More stories

  • in

    Salinity and temperature increase impact groundwater crustaceans

    1.
    Gaston, L., Lapworth, D. J., Stuart, M. & Amscheidt, J. Prioritization approaches for substances of emerging concern in groundwater: a critical review. Environ. Sci. Technol. 53(11), 6107–6122. https://doi.org/10.1021/acs.est.8b04490 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. S. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: a review. Chemosphere 244, 125422. https://doi.org/10.1016/j.chemosphere.2019.125422 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69(8), 641–650. https://doi.org/10.1093/biosci/biz064 (2019).
    Article  Google Scholar 

    4.
    Foster, S. S. D. & Chilton, P. J. Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358(1440), 1957–1972. https://doi.org/10.1098/rstb.2003.1380 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Masterson, J. P. & Garabedian, S. P. Effects of sea-level rise on ground water flow in a coastal aquifer system. Groundwater 45(2), 209–217. https://doi.org/10.1111/j.1745-6584.2006.00279.x (2007).
    CAS  Article  Google Scholar 

    6.
    Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2(5), 342. https://doi.org/10.1038/nclimate1413 (2012).
    ADS  Article  Google Scholar 

    7.
    Robinson, H. K. & Hasenmueller, E. A. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603, 94–108. https://doi.org/10.1016/j.apgeochem.2017.01.018 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Davis, J., Sim, L. & Chambers, J. Multiple stressors and regime shifts in shallow aquatic ecosystems in antipodean landscapes. Freshw. Biol. 55, 5–18. https://doi.org/10.1111/j.1365-2427.2009.02376.x (2010).
    Article  Google Scholar 

    9.
    Davis, J. et al. When trends intersect: the challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci. Total Environ. 534, 65–78. https://doi.org/10.1016/j.scitotenv.2015.03.127 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Bennetts, D. A., Webb, J. A., Stone, D. J. M. & Hill, D. M. Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J. Hydrol. 323(1–4), 178–192. https://doi.org/10.1016/j.jhydrol.2005.08.023 (2006).
    ADS  Article  Google Scholar 

    11.
    Cartwright, I., Weaver, T. R., Stone, D. & Reid, M. Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J. Hydrol. 332(1–2), 69–92. https://doi.org/10.1016/j.jhydrol.2006.06.034 (2007).
    ADS  Article  Google Scholar 

    12.
    Bann, G. & Field, J. S. Dryland salinity, regolith and biodiversity: problems and opportunities for mitigation and remediation. Proceedings of Regolith 2005—Ten Years of CRC LEME, 8–12 (2005).

    13.
    National Land and Water Resources Audit. A Summary of the National Land and Water Resources Audit’s ‘Australian Dryland Salinity Assessment 2000’ NLWRA (Canberra, Commonwealth of Australia, 2001).
    Google Scholar 

    14.
    Velasco, J. et al. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180011. https://doi.org/10.1098/rstb.2018.0011 (2018).
    CAS  Article  Google Scholar 

    15.
    Di Lorenzo, T. & Galassi, D. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: does global warming affect groundwater populations?. Water 9, 1–12. https://doi.org/10.3390/w9120951 (2017).
    ADS  CAS  Article  Google Scholar 

    16.
    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B Biol. Sci. 267, 739–745. https://doi.org/10.1098/rspb.2000.1065 (2000).
    CAS  Article  Google Scholar 

    17.
    Hughes, L. Climate change and Australia: trends, projections and impacts. Aust. Ecol. 28, 423–443. https://doi.org/10.1046/j.1442-9993.2003.01300.x (2003).
    Article  Google Scholar 

    18.
    Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 33(1), 10 (2004).
    Google Scholar 

    19.
    Griebler, C. et al. Ecological assessment of groundwater ecosystems—vision or illusion?. Ecol. Eng. 36, 1174–1190. https://doi.org/10.1016/j.ecoleng.2010.01.010 (2010).
    Article  Google Scholar 

    20.
    Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355–367. https://doi.org/10.1086/679903 (2015).
    Article  Google Scholar 

    21.
    Sket, B. Collecting and processing crustaceans of subterranean habitats. J. Crustacean. Biol. 38, 380–384. https://doi.org/10.1093/jcbiol/rux125 (2018).
    Article  Google Scholar 

    22.
    Hart, R. C. & Bychek, E. A. Body size in freshwater planktonic crustaceans: an overview of extrinsic determinants and modifying influences of biotic interactions. Hydrobiologia 668, 61–108. https://doi.org/10.1007/s10750-010-0400-y (2011).
    CAS  Article  Google Scholar 

    23.
    Strong, D. R. Jr. Life history variation among populations of an amphipod (Hyalella azteca). Ecology 53(6), 1103–1111. https://doi.org/10.2307/1935422 (1972).
    Article  Google Scholar 

    24.
    Wong, L. C., Kwok, K. W., Leung, K. M. & Wong, C. K. Relative sensitivity distribution of freshwater planktonic crustaceans to trace metals. Hum. Ecol. Risk Assess. 15(6), 1335–1345. https://doi.org/10.1080/10807030903307115 (2009).
    CAS  Article  Google Scholar 

    25.
    Hayasaka, D., Korenaga, T., Suzuki, K., Sánchez-Bayo, F. & Goka, K. Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology 21(2), 421–427. https://doi.org/10.1007/s10646-011-0802-2 (2012).
    CAS  Article  PubMed  Google Scholar 

    26.
    Sánchez-Bayo, F. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Environ. Pollut. 139(3), 385–420. https://doi.org/10.1016/j.envpol.2005.06.016 (2006).
    CAS  Article  PubMed  Google Scholar 

    27.
    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23(2), 248–256. https://doi.org/10.1111/j.1365-2435.2008.01537.x (2009).
    Article  Google Scholar 

    28.
    Nielsen, D. L., Brock, M. A., Rees, G. N. & Baldwin, D. S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 51(6), 655–665. https://doi.org/10.1071/BT02115 (2003).
    Article  Google Scholar 

    29.
    Menció, A., Korbel, K. L. & Hose, G. C. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia). Sci. Total Environ. 479–480, 292–305. https://doi.org/10.1016/j.scitotenv.2014.02.009 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Shapouri, M. et al. The variation of stygofauna along a gradient of salinization in a coastal aquifer. Hydrol. Res. 47(1), 89–103. https://doi.org/10.2166/nh.2015.153 (2015).
    Article  Google Scholar 

    31.
    Schulz, C., Steward, A. L. & Prior, A. Stygofauna presence within fresh and highly saline aquifers of the border rivers region in southern Queensland. Proc. Royal Soc. Qld. 118, 27–35 (2013).
    Google Scholar 

    32.
    Reboleira, A. S. P. S., Abrantes, N. A., Oromí, P. & Gonçalves, F. Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: general aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut. 224(5), 1550. https://doi.org/10.1007/s11270-013-1550-0 (2013).
    ADS  CAS  Article  Google Scholar 

    33.
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in antarctic marine ectotherms. J. Exp. Biol. 217(1), 16–22. https://doi.org/10.1242/jeb.089946 (2014).
    Article  PubMed  Google Scholar 

    34.
    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Phys. A. 141, 1–7. https://doi.org/10.1016/j.cbpb.2005.02.013 (2005).
    CAS  Article  Google Scholar 

    35.
    Mermillod-Blondin, F. et al. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 21(9), 1683–1694. https://doi.org/10.1242/jeb.081232 (2013).
    Article  Google Scholar 

    36.
    Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. B Biol. Sci. 274(1628), 2935–2943. https://doi.org/10.1098/rspb.2007.0985 (2007).
    Article  Google Scholar 

    37.
    Chown, S. L., Jumbam, K. R., Sørensen, J. G. & Terblanche, J. S. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23(1), 133–140. https://doi.org/10.1111/j.1365-2435.2008.01481.x (2009).
    Article  Google Scholar 

    38.
    Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Phys. A. 192, 64–78. https://doi.org/10.1016/j.cbpa.2015.10.020 (2016).
    CAS  Article  Google Scholar 

    39.
    Zhu, K. & Grathwohl, P. Groundwater temperature evolution in the subsurface urban heat island of Cologne, Germany. Hydrol. Process. 29(6), 965–978. https://doi.org/10.1002/hyp.10209 (2015).
    ADS  Article  Google Scholar 

    40.
    Griebler, C. et al. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 75, 1391. https://doi.org/10.1007/s12665-016-6207-z (2016).
    CAS  Article  Google Scholar 

    41.
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).
    Article  PubMed  Google Scholar 

    42.
    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol. Ecol. 19(18), 3865–3880. https://doi.org/10.1111/j.1365-294X.2010.04759.x (2010).
    Article  PubMed  Google Scholar 

    43.
    Song, M. Y. & Brown, J. J. Osmotic effects as a factor modifying insecticide toxicity on Aedes and Artemia. Ecotox. Environ. Safe. 41(2), 195–202. https://doi.org/10.1006/eesa.1998.1693 (1998).
    CAS  Article  Google Scholar 

    44.
    Wang, J., Grisle, S. & Schlenk, D. Effects of salinity on Aldicarb toxicity in juvenile rainbow trout (Oncorhynchus mykiss) and striped bass (Morone saxatilis x chrysops). Toxicol. Sci. 64(2), 200–207. https://doi.org/10.1093/toxsci/64.2.200 (2001).
    CAS  Article  PubMed  Google Scholar 

    45.
    Cairns, J., Heath, A. G. & Parker, B. C. The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47(1), 135–171. https://doi.org/10.1007/BF00036747 (1975).
    CAS  Article  Google Scholar 

    46.
    Schiedek, D., Sundelin, B., Readman, J. W. & Macdonald, R. W. Interactions between climate change and contaminants. Mar. Pollut. Bull. 54(12), 1845–1856. https://doi.org/10.1016/j.marpolbul.2007.09.020 (2007).
    CAS  Article  PubMed  Google Scholar 

    47.
    Hose, G. C., Symington, K., Lott, M. & Lategan, M. The toxicity of arsenic (III), chromium (VI) and zinc to groundwater copepods. Environ. Sci. Pollut. Res. 23, 18704–18713. https://doi.org/10.1007/s11356-016-7046-x (2016).
    CAS  Article  Google Scholar 

    48.
    Asmyhr, M. G., Hose, G. C., Graham, P. & Stow, A. Fine-scaled genetics of subterranean syncarids. Freshw. Biol. 59, 1–11. https://doi.org/10.1111/fwb.12239 (2014).
    Article  Google Scholar 

    49.
    Galassi, D. M., Huys, R. & Reid, J. W. Diversity, ecology and evolution of groundwater copepods. Freshw. Biol. 54(4), 691–708. https://doi.org/10.1111/j.1365-2427.2009.02185.x (2009).
    Article  Google Scholar 

    50.
    Schminke, H. K. & Cho, J. L. Biology and ecology of Parabathynellidae (Crustacea, Bathynellacea)—a review. Crustaceana 86(10), 1266–1273. https://doi.org/10.1163/15685403-00003200 (2013).
    Article  Google Scholar 

    51.
    ASTM (American Society for Testing and Materials). Standard guide for Daphnia magna life-cycle toxicity tests. Annual Book of ASTM Standards, Report E1193–97. (Philadelphia, USA, 1997).

    52.
    ISO (Internacional Organization for Standardization). Water quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test. ISO 6341 (Geneva 1996).

    53.
    OECD (Organization for the Economic Cooperation and Development). Guideline for testing of chemicals Daphnia sp., Acute Immobilisation Test. OECD test guideline 202. (Paris, 2004).

    54.
    Di Lorenzo, T. et al. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 681, 292–304. https://doi.org/10.1016/j.scitotenv.2019.05.030 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    55.
    Rizzo, V., Sánchez-Fernández, D., Fresneda, J., Cieslak, A. & Ribera, I. Lack of evolutionary adjustment to ambient temperature in highly specialized cave beetles. Evol. Biol. 15, 10. https://doi.org/10.1186/s12862-015-0288-2 (2015).
    Article  Google Scholar 

    56.
    Ritz, C. & Streibig, J. C. Bioassay for allelochemicals: examples with RJ Stat. Software (2016).

    57.
    Ripley, B. D. & Venables, W. N. Feed-forward neural networks and multinomial log-linear models. R package version 7.3–12. (2018).

    58.
    Team, R. R Development core team. R. A. Lang. Environ. Stat. Comput. 55, 275–286 (2013).
    Google Scholar 

    59.
    EMA (European Medicines Agency). Guidelines on the Environmental Risk Assessment of Medicinal Products for Human Use. Doc. Ref. 627 Risks of Veterinary Medicinal Products in Groundwater (2006).

    60.
    EC (European Commission). Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) N. 1488/94 on Risk Assessment for Existing Substances. Office for official publications of the European communities. (Luxembourg, 2003).

    61.
    EC (European Commission). Common Implementation Strategy for the Water Directive (2000/60/EC). Technical Guidance Document for Deriving Environmental Quality Standards. Technical Report 055 (2011).

    62.
    Hose, G. C. Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach. Hum. Ecol. Risk. Assess. 11, 951–966. https://doi.org/10.1080/10807030500257788 (2005).
    CAS  Article  Google Scholar 

    63.
    Hose, G. C., Asmyhr, M. G., Cooper, S. J. B. & Humphreys, W. F. Down Under Down Under: Austral Groundwater Life. In Austral Ark (eds Stow, A. et al.) 512–536 (Cambridge University Press, Cambridge, 2015).
    Google Scholar 

    64.
    USEPA. CADDIS Volume 4: SSD Generator V1. Available at https://www.epa.gov/caddis-vol4/caddis-volume-4-data-analysis-download-software#tab-3. Accessed 4 Feb 2020. More

  • in

    Egg size and fecundity of biannually spawning corals at Scott Reef

    Many Acropora corals at Scott Reef spawn biannually, but most individuals spawn either in autumn or in spring (not in both seasons) and are thus temporally isolated from one another with respect to reproduction10,25. Gametogenesis takes ~ 4 to 6 months in Acropora corals at Scott Reef10. While it is unknown whether gametogenesis occurs at different rates in the different seasons, coral colonies experience different environmental conditions through the gametogenic period, leading up to spawning in the spring and autumn spawning seasons. Gametogenesis occurs through austral winter and early spring prior to the spring spawning (October/November), when water temperatures are cooler and days are shorter. Conversely, gametogenesis occurs through summer prior to the autumn spawning (March/April), when water temperatures are warmest (potentially stressfully warm), the days are longest, and tropical cyclones occur. Both spring and autumn spawning correspond with seasonal minimums in wind speed26,27. Within the thermal tolerance limits of the coral, warmer water temperatures and longer days theoretically increase energy availability for reproductive processes through increased metabolic activity and elevated photosynthesis28,29. Despite the different environmental conditions through gametogenesis, there were no seasonal differences in fecundity and eggs size observed in the biannually spawning Acropora corals studied here. There are several possibilities for the lack of seasonality observed in reproductive output. Firstly, fecundity and egg size varied widely within species, which confounded inferences about whether reproductive output was higher in a particular season. Other studies have similarly reported high variability, particularly in fecundity. Fecundity can vary widely with season22,30 and between years31, but there is also high variation between colonies, within a single colony22, with colony age30 and between colonies at different depths13. Fecundity can also vary in response to stressors13, however, there was no evidence of environmental stress, such as damaging waves from cyclones or heat stress causing coral bleaching32, before or during the period when samples were collected for this study. Adaptive plasticity in egg size (in response to conditions parents are exposed to), is discussed further below. Secondly, Scott Reef is situated in the tropics (14°S) with relatively small seasonal variations in temperature and day length, and has a light regime that is affected by high cloud cover during the summer cyclone season. Water temperatures are 2–4 °C cooler in the winter months leading up to spring spawning than in the summer months prior to autumn spawning. Day length is 1–2 h shorter in winter compared to summer, however summer cyclones and rainfall mean that overall sunshine hours are higher in the winter months. Consequently, there are cooler temperatures with more sunshine hours in the months leading to the spring spawning and warmer temperatures with less sunshine hours in the months leading to the autumn spawning, which may result in comparable available energy for reproduction during both spawning events. Thirdly, seasonal differences in environmental conditions may indeed drive some seasonal differences in energetics, but these could be channeled into other life history processes, such as calcification12,33, rather than fecundity and egg size. Variation in available energy may also affect egg quality rather than size or number. For example, in other invertebrates (greenlip abalone), while the size of the eggs do not increase, the density of protein and lipids increase throughout the spawning season34 and may indicate an increase in the quality over size of the egg. However, a study on the reef-building coral Montipora capitata, reported stable egg quality (lipids and antioxidants) regardless of the environmental conditions the parent colonies were exposed to, although egg sizes were not presented in this work35. The higher polyp fecundity in spring observed in A. microclados may have been an adaptive response to cooler (less favourable) conditions in spring. That is, an increase in parental investment to increase survival in less favourable conditions36. Alternatively, more sunshine hours during winter gametogenesis may have provided additional energy to produce more eggs in this species.
    Early work on egg size and number of eggs suggests a simple trade-off model. That is, assuming resources for reproduction are limited, then an increase in gamete size should result in a reduction in the number of gametes37. Correspondingly, earlier studies of different coral species, genera and morphologies reported an inverse relationship between coral egg sizes and the number of eggs (fecundity)21,22,23, also suggesting that energy is channelled to either fewer large eggs or many small eggs19,20. However, in these cases, the reductions in fecundity with egg size among genera were attributed to the differences in polyp morphology (and sometimes reproductive mode i.e. brooder vs spawner). That is, differences in polyp size and structure can also affect egg size and fecundity38,39 independently of energetics. In our between species comparison, we did not see an inverse relationship between egg size and number of eggs (Fig. 3), but there were also no large differences in corallite size for the seven Acropora species studied here (see Supplementary Table S4 for corallite sizes of our species). However, it is important to note that the differences in reproductive mode and morphology (including polyp structure and size) between genera and species, interferes with the egg size versus number of eggs comparison in the context of a trade-off model. In order to determine if there is a trade-off between egg size and number of eggs, we need to look at individuals within a species. That is, do individuals with large eggs have fewer eggs than individuals with smaller eggs of the same species? We have been unable to locate any other dataset providing a within species comparison. Our study demonstrates that there is no direct relationship between egg size and fecundity, within these species of Acropora, and suggests that there is more than just a simple trade-off in resources influencing these measures.
    Egg size has been shown to be a phenotypically plastic trait, regulated by the conditions the parent colony is exposed to. For example, a study on the broadcast spawning ascidian, Styela plicata, demonstrated that parents maintained at high densities produced smaller eggs, presumably reflecting the higher sperm concentrations expected at high adult densities, and therefore reduced requirement for a large target40. While the study was unable to measure the number of gametes, and provide an egg size versus number of eggs comparison, it did suggest that egg size is an adaptive plastic response, rather than a simple energetic constraint. Several studies have also reported varying effects of stress on the number and size of eggs. Under temperature stress sufficient to cause bleaching, corals within the same species can produce either fewer eggs (and maintain size) or smaller eggs (and maintain numbers) depending on their zooxanthellae clade and lipid levels15. Corals exposed to elevated nutrients levels also adjusted their reproductive output, with nitrogen reducing both egg size and number of eggs, and phosphorus producing smaller, but more eggs41. Furthermore, when coral colonies are transplanted to different latitudes, they adjust their egg size to be similar to local colonies. A transplant study conducted in Taiwan reported that coral colonies transplanted to higher latitudes and cooler waters, developed larger eggs, similar to local colonies, as an increased investment response to unfavourable conditions36. This phenotypic plasticity may allow for a type of maternal ‘bet-hedging’, where parents increase within clutch variation in offspring phenotype in response to unpredictable environmental conditions42. The results of our study showed high within species natural variability, but this variability was not consistent with the trade-off model. That is, while there may have been both large and small mature eggs within a species, the large eggs did not necessarily correspond with fewer eggs in a polyp. Within species size variation amongst offspring has traditionally been underestimated43, however, since offspring size can affect dispersal potential, producing a range of sizes, could spread offspring through a range of habitats, thereby spreading the risk of reproductive failure44.
    It is often assumed that if resources are limited for reproduction, then an increase in egg size should result in a reduction in the number of eggs37. However, there are no datasets directly comparing egg size and number within coral species. We have shown that in seven Acropora coral species this trade-off between size and number did not occur. We also did not see any seasonal differences in these measures. We recorded high natural variability in both mature egg size and fecundity, a factor that should not be overlooked when using these measures to gauge or compare reproductive output (e.g. between seasons, years, locations). Since egg size and fecundity are affected by parent colony energy reserves, energy allocation to a range of other life history processes (e.g. growth and repair), polyp size and morphology, responses to environmental conditions, and the interaction of these factors, it is unlikely that there is a simple trade-off between size and number of eggs. It is also unlikely that these measures are constrained only by energetics, given the adaptive phenotypic plasticity reported in other studies36, 40. Furthermore, parental investment can come in the form of increased egg quality (e.g. lipids or antioxidants), rather than size or number of eggs. More research into coral energetics, natural variability, and adaptive plasticity is required to determine the mechanisms behind some of the patterns we observed, but our study doesn’t support a simple trade-off model in coral reproduction. More

  • in

    Substantial blue carbon in overlooked Australian kelp forests

    1.
    Edenhofer, O. Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, Cambridge, 2015).
    Google Scholar 
    2.
    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).
    ADS  Article  Google Scholar 

    3.
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).
    ADS  CAS  Article  Google Scholar 

    4.
    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).
    Article  Google Scholar 

    5.
    Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219 (2014).
    Article  Google Scholar 

    6.
    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).
    ADS  Article  Google Scholar 

    7.
    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. Status and trends for the world’s kelp forests. In World Seas: An Environmental Evaluation (ed. Sheppard, C.) 57–78 (Elsevier, London, UK, 2019).

    8.
    Krause-Jensen, D. et al. Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol. Lett. 14, 20180236 (2018).
    Article  Google Scholar 

    9.
    Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).
    Article  Google Scholar 

    10.
    Krumhansl, K. & Scheibling, R. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).
    ADS  Article  Google Scholar 

    11.
    Hill, R. et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr. 60, 1689–1706 (2015).
    ADS  CAS  Article  Google Scholar 

    12.
    Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).
    ADS  CAS  Article  Google Scholar 

    13.
    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).
    ADS  Article  Google Scholar 

    14.
    Filbee-Dexter, K., Feehan, C. J. & Scheibling, R. E. Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser. 543, 141–152 (2016).
    ADS  CAS  Article  Google Scholar 

    15.
    Smale, D. A., Moore, P. J., Queirós, A. M., Higgs, N. D. & Burrows, M. T. Appreciating interconnectivity between habitats is key to blue carbon management. Front. Ecol. Environ. 16, 71–73 (2018).
    Article  Google Scholar 

    16.
    Filbee-Dexter, K., Wernberg, T., Ramirez-Llodra, E., Norderhaug, K. M. & Pedersen, M. F. Movement of pulsed resource subsidies from shallow kelp forests to deep fjords. Oecologia 187, 291–304 (2018).
    ADS  Article  Google Scholar 

    17.
    Queirós, A. M. et al. Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecol. Monogr. https://doi.org/10.1002/ecm.1366 (2019).
    Article  Google Scholar 

    18.
    Kokubu, Y., Rothäusler, E., Filippi, J. B., Durieux, E. D. H. & Komatsu, T. Revealing the deposition of macrophytes transported offshore: evidence of their long-distance dispersal and seasonal aggregation to the deep sea. Sci. Rep. 9, 1–11 (2019).
    CAS  Article  Google Scholar 

    19.
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).
    ADS  CAS  Article  Google Scholar 

    20.
    Bennett, S. et al. The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshw. Res. https://doi.org/10.1071/MF15232 (2016).
    Article  Google Scholar 

    21.
    Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).
    ADS  Article  Google Scholar 

    22.
    Fulton, C. J. et al. Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo coral reef ecosystem. Limnol. Oceanogr. 59, 156–166 (2014).
    ADS  Article  Google Scholar 

    23.
    Coleman, M. A. & Wernberg, T. Forgotten underwater forests: The key role of fucoids on Australian temperate reefs. Ecol. Evol. 7, 8406–8418 (2017).
    Article  Google Scholar 

    24.
    Cresswell, A. K. et al. Translating local benthic community structure to national biogenic reef habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125 (2017).
    Article  Google Scholar 

    25.
    Kennedy, H. et al. Seagrass sediments as a global carbon sink: isotopic constraints. Glob. Biogeochem. Cycles 24, GB4026. https://doi.org/10.1029/2010GB003848 (2010).
    ADS  CAS  Article  Google Scholar 

    26.
    Boyer, K. E. & Fong, P. Macroalgal-mediated transfers of water column nitrogen to intertidal sediments and salt marsh plants. J. Exp. Mar. Biol. Ecol. 321, 59–69 (2005).
    CAS  Article  Google Scholar 

    27.
    Wernberg, T., Vanderklift, M. A., How, J. & Lavery, P. S. Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147, 692–701 (2006).
    ADS  Article  Google Scholar 

    28.
    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).
    ADS  CAS  Article  Google Scholar 

    29.
    Pedersen, M. F. et al. Detrital carbon production and export in high latitude kelp forests. Oecologia 1, 1–33. https://doi.org/10.1007/s00442-019-04573-z (2019).
    Article  Google Scholar 

    30.
    Chew, S. T. & Gallagher, J. B. Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep. 8, 2553 (2018).
    ADS  Article  Google Scholar 

    31.
    Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Mar. Biol. Annu. Rev. 57, 265–324 (2019).

    32.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science (80-). 353, 169–172 (2016).
    ADS  CAS  Article  Google Scholar 

    33.
    Connell, S. et al. Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar. Ecol. Prog. Ser. 360, 63–72 (2008).
    ADS  Article  Google Scholar 

    34.
    Gaylard, S. The Health of Subtidal Reefs Along the Adelaide Metropolitan Coastline 1996–99 (Environment Protection Authority, Carlton, 2003).
    Google Scholar 

    35.
    Carnell, P. E. & Keough, M. J. Reconstructing historical marine populations reveals major decline of a kelp forest ecosystem in Australia. Estuaries Coasts 42, 765–778 (2019).
    Article  Google Scholar 

    36.
    Ling, S. D., Johnson, C. R., Ridgeway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change. Biol. 15, 719–731 (2009).
    ADS  Article  Google Scholar 

    37.
    Ling, S. & Keane, J. Resurvey of the longspined sea urchin (Centrostephanus rodgersii) and associated barren reef in Tasmania. Technical Report, University of Tasmania, https://eprints.utas.edu.au/28761/ (2018).

    38.
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. USA 113, 13791–13796 (2016).
    Article  Google Scholar 

    39.
    Martínez, B. et al. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Divers. Distrib. 24, 1350–1366 (2018).
    Article  Google Scholar 

    40.
    Coleman, M. A., Wood, G., Filbee-Dexter, K., Minne, A. J. P., Goold, V. et al.. Restore or redefine: future trajectories for restoration. Front. Mar. Sci. 7, 237. https://doi.org/10.3389/fmars.2020.00237 (2020).
    Article  Google Scholar 

    41.
    Layton, C., Coleman, M. A., Marzinelli, E. M., Steinberg, P. D., Swearer, S. E. et al. Kelp forest restoration in Australia. Front. Mar. Sci. 7, 237. https://doi.org/10.3389/fmars.2020.00074 (2020).
    Article  Google Scholar 

    42.
    Fredriksen, S. et al. Green gravel: a novel restoration tool to combat kelp forest decline. Sci. Rep. 10, 1–7 (2020).
    Article  Google Scholar 

    43.
    Marzinelli, E. M. et al. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 10, e0118390. https://doi.org/10.1371/journal.pone.0118390. (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Connell, S. D. & Irving, A. D. Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J. Biogeogr. 35, 1608–1621 (2008).
    Article  Google Scholar 

    45.
    Wernberg, T., Coleman, M., Fairhead, A., Miller, S. & Thomsen, M. Morphology of Ecklonia radiata (Phaeophyta: Laminarales) along its geographic distribution in south-western Australia and Australasia. Mar. Biol. 143, 47–55 (2003).
    Article  Google Scholar 

    46.
    Staehr, P. A. & Wernberg, T. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J. Phycol. 45, 91–99 (2009).
    CAS  Article  Google Scholar  More

  • in

    The coffee agroecosystem: bio-economic analysis of coffee berry borer control (Hypothenemus hampei)

    1.
    Talbot, J. M. Grounds for Agreement. The Political Economy of the Coffee Commodity Chain 1–250 (Rowman & Little field Publishers Inc, Washington, DC, 2004).
    Google Scholar 
    2.
    Igami, M. Market power in international commodity trade: The case of coffee. J. Ind. Econ. 63, 225–248 (2015).
    Google Scholar 

    3.
    Waller, J. M., Bigger, M. & Hillocks, R. J. Coffee Pests, Diseases and their Management 1–400 (CABI, Wallingford, 2007).
    Google Scholar 

    4.
    Sustainable Commodities Marketplace Series. Global Market Report: Coffee. International Institute for Sustainable Development (IISD). https://www.iisd.org/sites/default/files/publications/ssi-global-market-report-coffee.pdf (2019).

    5.
    Vega, F. E., Infante, F., Castillo, A. & Jaramillo, J. The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae): A short review, with recent findings and future research directions. Terr. Arthropod. Rev. 2, 129–147 (2009).
    Google Scholar 

    6.
    Vega, F. E., Infante, F. & Johnson, A. J. In The Genus Hypothenemus, Biology and Ecology of Native and Invasive Species with Emphasis on H. hampei, The Coffee Berry Borer in Bark Beetles (eds Vega, F. E. & Hofstetter, R. W.) 427–494 (Elsevier, London, 2015).

    7.
    International Coffee Organization. IPM of Coffee Berry Borer (CFC/ICO/02). Impact Assessment. https://www.ico.org/project_pdfs/CBB_ICO02.pdf (2009).

    8.
    CABI. Stopping the coffee berry borer in its tracks. Development projects. https://www.cabi.org/uploads/projectsdb/documents/2734/Coffee-berry-borer_HR.pdf (2012).

    9.
    Burbano, E., Wright, M., Bright, D. E. & Vega, F. E. New record for the coffee berry borer, Hypothenemus hampei, in Hawaii. J. Insect. Sci. 11, 117 (2011).
    PubMed  PubMed Central  Google Scholar 

    10.
    State of Hawaii Department of Agriculture. Coffee berry borer Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae). Hawaii Department of Agriculture. New Pest Advisory 10–01. https://hdoa.hawaii.gov/pi/files/2013/01/Hypothenemus-hampei-NPA-MASTER.pdf (2014).

    11.
    NAPPO. North American Plant Protection Organization. Detection of the coffee berry borer, Hypothenemus hampei, in Puerto Rico. Official Pest Alerts. https://www.pestalerts.org/es/official-pest-report/detecciones-de-la-broca-del-caf-hypothenemus-hampei-en-puerto-rico-estados (2007).

    12.
    Mariño, Y. A. et al. The coffee berry borer (Coleoptera: Curculionidae) in Puerto Rico: Distribution, infestation, and population per fruit. J. Insect Sci. 17(2), 58 (2017).
    PubMed Central  Google Scholar 

    13.
    Wood, S. L. Bark and Ambrosia Beetles of South America. 1–900 (Monte L. Bean Sci. Mus., Provo, Utah, 2007).

    14.
    Damon, A. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull. Entomol. Res. 90, 453–465 (2000).
    CAS  PubMed  Google Scholar 

    15.
    Batchelor, T. P., Hardy, I. C. W. & Barrera, J. F. Interactions among bethylid parasitoid species attacking the coffee berry borer, Hypothenemus hampei (Coleoptera:Scolytidae). Biol. Control 36, 106–118 (2006).
    Google Scholar 

    16.
    Benassi, V.L.R.M. Biologia em diferentes temperaturas e ocorrência de Prorops nasuta Wat. e Cephalonomia stephanoderis Betr. (Hymenoptera:Bethylidae) parasitando Hypothenemus hampei (Ferr.) (Coleoptera:Scolytidae). Biblioteca digital Brasileira de teses e dissertações, https://bdtd.ibict.br/vufind/Record/UNSP_921d283e6a2f9fc4271784147e404a27 (2007).

    17.
    Maldonado, C. E. & Benavides, P. Evaluación del establecimiento de Cephalonomia stephanoderis y Prorops nasuta, controladores de Hypothenemus hampei, en Colombia. Revista cenicafé (Colombia) 58, 333–339 (2007).
    Google Scholar 

    18.
    Pérez-Lachaud, G., Batchelor, T. P. & Hardy, I. C. W. Wasp eat wasp: Facultative hyperparasitism and intra-guild predation by bethylid wasps. Biol. Control 30, 149–155 (2004).
    Google Scholar 

    19.
    Gutierrez, A. P. & Baumgärtner, J. U. Multitrophic level models of predator-prey energetics: II: A realistic model of plant-herbivore-parasitoid-predator interactions. Can. Entomol. 116, 933–949 (1984).
    Google Scholar 

    20.
    Gutierrez, A. P. Applied Population Ecology: A Supply-Demand Approach 1–300 (Wiley, Hoboken, 1996).
    Google Scholar 

    21.
    Gutierrez, A. P., Villacorta, A., Cure, J. R. & Ellis, C. K. Tritrophic analysis of the coffee (Coffea arabica)-coffee berry borer Hypothenemus hampei (Ferrari)-parasitoid system. Anais da sociedade entomológica do brasil 27(3), 357–385 (1998).
    Google Scholar 

    22.
    Rodríguez, D., Cure, J. R., Cotes, J. M., Gutierrez, A. P. & Cantor, F. A coffee agroecosystem model. I. Growth and development of the coffee plant. Ecol. Model. 222, 3626–3639 (2011).
    Google Scholar 

    23.
    Rodríguez, D., Cure, J. R., Cotes, J. M., Gutierrez, A. P. & Cantor, F. A coffee agroecosystem model. II. Dynamics of coffee berry borer. Ecol. Model. 248, 203–214 (2013).
    Google Scholar 

    24.
    Rodríguez, D., Cure, J. R., Cotes, J. M. & Gutierrez, A. P. A coffee agroecosystem model. III. Parasitoids of the coffee berry borer (Hypothenemus hampei). Ecol. Model. 363, 96–110 (2017).
    Google Scholar 

    25.
    Arcila, J., Jaramillo, A., Baldión, V. & La Bustillo, A. E. floración del cafeto y su relación con el control de la broca. Avances Técnicos Cenicafé 193, 6 (1993).
    Google Scholar 

    26.
    Vélez, B. E., Jaramillo, A., Cháves, B. & Franco, M. Distribución de la floración y la cosecha de café en tres altitudes. Avances Técnicos Cenicafé 272, 4 (2000).
    Google Scholar 

    27.
    Benavides, P. & Arévalo, H. Manejo integrado: una estrategia para el control de la broca del café en Colombia. Revista Cenicafé (Colombia) 53(1), 39–48 (2002).
    Google Scholar 

    28.
    Benavides, P., Bustillo, A. E., Cárdenas, M. R. & Montoya, E. C. Análisis biológico y económico del manejo integrado de la broca del café en Colombia. Revista Cenicafé (Colombia) 54(1), 5–23 (2003).
    Google Scholar 

    29.
    Aristizábal, L. F., Jiménez, M., Bustillo, A. E. & Arthurs, S. P. Monitoring cultural control practices for coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) management in a small coffee farm in Colombia. Fla. Entomol. 94(3), 685–687 (2011).
    Google Scholar 

    30.
    Aristizábal, L. F. Frequent and efficient harvesting practices to reduce coffee berry borer populations. CBB Notes Number 05, Kailua-Kona, Hawaii https://www.researchgate.net/publication/340502340_CBB_Notes_Frequent_and_Efficient_Harvesting_Practices_to_Reduce_Coffee_Berry_Borer_Populations (2020).

    31.
    Villalba, D. A., Bustillo, A. E. & Cháves, B. Evaluación de insecticidas para el control de la broca del café en Colombia. Revista Cenicafé (Colombia) 46(3), 152–163 (1995).
    Google Scholar 

    32.
    Benavides, P., Bustillo, A. E., Montoya, E. C., Cárdenas, M. R. & Mejía, C. G. Participación del control cultural, químico y biológico en el manejo de la broca del café. Rev. Colomb. Entomol. 28, 161–165 (2002).
    Google Scholar 

    33.
    Tabares, J. E., Villalba, D. A., Bustillo, A. E. & Vallejo, L. F. Eficacia de insecticidas para el control de la broca del café usando diferentes equipos de aspersión. Revista Cenicafé (Colombia) 59(3), 227–237 (2008).
    Google Scholar 

    34.
    Beers, E. H. et al. Nontarget effect of orchard pesticides on natural enemies: Lessons from the field and the laboratory. Biol. Control 102, 44–52 (2016).
    CAS  Google Scholar 

    35.
    Bueno, A. F., Carvalho, G. A., Santos, A. C., Sosa-Gómez, D. R. & Silva, D. M. Pesticide selectivity to natural enemies: Challenges and constrains for research and field recommendation. Ciência Rural (Santa María, Brasil) https://doi.org/10.1590/0103-8478cr20160829 (2017).
    Article  Google Scholar 

    36.
    Klein, A. M., Steffan-Dewenter, I. & Tscharntke, T. Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). Am. J. Bot. 90, 153–157 (2003).
    PubMed  Google Scholar 

    37.
    Woodill, A. J., Nakamoto, S. T., Kawabata, A. M. & Leung, P. S. To spray or not to spray: A decision analysis of coffee berry borer in Hawaii. Insects 8(4), 116 (2017).
    PubMed Central  Google Scholar 

    38.
    González, M. T., Posada, F. J. & Bustillo, A. E. Bioensayo para evaluar la patogenicidad de Beauveria bassiana (Bals.) Vuill. sobre la broca del café, Hypothenemus hampei (Ferrari). Rev. Colomb. Entomol. 19, 123–130 (1993).
    Google Scholar 

    39.
    Tobar, S. P., Vélez, P. E. & Montoya, E. C. Evaluación en campo de un aislamiento del hongo Beauveria bassiana seleccionado por resistencia a la luz ultravioleta. Revista Cenicafé (Colombia) 50(3), 195–204 (1999).
    Google Scholar 

    40.
    De la Rosa, W., Alatorre, R. R., Barrera, J. F. & Toriello, C. Effect of Beauveria bassiana and Metarhizium anisopliae (Deuteromycetes) upon the Coffee Berry Borer (Coleoptera: Scolytidae) under field conditions. J. Econ. Entomol. 93, 1409–1413 (2000).
    PubMed  Google Scholar 

    41.
    Posada, F. J., Osorio, E. & Velásquez, E. T. Evaluación de la patogenicidad de Beauveria bassiana sobre la broca del café empleando el método de aspersión foliar. Rev. Colomb. Entomol. 28, 139–144 (2002).
    Google Scholar 

    42.
    Cárdenas, A. B., Villalba, D. A., Bustillo, A. E., Montoya, E. C. & Góngora, C. E. Eficacia de mezclas de cepas del hongo Beauveria bassiana en el control de la broca del café. Revista Cenicafé (Colombia) 58, 293–303 (2007).
    Google Scholar 

    43.
    Aristizábal, L. F. et al. Integrated pest management of coffee berry borer in Hawaii and Puerto Rico: Current status and prospects. Insects 8, 123 (2017).
    PubMed Central  Google Scholar 

    44.
    Greco, B. E., Wright, M. G., Burgueño, J. & Jaronski, S. TEfficacy of Beauveria bassiana applications on coffee berry borer across an elevation gradient in Hawaii. Biocontrol Sci. Technol. 28, 995–1013 (2018).
    Google Scholar 

    45.
    Hollingsworth, R. G. et al. Incorporating Beauveria bassiana into an integrated pest management plan for coffee berry borer in Hawaii. Front. Sustain. Food Syst. 4, 22 (2020).
    Google Scholar 

    46.
    Bustillo, A. E. Una revisión sobre la broca del café, Hypothenemus hampei, en Colombia. Rev. Colomb. Entomol. 32(2), 101–116 (2006).
    Google Scholar 

    47.
    Bustillo, A. E. El manejo de cafetales y su relación con el control de la broca del café en Colombia 2nd edn, 1–40 (Cenicafé, Chinchiná, 2007).
    Google Scholar 

    48.
    Bernal, M. G., Bustillo, A. E. & Posada, F. J. Virulencia de aislamientos de Metarhizyum anisopliae y su eficacia en campo sobre Hypothenemus hampei. Rev. Colomb. Entomol. 20(4), 225–228 (1994).
    Google Scholar 

    49.
    Molina, J. P. A. & López, N. J. C. Efeito da aplicação de nematoides entomopatogênicos sobre frutos infestados com broca-do-café, Hypothenemus hampei (Coleoptera:Scolytidae). Nematol. Bras. (Brazil) 33(2), 115–122 (2009).
    Google Scholar 

    50.
    Benavides-Machado, P., Quintero, J. C. & López, J. C. Evaluación en el laboratorio de nematodos entomopatógenos nativos para el control de la broca del café. Cenicafé (Colombia) 61(2), 119–131 (2010).
    Google Scholar 

    51.
    Guide, B. A. et al. Selection of entomopathogenic nematodes and evaluation of their compatibility with cyantraniliprole for the control of Hypothenemus hampei. Semina: Ciências Agrárias, Londrina 39(4), 1489–1502. https://doi.org/10.5433/1679-0359.2018v39n4p1489 (2018).
    Article  Google Scholar 

    52.
    Lara, J. C., Lopez, J. N. & Bustillo, A. E. Efecto de entomonemátodos sobre poblaciones de la broca del café, Hypothenems hampei (Coleoptera, Scolytidae) en frutos en el suelo. Rev. Colomb. Entomol. 30(2), 179–185 (2004).
    Google Scholar 

    53.
    Abraham, Y. J., Moore, D. & Goodwin, G. Rearing and aspects of biology of Cephalonomia stephanoderis and Prorops nasuta (Hymenoptera:Bethylidae) parasitoid of the coffee berry borer Hypothenemus hampei (Coleoptera: scolytidae). Bull. Entomol. Res. 80, 121–128 (1990).
    Google Scholar 

    54.
    Barrera, J. F. Dynamique des populations du scolyte des fruits du caféier, Hypothenemus hampei (Coleoptera: Scolytidae), et lutte biologique avec le parasitoide Cephalonomia stephanoderis (Hymenoptera: Bethylidae), au Chiapas, Mexique. Ph.D. Thesis. Université Paul Sabatier, Toulouse III. France. https://agritrop.cirad.fr/312449/ (1994).

    55.
    Aristizábal, L. F., Baker, P. S., Orozco, H. J. & Orozco, G. L. Determinación de las horas del día convenientes para la liberación del parasitoide Cephalonomia stephanoderis (Betrem) (Hymenoptera: Bethylidae). Rev. Colomb. Entomol. 2, 99–104 (1996).
    Google Scholar 

    56.
    Aristizábal, L. F., Baker, P. S., Orozco, S. J. & Chaves, B. Parasitismo de Cephalonomia stephanoderis Betrem sobre una población de Hypothenemus hampei (Ferrari) con niveles bajos de infestación en campo. Rev. Colomb. Entomol. 23, 157–164 (1997).
    Google Scholar 

    57.
    Aristizábal, L. F., Bustillo, A. E., Baker, P. F., Orozco, H. J. & Chaves, C. B. Efecto depredador del parasitoide Cephalonomia stephanoderis (Hymenoptera: bethylidae) sobre los estados inmaduros de Hypothenemus hampei (Coleoptera: scolytidae) en condiciones de campo. Rev. Colomb. Entomol. 24, 35–41 (1998).
    Google Scholar 

    58.
    Damon, A. & Valle, J. Comparison of two release techniques for the use of Cephalonomia stephanoderis (Hymenoptera: Bethylidae), to control the coffee berry borer Hypothenemus hampei (Coleoptera: Scolytidae) in Soconusco, southeastern Mexico. Biol. Control 24, 117–127 (2002).
    Google Scholar 

    59.
    Hempel, A. Combate à broca do café por meio da Vespa de Uganda. Bol. Agric. Zoot. Vet. 6(9), 551–555 (1933).
    Google Scholar 

    60.
    Hempel, A. A Prorops nasuta Waterston no Brasil. Arquivos do Instituto Biológico de São Paulo (Brasil) 5, 197–212 (1934).
    Google Scholar 

    61.
    Infante, F. Biological Control of Hypothenemus hampei(Coleoptera:Scolytidae) in Mexico, Using the Parasitoid Prorops nasuta (Hymenoptera:bethylidae) Dissertation, Imperial College, University of London (1998).

    62.
    Infante, F. et al. Cría de Phymastichus coffea, parasitoide de la broca del café y algunas notas sobre su historia de vida. Southw. Entomol. 19, 313–315 (1994).
    Google Scholar 

    63.
    Aristizábal, L. F., Salazar, H. M., Mejía, C. G. & Bustillo, A. E. Introducción y evaluación de Phymastichus coffea (Hymenoptera: eulophidae) en fincas de pequeños caficultores, a través de investigación participativa. Rev. Colomb. Entomol. 30, 219–234 (2004).
    Google Scholar 

    64.
    Castillo, A., Infante, F., Vera-Graziano, J. & Trujillo, J. Host-discrimination by Phymastichus coffea, a parasitoid of the coffee berry borer (Coleoptera: Scolytidae). Biocontrol 49, 655–663 (2004).
    Google Scholar 

    65.
    Castillo, A. et al. Laboratory parasitism by Phymastichus coffea (Hymenoptera: Eulophidae) upon non-target bark beetles associated with coffee plantations. Fla. Entomol. 87, 274–277 (2004).
    Google Scholar 

    66.
    Castillo, A. Análisis Post-introductorio Del Parasitoide Africano Phymastichus coffea LaSalle (Hymenoptera: Eulophidae) a México. Dissertation 1–150 (Colegio de Postgraduados, Montecillo, Estado de México, 2005).

    67.
    Jaramillo, J., Bustillo, A. E., Montoya, E. C. & Borgemeister, C. Biological control of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae) by Phymastichus coffea (Hymenoptera: Eulophidae) in Colombia. Bull. Entomol. Res 95, 1–6 (2005).
    Google Scholar 

    68.
    Jaramillo, J., Borgemeister, C. & Setamou, M. Field superparasitism by Phymastichus coffea, a parasitoid of adult coffee berry borer, Hypothenemus hampei. Entomol. Exp. Appl. 119, 231–237 (2006).
    Google Scholar 

    69.
    Riaño, N., Arcila, J., Jaramillo, A. & Chaves, B. Acumulación de materia seca y extracción de nutrimentos por Coffea arabica L. cv. Colombia en tres localidades de la zona cafetera central. Revista Cenicafé (Colombia) 55, 265–276 (2004).
    Google Scholar 

    70.
    CENICAFE Anuario Meteorológico Cafetero 1990–1995. Chinchiná, Colombia, https://books.google.com.co/books?id=6QNdAAAAMAAJ&hl=es&source=gbs_book_other_versions (Centro Nacional de Investigaciones del Café “Pedro Uribe Mejía”, 1995).

    71.
    Prescott, J. A. Evaporation from water Surface in relation to solar radiation. Trans. R. Soc. South. Aust. 64, 114–118 (1940).
    Google Scholar 

    72.
    Baker, P.S. The Coffee Berry Borer in Colombia. Final report of the DFID-Cenicafé-CABI Bioscience IPM for coffee Project (CNTR 93/1536A), https://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=CAFE.xis&method=post&formato= 2&cantidad=1&expresion=mfn=019976 (Chinchiná, Colombia DFID-Cenicafé, 1999).

    73.
    Mejía, J. W., Bustillo, A. E., Orozco, H. J. & Cháves, B. Efecto de cuatro insecticidas y de Beauveria bassiana sobre Prorops nasuta (Hymenoptera:Bethylidae), parasitoide de la broca del café. Rev. Colomb. Entomol. 26(3–4), 117–123 (2000).
    Google Scholar 

    74.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models 1–532 (Chapman and Hall/CRC, Boca Raton, 1989) (ISBN 9780412317606).
    Google Scholar 

    75.
    Lactin, D. J., Holliday, N. J., Johnson, D. L. & Craigen, R. Improved rate model of temperature dependent development by arthropods. Environ. Entomol. 24, 68–75 (1995).
    Google Scholar 

    76.
    Fargues, J., Goettel, M. S., Smits, N., Ouedraogo, A. & Rougier, M. Effect of temperature on vegetative growth of Beauveria bassiana from different origins. Mycologia 89(3), 383–392 (1997).
    Google Scholar 

    77.
    Ouedraogo, A., Fargues, J., Goettel, M. S. & Lomer, C. J. Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride. Mycopathologia 137, 37–43 (1997).
    CAS  PubMed  Google Scholar 

    78.
    Reyes, I. C., Bustillo, A. E. & Chaves, B. Efecto de Beauveria bassiana y Metarhizium anisopliae sobre el parasitoide de la broca del café, Cephalonomia stephanoderis. Rev. Colomb. Entomol. 21(4), 199–204 (1995).
    Google Scholar 

    79.
    Castillo, A., Gómez, J., Infante, F. & Vega, F. E. Susceptibilidad del parasitoide Phymastichus coffea LaSalle (Hymenoptera: Eulophidae) a Beauveria bassiana en condiciones de laboratorio. Neotrop. Entomol. 38, 665–670 (2009).
    PubMed  Google Scholar 

    80.
    Banu, J.G. Efficacy of entomopathogenic nematodes against coleopteran pests. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes (eds Mahfouz, M.M. et al.) 174–192 (CABI, Oxfordshire, 2017).

    81.
    Aristizábal, L. F., Salazar, E. H. & Mejía, M. C. Cambios en la adopción de los componentes del manejo integrado de la broca del café Hypothenemus hampei (Coleoptera: Scolytidae) a través de metodologías participativas. Rev. Colomb. Entomol. 28(2), 153–160 (2002).
    Google Scholar 

    82.
    O’Hara, R. B. & Kotze, D. J. Do not log-transform count data. Methods Ecol. Evol. 1, 118–122 (2010).
    Google Scholar 

    83.
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (eds. Petrov, V.N. & Csaki, F.) 267–281 (Academiai Kiado, Budapest, 1973).

    84.
    Georgescu-Roegen N. Energy and economic myths: institutional and analytical economic essays. Pergamon, New York, 1976) https://www.elsevier.com/books/energy-and-economic-myths/georgescu-roegen/978-0-08-021027-8.

    85.
    Neuenschwander, P. et al. Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 79, 579–594 (1989).
    Google Scholar 

    86.
    Gutierrez, A. P., Pitcairn, M. J., Ellis, C. K., Carruthers, N. & Ghezelbash, R. Evaluating biological control of yellow starthistle (Centaurea solstitialis) in California: a GIS based supply–demand demographic model. Biol. Control 34, 115–131 (2005).
    Google Scholar 

    87.
    Gutierrez, A. P. & Ponti, L. Deconstructing the control of the spotted alfalfa aphid Therioaphis maculata. Agric. For. Entomol. 15, 272–284 (2013).
    Google Scholar 

    88.
    Aristizábal, L. F. et al. Establishment of exotic parasitoids of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) in Colombia through farmer participatory research. Int. J. Trop. Insect Sci. 32, 24–31 (2012).
    Google Scholar 

    89.
    Vergara, J. D., Bustillo, A. E. & Cháves, B. Biología de Phymastichus coffea en condiciones de campo. Revista Cenicafé (Colombia) 52, 97–103 (2001).
    Google Scholar 

    90.
    Johnson, M. A., Fortna, S., Hollingsworth, R. G. & Manoukis, N. C. Postharvest population reservoirs of coffee berry borer (Coleoptera: Curculionidae) on Hawai’i Island. J. Econ. Entomol. 112, 2833–2841 (2019).
    PubMed  Google Scholar 

    91.
    Duque, H. & Cháves, C.B. Estudio Sobre la Adopción de Tecnología en Manejo Integrado de la Broca del café. Centro Nacional de Investigaciones del Café-Cenicafé, Chinchiná. https://books.google.com.co/books/about/Estudio_sobre_adopcion_del_manejo_integr.html?id=pDpGMwEACAAJ&redir_esc=y (2000).

    92.
    Bustillo, A. E. et al. Manejo integrado de la broca del café Hypothenemus hampei (Ferrari) en Colombia. Chinchiná, Colombia. Cenicafé, https://biblioteca.cenicafe.org/handle/10778/848 (1998).

    93.
    Aristizábal, L. F., Vélez, J. C. & León, C. A. Diagnóstico del manejo integrado de la broca del café, Hypothenemus hampei (Coleoptera: Curculionidae) con caficultores caldenses. Rev. Col. Entomol. 32, 117–124 (2006).
    Google Scholar 

    94.
    Atallah, S. S., Gómez, M. I. & Jaramillo, J. A bioeconomic model of ecosystem services provision: Coffee Berry Borer and shade-grown coffee in Colombia. Ecol. Econ. 144, 129–138 (2018).
    Google Scholar 

    95.
    Hernandez-Aguilera, J. N., Conrad, J. M., Gómez, M. I. & Rodewald, A. D. The economics and ecology of shade-grown coffee: A model to incentivize shade and bird conservation. Ecol. Econ. 159, 110–121 (2019).
    Google Scholar 

    96.
    Infante, F. Pest management strategies against the coffee berry borer (Coleoptera:Curculionidae: Scolytinae). J. Agric. Food Chem. 66, 5275–5280 (2018).
    CAS  PubMed  Google Scholar 

    97.
    Mendesil, E. et al. Semiochemicals used in host location by the coffee berryborer, Hypothenemus hampei. J. Chem. Ecol. 35(8), 944–950 (2009).
    CAS  PubMed  Google Scholar 

    98.
    Borsa, P. & Gingerich, D. P. Allozyme variation and an estimate of the inbreeding coefficient in the coffee berry borer, Hypothenemus hampei (Coleoptera:Scolytidae). Bull. Entomol. Res. 85(1), 21–28 (1995).
    CAS  Google Scholar 

    99.
    Gingerich, P. D., Borsa, P., Suckling, D. M. & Brun, L. O. Inbreeding in the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae) estimated from endosulfan resistance phenotype frequencies. Bull. Entomol. Res. 86, 667–674 (1996).
    Google Scholar 

    100.
    Andreev, D., Breilid, H., Kirkendall, L., Brun, L. O. & Ffrench-Constant, R. H. Lack of nucleotide variability in a beetle pest with extreme inbreeding. Insect. Mol. Biol. 7(2), 197–200 (1998).
    CAS  PubMed  Google Scholar 

    101.
    Benavides, P., Aspectos genéticos de la broca del Café. In La broca del café en América Tropical: Hallazgos y Enfoques. (eds Barrera J. F. et al.) 101–110 (Sociedad Mexicana de Entomología and El Colegio de la Frontera Sur, México, 2007). More

  • in

    Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata)

    1.
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. (Academic Press, New York, 2010).
    2.
    Campos-Soriano, L. & Segundo, B. S. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal. Behav. 6, 553–557 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    He, X. H., Duan, Y. H., Chen, Y. L. & Xu, M. G. A 60-year journey of mycorrhizal research in China: Past, present and future directions. Sci. Chin. Life Sci. 53, 1374–1398 (2010).
    Google Scholar 

    4.
    Mao, L. & Liu, Y. J. The eco-physiological functions of arbuscular mycorrhizal fungi: A review. Sciencepap. Online 11, 236–245 (2018).
    Google Scholar 

    5.
    Karasawa, T., Hodge, A. & Fitter, A. H. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Plant Cell Environ. 35, 819–828 (2012).
    CAS  PubMed  Google Scholar 

    6.
    Pozo, M. J. & Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).
    CAS  PubMed  Google Scholar 

    8.
    Bryla, D. R. & Eissenstat, D. M. Respiratory Costs of Mycorrhizal Associations. (eds. Lambers, H. & Ribas-Carbo, M.) 207–224 (Springer The Netherlands, 2005).

    9.
    Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 48, 1038–1046 (2010).
    Google Scholar 

    10.
    Rouphael, Y. et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196, 91–108 (2015).
    Google Scholar 

    11.
    Veresoglou, S. D., Chen, B. D. & Rillig, M. C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46, 53–62 (2012).
    CAS  Google Scholar 

    12.
    Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Song, X. Z., Gu, H. H., Wang, M., Zhou, G. M. & Li, Q. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition. Sci. Rep. 6, 24107 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Galloway, J. N. & Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71 (2002).
    PubMed  Google Scholar 

    15.
    Liu, J. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Li, Q. et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agric. For. Meteorol. 268, 48–54 (2019).
    ADS  Google Scholar 

    17.
    Wang, J. F. & Liu, N. K. Research progress on mechanisms of atmospheric nitrogen deposition and its ecological impact. Pollut. Control Technol. 31, 17–21+39 (2018).

    18.
    Lin, J. X. et al. Research progress on effects of nitrogen deposition on symbiont of plant-arbuscular mycorrhizal. Grassl. Turf 35, 88–94 (2015).
    Google Scholar 

    19.
    Wang, Y. N. Physiological responses of Leymus chinens-arbuscular mycorrhizal symbiont to the interaction of nitrogen deposition and salt-alkali stress. PhD Thesis, Northeast Forestry University (2016).

    20.
    He, X. L., Liu, T. & Zhao, L. L. Effects of inoculating AM fungi on physiological characters and nutritional components of Astragalus membranaceus under different N application levels. Chin. J. Appl. Ecol. 20, 2118–2122 (2009).
    CAS  Google Scholar 

    21.
    Hodge, A. The plastic plant, root responses to heterogeneous supplies of nutrients. New. Phytol. 162, 9–24 (2004).
    Google Scholar 

    22.
    Lin, S. S. et al. Mycorrhizal studies and their application prospects in China. Acta Pratacult. Sin. 22, 310–325 (2013).
    Google Scholar 

    23.
    Liu, R. J. & Chen, Y. L. Mycorrhizology. (Science Press, 2007).

    24.
    Su, Y. B., Lin, C., Zhang, F. S. & Yang, X. L. Effect of arbuscular mycorrhizal fungi (Glomus Mosseae, Glomus Versiformea, Gigaspora Margarita and Gigaspora Rosea) on phosphate activities and soil organic phosphate content in clover rhizosphere. Soils 35, 334–338 (2003).
    CAS  Google Scholar 

    25.
    Feng, H. Y., Feng, G., Wang, J. G. & Li, X. L. Regulation of P status host plant on alkaline phosphatase (ALP) activity in intraradical hyphae and development of extraradical hyphae of AM fungi. Mycosystema 22, 589–598 (2003).
    CAS  Google Scholar 

    26.
    Zhang, S. B., Wang, Y. S., Yin, X. F., Liu, J. B. & Wu, F. X. Development of arbuscular mycorrhizal (AM) fungi and their influences on the absorption of N and P of maize at different soil phosphorus application levels. J. Plant Nutr. Fertil. 23, 649–657 (2017).
    Google Scholar 

    27.
    Shi, S. Z. et al. Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecol. Sin. 37, 74–83 (2017).
    Google Scholar 

    28.
    Slezack, S., Dumas-Gaudot, E., Paynot, M. & Gianinazzi, S. Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches?. Mol. Plant-Microbe Interact. 13, 238–241 (2000).
    CAS  PubMed  Google Scholar 

    29.
    Yang, J. Y., Wang, Y. H., Wen, G. S. & Yi, L. T. Effects of AM fungi and simulated nitrogen deposition on the growth and biomass accumulation of Solidago canadensis seedlings. Chin. J. Ecol. 32, 2953–2958 (2013).
    Google Scholar 

    30.
    Marschner, H. Marschner’s Mineral Nutrition of Higher Plants. (Academic Press, New York, 2012).

    31.
    García, I. V. & Mendoza, R. E. Relationships among soil properties, plant nutrition and arbuscular mycorrhizal fungi-plant symbioses in a temperate grassland along hydrologic, saline and sodic gradients. FEMS Microbiol. Ecol. 63, 359–371 (2008).
    PubMed  Google Scholar 

    32.
    Johnson, N. C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185, 631–647 (2010).
    CAS  PubMed  Google Scholar 

    33.
    Fitter, A. H. Costs and benefifits of mycorrhizas: implications for functioning under natural conditions. Experientia 47, 350–355 (1991).
    Google Scholar 

    34.
    Pang, L., Zhou, Z. C., Zhang, Y. & Feng, Z. P. Effects of atmospheric N sedimentation on growth and P efficiency of Pinus Massoniana mycorrhizal seedlings under low P stress. J. Plant Nutr. Fertil. 22, 225–235 (2016).
    CAS  Google Scholar 

    35.
    Johnson, N. C., Rowland, D. L., Corkidi, L., Egerton-Warburton, L. & Allen, E. B. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84, 1895–1908 (2003).
    Google Scholar 

    36.
    Cai, X. Z. Effects of nitrogen addition on arbuscular mycorrhizal fungi and nitrogen uptake of Chinese fir seedlings. PhD Thesis, Fujian Normal University (2017).

    37.
    Bago, B. et al. Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96, 452–462 (2004).
    PubMed  Google Scholar 

    38.
    Zhang, X. et al. Correlation between physicochemical properties of rhizosphere soil and arbuscular mycorrhizal fungi in Medicago sativa grassland. Northern Hortic. 13, 172–177 (2016).
    Google Scholar 

    39.
    Wang, J. Effects of AM fungi on plant growth and community structure under different soil nitrogen fertility. PhD Thesis, Lanzhou University (2018).

    40.
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils. 33, 265–278 (2001).
    CAS  Google Scholar 

    41.
    Ma, L. M., Wang, P. T. & Wang, S. G. Effect of flooding time length on mycorrhizal colonization of three AM fungi in two wetland plants. Environ. Sci. 35, 263–270 (2014).
    Google Scholar 

    42.
    Sharma, D. & David, K. Moisture-a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 25, 67–75 (2015).
    Google Scholar 

    43.
    Zhang, X. H. The adaptability of arbuscular mycorrhizal fungi to different soil environmental factors. PhD Thesis, Agricultural University of Hebei (2003).

    44.
    Li, Y. F., Ju, L. H., Zhang, L. Y. & Xu, G. H. Effects of AM fungi on plant growth and nitrogen and phosphorus utilization in rice/mungbean intercropping under different phosphorus application levels. Jiangsu Agric. Sci. 41, 51–55 (2013).
    CAS  Google Scholar 

    45.
    Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Read, D. J. Mycorrhizas in Ecosystems-Nature’s Response to the “Law of the Minimum”. (ed. Hawksworth, D.L.) 101–130 (CAB International, 1991).

    47.
    Sun, X. W. et al. Effects of eco-enviromental factors on the production and distribution of arbuscular mycorrhizal fungal spores. Acta Pratacult. Sin. 20, 214–221 (2011).
    Google Scholar 

    48.
    Sun, J. H., Bi, Y. L., Qiu, L. & Jiang, B. A review about the effect of AMF on uptaking phosphorus by host plants in soil. Chin. J. Soil Sci. 47, 499–504 (2016).
    Google Scholar 

    49.
    Subhashini, D. V. Effect of NPK fertilizers and co-inoculation with phosphate solubilising arbuscular mycorrhizal fungus and potassium mobilizing bacteria on growth, yield, nutrient acquisition and quality of tobacco (Nicotiana tabacum). Commun. Soil Sci. Plant Anal. 47, 328–337 (2016).
    CAS  Google Scholar 

    50.
    Johnson, N. C., Wilson, G. W. T., Wilson, J. A., Miller, R. M. & Bowker, M. A. Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205, 1473–1484 (2015).
    CAS  PubMed  Google Scholar 

    51.
    Tessa, C. et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob. Change Biol. 20, 3646–3659 (2014).
    Google Scholar 

    52.
    Gusewell, S. N: P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).
    Google Scholar 

    53.
    Xia, T. T., Wang, Z. P., Zhang, L. C. & Jing, H. R. Effects of phosphorus concentration on growth of arbuscular mycorrhizal sweet corn. Ind. Microbiol. 47, 49–53 (2017).
    Google Scholar 

    54.
    Qiu, J. J. Molecular mechanism of phosphorus uptake by the interaction of arbuscular mycorrhizal fungi and maize. PhD Thesis, Shandong Agricultural University (2017).

    55.
    Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).
    ADS  CAS  Google Scholar 

    56.
    Fang, H., Mo, J., Peng, S., Li, Z. & Wang, H. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil 297, 233–242 (2007).
    CAS  Google Scholar 

    57.
    Mo, J. et al. Response of nutrient dynamics of decomposing pine (Pinus massoniana) needles to simulated N deposition in a disturbed and a rehabilitated forest in tropical China. Ecol. Res. 22, 649–658 (2007).
    ADS  CAS  Google Scholar 

    58.
    Chen, Z. Y. et al. Relationship between growth and endogenous hormones of Chinese fir seedlings under low phosphorus stress. Sci. Silvae Sin. 52, 57–66 (2016).
    Google Scholar 

    59.
    Leng, H. N. et al. Effects of phosphorous stress on the growth and nitrogen and phosphorus absorption of different formosan sweet gum provenances. Chin. J. Appl. Ecol. 20, 754–760 (2009).
    CAS  Google Scholar 

    60.
    Wu, J. J. et al. Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations. Chin. J. Plant Ecol. 38, 45–53 (2014).
    Google Scholar 

    61.
    Yang, Y. R. et al. Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol. Biochem. 86, 146–158 (2015).
    CAS  Google Scholar 

    62.
    Berch, S. M. & Kendrick, B. Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 74, 769–769 (1982).
    Google Scholar 

    63.
    McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
    Google Scholar 

    64.
    Gerdemann, J. W. & Nicolson, T. H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46, 235–244 (1963).
    Google Scholar 

    65.
    Eom, A. H., Wilson, G. W. & Hartnett, D. C. Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93, 233–242 (2001).
    Google Scholar 

    66.
    Jackson, M. L. Soil chemical analysis. Soil Sci. 85, 288 (1973).
    Google Scholar 

    67.
    Olsen, S. R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (U.S. Government Printing Office, New York, 1954).
    Google Scholar 

    68.
    Hess, T. M. Tropical Soil Biology and Fertility: A Handbook of Methods. (eds Anderson, J. M. & Ingram, J. S. I.) 245–245 (CAB International, 1990).

    69.
    Zhang, W. R., Yang, G. J., Tu, X. N. & Zhang, P. Forestry Industry Standard of the People’s Republic of China: Forest Soil Analysis Method. (China Standards Press, 1999). More

  • in

    How mosquitoes evolved to crave human blood

    The Aedes aegypti mosquito’s taste for human blood has been linked to exposure to dense settlements dotted with sources of water. Credit: Getty

    Ecology
    23 July 2020

    Population density and water storage created a new ecological niche for the disease-carrying insects.

    As humans crowd into cities where standing water abounds, even in the driest months, we become an ever-more-tempting target for bloodsuckers.
    Only a few of the more than 3,000 species of mosquito specifically seek out blood from humans — but those few are enough to spread diseases that affect some 100 million people every year. To shed light on the evolutionary origin of insects’ taste for humans, Lindy McBride and Noah Rose at Princeton University in New Jersey and their colleagues captured Aedes aegypti mosquitoes at 27 sites across the insects’ ancestral range in sub-Saharan Africa.
    The researchers placed hungry females in boxes with two exits: one offering the smell of a human and the other the smell of either a living guinea pig (Cavia porcellus) or a button quail (Coturnix coturnix). Compared with mosquitoes that were indifferent to human blood, those that sought it out were more likely to hail from areas with dense human populations and long, hot, dry seasons.
    The researchers suspect that water stored by humans has become a key breeding location in a landscape with little standing water. Their genetic analysis suggests that the taste for humans evolved just once. More

  • in

    Global status and conservation potential of reef sharks

    Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
    M. Aaron MacNeil & Taylor Gorham

    Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
    Demian D. Chapman, Michael Heithaus, Jeremy Kiszka, Mark E. Bond, Kathryn I. Flowers, Gina Clementi, Khadeeja Ali, Laura García Barcia, Erika Bonnema, Camila Cáceres, Naomi F. Farabough, Virginia Fourqurean, Kirk Gastrich, Devanshi Kasana, Yannis P. Papastamatiou, Jessica Quinlan, Maurits van Zinnicq Bergmann & Elizabeth Whitman

    Australian Institute of Marine Science, Townsville, Queensland, Australia
    Michelle Heupel & Leanne M. Currey-Randall

    Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
    Colin A. Simpfendorfer, C. Samantha Sherman, Stacy Bierwagen, Brooke D’Alberto, Lachlan George, Sushmita Mukherji & Audrey Schlaff

    Australian Institute of Marine Science, Crawley, Western Australia, Australia
    Mark Meekan, Conrad W. Speed, Matthew J. Rees & Dianne McLean

    The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
    Mark Meekan, Conrad W. Speed & Dianne McLean

    School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
    Euan Harvey & Jordan Goetze

    Marine Program, Wildlife Conservation Society, New York, NY, USA
    Jordan Goetze

    Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
    Matthew J. Rees

    Australian Institute of Marine Science, Arafura Timor Research Facility, Darwin, Northern Territory, Australia
    Vinay Udyawer

    School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY, USA
    Jasmine Valentin-Albanese, Diego Cardeñosa, Stephen Heck & Bradley Peterson

    International Pole and Line Foundation, Malé, Maldives
    M. Shiham Adam

    Maldives Marine Research Institute, Ministry of Fisheries, Marine Resources and Agriculture, Malé, Maldives
    Khadeeja Ali

    Centro de Investigaciones de Ecosistemas Costeros (CIEC), Cayo Coco, Morón, Ciego de Ávila, Cuba
    Fabián Pina-Amargós

    Centro de Investigaciones Marinas, Universidad de la Habana, Havana, Cuba
    Jorge A. Angulo-Valdés & Alexei Ruiz-Abierno

    Galbraith Marine Science Laboratory, Eckerd College, St Petersburg, FL, USA
    Jorge A. Angulo-Valdés

    Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, HI, USA
    Jacob Asher

    Habitat and Living Marine Resources Program, Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
    Jacob Asher

    Réseau requins des Antilles Francaises, Kap Natirel, Vieux-Fort, Guadeloupe
    Océane Beaufort

    Mahonia Na Dari Research and Conservation Centre, Kimbe, Papua New Guinea
    Cecilie Benjamin

    South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
    Anthony T. F. Bernard

    Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
    Anthony T. F. Bernard

    Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Michael L. Berumen, Jesse E. M. Cochran & Royale S. Hardenstine

    Blue Resources Trust, Colombo, Sri Lanka
    Rosalind M. K. Bown, Daniel Fernando, Nishan Perera & Akshay Tanna

    Bren School of Environmental Sciences and Management, University of California Santa Barbara, Santa Barbara, CA, USA
    Darcey Bradley

    Shark Research and Conservation Program, Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, Bahamas
    Edd Brooks

    Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
    J. Jed Brown

    University of the West Indies, Discovery Bay Marine Laboratory, Discovery Bay, Jamaica
    Dayne Buddo

    Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
    Patrick Burke

    Albion College, Albion, MI, USA
    Jeffrey C. Carrier

    Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
    Jennifer E. Caselle

    Coastal Impact, Quitula, Aldona Bardez, India
    Venkatesh Charloo

    CUFR Mayotte & Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, IRD, IFREMER, Montpellier, France
    Thomas Claverie

    PSL Research University, LABEX CORAIL, CRIOBE USR3278 EPHE-CNRS-UPVD, Mòorea, French Polynesia
    Eric Clua

    Environmental Research Institute Charlotteville, Charlotteville, Trinidad and Tobago
    Neil Cook, Lanya Fanovich & Aljoscha Wothke

    School of Biosciences, Cardiff University, Cardiff, UK
    Neil Cook

    ARC Centre of Excellence in Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
    Jessica Cramp & Joshua E. Cinner

    Sharks Pacific, Rarotonga, Cook Islands
    Jessica Cramp

    Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands
    Martin de Graaf

    Graduate School of Global Environmental Studies, Sophia University, Tokyo, Japan
    Mareike Dornhege

    Waitt Institute, La Jolla, CA, USA
    Andy Estep

    Marine Megafauna Foundation, Truckee, CA, USA
    Anna L. Flam, Andrea Marshall & Alexandra M. Watts

    The South African Association for Marine Biological Research, Oceanographic Research Institute, Durban, South Africa
    Camilla Floros

    Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
    Ricardo Garla

    Independent consultant, Hull, UK
    Rory Graham

    Bimini Biological Field Station Foundation, South Bimini, Bahamas
    Tristan Guttridge & Maurits van Zinnicq Bergmann

    Saving the Blue, Kendall, Miami, FL, USA
    Tristan Guttridge

    Biology Department, College of Science, UAE University, Al Ain, United Arab Emirates
    Aaron C. Henderson

    The School for Field Studies Center for Marine Resource Studies, South Caicos, Turks and Caicos Islands
    Aaron C. Henderson & Heidi Hertler

    Center for Shark Research, Mote Marine Laboratory, Sarasota, FL, USA
    Robert Hueter

    Operation Wallacea, Spilsby, Lincolnshire, UK
    Mohini Johnson

    Wildlife Conservation Society, Melanesia Program, Suva, Fiji
    Stacy Jupiter

    Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
    Steven T. Kessel

    Kenya Fisheries Service, Mombasa, Kenya
    Benedict Kiilu

    Ministry of Fisheries and Marine Resources, Development, Kiritimati, Kiribati
    Taratu Kirata

    Tanzania Fisheries Research Institute, Dar Es Salaam, Tanzania
    Baraka Kuguru

    University of the West Indies, Kingston, Jamaica
    Fabian Kyne

    School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
    Tim Langlois

    Fish Ecology and Conservation Physiology Laboratory, Carleton University, Ottawa, Ontario, Canada
    Elodie J. I. Lédée

    Coral Reef Research Foundation, Koror, Palau
    Steve Lindfield

    Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Colombia
    Andrea Luna-Acosta

    National Institute of Water and Atmospheric Research, Hataitai, New Zealand
    Jade Maggs

    Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
    B. Mabel Manjaji-Matsumoto

    Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
    Philip Matich

    Aquarium of the Pacific, Long Beach, CA, USA
    Erin McCombs

    Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, USA
    Llewelyn Meggs

    Department of Biodiversity, Conservation & Attractions, Parks & Wildlife WA, Pilbara Region, Nickol, Western Australia, Australia
    Stephen Moore

    Large Marine Vertebrates Research Institute Philippines, Jagna, The Philippines
    Ryan Murray & Alessandro Ponzo

    Wasage Divers, Wakatobi and Buton, Indonesia
    Muslimin Kaimuddin

    Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, Western Australia, Australia
    Stephen J. Newman & Michael J. Travers

    Island Conservation Society Seychelles, Victoria, Mahé, Seychelles
    Josep Nogués

    CORDIO East Africa, Mombasa, Kenya
    Clay Obota & Melita Samoilys

    The Centre for Ocean Research and Education, Gregory Town, Eleuthera, Bahamas
    Owen O’Shea

    Department of Environment and Geography, University of York, York, UK
    Kennedy Osuka

    Center for Fisheries Research, Ministry for Marine Affairs and Fisheries, Jakarta Utara, Indonesia
    Andhika Prasetyo

    Universitas Dayanu Ikhsanuddin Bau-Bau, Bau-Bau, Indonesia
    L. M. Sjamsul Quamar

    Pristine Seas, National Geographic Society, Washington, DC, USA
    Enric Sala

    Department of Zoology, University of Oxford, Oxford, UK
    Melita Samoilys

    HJR Reefscaping, Boquerón, Puerto Rico
    Michelle Schärer-Umpierre

    SalvageBlue, Kingstown, Saint Vincent and the Grenadines
    Nikola Simpson

    School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
    Adam N. H. Smith

    Indo Ocean Project, PT Nomads Diving Bali, Nusa Penida, Indonesia
    Lauren Sparks

    Manchester Metropolitan University, Manchester, UK
    Akshay Tanna & Alexandra M. Watts

    Reef Check Dominican Republic, Santo Domingo, Dominican Republic
    Rubén Torres

    Institut de Recherche pour le Développement, UMR ENTROPIE (IRD-UR-UNC-CNRS-IFREMER), Nouméa, New Caledonia
    Laurent Vigliola

    Secretariat of the Pacific Regional, Environment Programme, Apia, Samoa
    Juney Ward

    Department of Life Science, Tunghai University, Taichung, Taiwan
    Colin Wen

    School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
    Aaron J. Wirsing

    Corales del Rosario and San Bernardo National Natural Park, GIBEAM Research Group, Universidad del Sinú, Cartagena, Colombia
    Esteban Zarza-Gonzâlez

    D. Chapman and M. Heithaus conceived the study with assistance from M. Heupel, C.A.S., M.M., E.H. and M.A.M. D. Chapman, M. Heithaus, M. Heupel, C.A.S., M.M. and E.H. directed fieldwork run by J.G., J.K., M.E.B., L.M.C.-R., C.W.S., K.I.F., J.V.-A., G.C. and C.S.S. Database management was by T. Gorham. M.A.M. and D. Chapman drafted the manuscript, with help from M. Heithaus, M. Heupel, C.A.S., J.E.M.C., M.M., E.H., J.G., J.K., M.E.B., L.M.C.-R., C.W.S., C.S.S., M.J.R., V.U. and T. Gorham. All other authors contributed equally, made substantial contributions to data collection, provided input and approved the text in the manuscript. More

  • in

    Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat

    1.
    Nesbitt, M. & Samuel, D. Wheat domestication: Archaeobotanical evidence. Science 279, 1431–1431 (1998).
    ADS  Google Scholar 
    2.
    Hammer, K. Das Domestikationssyndrom. Kult. 32, 11–34 (1984).
    Google Scholar 

    3.
    Peleg, Z., Fahima, T., Korol, A. B., Abbo, S. & Saranga, Y. Genetic analysis of wheat domestication and evolution under domestication. J. Exp. Bot. 62, 5051–5061 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Simons, K. J. et al. Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Simonetti, M. C. et al. Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet. Resour. Crop Evol. 46, 267–271 (1999).
    Google Scholar 

    6.
    Tzarfati, R. et al. Threshing efficiency as an incentive for rapid domestication of emmer wheat. Ann. Bot. 112, 829–837 (2013).
    PubMed  PubMed Central  Google Scholar 

    7.
    Matsuoka, Y. Evolution of polyploid triticum wheats under cultivation: The role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 52, 750–764 (2011).
    CAS  PubMed  Google Scholar 

    8.
    Araus, J. L., Bort, J., Steduto, P., Villegas, D. & Royo, C. Breeding cereals for Mediterranean conditions: Ecophysiological clues for biotechnology application. Ann. Appl. Biol. 142, 129–141 (2003).
    Google Scholar 

    9.
    Gioia, T. et al. Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization. J. Exp. Bot. 66, 5519–5530 (2015).
    CAS  PubMed  Google Scholar 

    10.
    Thuillet, A.-C., Bataillon, T., Poirier, S., Santoni, S. & David, J. L. Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169, 1589 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Haudry, A. et al. Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24, 1506–1517 (2007).
    CAS  PubMed  Google Scholar 

    12.
    Pérez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2016).
    PubMed  Google Scholar 

    13.
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789 (2013).
    CAS  PubMed  Google Scholar 

    14.
    Pozo, M. J. & Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).
    CAS  PubMed  Google Scholar 

    15.
    Cook, R. J. et al. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. 92, 4197 (1995).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. 110, 6548 (2013).
    ADS  CAS  PubMed  Google Scholar 

    18.
    İnceoğlu, Ö, Salles, J. F., van Overbeek, L. & van Elsas, J. D. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl. Environ. Microbiol. 76, 3675 (2010).
    PubMed  PubMed Central  Google Scholar 

    19.
    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91 (2012).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Hardoim, P. R. et al. Rice root-associated bacteria: Insights into community structures across 10 cultivars. FEMS Microbiol. Ecol. 77, 154–164 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244 (2017).
    PubMed  PubMed Central  Google Scholar 

    22.
    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Leff, J. W., Lynch, R. C., Kane, N. C. & Fierer, N. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol. 214, 412–423 (2017).
    CAS  PubMed  Google Scholar 

    24.
    Roucou, A. et al. Shifts in plant functional strategies over the course of wheat domestication. J. Appl. Ecol. 55, 25–37 (2018).
    CAS  Google Scholar 

    25.
    Röder, M. S. et al. A microsatellite map of wheat. Genetics 149, 2007 (1998).
    PubMed  PubMed Central  Google Scholar 

    26.
    Berry, D., Ben Mahfoudh, K., Wagner, M. & Loy, A. Barcoded Primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695 (1993).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).
    Google Scholar 

    30.
    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).
    CAS  PubMed  Google Scholar 

    31.
    Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Henry, S. et al. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59, 327–335 (2004).
    CAS  PubMed  Google Scholar 

    33.
    Henry, S., Bru, D., Stres, B., Hallet, S. & Philippot, L. Quantitative detection of the nosZ Gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72, 5181 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Jones, C. M., Graf, D. R., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. ISME J. 7, 417 (2012).
    PubMed  PubMed Central  Google Scholar 

    35.
    Bru, D. et al. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J. 5, 532 (2010).
    PubMed  PubMed Central  Google Scholar 

    36.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2013).
    PubMed  PubMed Central  Google Scholar 

    37.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Google Scholar 

    39.
    Caporaso, J. G. et al. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2009).
    PubMed  PubMed Central  Google Scholar 

    40.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    41.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  PubMed  Google Scholar 

    42.
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610 (2011).
    PubMed  PubMed Central  Google Scholar 

    43.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  PubMed  Google Scholar 

    44.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
    CAS  PubMed  Google Scholar 

    45.
    Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).
    PubMed  PubMed Central  Google Scholar 

    46.
    A. Singh, et al., DIABLO—An integrative, multi-omics, multivariate method for multi-group classification. bioRxiv, 067611 (2016).

    47.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  Google Scholar 

    48.
    Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).
    PubMed  Google Scholar 

    49.
    Dreaden, T. J. et al. Development of multilocus PCR assays for Raffaelea lauricola, causal agent of laurel wilt disease. Plant Dis. 98, 379–383 (2013).
    Google Scholar 

    50.
    Takahashi, Y., Matsushita, N. & Hogetsu, T. Spatial distribution of Raffaelea quercivora in xylem of naturally infested and inoculated oak trees. Phytopathology 100, 747–755 (2010).
    PubMed  Google Scholar 

    51.
    Gramaje, D., Armengol, J. & Ridgway, H. J. Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. Eur. J. Plant Pathol. 135, 727–743 (2013).
    Google Scholar 

    52.
    Corradi, N. & Bonfante, P. The arbuscular mycorrhizal symbiosis: Origin and evolution of a beneficial plant infection. PLoS Pathog. 8, e1002600 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Gosling, P., Proctor, M., Jones, J. & Bending, G. D. Distribution and diversity of Paraglomus spp. in tilled agricultural soils. Mycorrhiza 24, 1–11 (2014).
    PubMed  Google Scholar 

    55.
    B. D. Emmett, N. D. Youngblut, D. H. Buckley, L. E. Drinkwater, plant phylogeny and life history shape rhizosphere bacterial microbiome of summer annuals in an agricultural field. Front. Microbiol. 8, 2414 (2017).

    56.
    Hernández, M., Dumont, M. G., Yuan, Q. & Conrad, R. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl. Environ. Microbiol. 81, 2244–2253 (2015).
    PubMed  PubMed Central  Google Scholar 

    57.
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Oldroyd, G. E. D. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252 (2013).
    CAS  PubMed  Google Scholar 

    59.
    Sikes, B. A. When do arbuscular mycorrhizal fungi protect plant roots from pathogens?. Plant Signal. Behav. 5, 763–765 (2010).
    PubMed  PubMed Central  Google Scholar  More