
    Google Scholar 

    44.
    Chaves, L. T. C., Pereira, P. H. C. & Feitosa, J. L. L. Coral reef fish association with macroalgal beds on a tropical reef system in North-eastern Brazil. Mar. Freshw. Res. 64, 1101–1111 (2013).
    Google Scholar 

    45.
    Evans, R. D., Wilson, S. K., Field, S. N. & Moore, J. A. Y. Importance of macroalgal fields as coral reef fish nursery habitat in north-west Australia. Mar. Biol. 161, 599–607 (2014).
    Google Scholar 

    46.
    van Lier, J. R., Wilson, S. K., Depczynski, M., Wenger, L. N. & Fulton, C. J. Habitat connectivity and complexity underpin fish community structure across a seascape of tropical macroalgae meadows. Landsc. Ecol. 33, 1287–1300 (2018).
    Google Scholar 

    47.
    Eggertsen, M., Chacin, D. H., Åkerlund, C., Halling, C. & Berkström, C. Contrasting distribution and foraging patterns of herbivorous and detritivorous fishes across multiple habitats in a tropical seascape. Mar. Biol. 166, 51. https://doi.org/10.1007/s00227-019-3498-0 (2019).
    Article  Google Scholar 

    48.
    Johnstone, R. W. & Ólafsson, E. Some environmental aspects of open water algal cultivation, Zanzibar, Tanzania. Ambio 24, 465–469 (1995).
    Google Scholar 

    49.
    Ólafsson, E., Johnstone, R. W. & Ndaro, S. G. M. Effects of intensive seaweed farming on the meiobenthos in a tropical lagoon. J. Exp. Mar. Biol. Ecol. 191, 101–117 (1995).
    Google Scholar 

    50.
    Eklöf, J. S., de la Torre-Castro, M., Adelsköld, L., Jiddawi, N. S. & Kautsky, N. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar. Coast. Shelf Sci. 63, 385–396 (2005).
    ADS  Google Scholar 

    51.
    Bergman, K. C., Svensson, S. & Öhman, M. C. Influence of algal farming on fish assemblages. Mar. Pollu. Bull. 42, 1379–1389 (2001).
    CAS  Google Scholar 

    52.
    Russell, D. Ecology of the imported red seaweed Euchema striatum Schmitz on Coconut Island, Oahu, Hawaii. Pac. Sci. 37, 87–107 (1983).
    Google Scholar 

    53.
    Eklöf, J. S., Henriksson, R. & Kautsky, N. Effects of tropical open-water seaweed farming on seagrass ecosystem structure and function. Mar. Ecol. Prog. Ser. 325, 73–84 (2006).
    ADS  Google Scholar 

    54.
    Eklöf, J. S., de la Torre-Castro, M., Nilsson, C. & Rönnbäck, P. How do seaweed farms influence local fishery catches in a seagrass-dominated setting in Chwaka Bay, Zanzibar?. Aquat. Liv. Resour. 19, 137–147 (2006).
    Google Scholar 

    55.
    Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish−habitat interactions. Hydrobiologia 498, 191–211 (2003).
    Google Scholar 

    56.
    McClanahan, T. R. Seasonality in East Africa’s coastal waters. Mar. Ecol. Prog. Ser. 44, 191–199 (1988).
    ADS  Google Scholar 

    57.
    Msuya, F. E. Cultivation and utilisation of red seaweeds in the Western Indian Ocean (WIO) Region. J. Appl. Phycol. 26, 699–705 (2014).
    CAS  Google Scholar 

    58.
    Msuya, F. E. The impact of seaweed farming on the social and economic structure of seaweed farming communities in Zanzibar, Tanzania. In World Seaweed Resources: An Authoritative Reference System (eds Critchley, A. T. et al.) (ETI BioInformatics, Amsterdam, 2006).
    Google Scholar 

    59.
    Msuya, F. E. Social and economic dimensions of carrageenan seaweed farming in the United Republic of Tanzania. In Social and Economic Dimensions of Carrageenan Seaweed Farming Fisheries and Aquaculture Technical Paper No. 580 (eds Valderrama, D. et al.) 115–146 (FAO, Rome, 2013).
    Google Scholar 

    60.
    Eklöf, J.S., Msuya, F.E., Lyimo, T.J. & Buriyo, A.S. Seaweed Farming in Chwaka Bay: A Sustainable Alternative in Aquaculture? – In: eds. de la Torre-Castro, M. and T. J. Lyimo, People, Nature and Research in Chwaka Bay, Zanzibar, Tanzania. ISBN: 978-9987-9559-1-6. Zanzibar Town: WIOMSA, 213–233 (2012).

    61.
    Valderrama, D. et al. The economics of Kappaphycus seaweed cultivation in developing countries: a comparative analysis of farming systems. Aquacul. Econ. Manag. 19, 251–277. https://doi.org/10.1080/13657305.2015.1024348 (2015).
    Article  Google Scholar 

    62.
    Berkström, C., Jörgensen, T. L. & Hellström, M. Ecological connectivity and niche differentiation between two closely related fish species in the mangrove-seagrass-coral reef continuum. Mar. Ecol. Prog. Ser. 477, 01–215 (2013).
    Google Scholar 

    63.
    Horrill, J. C., Darwall, W. R. T. & Ngoile, M. Development of a marine protected area: Mafia Island, Tanzania. Ambio 25, 50–57 (1996).
    Google Scholar 

    64.
    Ogden, J. C. & Lobel, P. S. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fish. 3, 49–63. https://doi.org/10.1007/BF00006308 (1978).
    Article  Google Scholar 

    65.
    Lawrence, J. M. & Agatsuma, Y. Chapter 32: Tripneustes. In Sea urchins: Biology and Ecology (ed. Lawrence, J. M.) 491–507 (Elsevier BV, Amsterdam, 2013).
    Google Scholar 

    66.
    Wall, K. R. & Stallings, C. D. Subtropical epibenthos varies with location, reef type, and grazing intensity. J. Exp. Mar. Biol. Ecol. 509, 54–65 (2018).
    Google Scholar 

    67.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).
    Google Scholar 

    68.
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).
    Google Scholar 

    69.
    Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monog. 67, 345–366 (1997).
    Google Scholar 

    70.
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).
    Google Scholar 

    71.
    Legendre, P. & Legendre, L. Numerical Ecology. Vol 24 3rd Edition (2012).

    72.
    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
    MathSciNet  PubMed  MATH  Google Scholar 

    73.
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
    PubMed  Google Scholar 

    74.
    Jones, D.L. Fathom Toolbox for Matlab: Software for Multivariate Ecological and Oceanographic Data Analysis. College of Marine Science, University of South Florida, St. Petersburg, FL, USA (2017) (Available from: https://www.marine.usf.edu/research/matlab-resources/fathom-toolbox-for-matlab/).

    75.
    Rojas-Sepulveda, J. Seaweeds, seagrasses, or both: feeding preferences of an important herbivore within a tropical seascape. Master Thesis. Stockholm University, Sweden (2017).

    76.
    Anyango, J. O., Mlewa, C. M. & Mwaluma, J. Abundance, diversity and trophic status of wild fish around seaweed farms in Kibuyuni, South Coast Kenya. Int. J. Fish. Aqua. Stud. 5, 440–446 (2017).
    Google Scholar 

    77.
    Savino, J. F. & Stein, R. A. Predator–prey interaction between largemouth bass and bluegills as influenced by simulated submersed vegetation. Trans. Am. Fish. Soc. 111, 255–266 (1982).
    Google Scholar 

    78.
    Anderson, T. W. Role of macroalgal structure in the distribution and abundance of a temperate reef fish. Mar. Ecol. Prog. Ser. 113, 279–290 (1994).
    ADS  Google Scholar 

    79.
    Lim, I. E., Wilson, S. K., Holmes, T. H., Noble, M. M. & Fulton, C. Specialization within a shifting habitat mosaic underpins the seasonal abundance of a tropical fish. Ecosphere 7(2), e01212. https://doi.org/10.1002/ecs2.1212 (2016).
    Article  Google Scholar 

    80.
    Wenger, L. N., van Lier, J. R. & Fulton, C. J. Microhabitat selectivity shapes the seascape ecology of a carnivorous macroalgae-associated tropical fish. Mar. Ecol. Prog. Ser. 590, 187–200 (2018).
    ADS  Google Scholar 

    81.
    Tang, S., Graba-Landra, A. & Hoey, A. S. Density and height of Sargassum influence rabbit (F. siganidae) settlement on inshore reef flats of the Great Barrier reef. Coral Reefs 39, 467–473 (2020).
    Google Scholar 

    82.
    Horinouchi, M. Review of the effects of within-patch scale structural complexity on seagrass fishes. J. Exp. Mar. Biol. Ecol. 350, 111–129 (2007).
    Google Scholar 

    83.
    Chacin, D. H. & Stallings, C. D. Disentangling fine- and broad- scale effects of habitat on predator-prey interactions. J. Exp. Mar. Biol. Ecol. 483, 10–19 (2016).
    Google Scholar 

    84.
    Orth, R. J., Heck, K. L. & Vanmontfrans, J. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator prey relationships. Estuaries 7, 339–350 (1984).
    Google Scholar 

    85.
    Heck, K. L. & Crowder, L. B. Habitat structure and predator–prey interactions in vegetated aquatic systems. In Habitat Complexity: The Physical Arrangement of Objects in Space (eds Bell, S. S. et al.) 280–299 (Chapman and Hall, New York, 1991).
    Google Scholar 

    86.
    Johnson, D. W. Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes. Ecology 87, 1179–1188 (2006).
    PubMed  Google Scholar 

    87.
    Gregor, C. A. & Anderson, T. W. Relative importance of habitat attributes to predation risk in a temperate reef fish. Environ. Biol. Fish. 99, 539–556 (2016).
    Google Scholar 

    88.
    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).
    ADS  CAS  PubMed  Google Scholar 

    89.
    Hortal, J., Triantis, K. A., Meiri, S., Thebault, E. & Sfenthourakis, S. Island species richness increases with habitat diversity. Am. Nat. 174, 205–217 (2009).
    Google Scholar 

    90.
    Genner, M. J., Turner, G. F. & Hawkins, S. J. Foraging of rocky habitat cichlid fishes in Lake Malawi: co-existence through niche partitioning?. Oecologia 121, 283–292 (1999).
    ADS  PubMed  Google Scholar 

    91.
    Arrizabalaga-Escudero, A. et al. Assessing niche partitioning of co-occurring sibling bat species by DNA metabarcoding. Mol. Ecol. 27, 1273–1283 (2018).
    PubMed  Google Scholar 

    92.
    Wilson, S. & Bellwood, D. R. Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar. Ecol. Prog. Ser. 153, 299–310 (1997).
    ADS  CAS  Google Scholar 

    93.
    Horn, M. H. Biology of marine herbivorous fishes. Oceanog. Mar. Biol. Ann. Rev. 27, 167–272 (1989).
    Google Scholar 

    94.
    Arnold, G. W., Maller, R. A. & Litchfield, R. Comparison of bird populations in remnants of Wandoo woodland and in adjacent farmland. Aust. Wildl. Res. 14, 331–341. https://doi.org/10.1071/WR9870331 (1987).
    Article  Google Scholar 

    95.
    Bretagnolle, V. et al. Towards sustainable and multifunctional agriculture in farmland landscapes: lessons from the integrative approach of a French LTSER platform. Sci. Total Environ. 627, 822–834 (2018).
    ADS  CAS  PubMed  Google Scholar 

    96.
    Carcamo, H. A., Niemala, J. K. & Spence, J. R. Farming and ground beetles – effects of agronomic practice on populations and community structure. Can. Entomol. 127, 123–140 (1995).
    Google Scholar 

    97.
    Locham, A. G., Kaunda-Arara, B., Wakibia, J. G. & Muya, S. Diet and niche breadth variation in the marbled parrotfish, Leptoscarus vaigiensis, among coral reef sites in Kenya. Afr. J. Ecol. 53, 560–571 (2015).
    Google Scholar 

    98.
    Fox, R. J. & Bellwood, D. R. Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f:Siganidae) on an inner-shelf reef of the Great Barrier Reef. Coral Reefs 27, 605–615 (2008).
    ADS  Google Scholar 

    99.
    Hoey, A. S. & Bellwood, D. R. Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328 (2009).
    Google Scholar 

    100.
    Öhman, M. C. & Rajasuriya, A. Relationships between habitat structure and fish assemblages on coral and sandstone reefs. Environ. Biol. Fish. 53, 19–31 (1998).
    Google Scholar 

    101.
    Gratwicke, B. & Speight, M. R. Effects of habitat complexity on Caribbean marine fish assemblages. Mar. Ecol. Prog. Ser. 292, 301–310 (2005).
    ADS  Google Scholar 

    102.
    Humphries, P., Potter, I. C. & Loneragan, N. R. The fish community in the shallows of a temperate Australian estuary: relationships with the aquatic marcophyte Ruppia megacarpa and environmental variables. Estuar. Coast. Shelf Sci. 34, 32–346 (1992).
    Google Scholar 

    103.
    Nelson, W. G. Development of an epiphyte indicator of nutrient enrichment: a critical evaluation of observational and experimental studies. Ecol. Indic. 79, 207–227 (2017).
    PubMed  PubMed Central  Google Scholar 

    104.
    Gullström, M., Berkström, C., Öhman, M., Bodin, M. & Dahlberg, M. Scale-dependent patterns of variability of a grazing parrotfish (Leptoscarus vaigiensis) in a tropical seagrass-dominated seascape. Mar. Biol. 158, 1483–1495 (2011).
    Google Scholar 

    105.
    Vonk, J. A., Marjolijin, J. A. & Stapel, J. Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows. Estuar. Coast. Shelf. Sci. 79, 653–660 (2008).
    ADS  Google Scholar 

    106.
    Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Eco. Envir. 75, 13–30 (1999).
    Google Scholar 

    107.
    Hoey, A. S. & Bellwood, D. R. Cross-shelf variation in browsing intensity on the Great Barrier Reef. Coral Reefs 29, 499–508 (2010).
    ADS  Google Scholar 

    108.
    Chong-Seng, K. M., Nash, K. L., Bellwood, D. R. & Graham, N. A. J. Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs 33, 409–419 (2014).
    ADS  Google Scholar 

    109.
    Hoey, A. S. & Bellwood, D. R. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs. Ecol. Lett. 14, 267–273 (2011).
    PubMed  Google Scholar 

    110.
    Bauman, A. G. et al. Fear effects associated with predator presence and habitat structure interact to alter herbivory on coral reefs. Biol. Lett. https://doi.org/10.1098/rsbl.2019.0409 (2019).
    Article  PubMed  Google Scholar 

    111.
    Menge, B. A. Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol. Monog. 46, 355–393 (1976).
    Google Scholar 

    112.
    Siriwardena, G. M. Trends in the abundance of farmland birds: a quantitative comparison of smoothed Common Birds Census indices. J. Appl. Ecol. 35, 24–43 (1998).
    Google Scholar 

    113.
    Krebs, J. R., Wilson, J. D., Bradbury, R. B. & Siriwardena, G. M. The second Silent Spring. Nature 400, 611–612 (1999).
    ADS  CAS  Google Scholar 

    114.
    Heikkinen, R. K., Luoto, M., Virkkala, R. & Rainio, K. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. J. Appl. Ecol. 41, 824–835 (2004).
    Google Scholar 

    115.
    Dauber, J. et al. Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob. Ecol. Biogeol. 14, 213–221 (2005).
    Google Scholar 

    116.
    Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).
    Google Scholar 

    117.
    Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Blue growth potential to mitigate climate change through seaweed offsetting. Curr. Biol. 18, 3087–3093. https://doi.org/10.1016/j.cub.2019.07.041 (2019).
    CAS  Article  Google Scholar  More

  • in

    Self-disseminating vaccines to suppress zoonoses

    1.
    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).
    Google Scholar 
    2.
    McCormick, J. B. & Fisher-Hoch, S. P. in Arenaviruses I: The Epidemiology, Molecular and Cell Biology of Arenaviruses — Current Topics in Microbiology and Immunology Vol. 262 (ed. Oldstone, M. B. A.) 75–109 (Springer, 2002).

    3.
    Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Edson, D. et al. Routes of Hendra virus excretion in naturally-infected flying-foxes: implications for viral transmission and spillover risk. PLoS ONE 10, e0140670 (2015).
    PubMed  PubMed Central  Google Scholar 

    5.
    Luby, S. P., Gurley, E. S. & Jahangir Hossain, M. Transmission of human infection with Nipah virus. Clin. Infect. Dis. 49, 1743–1748 (2009).
    PubMed  PubMed Central  Google Scholar 

    6.
    Georgiou, G. et al. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34 (1997).
    CAS  PubMed  Google Scholar 

    7.
    Leitner, W. W., Ying, H. & Restifo, N. P. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18, 765–777 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Rollier, C. S., Reyes-Sandoval, A., Cottingham, M. G., Ewer, K. & Hill, A. V. S. Viral vectors as vaccine platforms: deployment in sight. Curr. Opin. Immunol. 23, 377–382 (2011).
    CAS  PubMed  Google Scholar 

    10.
    Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368, eabb6936 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).
    PubMed  PubMed Central  Google Scholar 

    12.
    Rupprecht, C. E., Hanlon, C. A. & Slate, D. in Control of Infectious Animal Diseases by Vaccination — Developments in Biologicals Vol. 119 (eds Schudel, A. & Lombard, M.) 173–184 (Karger, 2004).

    13.
    Bull, J. J., Smithson, M. W. & Nuismer, S. L. Transmissible viral vaccines. Trends Microbiol. 26, 6–15 (2018).
    CAS  PubMed  Google Scholar 

    14.
    Murphy, A. A., Redwood, A. J. & Jarvis, M. A. Self-disseminating vaccines for emerging infectious diseases. Expert Rev. Vaccines 15, 31–39 (2016).
    CAS  PubMed  Google Scholar 

    15.
    Shellam, G. R. The potential of murine cytomegalovirus as a viral vector for immunocontraception. Reprod. Fertil. Dev. 6, 401–409 (1994).
    CAS  PubMed  Google Scholar 

    16.
    Tyndale-Biscoe, C. H. Virus-vectored immunocontraception of feral mammals. Reprod. Fertil. Dev. 6, 281–287 (1994).
    CAS  PubMed  Google Scholar 

    17.
    Barcena, J. et al. Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus. J. Virol. 74, 1114–1123 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Torres, J. M. et al. First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease. Vaccine 19, 4536–4543 (2001).
    CAS  PubMed  Google Scholar 

    19.
    Angulo, E. & Barcena, J. Towards a unique and transmissible vaccine against myxomatosis and rabbit haemorrhagic disease for rabbit populations. Wildl. Res. 34, 567–577 (2007).
    CAS  Google Scholar 

    20.
    Nuismer, S. L. et al. Eradicating infectious disease using weakly transmissible vaccines. Proc. R. Soc. B 283, 20161903 (2016).
    PubMed  Google Scholar 

    21.
    Basinski, A. J., Nuismer, S. L. & Remien, C. H. A little goes a long way: weak vaccine transmission facilitates oral vaccination campaigns against zoonotic pathogens. PLoS Negl. Trop. Dis. 13, e0007251 (2019).
    PubMed  PubMed Central  Google Scholar 

    22.
    Basinski, A. J. et al. Evaluating the promise of recombinant transmissible vaccines. Vaccine 36, 675–682 (2018).
    CAS  PubMed  Google Scholar 

    23.
    Smithson, M. W., Basinki, A. J., Nuismer, S. L. & Bull, J. J. Transmissible vaccines whose dissemination rates vary through time, with applications to wildlife. Vaccine 37, 1153–1159 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Lecompte, E. et al. Mastomys natalensis and Lassa fever, West Africa. Emerg. Infect. Dis. 12, 1971–1974 (2006).
    PubMed  PubMed Central  Google Scholar 

    25.
    Olayemi, A. et al. New hosts of the Lassa virus. Sci. Rep. 6, 25280 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Douglass, R. J. et al. Longitudinal studies of Sin Nombre virus in deer mouse-dominated ecosystems of Montana. Am. J. Trop. Med. Hyg. 65, 33–41 (2001).
    CAS  PubMed  Google Scholar 

    27.
    Luis, A. D., Douglass, R. J., Mills, J. N. & Bjornstad, O. N. The effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin Nombre hantavirus. J. Anim. Ecol. 79, 462–470 (2010).
    PubMed  Google Scholar 

    28.
    Viana, M. et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29, 270–279 (2014).
    PubMed  PubMed Central  Google Scholar 

    29.
    Fenton, A., Streicker, D. G., Petchey, O. L. & Pedersen, A. B. Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities. Am. Nat. 186, 610–622 (2015).
    PubMed  PubMed Central  Google Scholar 

    30.
    Fichet-Calvet, E. et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector-Borne Zoonotic Dis. 7, 119–128 (2007).
    PubMed  Google Scholar 

    31.
    Marien, J. et al. Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling. Emerg. Microbes Infect. 8, 640–649 (2019).
    PubMed  PubMed Central  Google Scholar 

    32.
    Towner, J. S. et al. Marburg virus infection detected in a common african bat. PLoS ONE 2, e764 (2007).
    PubMed  PubMed Central  Google Scholar 

    33.
    Nziza, J. et al. Coronaviruses detected in bats in close contact with humans in Rwanda. EcoHealth 17, 152–159 (2020).
    PubMed  Google Scholar 

    34.
    Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. Mbio 8, e00373–17 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Bird, B. H. & Mazet, J. A. K. Detection of emerging zoonotic pathogens: an integrated one health approach. Annu. Rev. Anim. Biosci. 6, 121–139 (2018).
    CAS  PubMed  Google Scholar 

    37.
    Goldstein, T. et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 3, 1084–1089 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Pernet, O. et al. Evidence for henipavirus spillover into human populations in Africa. Nat. Commun. 5, 5342 (2014).
    PubMed  PubMed Central  Google Scholar 

    39.
    Grard, G. et al. A novel rhabdovirus associated with acute hemorrhagic fever in Central Africa. PLoS Pathog. 8, e1002924 (2012).
    PubMed  PubMed Central  Google Scholar 

    40.
    Han, B. A. & Drake, J. M. Future directions in analytics for infectious disease intelligence. EMBO Rep. 17, 785–789 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).
    CAS  PubMed  Google Scholar 

    42.
    Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl. Trop. Dis. 10, e0004815 (2016).
    PubMed  PubMed Central  Google Scholar 

    43.
    Guth, S., Visher, E., Boots, M. & Brook, C. E. Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal-human interface. Philos. Trans. R. Soc. B 374, 20190296 (2019).
    Google Scholar 

    44.
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Pepin, K. M., Lass, S., Pulliam, J. R. C., Read, A. F. & Lloyd-Smith, J. O. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat. Rev. Microbiol. 8, 802–813 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Babayan, S. A., Orton, R. J. & Streicker, D. G. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 362, 577–580 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Bakker, K. M. et al. Fluorescent biomarkers demonstrate prospects for spreadable vaccines to control disease transmission in wild bats. Nat. Ecol. Evol. 3, 1697–1704 (2019).
    PubMed  PubMed Central  Google Scholar 

    48.
    Garnier, R., Gandon, S., Chaval, Y., Charbonnel, N. & Boulinier, T. Evidence of cross-transfer of maternal antibodies through allosuckling in a mammal: potential importance for behavioral ecology. Mamm. Biol. 78, 361–364 (2013).
    Google Scholar 

    49.
    Stading, B. et al. Protection of bats (Eptesicus fuscus) against rabies following topical or oronasal exposure to a recombinant raccoon poxvirus vaccine. PLoS Negl. Trop. Dis. 11, e0005958 (2017).
    PubMed  PubMed Central  Google Scholar 

    50.
    Schreiner, C. L., Nuismer, S. L. & Basinski, A. J. When to vaccinate a fluctuating wildlife population: is timing everything? J. Appl. Ecol. 57, 307–319 (2020).
    PubMed  Google Scholar 

    51.
    Varrelman, T. J., Basinski, A. J., Remien, C. H. & Nuismer, S. L. Transmissible vaccines in heterogeneous populations: implications for vaccine design. One Health 7, 100084 (2019).
    PubMed  PubMed Central  Google Scholar 

    52.
    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).
    CAS  PubMed  Google Scholar 

    53.
    Kew, O. M., Sutter, R. W., de Gourville, E. M., Dowdle, W. R. & Pallansch, M. A. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu. Rev. Microbiol. 59, 587–635 (2005).
    CAS  PubMed  Google Scholar 

    54.
    Bull, J. J. Evolutionary reversion of live viral vaccines: can genetic engineering subdue it? Virus Evol. 1, vev005 (2015).
    PubMed  PubMed Central  Google Scholar 

    55.
    Lauring, A. S., Jones, J. O. & Andino, R. Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol. 28, 573–579 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Nuismer, S. L., Basinski, A. & Bull, J. J. Evolution and containment of transmissible recombinant vector vaccines. Evol. Appl. 12, 1595–1609 (2019).
    PubMed  PubMed Central  Google Scholar 

    57.
    Kew, O. M. et al. Circulating vaccine-derived polioviruses: current state of knowledge. Bull. World Health Organ. 82, 16–23 (2004).
    PubMed  PubMed Central  Google Scholar 

    58.
    Hampson, K. et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 9, e0003709 (2015).
    PubMed  PubMed Central  Google Scholar 

    59.
    Cost of the Ebola Epidemic (US Centers for Disease Control and Prevention, 2020); https://go.nature.com/38iF7cg

    60.
    Forum on Microbial Threats Learning from SARS: Preparing for the Next Disease Outbreak: Workshop Summary (National Academies Press, 2004). More

  • in

    Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions

    1.
    IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [eds. Pachauri, R.K & L.A. Meyer) (IPCC, 2014).
    2.
    AMAP (Arctic Monitoring and Assessment Programme). Snow, Water (Ice and Permafrost in the Arctic, AMAP, Tromsø, 2017).
    Google Scholar 

    3.
    Wik, M., Varner, R. K., Walter Anthony, K., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
    ADS  CAS  Article  Google Scholar 

    4.
    Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).
    ADS  CAS  Article  Google Scholar 

    5.
    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cyc. 18, 1–12 (2004).
    Article  Google Scholar 

    6.
    Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50–51 (2011).
    ADS  CAS  Article  Google Scholar 

    7.
    Walter, K. M., Smith, L. C. & Chapin, F. S. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos. Trans. R. Soc. A 365, 1657–1676 (2007).
    ADS  CAS  Article  Google Scholar 

    8.
    Walter Anthony, K. M. & Anthony, P. Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. J. Geophys. Res. Biogeosci. 118, 1015–1034. https://doi.org/10.1002/jgrg.20087 (2013).
    Article  Google Scholar 

    9.
    Tan, Z. & Zhuang, Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett. 10, 1–9 (2015).
    Article  Google Scholar 

    10.
    Tan, Z. & Zhuang, Q. Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry. J. Geophys. Res. Biogeosci. 120, 2641 (2015).
    CAS  Article  Google Scholar 

    11.
    Lehner, B. & Doell, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).
    ADS  Article  Google Scholar 

    12.
    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).
    ADS  Article  Google Scholar 

    13.
    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
    ADS  CAS  Article  Google Scholar 

    14.
    Downing, J. A. & Duarte, C. M. Abundance and size distribution of lakes, ponds, and impoundments. In Encyclopedia of Inland Water, 1 (ed. Likens, G. E.) 469–478 (Elsevier, Amsterdam, 2009).
    Google Scholar 

    15.
    McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E. & Wüest, A. Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere?. J. Geophys. Res. 111, C09007 (2006).
    ADS  Article  Google Scholar 

    16.
    Lamarche, C. et al. Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community. Rem. Sens. 9, 36 (2017).
    ADS  Article  Google Scholar 

    17.
    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
    ADS  CAS  Article  Google Scholar 

    18.
    Sanches, L. F., Guenet, B., Marinho, C. C., Barros, N. & de Assis Esteves, F. Global regulation of methane emission from natural lakes. Sci. Rep. 9, 255 (2019).
    ADS  Article  Google Scholar 

    19.
    Bruhwiler, L. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293 (2014).
    ADS  Article  Google Scholar 

    20.
    Du, J., Kimball, J. S., Duguay, C., Kim, Y. & Watts, J. D. Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere 11, 47–63 (2017).
    ADS  Article  Google Scholar 

    21.
    Kim, Y., Kimball, J. S., McDonald, K. C. & Glassy, J. Developing a global data record of daily landscape freeze/thaw status using satellite microwave remote sensing, Version 4. IEEE Trans. Geosci. Rem. Sens. 49, 949–960 (2016).
    ADS  Article  Google Scholar 

    22.
    Brown, J., Ferrians, O.J., Heginbottom, J.A. & Melnikov, E.S. Circum-Arctic map of permafrost and ground-ice conditions, Version 2. Boulder, CO, National Snow and Ice Data Center/World Data Center for Glaciology. https://doi.org/10.3133/cp45 (2002).

    23.
    Obu, J. et al. Northern hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).
    ADS  Article  Google Scholar 

    24.
    Harmonized World Soil Database (HWSD) https://daac.ornl.gov/SOILS/guides/HWSD.html.

    25.
    Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).
    MathSciNet  CAS  Article  Google Scholar 

    26.
    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9(9), 494–502 (2011).
    Article  Google Scholar 

    27.
    Mulligan, M., Saenz-Cruz, L., van Soesbergen, A., Smith, V.T. & Zurita, L. The Global georeferenced Database of Dams (GOOD2), Version 1. Global dams database and geowiki. https://geodata.policysupport.org/dams (2009).

    28.
    Chau, Y. K., Snodgrass, W. J. & Wong, P. T. S. A sampler for collecting evolved gases from sediment. Water Res. 11, 807–809 (1977).
    CAS  Article  Google Scholar 

    29.
    Howard, D.L., Frea, J.I. & Pfister, R.M. The potential for methane carbon cycling in Lake Erie. In Paper Presented at 14th Conference on Great Lakes Research (Int. Assoc. of Great Lakes Res., Ann Arbor, Mich. 1971).

    30.
    Townsend-Small, A. et al. Quantifying emissions of methane derived from anaerobic organic matter respiration and natural gas extraction in Lake Erie. Limnol. Oceanogr. 61, S356–S366 (2016).
    CAS  Article  Google Scholar 

    31.
    Joung, D., Leonte, M. & Kessler, J. D. Methane sources in the waters of Lake Michigan and Lake Superior as revealed by natural radiocarbon measurements. Geophys. Res. Lett. 46, 5436–5444 (2019).
    ADS  CAS  Article  Google Scholar 

    32.
    Shimoda, Y. et al. Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes?. J. Great Lakes Res. 37, 173–193 (2011).
    CAS  Article  Google Scholar 

    33.
    Blenckner, T. R. et al. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Glob. Change Biol. 13, 1314–1326 (2007).
    ADS  Article  Google Scholar 

    34.
    van Huissteden, J. et al. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat. Clim. Change 1, 119–123 (2011).
    ADS  Article  Google Scholar 

    35.
    Kalff, J. Limnology, Inland Water Ecosystems (Prentice Hall, Upper Saddle River, 2002).
    Google Scholar 

    36.
    Kourzeneva, E., Asensio, H., Martin, E. & Faroux, S. Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling. Tellus A 64, 1–14 (2012).
    Google Scholar  More

  • in

    Estimating illegal fishing from enforcement officers

    Experimental design
    Following five focus groups with SERNAPESCA’s head of enforcement and other personnel, we designed and implemented an online survey that targeted fisheries enforcement officers who are responsible for monitoring IUU activities in Chile. The survey was structured to capture expert knowledge on various aspects of illegal activities, as well as the relative experience of the officers. The survey defined illegal fishing as a fishing activity carried out in national jurisdiction waters by national or international boats that is in violation of the national fishing law, conducted without a legal permit, or activities that involve unreported or misreported captures to the authorities. The Director of SERNAPESCA delivered the survey via email to all SERNAPESCA enforcement officers. The list of officers was constructed by the Director (n = 86). The survey was anonymous in that the officers were not asked to report their name nor any information that could be used for identification (e.g., email). Answers to questions were not mandatory; that is, respondents could opt-out of answering particular questions and continue with the survey. The survey was available online for ten weeks, over which five reminder emails were sent to officers requesting them to complete the survey.
    The survey, in Spanish, consisted of two sections. First, we asked respondents to rank the magnitude of illegal activity for twenty fisheries on a nominal scale (1–5), along with their relative experience with each fishery (nominal scale, 1–5). The twenty fisheries were selected a priori based on our focus groups and known information about illegal activity. All fisheries were single species, with the exception of four that included multiple species: skates (2 species, Zearaja chilensis and Bathyraja macloviana), kelp (4 species: Lessonia spicate, L. berteroana, L. traberculata, Macrocystis pyrifera), red algae (3 species: Sarcothalia crispate, Gigartina skottsbergii, Mazzaella laminarioides), and crabs (10 species excluding southern king crab: Cancer edwardsi, C. porter, C. setosus, C. coronatus, Homalaspis plana, Ovalipes trimaculatus, Taliepus dentatus, T. marginatus, Mursia gaudichaudi, Hemigrapsus crenulatus). In the second part of the survey, we asked respondents additional questions for four focal fisheries: South Pacific hake (Merluccius gayi gayi), southern hake (M. australis), loco or Chilean abalone (Concholepas concholepas), and kelp. For each fishery, we asked respondents to score on a nominal scale (1–5),

    The frequency of six specific illegal activities in the industrial sector: size, gear, season, area, transshipment, and port.

    The frequency of six specific illegal activities in the small-scale sector: size, gear, season, area, transshipment, and port.

    The participation of illegal activity for six different stakeholders along the supply chain: fisher, purchaser, processor, wholesaler, exporter, and restaurateur.

    The utilization of seven infrastructure types in illegal activities: fishing boats, refrigeration trucks, processing plants, markets, transshipment boats, export vehicles, and restaurants.

    This study was approved by the Advanced Conservation Strategies and Pontificia Universidad Católica ethics institutional review boards and followed guidelines established by their ethics committees, which complies with national and international standards. The surveys included a written informed consent approved by all interviewees, which acknowledged research objectives and established that the survey was anonymous and that interviewees were free to choose to not answer questions. While all species have common names in Chile (which were used in the survey), we use Fishbase and Sealifebase as the taxonomic authority and for the common names reported here to facilitate comparisions34,35.
    Statistical analysis
    For both sections of the survey, we used a Bayesian cumulative multinomial logit model to predict illegal estimates. First, we fitted a model for illegal estimates for each of the twenty fisheries jointly. Second, we fitted models for illegal estimates for various aspects of the four focal fisheries (i.e., activities, stakeholders, and infrastructure) in a single analysis for each aspect. In both models, we included a random intercept term for respondent, along with a fixed effect for fishery. We evaluated the role of experience, as self-reported by the respondents, by comparing the difference between the illegal score by a respondent for a fishery and the model prediction for that fishery across respondents. If higher levels of expertise increased or decreased the value of a respondent’s scoring, there would be a relationship between the size of the differences and the level of experience reported for a fishery. Experience may also affect the difference in mean responses (i.e., bias), potentially due to more personal experience over a longer period of time, which would lead to a correlation between expertise and mean illegality scores. Depending on the patterns observed in the data, there are several ways to control for a respondent’s experience in illegality estimates. In our case, we used experience scores as a covariate in the model.
    For the twenty fisheries, we used the following model,

    $$Prleft{{S}_{ij}=kright}=phi left({tau }_{k}-left({varvec{beta}}{{varvec{x}}}_{{varvec{i}}}+{{varvec{z}}}_{{varvec{j}}}{{varvec{V}}}_{{varvec{i}}}right)right)-phi left({tau }_{k-1}-left({varvec{beta}}{{varvec{x}}}_{{varvec{i}}}+{{varvec{z}}}_{{varvec{j}}}{{varvec{V}}}_{{varvec{j}}}right)right)$$
    (1)

    in which the probability that the score for the level of illegal landings ({S}_{ij}) for the ith species by the jth respondent is equal to category k, can be represented as a latent continuous variable which is divided into K categories, by K − 1 thresholds at ({tau }_{k}). This latent continuous variable is represented by the cumulative normal distribution, (phi). For a given observation, the regression equation is composed of coefficients multiplied times predictor variables ({varvec{beta}}{{varvec{x}}}_{{varvec{i}}}) plus a design matrix for the random effect, multiplied times the error term for the jth respondent, ({{varvec{z}}}_{{varvec{j}}}{{varvec{V}}}_{{varvec{i}}}) . The probability of that observation falling in category k, (Prleft{{S}_{ij}=kright}), is thus the probability of it being in a category equal to or smaller than k, (phi left({tau }_{k}-left({varvec{beta}}{{varvec{x}}}_{{varvec{i}}}+{{varvec{z}}}_{{varvec{j}}}{{varvec{V}}}_{{varvec{i}}}right)right)), less the probability of the observation being in a category smaller than k, (phi left({tau }_{k-1}-left({varvec{beta}}{{varvec{x}}}_{{varvec{i}}}+{{varvec{z}}}_{{varvec{j}}}{{varvec{V}}}_{{varvec{j}}}right)right)). Implemented in the R statistical language, using the brms package36, the call to fit this model looks like the following:

    $${text{Score}}; , sim ;{text{Species}} + {text{Experience }} + left( {{1}|{text{Respondent}}} right),;{text{ data}} = {text{SurveyData}},;{text{family}} = {text{cumulative}}),$$

    where Score is ({S}_{ij}) in (1) above, the fixed effects, ({varvec{beta}}{{varvec{x}}}_{{varvec{i}}}) are the experience of the respondent and the species that was scored, and (1|Respondent) denotes a random intercept model, where each has a different intercept term, drawn from a shared error distribution. For more information on the application of this model to ordinal response data, see Burkner and Vuorre37.
    For the estimates for the various aspects of the four focal fisheries, we used the following model,

    $${text{Response}}; sim ;{text{Species}} + {text{Experience}} + left( {{1}|{text{Respondent}}} right),;{text{data}} = {text{SurveyData}},;{text{family}} = {text{cumulative}}),$$

    which is structured as per (1) above, but with the responses to the various focal species questions (i.e., activities per sector, stakeholders, and infrastructure) substituted for the species scores as in (1).
    We compared both models with simpler models, including a single-term null model using leave-one-out cross-validation. We did so in the R statistical language using the loo packages36,38,39. Prior distributions for all regression terms were improper flat priors over the real numbers, the default in the brms package for population parameters. The priors on the intercept and the random effects were student t3,0,10 distributions, as per the default for uninformative priors in the brms package.
    We carried out a Principal Components Analysis (PCA) with the four focal fisheries as categorical variables and the illegal activity, stakeholder, and infrastructure estimates from the Bayesian cumulative multinomial logit model. For each fishery, we used 10,000 estimates from the model, along with a qualitative variable that represented the different factors (e.g., restaurateur). The latter has no influence on the principal components of the analysis but helps to interpret the dimensions of variability. Principal Components Analysis is especially powerful as an approach to visualize patterns, such as clusters, clines, and outliers in a dataset40. In our case, we sought to visualize whether there were common illegal factors with similar set of scores and whether there was any association between high or low scores of illegal factors and the focal fisheries. We used the FactoMineR package in the R statistical language41. More

  • in

    Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system

    1.
    Bowe, L. M., Coat, G. & DePamphilis, C. W. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc. Natl. Acad. Sci. USA 97, 4092–4097 (2000).
    ADS  Article  CAS  Google Scholar 
    2.
    Bohlmann, J. & Keeling, C. I. Terpenoid biomaterials. Plant J. 54, 656–669 (2008).
    Article  CAS  Google Scholar 

    3.
    Celedon, J. M. & Bohlmann, J. Oleoresin defenses in conifers: Chemical diversity, terpene synthases, and limitations of oleoresin defense under climate change. New Phytol. 224, 1444–1463 (2019).
    Article  CAS  Google Scholar 

    4.
    Whitehill, J. G. A. et al. Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytol. 221, 1503–1517 (2019).
    Article  CAS  Google Scholar 

    5.
    Hilker, M., Kobs, C., Varama, M. & Schrank, K. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J. Exp. Biol. 205, 455–461 (2002).
    PubMed  Google Scholar 

    6.
    Mumm, R., Schrank, K., Wegener, R., Schulz, S. & Hilker, M. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J. Chem. Ecol. 29, 1235–1252 (2003).
    Article  CAS  Google Scholar 

    7.
    Martin, D. M., Gershenzon, J. & Bohlmann, J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol. 132, 1586–1599 (2003).
    Article  CAS  Google Scholar 

    8.
    Miller, B., Madilao, L. L., Ralph, S. & Bohlmann, J. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol. 137, 369–382 (2005).

    9.
    Niinemets, U., Reichstein, M., Staudt, M., Seufert, G. & Tenhunen, J. D. Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol. 130, 1371–1385 (2002).
    Article  CAS  Google Scholar 

    10.
    Harley, P., Eller, A., Guenther, A. & Monson, R. K. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: Control by light, temperature and stomatal conductance. Oecologia 176, 35–55 (2014).
    ADS  Article  Google Scholar 

    11.
    Tissier, A. Plant secretory structures: More than just reaction bags. Curr. Opin. Biotechnol. 49, 73–79 (2018).
    Article  CAS  Google Scholar 

    12.
    Schilmiller, A. L., Last, R. L. & Pichersky, E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 54, 702–711 (2008).
    Article  CAS  Google Scholar 

    13.
    Wagner, G. J., Wang, E. & Shepherd, R. W. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 93, 3–11 (2004).
    Article  CAS  Google Scholar 

    14.
    Lange, B. M. The evolution of plant secretory structures and the emergence of terpenoid chemical diversity. Annu. Rev. Plant Biol. 66, 139–159 (2015).
    Article  CAS  Google Scholar 

    15.
    Lange, B. M. et al. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc. Natl. Acad. Sci. USA 97, 2934–2939 (2000).
    ADS  Article  CAS  Google Scholar 

    16.
    Wang, G. et al. Terpene biosynthesis in glandular trichomes of Hop. Plant Physiol. 148, 1254–1266 (2008).
    ADS  Article  CAS  Google Scholar 

    17.
    Nagel, J. et al. EST analysis of hop glandular trichomes identifies an o-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20, 186–200 (2008).
    Article  CAS  Google Scholar 

    18.
    Czechowski, T. et al. Artemisia annua mutant impaired in Artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proc. Natl. Acad. Sci. USA. 113, 15150–15155 (2016).
    Article  CAS  Google Scholar 

    19.
    Johnson, H. B. Plant pubescence: An ecological perspective. Bot. Rev. 41, 233–258 (1975).
    Article  Google Scholar 

    20.
    Fernald, M. L. Gray’s Manual of Botany. (American Book Company, 1950).

    21.
    Hernandez-Castillo, G. R., Stockey, R. A., Rothwell, G. W. & Mapes, G. Reconstructing Emporia lockardii (Voltziales: Emporiaceae) and initial thoughts on paleozoic conifer ecology. Int. J. Plant Sci. 170, 1056–1074 (2009).
    Article  Google Scholar 

    22.
    Rothwell, G. W., Mapes, G. & Hernandez-Castillo, G. R. Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon 54, 733–750 (2005).

    23.
    Heinrich, M. Das Harz der Nadelhölzer, seine Entstehung, Vertheilung, Bedeutung und Gewinnung (Springer, Berlin, 1894).
    Google Scholar 

    24.
    Tomlin, E. S., Antonejevic, E., Alfaro, R. I. & Borden, J. H. Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol. 20, 1087–1095 (2000).
    Article  CAS  Google Scholar 

    25.
    Birol, I. et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29, 1492–1497 (2013).
    Article  CAS  Google Scholar 

    26.
    Warren, R. L. et al. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J. 83, 189–212 (2015).
    Article  CAS  Google Scholar 

    27.
    Zulak, K. G., Dullat, H. K., Keeling, C. I., Lippert, D. & Bohlmann, J. Immunofluorescence localization of levopimaradiene/abietadiene synthase in methyl jasmonate treated stems of Sitka spruce (Picea sitchensis) shows activation of diterpenoid biosynthesis in cortical and developing traumatic resin ducts. Phytochemistry 71, 1695–1699 (2010).
    Article  CAS  Google Scholar 

    28.
    Whitehill, J. G. A., Henderson, H., Strong, W., Jaquish, B. & Bohlmann, J. Function of Sitka spruce stone cells as a physical defense against white pine weevil. Plant. Cell Environ. 39, 2545–2556 (2016).
    Article  CAS  Google Scholar 

    29.
    Franceschi, V. R., Krokene, P., Krekling, T. & Christiansen, E. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). Am. J. Bot. 87, 314–326 (2000).
    Article  CAS  Google Scholar 

    30.
    Parent, G. J., Giguère, I., Mageroy, M., Bohlmann, J. & MacKay, J. J. Evolution of the biosynthesis of two hydroxyacetophenones in plants. Plant Cell Environ. 41, 620–629 (2018).
    Article  CAS  Google Scholar 

    31.
    Mageroy, M. H. et al. A conifer UDP-sugar dependent glycosyltransferase contributes to acetophenone metabolism and defense against insects. Plant Physiol. 175, 00611.2017 (2017).

    32.
    Tissier, A. Glandular trichomes: What comes after expressed sequence tags?. Plant J. 70, 51–68 (2012).
    Article  CAS  Google Scholar 

    33.
    Sacher, J. A. Structure and seasonal activity of the shoot apices of Pinus lambertiana and Pinus ponderosa. Am. J. Bot. 41, 749–759 (1954).
    Article  Google Scholar 

    34.
    De Simón, B. F., Vallejo, M. C. G., Cadahía, E., Miguel, C. A. & Martinez, M. C. Analysis of lipophilic compounds in needles of Pinus pinea L. Ann. For. Sci. 58, 449–454 (2001).
    Article  Google Scholar 

    35.
    Lange, W. & Weissman, G. Untersuchungen der Harzbalsame von Pinus resinosa Ait. und Pinus pinea L. Holz als Roh- und Werkst. 49, 476–480 (1991).

    36.
    Geisler, K., Jensen, N. B., Yuen, M. M. S., Madilao, L. & Bohlmann, J. Modularity of conifer diterpene resin acid biosynthesis: P450 enzymes of different CYP720B clades use alternative substrates and converge on the same products. Plant Physiol. 171, 152–164 (2016).
    Article  CAS  Google Scholar 

    37.
    Hamberger, B., Ohnishi, T., Hamberger, B., Séguin, A. & Bohlmann, J. Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol. 157, 1677–1695 (2011).
    Article  CAS  Google Scholar 

    38.
    Ro, D., Arimura, G., Lau, S. Y. W., Piers, E. & Bohlmann, J. Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc. Natl. Acad. Sci. USA 102, 8060–8065 (2005).
    ADS  Article  CAS  Google Scholar 

    39.
    Hilker, M., Stein, C., Schröder, R., Varama, M. & Mumm, R. Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. J. Exp. Biol. 208, 1849–1854 (2005).
    Article  Google Scholar 

    40.
    Schuurink, R. & Tissier, A. Glandular trichomes: Micro-organs with model status?. New Phytol. https://doi.org/10.1111/nph.16283 (2019).
    Article  PubMed  Google Scholar 

    41.
    Huchelmann, A., Boutry, M. & Hachez, C. Plant glandular trichomes: Natural cell factories of high biotechnological interest. Plant Physiol. 175, 00727.2017 (2017).

    42.
    Sallaud, C. et al. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J. 72, 1–17 (2012).
    Article  CAS  Google Scholar 

    43.
    Liu, Y. et al. A geranylfarnesyl diphosphate synthase provides the precursor for sesterterpenoid (C25) formation in the glandular trichomes of the mint species Leucosceptrum canum. Plant Cell 28, 804–822 (2016).
    Article  CAS  Google Scholar 

    44.
    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).
    Article  CAS  Google Scholar  More

  • in

    Changes in the vaginal microbiota across a gradient of urbanization

    1.
    Huttenhower, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
    ADS  CAS  Google Scholar 
    2.
    Nugent, R. P., Krohn, M. A. & Hillier, S. L. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol 29, 297–301 (1991).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Amsel, R. et al. Nonspecific vaginitis: diagnostic criteria and microbial and epidemiologic associations. Am. J. Med. 74, 14–22 (1983).
    CAS  PubMed  Google Scholar 

    4.
    Boris, S. & Barbes, C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect 2, 543–546 (2000).
    CAS  PubMed  Google Scholar 

    5.
    Tyssen, D. et al. Anti-HIV-1 Activity of Lactic Acid in Human Cervicovaginal Fluid. mSphere 3, e00055–00018 (2018).

    6.
    Petrova, M. I., Reid, G., Vaneechoutte, M. & Lebeer, S. Lactobacillus iners: friend or foe?. Trends Microbiol. 25, 182–191 (2017).
    CAS  PubMed  Google Scholar 

    7.
    Schwebke, J. R. & Desmond, R. Natural history of asymptomatic bacterial vaginosis in a high-risk group of women. Sex. Transm. Dis. 34, 876–877 (2007).
    PubMed  Google Scholar 

    8.
    Larsson, P.-G., Platz-Christensen, J.-J., Thejls, H., Forsum, U. & Påhlson, C. Incidence of pelvic inflammatory disease after first-trimester legal abortion in women with bacterial vaginosis after treatment with metronidazole: a double-blind, randomized study. Am. J. Obstet. Gynecol. 166, 100–103 (1992).
    CAS  PubMed  Google Scholar 

    9.
    Hillier, S. L. et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N. Engl. J. Med. 333, 1737–1742 (1995).
    CAS  PubMed  Google Scholar 

    10.
    Donders, G. et al. Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. BJOG 116, 1315–1324 (2009).
    CAS  PubMed  Google Scholar 

    11.
    Borgdorff, H. et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J. 8, 1781 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Cherpes, T. L., Hillier, S. L., Meyn, L. A., Busch, J. L. & Krohn, M. A. A delicate balance: risk factors for acquisition of bacterial vaginosis include sexual activity, absence of hydrogen peroxide-producing lactobacilli, black race, and positive herpes simplex virus type 2 serology. Sex. Transm. Dis. 35, 78–83 (2008).
    PubMed  Google Scholar 

    13.
    Dareng, E. O. et al. Prevalent high-risk HPV infection and vaginal microbiota in Nigerian women. Epidemiol. Infect. 144, 123–137 (2016).
    CAS  PubMed  Google Scholar 

    14.
    Brotman, R. M. et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J. Infect. Dis. 210, 1723–1733 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Lee, J. E. et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS ONE 8, e63514–e63514 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    Rodriguez-Cerdeira, C., Sanchez-Blanco, E. & Alba, A. Evaluation of association between vaginal infections and high-risk human papillomavirus types in female sex workers in Spain. ISRN Obstet. Gynecol. https://doi.org/10.5402/2012/240190 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    17.
    Di Paola, M. et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection. Sci. Rep. 7, 10200 (2017).
    PubMed  PubMed Central  Google Scholar 

    18.
    Cauci, S. Vaginal immunity in bacterial vaginosis. Curr. Infect. Dis. Rep. 6, 450–456 (2004).
    PubMed  Google Scholar 

    19.
    Stokholm, J. et al. Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin. Microbiol. Infect. 20, 629–635 (2014).
    CAS  PubMed  Google Scholar 

    20.
    Welch, J. S. Quantitative and qualitative effects of douche preparations on vaginal microflora. Obstet. Gynecol. 81, 320–321 (1993).
    CAS  PubMed  Google Scholar 

    21.
    Brotman, R. M. et al. The effect of vaginal douching cessation on bacterial vaginosis: a pilot study. Am. J. Obstet. Gynecol. 198(628), e621-628 (2008).
    Google Scholar 

    22.
    Schwebke, J. R., Richey, C. M. & Weiss, H. L. Correlation of behaviors with microbiological changes in vaginal flora. J. Infect. Dis. 180, 1632–1636 (1999).
    CAS  PubMed  Google Scholar 

    23.
    Beigi, R. H., Wiesenfeld, H. C., Hillier, S. L., Straw, T. & Krohn, M. A. Factors associated with absence of H2O2-producing Lactobacillus among women with bacterial vaginosis. J. Infect. Dis. 191, 924–929 (2005).
    PubMed  Google Scholar 

    24.
    Ahluwalia, N. & Grandjean, H. Nutrition, an under-recognized factor in bacterial vaginosis. J. Nutr. 137, 1997–1998 (2007).
    CAS  PubMed  Google Scholar 

    25.
    Neggers, Y. H. et al. Dietary intake of selected nutrients affects bacterial vaginosis in women. J. Nutr. 137, 2128–2133 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Brotman, R. M. et al. Association between cigarette smoking and the vaginal microbiota: a pilot study. BMC Infect. Dis. 14, 471 (2014).
    PubMed  PubMed Central  Google Scholar 

    27.
    van Houdt, R. et al. Lactobacillus iners-dominated vaginal microbiota is associated with increased susceptibility to Chlamydia trachomatis infection in Dutch women: a case–control study. Sex. Transm. Infect. 94, 117–123 (2017).
    PubMed  PubMed Central  Google Scholar 

    28.
    Noyes, N., Cho, K.-C., Ravel, J., Forney, L. J. & Abdo, Z. Associations between sexual habits, menstrual hygiene practices, demographics and the vaginal microbiome as revealed by Bayesian network analysis. PLoS ONE 13, e0191625 (2018).
    PubMed  PubMed Central  Google Scholar 

    29.
    Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108(Suppl 1), 4680–4687 (2011).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Zhou, X. et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J. 1, 121–133 (2007).
    CAS  PubMed  Google Scholar 

    31.
    Zhou, X. et al. The vaginal bacterial communities of Japanese women resemble those of women in other racial groups. FEMS Immunol. Med. Microbiol. 58, 169–181 (2010).
    CAS  PubMed  Google Scholar 

    32.
    Borgdorff, H. et al. The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS ONE 12, e0181135 (2017).
    PubMed  PubMed Central  Google Scholar 

    33.
    Verstraelen, H. et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1–2 region of the 16S rRNA gene. PeerJ 4, e1602 (2016).
    PubMed  PubMed Central  Google Scholar 

    34.
    Rick, A.-M. et al. Open forum infectious diseases. (Oxford University Press, Oxford).

    35.
    Anukam, K. C., Osazuwa, E. O., Ahonkhai, I. & Reid, G. Lactobacillus vaginal microbiota of women attending a reproductive health care service in Benin city, Nigeria. Sex. Transm. Dis. 33, 59–62 (2006).
    PubMed  Google Scholar 

    36.
    Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America Dated to the Last Glacial Maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).
    PubMed  PubMed Central  Google Scholar 

    37.
    Bortolini, M. C. et al. Y-chromosome evidence for differing ancient demographic histories in the Americas. Am. J. Hum. Genet. 73, 524–539 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Hurtado, A. M., Hurtado, I. & Hill, K. Public health and adaptive immunity among natives of South America. Lost Paradises and the Ethics of Research and Publication 164–192 (Oxford University Press, New York, 2003).

    39.
    Lindenau, J. et al. Distribution patterns of variability for 18 immune system genes in Amerindians–relationship with history and epidemiology. HLA 82, 177–185 (2013).
    CAS  Google Scholar 

    40.
    Bhatia, K. K., Black, F. L., Smith, T. A., Prasad, M. L. & Koki, G. N. Class I HLA antigens in two long-separated populations: Melanesians and South Amerinds. Am. J. Phys. Anthropol. 97, 291–305 (1995).
    CAS  PubMed  Google Scholar 

    41.
    Watkins, D. I. et al. New recombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci. Nature 357, 329–333 (1992).
    ADS  CAS  PubMed  Google Scholar 

    42.
    Ewerton, P. D., de Meira Leite, M., Magalhães, M., Sena, L. & dos Santos, E. J. M. Amazonian Amerindians exhibit high variability of KIR profiles. Immunogenetics 59, 625–630 (2007).
    CAS  PubMed  Google Scholar 

    43.
    Freire, G. & Tillett, A. Salud indígena en Venezuela. First volume. (Dirección de Salud Indígena, 2007).

    44.
    Contreras, M. et al. The bacterial microbiota in the oral mucosa of rural Amerindians. Microbiology 156, 3282–3287 (2010).
    CAS  PubMed  Google Scholar 

    45.
    Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    46.
    Blaser, M. J. et al. Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME J. 7, 86–95 (2012).
    Google Scholar 

    47.
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–222 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Godinho, N. M. D. O. O Impacto das Migrações na Constituição Genética de Populações Latino-Americanas. (2008).

    49.
    Jespers, V. et al. The significance of Lactobacillus crispatus and L. vaginalis for vaginal health and the negative effect of recent sex: a cross-sectional descriptive study across groups of African women. BMC Infect. Dis. 15, 115 (2015).
    PubMed  PubMed Central  Google Scholar 

    50.
    Gosmann, C. et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in Young South African Women. Immunity 46, 29–37 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Godoy-Vitorino, F. et al. Cervicovaginal fungi and bacteria associated with cervical intraepithelial neoplasia and high-risk Human Papillomavirus infections in a Hispanic population. Front. Microbiol. 9, 2533 (2018).
    PubMed  PubMed Central  Google Scholar 

    52.
    Tarnberg, M., Jakobsson, T., Jonasson, J. & Forsum, U. Identification of randomly selected colonies of lactobacilli from normal vaginal fluid by pyrosequencing of the 16S rDNA variable V1 and V3 regions. APMIS 110, 802–810 (2002).
    PubMed  Google Scholar 

    53.
    Huse, S. M., Ye, Y., Zhou, Y. & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Shen, J. et al. Effects of low dose estrogen therapy on the vaginal microbiomes of women with atrophic vaginitis. Sci. Rep. 6, 24380 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Witkin, S. S. et al. Vaginal biomarkers that predict cervical length and dominant bacteria in the vaginal microbiomes of pregnant women. mBio 10, e02242-129 (2019).
    Google Scholar 

    56.
    Ravel, J. et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome 1, 29 (2013).
    PubMed  PubMed Central  Google Scholar 

    57.
    Smith, B. C. et al. The cervical microbiome over 7 years and a comparison of methodologies for its characterization. PLoS ONE 7, e40425 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra152 (2012).
    Google Scholar 

    59.
    Kim, T. K. et al. Heterogeneity of vaginal microbial communities within individuals. J. Clin. Microbiol. 47, 1181–1189 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Liu, M.-B. et al. Diverse vaginal microbiomes in reproductive-age women with vulvovaginal candidiasis. PLoS ONE 8, e79812 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Verstraelen, H. et al. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 9, 116 (2009).
    PubMed  PubMed Central  Google Scholar 

    62.
    Byrne, E. H. et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 42, 965–976 (2015).
    PubMed  PubMed Central  Google Scholar 

    63.
    Mach, N. & Fuster-Botella, D. Endurance exercise and gut microbiota: a review. J. Sport Health Sci. 6, 179–197 (2017).
    PubMed  Google Scholar 

    64.
    Tasnim, N., Abulizi, N., Pither, J., Hart, M. M. & Gibson, D. L. Linking the gut microbial ecosystem with the environment: does gut health depend on where we live?. Front. Microbiol. 8, 1935 (2017).
    PubMed  PubMed Central  Google Scholar 

    65.
    Collins, M. D. The Prokaryotes 1013–1019 (Springer, Berlin, 2006).
    Google Scholar 

    66.
    Freitas, A. C. et al. Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. Microbiome 6, 117 (2018).
    PubMed  PubMed Central  Google Scholar 

    67.
    Marrazzo, J. M., Thomas, K. K., Fiedler, T. L., Ringwood, K. & Fredricks, D. N. Relationship of specific vaginal bacteria and bacterial vaginosis treatment failure in women who have sex with women. Ann. Intern. Med. 149, 20–28 (2008).
    PubMed  PubMed Central  Google Scholar 

    68.
    Si, J., You, H. J., Yu, J., Sung, J. & Ko, G. Prevotella as a hub for vaginal microbiota under the influence of host genetics and their association with obesity. Cell Host Microbe 21, 97–105 (2017).
    CAS  PubMed  Google Scholar 

    69.
    Srinivasan, S. et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE 7, e37818 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Yeoman, C. J. et al. A multi-omic systems-based approach reveals metabolic markers of bacterial vaginosis and insight into the disease. PLoS ONE 8, e56111 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Oakley, B. B., Fiedler, T. L., Marrazzo, J. M. & Fredricks, D. N. Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis. Appl. Environ. Microbiol. 74, 4898–4909 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Machado, A. & Cerca, N. Influence of biofilm formation by gardnerella vaginalis and other anaerobes on bacterial vaginosis. J. Infect. Dis. 212, 1856–1861 (2015).
    CAS  PubMed  Google Scholar 

    73.
    Vargas-Robles, D. et al. High rate of infection by only oncogenic human papillomavirus in Amerindians. mSphere 3, e00176-e118 (2018).
    PubMed  PubMed Central  Google Scholar 

    74.
    Song, D., Li, H., Li, H. & Dai, J. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol. Lett. 10, 600–606 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Briselden, A. M., Moncla, B. J., Stevens, C. E. & Hillier, S. L. Sialidases (Neuraminidases) in bacterial vaginosis and bacterial vaginosis-associated microflora. J. Clin. Microbiol. 30, 663–666 (1992).
    CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Gillet, E. et al. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis. BMC Infect. Dis. 11, 10 (2011).
    PubMed  PubMed Central  Google Scholar 

    77.
    Discacciati, M. G. et al. Presence of 20% or more clue cells: an accurate criterion for the diagnosis of bacterial vaginosis in Papanicolaou cervical smears. Diagn. Cytopathol. 34, 272–276 (2006).
    PubMed  Google Scholar 

    78.
    World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity (World Health Organization, Geneva, 2011).
    Google Scholar 

    79.
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Google Scholar 

    80.
    Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Allard, G., Ryan, F. J., Jeffery, I. B. & Claesson, M. J. SPINGO: a rapid species-classifier for microbial amplicon sequences. BMC Bioinform. 16, 324 (2015).
    Google Scholar 

    82.
    Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2013).
    PubMed  PubMed Central  Google Scholar 

    83.
    Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics 24, 1757–1764 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Muzny, C. A. et al. Characterization of the vaginal microbiota among sexual risk behavior groups of women with bacterial vaginosis. PLoS ONE 8, e80254 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    85.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).

    87.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4. R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing (2010).

    88.
    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639 (2001).
    Google Scholar 

    89.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. (2015).

    90.
    textmineR: Functions for Text Mining and Topic Modeling v. 2.0.6 (2017).

    91.
    Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
    MATH  Google Scholar 

    92.
    Walther, R. T. A. G. Cluster validation by prediction strength. J. Comput. Graph. Stat. 14, 511–528 (2005).
    MathSciNet  Google Scholar 

    93.
    Philentropy: Information Theory and Distance Quantification with R (2018).

    94.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7, 1451–1456 (2016).
    Google Scholar 

    95.
    Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).
    Google Scholar 

    96.
    Viera, A. J. & Garrett, J. M. Understanding interobserver agreement: the kappa statistic. Fam. Med. 37, 360–363 (2005).
    PubMed  Google Scholar 

    97.
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
    PubMed  PubMed Central  Google Scholar 

    98.
    Nakazawa, M. fmsb: Functions for medical statistics book with some demographic data. R package version 0.4 (2014).

    99.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    100.
    Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).
    Google Scholar 

    101.
    gplots: Various R Programming Tools for Plotting Data (R, 2016).

    102.
    Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Biological characteristics of Trissolcus urichi (Crawford) (Hymenoptera: Scelionidae) on Euschistus heros (Fabricius) and Dichelops melacanthus (Dallas) (Hemiptera: Pentatomidae) Eggs

    1.
    Panizzi, A. R. Economic importance of stink bugs (Pentatomidae). In Heteroptera of economic importance (eds Schaefer, C. W. & Panizzi, A. R.) 421–474 (CRC Press, Boca Ratón, 2000).
    Google Scholar 
    2.
    Akin, S., Phillips, J. & Johnson, D.T. Biology, identification and management of the redbanded stink bug. Arkansas, US Cooperative Extension Service, University of Arkansas, U.S. Dept. of Agriculture, and county governments cooperating. FSA7078 (2011).

    3.
    Corrêa-Ferreira, B. S. & Azevedo, J. Soybean seed damage by diferente species of stink bugs. Agric. For. Entomol. 4, 145–150 (2002).
    Google Scholar 

    4.
    Panizzi, A. R. & Slansky, F. Jr. Review of phytophagous pentatomids (Hemiptera: Pentatomidae) associated with soybean in the Americas. Fla. Entomol. 68, 184–203 (1985).
    Google Scholar 

    5.
    Zerbino, M. S. & Panizzi, A. R. The underestimated role of pest pentatomid parasitoids in Southern South America. Arth. Plant Int. 13, 703–718 (2019).
    Google Scholar 

    6.
    Panizzi, A. R. & Corrêa-Ferreira, B. S. Dynamics in the insect fauna adaptation to soybean in the tropics. Trends Entomol. 1, 71–88 (1997).
    Google Scholar 

    7.
    Gomes, E. C., Hayashida, R. & Bueno, A. F. Dichelops melacanthus and Euschistus heros injury on maize: Basis for re-evaluating stink bug thresholds for IPM decisions. Crop Prot. 130, 105050 (2020).
    CAS  Google Scholar 

    8.
    Smaniotto, L. F. & Panizzi, A. R. Interactions of selected species of stink bugs (Hemiptera: Heteroptera: Pentatomidae) from leguminous crops with plants in the Neotropics. Florida Entomol. 98, 7–17 (2015).
    Google Scholar 

    9.
    Bueno, A. F., Bortolotto, O. C., Pomari-Fernandes, A. & França-Neto, J. B. Assessment of a more conservative stink bug economic threshold for managing stink bugs in Brazilian soybean. Crop Prot. 71, 132–137 (2015).
    Google Scholar 

    10.
    Sosa-Gómez, D.R., Corso, I.C. & Morales, L. Insecticide resistance to endosulfan, monocrotophos and methamidophos in the neotropical brown stink bug, Euschistus heros (F.) Neotrop. Entomol. 30, 317–320 (2001).

    11.
    Sosa-Gómez, D. R. & Silva, J. J. D. Neotropical brown stink bug (Euschistus heros) resistance to methamidophos in Paraná Brazil. Pesq. Agrop. Bras 45, 767–769 (2010).
    Google Scholar 

    12.
    Bueno, A. F. et al. Effects of integrated pest management, biological control and prophylactic use of insecticides on the management and sustainability of soybean. Crop Prot. 30, 937–945 (2011).
    Google Scholar 

    13.
    van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J. & Urbaneja, A. Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol 63, 39–59 (2018).
    Google Scholar 

    14.
    Koppel, A. L., Herbert, D. A. Jr., Kuhar, T. P. & Kamminga, K. Survey of stink bug (Hemiptera: Pentatomidae) egg parasitoids in wheat, soybean, and vegetable crops in southeast Virginia. Environ. Entomol. 38, 375–379 (2009).
    CAS  PubMed  Google Scholar 

    15.
    Laumann, R. A. et al. Egg parasitoid wasps as natural enemies of the Neotropical stink bug Dichelops melacanthus. Pesq. Agropec. Bras. 45, 442–449 (2010).
    Google Scholar 

    16.
    Corrêa-Ferreira, B. S. & Moscardi, F. Seasonal occurrence and host spectrum of egg parasitoids associated with soybean stink bugs. Biol. Control. 5, 196–202 (1995).
    Google Scholar 

    17.
    Cividanes, F. J. Development and emergence of Trissolcus brochymenae (Ashmead) and Telenomus podisi Ashmead (Hymenoptera: Scelionidae) at different temperatures. An. Soc. Entomol. Bras. 25, 207–211 (1996).
    Google Scholar 

    18.
    Silva, G. V., Bueno, A. F., Neves, P. M. O. J. & Favetti, B. M. Biological characteristics and parasitism capacity of Telenomus podisi (Hymenoptera: Platygastridae) on eggs of Euschistus heros (Hemiptera: Pentatomidae). J. Agric. Sci. 10, 210–220 (2018).
    Google Scholar 

    19.
    Laumann, R. A. et al. Comparative biology and functional response of Trissolcus spp. (Hymenoptera: Scelionidae) and implications for stink bugs (Hemiptera: Pentatomidae) biological control. Biol. Control. 44, 32–41 (2008).
    Google Scholar 

    20.
    Favetti, B. M., Krinski, D., Butnariu, A. R. & Loiácono, M. S. Egg parasitoids of Edessa meditabunda (Fabricius) (Pentatomidae) in lettuce crop. Rev. Bras. Entomol. 57, 236–237 (2013).
    Google Scholar 

    21.
    Margaría, C. B., Loiácono, M. S. & Lanteri, A. A. New geographic and host records for scelionid wasps (Hymenoptera: Scelionidae) parasitoids of insect pests in South America. Zootaxa 2314, 41–49 (2009).
    Google Scholar 

    22.
    Peres, W. A. A. & Corrêa-Ferreira, B. S. Methodology of mass multiplication of Telenomus podisi Ashmead and Trissolcus basalis (Hymenoptera: Scelionidae) on eggs of Euschistus heros (Hemiptera: Pentatomidae). Neotrop. Entomol. 33, 457–462 (2004).
    Google Scholar 

    23.
    Panizzi, A. R., Parra, J. R. P., Santos, C. H. & Carvalho, D. R. Rearing the southern green stink bug using artificial dry diet and artificial plant. Pesq. Agropec. Bras. 35, 1709–1715 (2000).
    Google Scholar 

    24.
    Thuler, R. T., Volpe, H. X. L., Bortoli, S. A., Goulart, R. M. & Viana, C. L. T. Metodologia para avaliação da preferência hospedeira de parasitoides do gênero Trichogramma Westood. Bol. San. Veg. 33, 333–340 (2007).
    Google Scholar 

    25.
    Queiroz, A. P., Taguti, E. A., Bueno, A. F., Grande, M. L. M. & Costa, C. O. Host preferences of Telenomus podisi (Hymenoptera: Scelionidae): parasitism on eggs of Dichelops melacanthus, Euschistus heros, and Podisus nigrispinus (Hemiptera: Pentatomidae). Neotrop. Entomol. 47, 543–552 (2018).
    CAS  PubMed  Google Scholar 

    26.
    van Lenteren, J. C. Quality control and production of biological control agents: theory and testing procedures 327 (CABI, Wallingford, 2003).
    Google Scholar 

    27.
    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).
    MathSciNet  MATH  Google Scholar 

    28.
    Burr, I. W. & Foster, L. A. A Test for Equality of Variances (University of Purdue, West Lafayette, 1972).
    Google Scholar 

    29.
    Institute, S. A. S. SAS User’s Guide: Statistics, Version 8e (SAS Institute, Cary, NC, 2009).
    Google Scholar 

    30.
    Sujii, E. R., Costa, M. L. M., Pires, C. S. S., Colazza, S. & Borges, M. Inter and intra-guild interactions in egg parasitoid species of the soybean stink bug complex. Pesq. Agropec. Bras. 37, 1541–1549 (2002).
    Google Scholar 

    31.
    Zhou, Y., Abram, P. K., Boivin, G. & Brodeur, J. Increasing host age does not have the expected negative effects on the fitness parameters of an egg parasitoid. Entomol. Exp. Appl. 151, 106–111 (2014).
    Google Scholar 

    32.
    Jones, T. S., Bilton, A. R., Mak, L. & Sait, S. M. Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species. Ecol. Evol. 5, 459–465 (2015).
    PubMed  PubMed Central  Google Scholar 

    33.
    Orr, D. B. Scelionid wasps as biological control agents: a review. Florida Entomol. 71, 506–528 (1988).
    Google Scholar 

    34.
    Blackiston, D. J., Casey, E. S. & Weiss, M. R. Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar?. PlosOne 3, e1736 (2008).
    ADS  Google Scholar 

    35.
    Kaiser, L., Pham-Delegue, M. H. & Masson, C. Behavioural study of plasticity in host preferences of Trichogramma maidis (Hymenoptera: Trichogrammatidae). Physiol. Entomol. 14, 53–60 (1989).
    Google Scholar 

    36.
    Gandolfi, M., Mattiacci, L. & Dorn, S. Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proc. R. Soc. Lond. B 270, 2623–2629 (2003).
    Google Scholar 

    37.
    Corbet, S. A. Insect chemosensory responses: a chemical legacy hypothesis. Ecol. Entomol. 10, 143–153 (1985).
    Google Scholar 

    38.
    Pluke, R. W. H. & Leibee, G. L. Host preferences of Trichogramma pretiosum and the influence of prior ovipositional experience on the parasitism of Plutella xylostella and Pseudoplusia includes eggs. Biocontrol 51, 569–583 (2006).
    Google Scholar 

    39.
    Stephens, D. W. & Krebs, J. R. Foraging theory (Princeton University Press, Princeton, 1986).
    Google Scholar 

    40.
    Vinson, S. B. & Iwantsch, G. F. Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).
    Google Scholar 

    41.
    Bin, F., Vinson, S. B., Strand, M. R., Colazza, S. & Jones, W. A. Jr. Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula. Physiol. Entomol. 18, 7–15 (1993).
    Google Scholar 

    42.
    Borges, M. et al. Semiochemical and physical stimuli involved in host recognition by Telenomus podisi (Hymenoptera: Scelionidae) toward Euschistus heros (Heteroptera: Pentatomidae). Physiol. Entomol. 24, 227–233 (1999).
    Google Scholar 

    43.
    Borges, M. & Aldrich, J. R. Attractant pheromone for Nearctic stink bug, Euschistus obscurus (Heteroptera: Pentatomidae): insight in to a Neotropical relative. J. Chem. Ecol. 20, 1095–1102 (1994).
    CAS  PubMed  Google Scholar 

    44.
    Pomari, A. F., Bueno, A. F., Bueno, R. C. O. F. & Menezes Junior, A. O. Biological Characteristics and thermal requirements of the biological control agent Telenomus remus (Hymenoptera: Platygastridae) reared on eggs of different species of the genus Spodoptera (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 105, 73–81 (2012).
    Google Scholar 

    45.
    Bueno, R. C. O., Parra, J. R. P. & Bueno, A. F. Biological characteristics and thermal requirements of a Brazilian strain of the parasitoid Trichogramma pretiosum reared on eggs of Pseudoplusia includes and Anticarsia gemmatalis. Biol. Control. 51, 355–361 (2009).
    Google Scholar 

    46.
    Cônsoli, F. L., Kitajima, E. W. & Parra, J. R. P. Ultrastructure of the natural and factitious host eggs of Trichogramma galloi Zucchi and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Int. J. Insect. Morphol. Embriol. 28, 211–229 (1999).
    Google Scholar 

    47.
    Bai, B., Luck, R. F., Forster, L., Stephens, B. & Janssen, J. A. M. The effect of host size on quality attributes of the egg parasitoid Trichogramma pretiosum. Entomol. Exp. Appl. 64, 37–48 (1992).
    Google Scholar 

    48.
    Schwartz, A. & Gerling, D. Adult biology of Telenomus remus (Hymenoptera: Scelionidae) under laboratory conditions. Entomophaga 19, 482–492 (1974).
    Google Scholar 

    49.
    Charnov, E. L., Los-Den Hartogh, R. L., Jones, W. T. & Van Den Assem, J. Sex ratio evolution in a variable environment. Nature 289, 27–33 (1981).
    ADS  CAS  PubMed  Google Scholar 

    50.
    Houseweart, M. W., Jennings, D. T., Welty, C. & Southard, S. G. Progeny production by Trichogramma minutum (Hymenoptera: Trichogrammatidae) utilizing eggs for Choristoneura fumiferana (Lepidoptera: Tortricidae) and Sitotroga cerealella (Lepidoptera: Gelechiidae). Can. Entomol. 115, 1245–1252 (1983).
    Google Scholar 

    51.
    Sequeira, R. & Mackauer, M. Covariance of adult size and development time in the parasitoid wasp Aphidius ervi in relation to the size of its host Acyrthosiphon pisum. Evol. Ecol. 6, 34–44 (1992).
    Google Scholar 

    52.
    Mackauer, M. Sexual size dimorphism in solitary wasps: influence of host quality. Oikos 76, 265–272 (1996).
    Google Scholar  More