1.
Turner, M. G. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20, 171–197 (1989).
Google Scholar
2.
Wiens, J. A. Spatial scaling in ecology. Func. Ecol. 3, 385–397 (1989).
Google Scholar
3.
Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).
Google Scholar
4.
Dunning, J. B. Jr., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).
Google Scholar
5.
Boström, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 427, 191–217 (2011).
ADS Google Scholar
6.
Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 99, 16812–16816 (2002).
ADS CAS PubMed Google Scholar
7.
Robinson, N. M. et al. Refuges for fauna in fire prone landscapes: their ecological function and importance. J. Appl. Ecol. 50, 1321–1329 (2013).
Google Scholar
8.
Chapin, F. S. III. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).
CAS PubMed Google Scholar
9.
Michel, N., Burel, F. & Butet, A. How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes?. Acta Oecol. 30, 11–20 (2006).
ADS Google Scholar
10.
Kirk, D. A., Lindsay, K. E. & Brook, R. W. Risk of agricultural practices and habitat change to farmland birds. Avi. Conserv. Ecol. 6(1), 5 (2011).
Google Scholar
11.
Connell, S. D. & Glasby, T. M. Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res. 47, 373–387 (1999).
CAS Google Scholar
12.
Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).
ADS CAS PubMed Google Scholar
13.
Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6(5), e122. https://doi.org/10.1371/journal.pbio.0060122 (2008).
CAS Article PubMed Central Google Scholar
14.
O’Connor, R. J. & Shrubb, M. Farming and Birds (Cambridge University Press, Cambridge, 1986).
Google Scholar
15.
Galbraith, H. Effects of agriculture on the breeding ecology of lapwings Vanellus vanellus. J. Appl. Ecol. 25, 487–503 (1988).
Google Scholar
16.
Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).
Google Scholar
17.
Lubchenco, J. et al. The sustainable biosphere initiative: an ecological research agenda. Ecology 72, 371–412 (1991).
Google Scholar
18.
Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).
Google Scholar
19.
McHugh, D. J. Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221, 19–29 (1991).
Google Scholar
20.
Jensen, A. Present and future needs for algae and algal products. Hydrobiologia 260, 15–23 (1993).
Google Scholar
21.
Ask, E. I., Batibasaga, A., Zertuche-Gonzalez, J. A. & de San, M. Three decades of Kappaphycus alvarezii (Rhodophyta) introduction to non-endemic locations. In 17th International Seaweed Symposium (eds Chapman, A. R. O. et al.) 49–57 (Oxford Univ Press, Cape Town, 2001).
Google Scholar
22.
Rönnbäck, P., Bryceson, I. & Kautsky, N. Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies. Ambio 31, 537–542 (2002).
PubMed Google Scholar
23.
Food and Agriculture Organization (FAO). The state of world fisheries and aquaculture. Rome, Italy pp. 243 (2014).
24.
Abhilash, K. R. et al. Impact of long-term seaweed farming on water quality: a case study from Palk Bay, India. J. Coast. Conserv. 23, 485–499 (2019).
Google Scholar
25.
Eggertsen, M. & Halling, C. Knowledge gaps and management recommendations for future paths of sustainable seaweed farming in the Western Indian Ocean. Ambio https://doi.org/10.1007/s13280-020-01319-7 (2020).
Article PubMed Google Scholar
26.
Hehre, E. J. & Meeuwig, J. J. A Global analysis of the relationship between farmed seaweed production and herbivorous fish catch. PLoS ONE 11(2), e148250. https://doi.org/10.1371/journal.pone.0148250 (2016).
CAS Article Google Scholar
27.
Hedberg, N. et al. Habitat preference for seaweed farming—A case study from Zanzibar, Tanzania. Ocean Coast. Manag. 154, 186–195. https://doi.org/10.1016/j.ocecoaman.2018.01.016 (2018).
Article Google Scholar
28.
de la Torre-Castro, M. & Rönnbäck, P. Links between humans and seagrasses—an example from tropical east Africa. Ocean Coast. Manag. 47, 361–387 (2004).
Google Scholar
29.
Halling, C., Wikström, S. A., Lilliesköld-Sjöö Mörk, E., Lundør, E. & Zuccarello, G. C. Introduction of Asian strains and low genetic variation in farmed seaweeds: indications for new management practices. J. Appl. Phycol. 25, 89–95 (2013).
Google Scholar
30.
Tano, S. A., Halling, C., Eggertsen, L., Buriyo, A. & Wikström, S. A. Extensive spread of farmed seaweeds causes a shift from native to non-native haplotypes in natural seaweed beds. Mar. Biol. 162, 1983–1992 (2015).
Google Scholar
31.
Conklin, E. J. & Smith, J. E. Abundance and spread of the invasive red algae, Kappaphycus spp., in Kane’ohe Bay, Hawai’i and an experimental assessment of management options. Biol. Invat. 7, 1029–1039 (2005).
Google Scholar
32.
Keats, D. W., Steele, D. H. & South, G. R. The role of fleshy macroalgae in the ecology of juvenile cod (Gadus morhua L,) in inshore waters off eastern Newfoundland. Can. J. Fish. Aquat. Sci. 65, 49–53. https://doi.org/10.1139/Z87-008 (1987).
Article Google Scholar
33.
Carr, M. H. Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecol. Soc. Am. 75, 1320–1333 (1994).
Google Scholar
34.
Levin, P. & Hay, M. Responses of temperate reef fishes to alterations in algal structure and species composition. Mar. Ecol. Prog. Ser. 134, 37–47 (1996).
ADS Google Scholar
35.
Bertocci, I., Araújo, R., Oliveira, P. & Sousa-Pinto, I. Potential effects of kelp species on local fisheries. J. Appl. Ecol. 52, 1216–1226 (2015).
Google Scholar
36.
Wilson, S. K. et al. Seasonal changes in habitat structure underpin shifts in macroalgae-associated tropical fish communities. Mar. Biol. 161, 2597–2607 (2014).
Google Scholar
37.
Tano, S. et al. Tropical seaweed beds are important habitats for mobile invertebrate epifauna. Estuar. Coast. Shelf Sci. 183, 1–12 (2016).
ADS Google Scholar
38.
Tano, S. A. et al. Tropical seaweed beds as important habitats for juvenile fish. Mar. Freshw. Res. 68, 1921–1934 (2017).
Google Scholar
39.
Eggertsen, L. et al. Seaweed beds support more juvenile reef fish than seagrass beds: carrying capacity in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf Sci. 196, 97–108. https://doi.org/10.1016/j.ecss.2017.06.041 (2017).
ADS Article Google Scholar
40.
Fulton, C. J. et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33, 989–999 (2019).
Google Scholar
41.
Garrigue, C. Macrophyte associations on the soft bottoms of the south-west lagoon of New Caledonia: description, structure and biomass. Bot. Mar. 38, 481–492 (1995).
Google Scholar
42.
Kobryn, H. T., Wouters, K., Beckley, L. E. & Heege, T. Ningaloo Reef: shallow marine habitats mapped using a hyperspectral sensor. PLoS ONE 8, e70105 (2013).
ADS CAS PubMed PubMed Central Google Scholar
43.
Rossier, O. & Kulbicki, M. A comparison of fish assemblages from two types of algal beds and coral reefs in the south-west lagoon of New Caledonia. Cybium 24, 3–26 (2000).
Google Scholar
44.
Chaves, L. T. C., Pereira, P. H. C. & Feitosa, J. L. L. Coral reef fish association with macroalgal beds on a tropical reef system in North-eastern Brazil. Mar. Freshw. Res. 64, 1101–1111 (2013).
Google Scholar
45.
Evans, R. D., Wilson, S. K., Field, S. N. & Moore, J. A. Y. Importance of macroalgal fields as coral reef fish nursery habitat in north-west Australia. Mar. Biol. 161, 599–607 (2014).
Google Scholar
46.
van Lier, J. R., Wilson, S. K., Depczynski, M., Wenger, L. N. & Fulton, C. J. Habitat connectivity and complexity underpin fish community structure across a seascape of tropical macroalgae meadows. Landsc. Ecol. 33, 1287–1300 (2018).
Google Scholar
47.
Eggertsen, M., Chacin, D. H., Åkerlund, C., Halling, C. & Berkström, C. Contrasting distribution and foraging patterns of herbivorous and detritivorous fishes across multiple habitats in a tropical seascape. Mar. Biol. 166, 51. https://doi.org/10.1007/s00227-019-3498-0 (2019).
Article Google Scholar
48.
Johnstone, R. W. & Ólafsson, E. Some environmental aspects of open water algal cultivation, Zanzibar, Tanzania. Ambio 24, 465–469 (1995).
Google Scholar
49.
Ólafsson, E., Johnstone, R. W. & Ndaro, S. G. M. Effects of intensive seaweed farming on the meiobenthos in a tropical lagoon. J. Exp. Mar. Biol. Ecol. 191, 101–117 (1995).
Google Scholar
50.
Eklöf, J. S., de la Torre-Castro, M., Adelsköld, L., Jiddawi, N. S. & Kautsky, N. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar. Coast. Shelf Sci. 63, 385–396 (2005).
ADS Google Scholar
51.
Bergman, K. C., Svensson, S. & Öhman, M. C. Influence of algal farming on fish assemblages. Mar. Pollu. Bull. 42, 1379–1389 (2001).
CAS Google Scholar
52.
Russell, D. Ecology of the imported red seaweed Euchema striatum Schmitz on Coconut Island, Oahu, Hawaii. Pac. Sci. 37, 87–107 (1983).
Google Scholar
53.
Eklöf, J. S., Henriksson, R. & Kautsky, N. Effects of tropical open-water seaweed farming on seagrass ecosystem structure and function. Mar. Ecol. Prog. Ser. 325, 73–84 (2006).
ADS Google Scholar
54.
Eklöf, J. S., de la Torre-Castro, M., Nilsson, C. & Rönnbäck, P. How do seaweed farms influence local fishery catches in a seagrass-dominated setting in Chwaka Bay, Zanzibar?. Aquat. Liv. Resour. 19, 137–147 (2006).
Google Scholar
55.
Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish−habitat interactions. Hydrobiologia 498, 191–211 (2003).
Google Scholar
56.
McClanahan, T. R. Seasonality in East Africa’s coastal waters. Mar. Ecol. Prog. Ser. 44, 191–199 (1988).
ADS Google Scholar
57.
Msuya, F. E. Cultivation and utilisation of red seaweeds in the Western Indian Ocean (WIO) Region. J. Appl. Phycol. 26, 699–705 (2014).
CAS Google Scholar
58.
Msuya, F. E. The impact of seaweed farming on the social and economic structure of seaweed farming communities in Zanzibar, Tanzania. In World Seaweed Resources: An Authoritative Reference System (eds Critchley, A. T. et al.) (ETI BioInformatics, Amsterdam, 2006).
Google Scholar
59.
Msuya, F. E. Social and economic dimensions of carrageenan seaweed farming in the United Republic of Tanzania. In Social and Economic Dimensions of Carrageenan Seaweed Farming Fisheries and Aquaculture Technical Paper No. 580 (eds Valderrama, D. et al.) 115–146 (FAO, Rome, 2013).
Google Scholar
60.
Eklöf, J.S., Msuya, F.E., Lyimo, T.J. & Buriyo, A.S. Seaweed Farming in Chwaka Bay: A Sustainable Alternative in Aquaculture? – In: eds. de la Torre-Castro, M. and T. J. Lyimo, People, Nature and Research in Chwaka Bay, Zanzibar, Tanzania. ISBN: 978-9987-9559-1-6. Zanzibar Town: WIOMSA, 213–233 (2012).
61.
Valderrama, D. et al. The economics of Kappaphycus seaweed cultivation in developing countries: a comparative analysis of farming systems. Aquacul. Econ. Manag. 19, 251–277. https://doi.org/10.1080/13657305.2015.1024348 (2015).
Article Google Scholar
62.
Berkström, C., Jörgensen, T. L. & Hellström, M. Ecological connectivity and niche differentiation between two closely related fish species in the mangrove-seagrass-coral reef continuum. Mar. Ecol. Prog. Ser. 477, 01–215 (2013).
Google Scholar
63.
Horrill, J. C., Darwall, W. R. T. & Ngoile, M. Development of a marine protected area: Mafia Island, Tanzania. Ambio 25, 50–57 (1996).
Google Scholar
64.
Ogden, J. C. & Lobel, P. S. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fish. 3, 49–63. https://doi.org/10.1007/BF00006308 (1978).
Article Google Scholar
65.
Lawrence, J. M. & Agatsuma, Y. Chapter 32: Tripneustes. In Sea urchins: Biology and Ecology (ed. Lawrence, J. M.) 491–507 (Elsevier BV, Amsterdam, 2013).
Google Scholar
66.
Wall, K. R. & Stallings, C. D. Subtropical epibenthos varies with location, reef type, and grazing intensity. J. Exp. Mar. Biol. Ecol. 509, 54–65 (2018).
Google Scholar
67.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).
Google Scholar
68.
McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).
Google Scholar
69.
Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monog. 67, 345–366 (1997).
Google Scholar
70.
Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).
Google Scholar
71.
Legendre, P. & Legendre, L. Numerical Ecology. Vol 24 3rd Edition (2012).
72.
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
MathSciNet PubMed MATH Google Scholar
73.
Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
PubMed Google Scholar
74.
Jones, D.L. Fathom Toolbox for Matlab: Software for Multivariate Ecological and Oceanographic Data Analysis. College of Marine Science, University of South Florida, St. Petersburg, FL, USA (2017) (Available from: https://www.marine.usf.edu/research/matlab-resources/fathom-toolbox-for-matlab/).
75.
Rojas-Sepulveda, J. Seaweeds, seagrasses, or both: feeding preferences of an important herbivore within a tropical seascape. Master Thesis. Stockholm University, Sweden (2017).
76.
Anyango, J. O., Mlewa, C. M. & Mwaluma, J. Abundance, diversity and trophic status of wild fish around seaweed farms in Kibuyuni, South Coast Kenya. Int. J. Fish. Aqua. Stud. 5, 440–446 (2017).
Google Scholar
77.
Savino, J. F. & Stein, R. A. Predator–prey interaction between largemouth bass and bluegills as influenced by simulated submersed vegetation. Trans. Am. Fish. Soc. 111, 255–266 (1982).
Google Scholar
78.
Anderson, T. W. Role of macroalgal structure in the distribution and abundance of a temperate reef fish. Mar. Ecol. Prog. Ser. 113, 279–290 (1994).
ADS Google Scholar
79.
Lim, I. E., Wilson, S. K., Holmes, T. H., Noble, M. M. & Fulton, C. Specialization within a shifting habitat mosaic underpins the seasonal abundance of a tropical fish. Ecosphere 7(2), e01212. https://doi.org/10.1002/ecs2.1212 (2016).
Article Google Scholar
80.
Wenger, L. N., van Lier, J. R. & Fulton, C. J. Microhabitat selectivity shapes the seascape ecology of a carnivorous macroalgae-associated tropical fish. Mar. Ecol. Prog. Ser. 590, 187–200 (2018).
ADS Google Scholar
81.
Tang, S., Graba-Landra, A. & Hoey, A. S. Density and height of Sargassum influence rabbit (F. siganidae) settlement on inshore reef flats of the Great Barrier reef. Coral Reefs 39, 467–473 (2020).
Google Scholar
82.
Horinouchi, M. Review of the effects of within-patch scale structural complexity on seagrass fishes. J. Exp. Mar. Biol. Ecol. 350, 111–129 (2007).
Google Scholar
83.
Chacin, D. H. & Stallings, C. D. Disentangling fine- and broad- scale effects of habitat on predator-prey interactions. J. Exp. Mar. Biol. Ecol. 483, 10–19 (2016).
Google Scholar
84.
Orth, R. J., Heck, K. L. & Vanmontfrans, J. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator prey relationships. Estuaries 7, 339–350 (1984).
Google Scholar
85.
Heck, K. L. & Crowder, L. B. Habitat structure and predator–prey interactions in vegetated aquatic systems. In Habitat Complexity: The Physical Arrangement of Objects in Space (eds Bell, S. S. et al.) 280–299 (Chapman and Hall, New York, 1991).
Google Scholar
86.
Johnson, D. W. Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes. Ecology 87, 1179–1188 (2006).
PubMed Google Scholar
87.
Gregor, C. A. & Anderson, T. W. Relative importance of habitat attributes to predation risk in a temperate reef fish. Environ. Biol. Fish. 99, 539–556 (2016).
Google Scholar
88.
Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).
ADS CAS PubMed Google Scholar
89.
Hortal, J., Triantis, K. A., Meiri, S., Thebault, E. & Sfenthourakis, S. Island species richness increases with habitat diversity. Am. Nat. 174, 205–217 (2009).
Google Scholar
90.
Genner, M. J., Turner, G. F. & Hawkins, S. J. Foraging of rocky habitat cichlid fishes in Lake Malawi: co-existence through niche partitioning?. Oecologia 121, 283–292 (1999).
ADS PubMed Google Scholar
91.
Arrizabalaga-Escudero, A. et al. Assessing niche partitioning of co-occurring sibling bat species by DNA metabarcoding. Mol. Ecol. 27, 1273–1283 (2018).
PubMed Google Scholar
92.
Wilson, S. & Bellwood, D. R. Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar. Ecol. Prog. Ser. 153, 299–310 (1997).
ADS CAS Google Scholar
93.
Horn, M. H. Biology of marine herbivorous fishes. Oceanog. Mar. Biol. Ann. Rev. 27, 167–272 (1989).
Google Scholar
94.
Arnold, G. W., Maller, R. A. & Litchfield, R. Comparison of bird populations in remnants of Wandoo woodland and in adjacent farmland. Aust. Wildl. Res. 14, 331–341. https://doi.org/10.1071/WR9870331 (1987).
Article Google Scholar
95.
Bretagnolle, V. et al. Towards sustainable and multifunctional agriculture in farmland landscapes: lessons from the integrative approach of a French LTSER platform. Sci. Total Environ. 627, 822–834 (2018).
ADS CAS PubMed Google Scholar
96.
Carcamo, H. A., Niemala, J. K. & Spence, J. R. Farming and ground beetles – effects of agronomic practice on populations and community structure. Can. Entomol. 127, 123–140 (1995).
Google Scholar
97.
Locham, A. G., Kaunda-Arara, B., Wakibia, J. G. & Muya, S. Diet and niche breadth variation in the marbled parrotfish, Leptoscarus vaigiensis, among coral reef sites in Kenya. Afr. J. Ecol. 53, 560–571 (2015).
Google Scholar
98.
Fox, R. J. & Bellwood, D. R. Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f:Siganidae) on an inner-shelf reef of the Great Barrier Reef. Coral Reefs 27, 605–615 (2008).
ADS Google Scholar
99.
Hoey, A. S. & Bellwood, D. R. Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328 (2009).
Google Scholar
100.
Öhman, M. C. & Rajasuriya, A. Relationships between habitat structure and fish assemblages on coral and sandstone reefs. Environ. Biol. Fish. 53, 19–31 (1998).
Google Scholar
101.
Gratwicke, B. & Speight, M. R. Effects of habitat complexity on Caribbean marine fish assemblages. Mar. Ecol. Prog. Ser. 292, 301–310 (2005).
ADS Google Scholar
102.
Humphries, P., Potter, I. C. & Loneragan, N. R. The fish community in the shallows of a temperate Australian estuary: relationships with the aquatic marcophyte Ruppia megacarpa and environmental variables. Estuar. Coast. Shelf Sci. 34, 32–346 (1992).
Google Scholar
103.
Nelson, W. G. Development of an epiphyte indicator of nutrient enrichment: a critical evaluation of observational and experimental studies. Ecol. Indic. 79, 207–227 (2017).
PubMed PubMed Central Google Scholar
104.
Gullström, M., Berkström, C., Öhman, M., Bodin, M. & Dahlberg, M. Scale-dependent patterns of variability of a grazing parrotfish (Leptoscarus vaigiensis) in a tropical seagrass-dominated seascape. Mar. Biol. 158, 1483–1495 (2011).
Google Scholar
105.
Vonk, J. A., Marjolijin, J. A. & Stapel, J. Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows. Estuar. Coast. Shelf. Sci. 79, 653–660 (2008).
ADS Google Scholar
106.
Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Eco. Envir. 75, 13–30 (1999).
Google Scholar
107.
Hoey, A. S. & Bellwood, D. R. Cross-shelf variation in browsing intensity on the Great Barrier Reef. Coral Reefs 29, 499–508 (2010).
ADS Google Scholar
108.
Chong-Seng, K. M., Nash, K. L., Bellwood, D. R. & Graham, N. A. J. Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs 33, 409–419 (2014).
ADS Google Scholar
109.
Hoey, A. S. & Bellwood, D. R. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs. Ecol. Lett. 14, 267–273 (2011).
PubMed Google Scholar
110.
Bauman, A. G. et al. Fear effects associated with predator presence and habitat structure interact to alter herbivory on coral reefs. Biol. Lett. https://doi.org/10.1098/rsbl.2019.0409 (2019).
Article PubMed Google Scholar
111.
Menge, B. A. Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol. Monog. 46, 355–393 (1976).
Google Scholar
112.
Siriwardena, G. M. Trends in the abundance of farmland birds: a quantitative comparison of smoothed Common Birds Census indices. J. Appl. Ecol. 35, 24–43 (1998).
Google Scholar
113.
Krebs, J. R., Wilson, J. D., Bradbury, R. B. & Siriwardena, G. M. The second Silent Spring. Nature 400, 611–612 (1999).
ADS CAS Google Scholar
114.
Heikkinen, R. K., Luoto, M., Virkkala, R. & Rainio, K. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. J. Appl. Ecol. 41, 824–835 (2004).
Google Scholar
115.
Dauber, J. et al. Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob. Ecol. Biogeol. 14, 213–221 (2005).
Google Scholar
116.
Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).
Google Scholar
117.
Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Blue growth potential to mitigate climate change through seaweed offsetting. Curr. Biol. 18, 3087–3093. https://doi.org/10.1016/j.cub.2019.07.041 (2019).
CAS Article Google Scholar More