Salinity and temperature increase impact groundwater crustaceans
1.
Gaston, L., Lapworth, D. J., Stuart, M. & Amscheidt, J. Prioritization approaches for substances of emerging concern in groundwater: a critical review. Environ. Sci. Technol. 53(11), 6107–6122. https://doi.org/10.1021/acs.est.8b04490 (2019).
ADS CAS Article PubMed Google Scholar
2.
Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. S. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: a review. Chemosphere 244, 125422. https://doi.org/10.1016/j.chemosphere.2019.125422 (2020).
ADS CAS Article PubMed Google Scholar
3.
Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69(8), 641–650. https://doi.org/10.1093/biosci/biz064 (2019).
Article Google Scholar
4.
Foster, S. S. D. & Chilton, P. J. Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358(1440), 1957–1972. https://doi.org/10.1098/rstb.2003.1380 (2003).
CAS Article PubMed PubMed Central Google Scholar
5.
Masterson, J. P. & Garabedian, S. P. Effects of sea-level rise on ground water flow in a coastal aquifer system. Groundwater 45(2), 209–217. https://doi.org/10.1111/j.1745-6584.2006.00279.x (2007).
CAS Article Google Scholar
6.
Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2(5), 342. https://doi.org/10.1038/nclimate1413 (2012).
ADS Article Google Scholar
7.
Robinson, H. K. & Hasenmueller, E. A. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603, 94–108. https://doi.org/10.1016/j.apgeochem.2017.01.018 (2017).
ADS CAS Article PubMed Google Scholar
8.
Davis, J., Sim, L. & Chambers, J. Multiple stressors and regime shifts in shallow aquatic ecosystems in antipodean landscapes. Freshw. Biol. 55, 5–18. https://doi.org/10.1111/j.1365-2427.2009.02376.x (2010).
Article Google Scholar
9.
Davis, J. et al. When trends intersect: the challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci. Total Environ. 534, 65–78. https://doi.org/10.1016/j.scitotenv.2015.03.127 (2015).
ADS CAS Article PubMed Google Scholar
10.
Bennetts, D. A., Webb, J. A., Stone, D. J. M. & Hill, D. M. Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J. Hydrol. 323(1–4), 178–192. https://doi.org/10.1016/j.jhydrol.2005.08.023 (2006).
ADS Article Google Scholar
11.
Cartwright, I., Weaver, T. R., Stone, D. & Reid, M. Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J. Hydrol. 332(1–2), 69–92. https://doi.org/10.1016/j.jhydrol.2006.06.034 (2007).
ADS Article Google Scholar
12.
Bann, G. & Field, J. S. Dryland salinity, regolith and biodiversity: problems and opportunities for mitigation and remediation. Proceedings of Regolith 2005—Ten Years of CRC LEME, 8–12 (2005).
13.
National Land and Water Resources Audit. A Summary of the National Land and Water Resources Audit’s ‘Australian Dryland Salinity Assessment 2000’ NLWRA (Canberra, Commonwealth of Australia, 2001).
Google Scholar
14.
Velasco, J. et al. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180011. https://doi.org/10.1098/rstb.2018.0011 (2018).
CAS Article Google Scholar
15.
Di Lorenzo, T. & Galassi, D. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: does global warming affect groundwater populations?. Water 9, 1–12. https://doi.org/10.3390/w9120951 (2017).
ADS CAS Article Google Scholar
16.
Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B Biol. Sci. 267, 739–745. https://doi.org/10.1098/rspb.2000.1065 (2000).
CAS Article Google Scholar
17.
Hughes, L. Climate change and Australia: trends, projections and impacts. Aust. Ecol. 28, 423–443. https://doi.org/10.1046/j.1442-9993.2003.01300.x (2003).
Article Google Scholar
18.
Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 33(1), 10 (2004).
Google Scholar
19.
Griebler, C. et al. Ecological assessment of groundwater ecosystems—vision or illusion?. Ecol. Eng. 36, 1174–1190. https://doi.org/10.1016/j.ecoleng.2010.01.010 (2010).
Article Google Scholar
20.
Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355–367. https://doi.org/10.1086/679903 (2015).
Article Google Scholar
21.
Sket, B. Collecting and processing crustaceans of subterranean habitats. J. Crustacean. Biol. 38, 380–384. https://doi.org/10.1093/jcbiol/rux125 (2018).
Article Google Scholar
22.
Hart, R. C. & Bychek, E. A. Body size in freshwater planktonic crustaceans: an overview of extrinsic determinants and modifying influences of biotic interactions. Hydrobiologia 668, 61–108. https://doi.org/10.1007/s10750-010-0400-y (2011).
CAS Article Google Scholar
23.
Strong, D. R. Jr. Life history variation among populations of an amphipod (Hyalella azteca). Ecology 53(6), 1103–1111. https://doi.org/10.2307/1935422 (1972).
Article Google Scholar
24.
Wong, L. C., Kwok, K. W., Leung, K. M. & Wong, C. K. Relative sensitivity distribution of freshwater planktonic crustaceans to trace metals. Hum. Ecol. Risk Assess. 15(6), 1335–1345. https://doi.org/10.1080/10807030903307115 (2009).
CAS Article Google Scholar
25.
Hayasaka, D., Korenaga, T., Suzuki, K., Sánchez-Bayo, F. & Goka, K. Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology 21(2), 421–427. https://doi.org/10.1007/s10646-011-0802-2 (2012).
CAS Article PubMed Google Scholar
26.
Sánchez-Bayo, F. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Environ. Pollut. 139(3), 385–420. https://doi.org/10.1016/j.envpol.2005.06.016 (2006).
CAS Article PubMed Google Scholar
27.
Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23(2), 248–256. https://doi.org/10.1111/j.1365-2435.2008.01537.x (2009).
Article Google Scholar
28.
Nielsen, D. L., Brock, M. A., Rees, G. N. & Baldwin, D. S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 51(6), 655–665. https://doi.org/10.1071/BT02115 (2003).
Article Google Scholar
29.
Menció, A., Korbel, K. L. & Hose, G. C. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia). Sci. Total Environ. 479–480, 292–305. https://doi.org/10.1016/j.scitotenv.2014.02.009 (2014).
ADS CAS Article PubMed Google Scholar
30.
Shapouri, M. et al. The variation of stygofauna along a gradient of salinization in a coastal aquifer. Hydrol. Res. 47(1), 89–103. https://doi.org/10.2166/nh.2015.153 (2015).
Article Google Scholar
31.
Schulz, C., Steward, A. L. & Prior, A. Stygofauna presence within fresh and highly saline aquifers of the border rivers region in southern Queensland. Proc. Royal Soc. Qld. 118, 27–35 (2013).
Google Scholar
32.
Reboleira, A. S. P. S., Abrantes, N. A., Oromí, P. & Gonçalves, F. Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: general aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut. 224(5), 1550. https://doi.org/10.1007/s11270-013-1550-0 (2013).
ADS CAS Article Google Scholar
33.
Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in antarctic marine ectotherms. J. Exp. Biol. 217(1), 16–22. https://doi.org/10.1242/jeb.089946 (2014).
Article PubMed Google Scholar
34.
Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Phys. A. 141, 1–7. https://doi.org/10.1016/j.cbpb.2005.02.013 (2005).
CAS Article Google Scholar
35.
Mermillod-Blondin, F. et al. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 21(9), 1683–1694. https://doi.org/10.1242/jeb.081232 (2013).
Article Google Scholar
36.
Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. B Biol. Sci. 274(1628), 2935–2943. https://doi.org/10.1098/rspb.2007.0985 (2007).
Article Google Scholar
37.
Chown, S. L., Jumbam, K. R., Sørensen, J. G. & Terblanche, J. S. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23(1), 133–140. https://doi.org/10.1111/j.1365-2435.2008.01481.x (2009).
Article Google Scholar
38.
Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Phys. A. 192, 64–78. https://doi.org/10.1016/j.cbpa.2015.10.020 (2016).
CAS Article Google Scholar
39.
Zhu, K. & Grathwohl, P. Groundwater temperature evolution in the subsurface urban heat island of Cologne, Germany. Hydrol. Process. 29(6), 965–978. https://doi.org/10.1002/hyp.10209 (2015).
ADS Article Google Scholar
40.
Griebler, C. et al. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 75, 1391. https://doi.org/10.1007/s12665-016-6207-z (2016).
CAS Article Google Scholar
41.
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).
Article PubMed Google Scholar
42.
Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol. Ecol. 19(18), 3865–3880. https://doi.org/10.1111/j.1365-294X.2010.04759.x (2010).
Article PubMed Google Scholar
43.
Song, M. Y. & Brown, J. J. Osmotic effects as a factor modifying insecticide toxicity on Aedes and Artemia. Ecotox. Environ. Safe. 41(2), 195–202. https://doi.org/10.1006/eesa.1998.1693 (1998).
CAS Article Google Scholar
44.
Wang, J., Grisle, S. & Schlenk, D. Effects of salinity on Aldicarb toxicity in juvenile rainbow trout (Oncorhynchus mykiss) and striped bass (Morone saxatilis x chrysops). Toxicol. Sci. 64(2), 200–207. https://doi.org/10.1093/toxsci/64.2.200 (2001).
CAS Article PubMed Google Scholar
45.
Cairns, J., Heath, A. G. & Parker, B. C. The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47(1), 135–171. https://doi.org/10.1007/BF00036747 (1975).
CAS Article Google Scholar
46.
Schiedek, D., Sundelin, B., Readman, J. W. & Macdonald, R. W. Interactions between climate change and contaminants. Mar. Pollut. Bull. 54(12), 1845–1856. https://doi.org/10.1016/j.marpolbul.2007.09.020 (2007).
CAS Article PubMed Google Scholar
47.
Hose, G. C., Symington, K., Lott, M. & Lategan, M. The toxicity of arsenic (III), chromium (VI) and zinc to groundwater copepods. Environ. Sci. Pollut. Res. 23, 18704–18713. https://doi.org/10.1007/s11356-016-7046-x (2016).
CAS Article Google Scholar
48.
Asmyhr, M. G., Hose, G. C., Graham, P. & Stow, A. Fine-scaled genetics of subterranean syncarids. Freshw. Biol. 59, 1–11. https://doi.org/10.1111/fwb.12239 (2014).
Article Google Scholar
49.
Galassi, D. M., Huys, R. & Reid, J. W. Diversity, ecology and evolution of groundwater copepods. Freshw. Biol. 54(4), 691–708. https://doi.org/10.1111/j.1365-2427.2009.02185.x (2009).
Article Google Scholar
50.
Schminke, H. K. & Cho, J. L. Biology and ecology of Parabathynellidae (Crustacea, Bathynellacea)—a review. Crustaceana 86(10), 1266–1273. https://doi.org/10.1163/15685403-00003200 (2013).
Article Google Scholar
51.
ASTM (American Society for Testing and Materials). Standard guide for Daphnia magna life-cycle toxicity tests. Annual Book of ASTM Standards, Report E1193–97. (Philadelphia, USA, 1997).
52.
ISO (Internacional Organization for Standardization). Water quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test. ISO 6341 (Geneva 1996).
53.
OECD (Organization for the Economic Cooperation and Development). Guideline for testing of chemicals Daphnia sp., Acute Immobilisation Test. OECD test guideline 202. (Paris, 2004).
54.
Di Lorenzo, T. et al. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 681, 292–304. https://doi.org/10.1016/j.scitotenv.2019.05.030 (2019).
ADS CAS Article PubMed Google Scholar
55.
Rizzo, V., Sánchez-Fernández, D., Fresneda, J., Cieslak, A. & Ribera, I. Lack of evolutionary adjustment to ambient temperature in highly specialized cave beetles. Evol. Biol. 15, 10. https://doi.org/10.1186/s12862-015-0288-2 (2015).
Article Google Scholar
56.
Ritz, C. & Streibig, J. C. Bioassay for allelochemicals: examples with RJ Stat. Software (2016).
57.
Ripley, B. D. & Venables, W. N. Feed-forward neural networks and multinomial log-linear models. R package version 7.3–12. (2018).
58.
Team, R. R Development core team. R. A. Lang. Environ. Stat. Comput. 55, 275–286 (2013).
Google Scholar
59.
EMA (European Medicines Agency). Guidelines on the Environmental Risk Assessment of Medicinal Products for Human Use. Doc. Ref. 627 Risks of Veterinary Medicinal Products in Groundwater (2006).
60.
EC (European Commission). Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) N. 1488/94 on Risk Assessment for Existing Substances. Office for official publications of the European communities. (Luxembourg, 2003).
61.
EC (European Commission). Common Implementation Strategy for the Water Directive (2000/60/EC). Technical Guidance Document for Deriving Environmental Quality Standards. Technical Report 055 (2011).
62.
Hose, G. C. Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach. Hum. Ecol. Risk. Assess. 11, 951–966. https://doi.org/10.1080/10807030500257788 (2005).
CAS Article Google Scholar
63.
Hose, G. C., Asmyhr, M. G., Cooper, S. J. B. & Humphreys, W. F. Down Under Down Under: Austral Groundwater Life. In Austral Ark (eds Stow, A. et al.) 512–536 (Cambridge University Press, Cambridge, 2015).
Google Scholar
64.
USEPA. CADDIS Volume 4: SSD Generator V1. Available at https://www.epa.gov/caddis-vol4/caddis-volume-4-data-analysis-download-software#tab-3. Accessed 4 Feb 2020. More