More stories

  • in

    Hkakabo Razi landscape as one of the last exemplar of large contiguous forests

    1.
    FAO. Global forest resources assessment 2015: How are the world’s forests changing? 2nd edn, (Food and Agriculture Organization of the United Nations, 2015).
    2.
    Keenan, R. J. et al. Dynamics of global forest area: Results from the FAO global forest resources assessment. For. Ecol. Manag. 2015(352), 9–20 (2015).
    Google Scholar 

    3.
    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600 (2016).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558–12558 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    6.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).
    Google Scholar 

    9.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    PubMed  Google Scholar 

    10.
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827 (2015).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    12.
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108 (2018).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).
    ADS  Google Scholar 

    14.
    Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).
    Google Scholar 

    15.
    Leimgruber, P. et al. Forest cover change patterns in Myanmar (Burma) 1990–2000. Environ. Conserv. 32, 356–364 (2005).
    Google Scholar 

    16.
    Bhagwat, T. et al. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002–2014. PLoS ONE 12, e0176364 (2017).
    PubMed  PubMed Central  Google Scholar 

    17.
    FAO. Forests and tree supporting rural livelihoods: Case studies from Myanmar and Viet Nam by Kollert, W. Thuy, L.T.T., Voan, V.L, Oo, T.S. and Khaing, N. Planted Forests and Trees Working Paper FP/50/E. Rome, Italy (available at https://www.fao.org/3/a-i6710e.pdf) (2017).

    18.
    Kyaw, W. W., Sukchai, S., Ketjoy, N. & Ladpala, S. Energy utilization and the status of sustainable energy in Union of Myanmar. Energy Proc. 9, 351–358 (2011).
    Google Scholar 

    19.
    Mon, M. S., Mizoue, N., Htun, N. Z., Kajisa, T. & Yoshida, S. Factors affecting deforestation and forest degradation in selectively logged production forest: A case study in Myanmar. For. Ecol. Manag. 267, 190–198 (2012).
    Google Scholar 

    20.
    Woods, K. Timber trade flows and actors in Myanmar: The political economy of Myanmar’s timber trade. (2013).

    21.
    Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).
    PubMed  Google Scholar 

    22.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global Biodiversity Conservation: The critical role of hotspot in Biodiversity Hotspots (eds F.E. Zachos & J.C. Habel) 3–22 (Springer, Berlin, 2011).

    24.
    Schaefer, H., Bartholomew, B. & Boufford, D. E. Indofevillea jiroi (Cucurbitaceae), a new floral oil producing species from Northeastern Myanmar. Bione 17, 323–332 (2012).
    Google Scholar 

    25.
    Hughes, M., Aung, M. M. & Armstrong, K. An updated checklist and new species of Begonia (B. rheophytica) from Myanmar. Edinb. J. Bot. 76, 285–295 (2019).
    Google Scholar 

    26.
    Rodda, M., Aung, M. M. & Armstrong, K. A new species, a new subspecies, and new records of Hoya (Apocynaceae, Asclepiadoideae) from Myanmar and China. Brittonia 71, 424–434 (2019).
    Google Scholar 

    27.
    Yang, B., Zhou, S.-S., Maung, W. & Tan, Y.-H. Two new species of Impatiens (Balsaminaceae) from Putao, Kachin State, northern Myanmar. Phytotaxa 321, 103–113 (2017).
    Google Scholar 

    28.
    Tong, Y. H. & Xia, N. H. New taxa of Agapetes (Ericaceae) from Myanmar. Phytotaxa 184, 39–45 (2014).
    Google Scholar 

    29.
    Rabinowitz, A., Amato, G. & Saw, T. K. Discovery of the black muntjac, Muntiacus crinifrons (Artiodactyla, Cervidae), in north Myanmar. Mammalia 62, 105–107 (1998).
    Google Scholar 

    30.
    Amato, G., Egan, M. G. & Rabinowitz, A. A new species of muntjac, Muntiacus putaoensis (Artiodactyla: Cervidae) from northern Myanmar. Anim. Conserv. 2, 1–7 (1999).
    Google Scholar 

    31.
    Soisook, P. et al. A new species of Murina (Chiroptera: Vespertilionidae) from sub-Himalayan forests of northern Myanmar. Zootaxa 4320, 159–172 (2017).
    Google Scholar 

    32.
    Rappole, J. H., Renner, S. C., Shwe, N. M. & Sweet, P. R. A new species of Scimitar-Babbler (Timaliidae: Jabouilleia) from the sub-Himalayan region of Myanmar. Auk 122, 1064–1069 (2005).
    Google Scholar 

    33.
    Rappole, J. H., Rasmussen, P. C., Aung, T., Milensky, C. M. & Renner, S. C. Observations on a new species: The Naung Mung Scimitar-Babbler Jabouilleia naungmungensis. Ibis 150, 623–627 (2008).
    Google Scholar 

    34.
    Renner, S. C., Rappole, J. H., Kyaw, M., Milensky, C. M. & Päckert, M. Genetic confirmation of the species status of Jabouilleia naungmungensis. J. Ornithol. 159, 63–71 (2018).
    Google Scholar 

    35.
    Päckert, M. et al. Pilot biodiversity assessment of the Hkakabo Razi passerine avifauna in northern Myanmar—implications for conservation from molecular genetics. Bird Conserv. Int. 30, 267–288 (2020).
    Google Scholar 

    36.
    Bates, P. et al. Intact forests of Hkakabo Razi Landscape are a hotspot of bat diversity in Southeast Asia. Oryx (In Press).

    37.
    Oo, S. S. L., Kyaw, M., Hlaing, N. M. & Renner, S. C. New to Myanmar: the Rosy Starling Pastor roseus (Aves: Passeriformes: Sturnidae) in the Hkakabo Razi Landscape. JoTT 12, 15493–15494 (2020).
    Google Scholar 

    38.
    Oo, S. S. L., Kyaw, M., Meyers, K. & Renner, S. C. Confirmation of the White-winged Duck from the Hkakabo Razi Landscape, Myanmar. BirdingASIA 30, 86–87 (2018).
    Google Scholar 

    39.
    Renner, S. C. et al. Land cover in the Northern forest complex of Myanmar: New insights for conservation. Oryx 41, 27–37 (2007).
    Google Scholar 

    40.
    Rao, M. et al. Biodiversity conservation in a changing climate: A review of threats and implications for conservation planning in Myanmar. Ambio 42, 789–804 (2013).
    PubMed  PubMed Central  Google Scholar 

    41.
    Webb, E. L., Phelps, J., Friess, D. A., Rao, M. & Ziegler, A. D. Environment-friendly reform in Myanmar. Science 336, 295–295 (2012).
    ADS  CAS  PubMed  Google Scholar 

    42.
    Prescott, G. W. et al. Political transition and emergent forest-conservation issues in Myanmar. Conserv. Biol. 31, 1257–1270 (2017).
    PubMed  Google Scholar 

    43.
    De Alban, D. J. et al. Integrating analytical frameworks to investigate land-cover regime shifts in dynamic landscapes. Sustainability 11, 1139 (2019).
    Google Scholar 

    44.
    Clifton, J., Hampton, M. P. & Jeyacheya, J. Opening the box? Tourism planning and development in Myanmar: Capitalism, communities and change. Asia Pac. Viewpoint 59, 323–337 (2018).
    Google Scholar 

    45.
    Belle, E., Shi, Y. & Bertzky, B. Comparative analysis methodology for World Heritage nominations under biodiversity criteria: A contribution to the IUCN evaluation of natural World Heritage nominations. 21 (UNEP-WCMC and IUCN, Cambridge, UK and Gland, Switzerland, 2014).

    46.
    Renner, S. C. et al. Avifauna of the Southeastern Himalayan mountains and neighboring Myanmar hill country. Bonn Zoological Bulletin—Supplementum 62, 1–75 (2015).
    Google Scholar 

    47.
    BirdLife International. Endemic Bird Area factsheet: Eastern Himalayas (130), (2015).

    48.
    BirdLife International. Endemic Bird Area factsheet: Yunnan mountains (139), (2015).

    49.
    BirdLife International. Endemic Bird Area factsheet: Northern Myanmar lowlands (s079), (2015).

    50.
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data. 4, 170122 (2017).
    PubMed  PubMed Central  Google Scholar 

    51.
    Renner, S. C. & Rappole, J. H. Bird diversity, biogeographic patterns, and endemism of the eastern Himalayas and southeastern Sub-Himalayan mountains in Ornithological Monographs Vol. 70 (ed M. L. Morrison) Ch. 8, 153–166 (American Ornithologists’ Union, 2011).

    52.
    Dumbacher, J. P., Miller, J. R., Flannery, M. E. & Yang Xiaojun. Avifauna of the Gaoligong Shan mountains of western China: A hotspot of avian species diversity in Ornithological Monographs Vol. 70 (eds S.C. Renner & J.H. Rappole) Ch. 3, 30–63 (American Ornithologists’ Union, 2011).

    53.
    Rappole, J. H., Thein Aung, Rasmussen, P. C. & Renner, S. C. Ornithological exploration in the southeastern sub-Himalayan region of Myanmar in Ornithological Monographs Vol. 70 (ed M. L. Morrison) Ch. 2, 10–29 (American Ornithologists’ Union, 2011).

    54.
    Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).
    ADS  Google Scholar 

    55.
    Riano, D., Chuvieco, E., Salas, J. & Aguado, I. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE T Geosci. Remote 41, 1056–1061 (2003).
    ADS  Google Scholar 

    56.
    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, 2 (2007).
    Google Scholar 

    57.
    Deng, Y., Chen, X., Chuvieco, E., Warner, T. & Wilson, J. P. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sens. Environ. 111, 122–134 (2007).
    ADS  Google Scholar 

    58.
    Guisan, A., Weiss, S. B. & Weiss, A. D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 143, 107–122 (1999).
    Google Scholar 

    59.
    Running, S. W. Estimating primary productivity by combining remote sensing with ecosystem simulation in Remote Sensing of Biosphere Functioning (eds R.J. Hobbs & H.A Mooney) 65–86 (Springer-Verlag, Berlin, 1990).

    60.
    Myneni, R. B., Hall, F., Sellers, P. & Marshak, A. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Rem. Sens. 33, 481–486 (1995).
    ADS  Google Scholar 

    61.
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Google Scholar 

    62.
    Liaw, A. & Wiener, M. Classification and regression by random. Forest 2, 18–22 (2002).
    Google Scholar 

    63.
    Plummer, M.JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling in Proceedings of the 3rd international workshop on distributed statistical computing. 125 (Vienna).

    64.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).

    65.
    Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012).
    ADS  Google Scholar 

    66.
    Connette, G., Oswald, P., Songer, M. & Leimgruber, P. Mapping distinct forest types improves overall forest identification based on multi-spectral landsat imagery for Myanmar’s Tanintharyi region. Remote Sens. 8, 2 (2016).
    Google Scholar 

    67.
    De Alban, J. D., Connette, G., Oswald, P. & Webb, E. Combined Landsat and L-Band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sens. 10, 306 (2018).
    ADS  Google Scholar 

    68.
    Belgiu, M. & Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogram. Sens. 114, 24–31 (2016).
    Google Scholar 

    69.
    Horning, N. Random Forests: An algorithm for image classification and generation of continuous fields data sets. (2010).

    70.
    SNAP – ESA Sentinel Application Platform v2.0 (2015).

    71.
    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
    ADS  Google Scholar 

    72.
    Colditz, R. R. et al. Potential effects in multi-resolution post-classification change detection. Int. J. Remote Sens. 33, 6426–6445 (2012).
    ADS  Google Scholar 

    73.
    Cuba, N. Research note: Sankey diagrams for visualizing land cover dynamics. Landsc. Urban Plan. 139, 163–167 (2015).
    Google Scholar 

    74.
    Riitters, K. H. et al. Fragmentation of continental United States forests. Ecosystem 5, 815–822 (2002).
    Google Scholar 

    75.
    Riitters, K. H. & Wickham, J. D. Decline of forest interior conditions in the conterminous United States. Sci. Rep. 2, 653 (2012).
    ADS  PubMed  PubMed Central  Google Scholar 

    76.
    Riitters, K. H., O’Neill, R. V. & Jones, K. B. Assessing habitat suitability at multiple scales: A landscape-level approach. Biol. Conserv. 81, 191–202 (1997).
    Google Scholar 

    77.
    McIntyre, S. & Hobbs, R. A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv. Biol. 13, 1282–1292 (1999).
    Google Scholar 

    78.
    Vogt, P. & Riitters, K. GuidosToolbox: universal digital image object analysis. Eur. J. Remote Sens. 50, 352–361 (2017).
    Google Scholar 

    79.
    Gillanders, S. N., Coops, N. C., Wulder, M. A., Gergel, S. E. & Nelson, T. Multitemporal remote sensing of landscape dynamics and pattern change: Describing natural and anthropogenic trends. Prog. Phys. Geogr. 32, 503–528 (2008).
    Google Scholar 

    80.
    Rubiano, K., Clerici, N., Norden, N. & Etter, A. Secondary forest and shrubland dynamics in a highly transformed landscape in the northern Andes of Colombia (1985–2015). Forest 8, 216 (2017).
    Google Scholar 

    81.
    IUSS, W. G. W. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, (2015).

    82.
    Oldeman, L., Hakkeling, R. & Sombroek, W. World map of the status of human-induced soil degradation: An explanatory note rev. (UNEP and ISRIC, Wageningen, 1991).
    Google Scholar 

    83.
    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 

    84.
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S 4th edn. (Springer, Berlin, 2002).
    Google Scholar 

    85.
    Greene, W. H. Econometric analysis (Prentice Hall, Pearson, 2000).
    Google Scholar 

    86.
    Songer, M., Aung Myint, S. B., DeFries, R. & Leimgruber, P. Spatial and temporal deforestation dynamics in protected and unprotected dry forests: A case study from Myanmar (Burma). Metrics 18, 1001–1018 (2008).
    Google Scholar 

    87.
    Reddy, C. S. et al. Quantifying and predicting multi-decadal forest cover changes in Myanmar: A biodiversity hotspot under threat. Metrics 28, 1129–1149 (2019).
    Google Scholar 

    88.
    Hall, C. A. S., Tian, H., Qi, Y., Pontius, G. & Cornell, J. Modelling spatial and temporal patterns of tropical land use change. J. Biogrph. 22, 753–757 (1995).
    Google Scholar 

    89.
    Di Lallo, G., Mundhenk, P., Zamora López, S., Marchetti, M. & Köhl, M. REDD+: Quick assessment of deforestation risk based on available data. Forests 8, 29 (2017).
    Google Scholar 

    90.
    Bax, V. & Francesconi, W. Environmental predictors of forest change: An analysis of natural predisposition to deforestation in the tropical Andes region, Peru. Appl. Geogr. 91, 99–110 (2018).
    Google Scholar 

    91.
    Pacheco, P. et al. Landscape transformation in tropical Latin America: Assessing trends and policy implications for REDD+. Forest 2, 1–29 (2010).
    Google Scholar  More

  • in

    Biodiversity scientists must fight the creeping rise of extinction denial

    These attempts to downplay the biodiversity crisis follow the ‘Scientific Certainty Argumentation Methods’ playbook, which includes all three categories of denial envisioned by Stanley Cohen in a framework first applied to the study of atrocities and other unwelcome truths4. These are: (1) ‘Literal denial’, an assertion that something is untrue, for example the evidence for greatly elevated rates of species threat and extinction; (2) ‘Interpretive denial’, in which raw facts are not disputed but given a different spin, for example using evidence from temperate ecosystems to make claims about reduced impacts in the tropics; (3) ‘Implicatory denial’, in which data are not denied, but implications are, for example arguing that transformative changes to socio–ecological systems are not required to avert species extinctions.
    We address each of these in detail, before exploring ways to counter erroneous claims and logical fallacies that we understand to be ‘extinction denialism’ or ‘biodiversity loss denialism’.
    Literal denial: ‘Species extinctions were predominantly a historical problem’
    Extinction deniers often downplay the extinction crisis by framing it as a historical problem and a trivial contemporary challenge (Supplementary Table 1). By focusing attention on the loss of megafauna in prehistory owing to overhunting and rapid loss of island biodiversity in historic times, it is suggested we have passed through these extinction filters and reached the ‘other side’ of the crisis. This ‘literal denial’ line of argument misses several key facets of the extinction crisis, notably that species, including island endemics, are still being lost5 and that the catastrophic loss, degradation and fragmentation of whole ecosystems, combined with climate change, is triggering a new episode of continental extinctions6. This is particularly acute in the highly biodiverse tropics and where extinctions are just the endpoint of a long process of extirpation and defaunation7 (Box 1, Supplementary Table 2). Moreover, biologists are typically conservative in declaring possible extinctions, and across the world there are 143 amphibians, 41 reptiles, 29 mammals and 22 bird species classed by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (https://www.iucnredlist.org) as ‘Critically Endangered (Possibly Extinct)’. Many of these species are likely already gone, while many more, including the 75 species listed as ‘Extinct in the Wild’, are only hanging on due to expensive, last resort, conservation interventions8.

    Box 1 Examples of species and systems misrepresented by extinction denialists

    Literal denial: for example, underestimating and overlooking recent extinctions.
    The Atlantic Rainforest has been long touted by deniers as an example of a biome that had lost 90% of its habitat without a single documented extinction. Yet the Alagoas foliage-gleaner (Philydor novaesi) (a) and the cryptic treehunter (Cichlocolaptes mazarbarnetti) were confirmed as extinct in 2019, each only ever known from two forest fragments, and seven other species have not been seen for a decade or are down to the last few individuals (Supplementary Table 2). Extinction deniers downplaying the relatively small number of documented extinctions are wrong for the same reasons as those who sought to downplay the impact of the SARS-CoV-2 pandemic in early 2020. Just as the true number of cases was underestimated because of the widespread lack of testing, the true number of extinctions is far higher than those observed, because the majority of the Earth’s species have not even been described — especially the rarer and more specialized species, which are most vulnerable. And, as with the initially unthinkable predictions of epidemiologists, conservation scientists are beginning to see their grim predictions of extinction debt borne out.
    Interpretive denial: for example, resurgent carnivores are not umbrella species for all taxa.
    The resurgence of the Eurasian brown bear (Ursus arctos arctos) (b), grey wolf (Canis lupus), Eurasian lynx (Lynx lynx) and their prey base in Europe reflects land abandonment and rural depopulation associated with globalization and mechanization of agricultural production systems but should not be interpreted as a recovery of biodiversity more widely. These population recoveries have come alongside losses in farm income and rural employment. Other factors include reduced human–wildlife conflict and better legislative protection. Large mammals are typically habitat generalists and their recolonization of managed habitats like European forests has not been accompanied by a resurgence of habitat specialists. Old growth forest dependent white-backed woodpeckers (Dendrocopos leucotos), for example, remain on the cusp of extinction even in heavily forested Scandinavia. The saproxylic beetles they rely upon are associated with ancient trees and natural large-scale fire regimes with long return times and are consequently extremely rare or extinct in Europe’s managed forests.
    Implicatory denial: for example, misrepresenting land sparing as a silver bullet for conservation.
    Vast soy bean (Glycine max) fields (c) at the ecotone of the Amazon and Cerrado biomes in Brazil. Land sparing — minimizing the land area of agriculture while protecting and restoring as large an area of native vegetation as possible — may well be a useful strategy to reduce extinctions associated with habitat loss. Various studies have confirmed that protection of large areas of native vegetation will be essential for the conservation of the many specialized and threatened species that inhabit the tropics17. However, agricultural intensification alone is no guarantee that land will be spared for nature, and if it increases profits, there is a risk that this will encourage further deforestation. Furthermore, not all methods for increasing yields are equal. There is a need to minimize negative environmental externalities, make sure that key ecosystem services are still provided at landscape scales, and ensure that intensification does not simply result in the increased demand that characterizes the great acceleration. Land uses that incorporate people, such as indigenous reserves, are among the most effective at conserving forest cover, and are an essential complement to strictly protected areas.

    Credit: Ciro Albano (a); Richard Moores (b); Alexander C. Lees (c).

    Interpretive denial: ‘Economic growth alone will fix the extinction crisis’
    Extinction denialists often invoke an Environmental Kuznets Curve (EKC)9 response of biodiversity to development (Supplementary Table 1), arguing that pressures on the environment eventually decrease with rising income levels. Yet the EKC hypothesis is misleading in this context. First, empirical evidence of the relationship between economic development and forest cover only supports the loss part of the curve10. Second, the EKC is typically a local rather than a global phenomenon, and global environmental indicators of indirect impacts such as CO2 emissions, waste production and energy consumption are still increasing monotonically. Country-specific assessments of EKC often ignore the outsourcing of environmental degradation to poorer countries. Denialists also highlight the resurgence of certain large charismatic species such as wolves and bears in Europe and North America as evidence that we are through the worst of the extinction crisis. However, this is only a partial success story (Box 1). Similar successes in the tropics are highly unlikely: species richness, species packing and habitat and niche specialization are all far higher at tropical latitudes, while geographic range sizes are much smaller. These factors mean that tropical biodiversity is far more extinction-prone then temperate biodiversity11. The unfortunate truth is that there are many imminent or actual extinctions in highly deforested tropical regions (Supplementary Table 2). Finally, the so-called ‘Forest Transition’ model9, which envisages an EKC-style relationship between forest cover and development, fails to differentiate between native forests and monoculture plantations of oil palm, conifers and eucalyptus, despite the expansion of plantations being an important cause of biodiversity loss. Many global forest models are not sensitive to the difference12 and conflating plantations with natural forests has long been a key feature of the denialist playbook.
    Implicatory denial: ‘Technological fixes and targeted conservation interventions will overcome extinction’
    Extinction denialists are often selective, choosing to highlight only a subset of factors causing contemporary extinctions, such as overharvesting and predation by non-native species, while choosing not to mention habitat loss that affects the majority of species on the Red List. They then suggest that solutions are simple, requiring no change or business-as-usual actions, even though it is increasing resource demands and current socio–ecological and economic modes of organization that imperil biodiversity globally7. Invasive species, overharvesting and pathogens are undoubtedly major conservation issues responsible for global extinctions of many — particularly insular — species, and technological fixes form part of the portfolio of conservation interventions. However, these threats are often exacerbated by habitat loss and climate change, and all must be addressed together. A disproportionate focus on a subset of drivers is a form of implicatory denial that is contrary to scientific consensus: recognizing the importance of one set of threats does not obviate the need to address others8. Another form of implicatory denial involves the misrepresentation of the land sharing/sparing concept (Box 1). More

  • in

    Evidence of genetic isolation between two Mediterranean morphotypes of Parazoanthus axinellae

    1.
    Ingrosso, G. et al. Mediterranean bioconstructions along the Italian coast. Adv. Mar. Biol. 79, 61–136 (2018).
    PubMed  Google Scholar 
    2.
    Giakoumi, S. et al. Ecoregion-based conservation planning in the mediterranean: dealing with large-scale heterogeneity. PLoS ONE 8, e76449 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. 45, 345–405 (2007).
    Google Scholar 

    5.
    Knowlton, N. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73–90 (2000).
    CAS  Google Scholar 

    6.
    Todd, P. A. Morphological plasticity in scleractinian corals. Biol. Rev. 83, 315–337 (2008).
    PubMed  Google Scholar 

    7.
    Stefani, F. et al. Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 30, 1033–1049. https://doi.org/10.1007/s00338-011-0797-4 (2011).
    ADS  Article  Google Scholar 

    8.
    Pinzon, J. H. et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J. Biogeogr. 40, 1595–1608 (2013).
    Google Scholar 

    9.
    Costantini, F., Gori, A., Lopez-gonzález, P. & Bramanti, L. Limited genetic connectivity between gorgonian morphotypes along a depth Gradient. PLoS ONE 11, 50–55. https://doi.org/10.1371/journal.pone.0160678 (2016).
    CAS  Article  Google Scholar 

    10.
    Boissin, E., Egea, E., Féral, J. P. & Chenuil, A. Contrasting population genetic structures in Amphipholis squamata, a complex of brooding, self-reproducing sister species sharing life history traits. Mar. Ecol. Prog. Ser. 539, 165–177 (2015).
    ADS  CAS  Google Scholar 

    11.
    Fukami, H. et al. Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58, 324–337 (2004).
    CAS  PubMed  Google Scholar 

    12.
    Costantini, F., Ferrario, F. & Abbiati, M. Chasing genetic structure in coralligenous reef invertebrates: patterns, criticalities and conservation issues. Sci. Rep. 8, 1–12 (2018).
    Google Scholar 

    13.
    Pante, E. et al. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol. Ecol. 24, 525–544 (2015).
    PubMed  Google Scholar 

    14.
    Chenuil, A., Cahill, A. E., Délémontey, N., Du Salliant du Luc, E. & Fanton, H. Problems and questions posed by cryptic species. a framework to guide future studies. In From Assessing to Conserving Biodiversity. History. Philosophy and Theory of the Life Sciences (eds Casetta, E. et al.) 77–106 (Springer, New York, 2019).
    Google Scholar 

    15.
    Cowen, R. K. Population connectivity in marine systems. Oceanography 20, 14–21 (2007).
    Google Scholar 

    16.
    Ocaña, O. & Brito, A. Zoanthids parasitizing Anthozoa: taxonomy, ecology and morphological evolution by genomes acquisition. Rev. Acad. Canar. Cienc. 30, 103–134 (2018).
    Google Scholar 

    17.
    Ocaña, O. et al. Parazoanthus axinellae: a species complex showing different ecological requierements. Rev. Acad. Canar. Cienc. XXXI, 1–24 (2019).
    Google Scholar 

    18.
    Lwowsky, F. F. Revision der Gattung Sidisia Gray (Epizoanthus auct.). Ein Beitrag zur Kenntnis der Zoanthiden. Zool. Jahrbücher, Abteilung für Syst. Ökologie und Geogr. der Tiere 34, 557–614 (1913).
    Google Scholar 

    19.
    Herberts, C. Contribution a l’etude biologique de quelques zoantharies tempérés et tropicaux II. Relations entre la reproduction sexue ´e, la corissance somatique et le bourgeonnement. Tethys 4, 961–968 (1972).
    Google Scholar 

    20.
    Ryland, J. S. & Lancaster, J. E. A review of zoanthid nematocyst types and their population structure. Hydrobiologia 530, 179 (2004).
    Google Scholar 

    21.
    Cariello, L., Crescenzi, S., Prota, G. & Zanetti, L. Methylation of zoanthoxanthins. Tetrahedon 30, 3611–3614 (1974).
    CAS  Google Scholar 

    22.
    Cariello, L., Crescenzi, S., Prota, G. & Zanetti, L. Zoanthoxanthins of a new structural type from Epizoanthus arenaceus (Zoantharia). Tetrahedon 30, 9191–4196 (1974).
    Google Scholar 

    23.
    Cariello, L. et al. Zoanthoxanthin, a natural 1,2,5,7-tetrazacyclopent[f]-azulene from Parazoanthus axinellae. Tetrahedon 30, 3281–3287 (1974).
    CAS  Google Scholar 

    24.
    Carreiro-Silva, M. et al. Zoantharians (Hexacorallia: Zoantharia) associated with cold-water corals in the azores region: New species and associations in the deep sea. Front. Mar. Sci. 4, 88 (2017).
    Google Scholar 

    25.
    Montenegro, J., Low, M. E. Y. & Reimer, J. D. The resurrection of the genus Bergia (Anthozoa, Zoantharia, Parazoanthidae). Syst. Biodivers. 14, 63–73 (2016).
    Google Scholar 

    26.
    Sinniger, F., Montoya-Burgos, J., Chevaldonné, P. & Pawlowski, J. Phylogeny of the order Zoantharia (Anthozoa, Hexacorallia) based on the mitochondrial ribosomal genes. Mar. Biol. 147, 1121–1128 (2005).
    CAS  Google Scholar 

    27.
    Sinniger, F., Reimer, J. D. & Pawlowski, J. Potential of DNA Sequences to Identify Zoanthids (Cnidaria: Zoantharia). Zoolog. Sci. 25, 1253–1260 (2008).
    CAS  PubMed  Google Scholar 

    28.
    Pax, F. Die Zoanthanen des Golfes von Neapel. Pubbl. della Stn. Zool. di Napoli 30, 309–329 (1957).
    Google Scholar 

    29.
    Gili, J. M., Pages, F. & Barange, M. Zoantharios (Cnidaria, Anthozoa) de la costa y de la plataforma continental catalanas (Mediterraneo Occidental). Misc. Zool. 11, 13–24 (1987).
    Google Scholar 

    30.
    Abel, E. F. Zur Kenntnis der mannen Höhlenfauna unter besonderer Berücksichtigung der Anthozoen. Pubbl. della Stn. Zool. di Napoli 30, 1–94 (1959).
    Google Scholar 

    31.
    Cachet, N. et al. Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae. Sci. Rep. 5, 8282 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Cerrano, C., Totti, C., Sponga, F. & Bavestrello, G. Summer disease in Parazoanthus axinellae (Schmidt, 1862) (Cnidaria, Zoanthidea). Ital. J. Zool. 73, 355–361 (2006).
    Google Scholar 

    33.
    Fu, Y.-X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–770 (1993).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
    CAS  PubMed  Google Scholar 

    35.
    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Costantini, F., Fauvelot, C. & Abbiati, M. Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effective larval dispersal. Mar. Ecol. Prog. Ser. 340, 109–119 (2007).
    ADS  CAS  Google Scholar 

    37.
    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).
    PubMed  Google Scholar 

    38.
    Villamor, A., Costantini, F. & Abbiati, M. Multilocus phylogeography of Patella caerulea (Linnaeus, 1758) reveals contrasting connectivity patterns across the Eastern-Western Mediterranean transition. J. Biogeogr. 45, 1301–1312 (2018).
    Google Scholar 

    39.
    Rossi, V., Ser-Giacomi, E., Lõpez, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).
    ADS  Google Scholar 

    40.
    Pax, F. & Muller, I. Die Anthozoenfauna der Adria. Fauna Flora Adriat. 3, 1–343 (1962).
    Google Scholar 

    41.
    Ryland, J. S. Reproduction in Zoanthidea (Anthozoa: Hexacorallia). Invertebr. Reprod. Dev. 31, 177–188 (1997).
    Google Scholar 

    42.
    Previati, M., Palma, M., Bavestrello, G., Falugi, C. & Cerrano, C. Reproductive biology of Parazoanthus axinellae (Schmidt, 1862) and Savalia savaglia (Bertoloni, 1819) (Cnidaria, Zoantharia) from the NW Mediterranean coast. Mar. Ecol. 31, 555–565 (2010).
    ADS  Google Scholar 

    43.
    Sinniger, F., Reimer, J. D. & Pawlowski, J. The Parazoanthidae (Hexacorallia: Zoantharia) DNA taxonomy: description of two new genera. Mar. Biodivers. 40, 57–70 (2010).
    Google Scholar 

    44.
    Aurelle, D. et al. Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes. Zool. Scr. 46, 767–778 (2017).
    Google Scholar 

    45.
    Swain, T. D. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): staggered alignment of hypervariable sequences improves species tree inference. Mol. Phylogenet. Evol. 118, 1–12 (2018).
    PubMed  Google Scholar 

    46.
    Sinniger, F. & Häussermann, V. Zoanthids (Cnidaria: Hexacorallia: Zoantharia) from shallow waters of the southern Chilean fjord region, with descriptions of a new genus and two new species. Org. Divers. Evol. 9, 23–36 (2009).
    Google Scholar 

    47.
    Jaramillo, K. B. et al. Assessing the zoantharian diversity of the Tropical Eastern Pacific through an integrative approach. Sci. Rep. 8, 1–15 (2018).
    CAS  Google Scholar 

    48.
    Swain, T. D. Evolutionary transitions in symbioses: dramatic reductions in bathymetric and geographic ranges of Zoanthidea coincide with loss of symbioses with invertebrates. Mol. Ecol. 19, 2587–2598 (2010).
    CAS  PubMed  Google Scholar 

    49.
    Samorì, C., Costantini, F., Galletti, P., Tagliavini, E. & Abbiati, M. Inter- and intraspecific variability of nitrogenated compounds in gorgonian corals via application of a fast one-step analytical protocol. Chem. Biodivers. 15, e1700449 (2018).
    Google Scholar 

    50.
    Pante, E. et al. Use of RAD sequencing for delimiting species. Heredity 14, 450–459. https://doi.org/10.1038/hdy.2014.105 (2014).
    CAS  Article  Google Scholar 

    51.
    Poliseno, A. et al. Evolutionary implications of analyses of complete mitochondrial genomes across order Zoantharia (Cnidaria: Hexacorallia). J. Zool. Syst. Evol. Res. 10, 1–11. https://doi.org/10.1111/jzs.12380 (2020).
    Article  Google Scholar 

    52.
    Taboada, S. & Pérez-Portela, R. Contrasted phylogeographic patterns on mitochondrial DNA of shallow and deep brittle stars across the Atlantic-Mediterranean area. Sci. Rep. 6, 32425 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Cerrano, C., Milanese, M. & Ponti, M. Diving for science-science for diving: volunteer scuba divers support science and conservation in the Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 303–323 (2017).
    Google Scholar 

    54.
    Swain, T. D. Phylogeny-based species delimitations and the evolution of host associations in symbiotic zoanthids (Anthozoa, Zoanthidea) of the wider Caribbean region. Zool. J. Linn. Soc. 156, 223–238 (2009).
    Google Scholar 

    55.
    Katoh, K., Rozewicki, J. & Yamada, K. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2017).
    PubMed Central  Google Scholar 

    56.
    Heibl, C. PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. http://www.christophheibl.de/Rpackages.html (2008).

    57.
    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Team, R. C. R: a language and environment for statistical computing (2018).

    59.
    Mauri, M., Elli, T., Caviglia, G., Uboldi, G. & Azzi, M. RAWGraphs: a visualisation platform to create open outputs. ACM Int. Conf. Proceeding Ser. Part F1313 (2017).

    60.
    Paradis, E. Analysis of haplotype networks: The randomized minimum spanning tree method. Methods Ecol. Evol. 9, 1308–1317 (2018).
    Google Scholar 

    61.
    Excoffier, L. & Lischer, H. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Google Scholar 

    62.
    Narum, S. R. Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).
    CAS  Google Scholar 

    63.
    Tajima, F. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphisms. Genetics 123, 585–595 (1989).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Montenegro, J., Sinniger, F. & Reimer, J. D. Unexpected diversity and new species in the sponge-Parazoanthidae association in southern Japan. Mol. Phylogenet. Evol. 89, 73–90 (2015).
    CAS  PubMed  Google Scholar 

    65.
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).
    CAS  PubMed  Google Scholar 

    66.
    Schliep, K. Phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Schliep, K., Potts, A., Morrison, D. & Grimm, G. Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 8, 212–1220 (2017).
    Google Scholar 

    68.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Vegetation fires in the Anthropocene

    1.
    Scott, A. C., Bowman, D. M., Bond, W. J., Pyne, S. J. & Alexander, M. E. Fire on Earth: An Introduction (Wiley, 2013).
    2.
    Ward, D. et al. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos. Chem. Phys. 12, 10857–10886 (2012).
    Google Scholar 

    3.
    Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).
    Google Scholar 

    4.
    Carslaw, K. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 10, 1701–1737 (2010).
    Google Scholar 

    5.
    Peterson, D. A. et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. NPJ Clim. Atmos. Sci. 1, 30 (2018).
    Google Scholar 

    6.
    McRae, R. H., Sharples, J. J. & Fromm, M. Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci. 15, 417–428 (2015).
    Google Scholar 

    7.
    Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999).
    Google Scholar 

    8.
    Thomas, J. L. et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett. 44, 7965–7974 (2017).
    Google Scholar 

    9.
    Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 964–971 (2018).
    Google Scholar 

    10.
    Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: history and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53–69 (2010).
    Google Scholar 

    11.
    Keeley, J. E. & Fotheringham, C. Role of fire in regeneration from seed. Seeds 2, 311–330 (2000).
    Google Scholar 

    12.
    Noble, I. R. & Slatyer, R. O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).
    Google Scholar 

    13.
    Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).
    Google Scholar 

    14.
    Glikson, A. Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene 3, 89–92 (2013).
    Google Scholar 

    15.
    Huffman, M. R. The many elements of traditional fire knowledge: synthesis, classification, and aids to cross-cultural problem solving in fire-dependent systems around the world. Ecol. Soc. 18, 3 (2013).
    Google Scholar 

    16.
    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
    Google Scholar 

    17.
    Scherjon, F. et al. Burning the land: an ethnographic study of off-site fire use by current and historically documented foragers and implications for the interpretation of past fire practices in the landscape. Curr. Anthropol. 56, 314–315 (2015).
    Google Scholar 

    18.
    Mertz, O. et al. Swidden change in Southeast Asia: understanding causes and consequences. Hum. Ecol. 37, 259–264 (2009).
    Google Scholar 

    19.
    Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
    Google Scholar 

    20.
    Calkin, D. E., Stonesifer, C. S., Thompson, M. P. & McHugh, C. W. Large airtanker use and outcomes in suppressing wildland fires in the United States. Int. J. Wildland Fire 23, 259–271 (2014).
    Google Scholar 

    21.
    Le Page, Y., Oom, D., Silva, J. M., Jönsson, P. & Pereira, J. M. Seasonality of vegetation fires as modified by human action: observing the deviation from eco‐climatic fire regimes. Glob. Ecol. Biogeogr. 19, 575–588 (2010).
    Google Scholar 

    22.
    Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
    Google Scholar 

    23.
    Bowman, D. M. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).
    Google Scholar 

    24.
    Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).
    Google Scholar 

    25.
    Tedim, F. et al. Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1, 9 (2018).
    Google Scholar 

    26.
    Ladds, M., Keating, A., Handmer, J. & Magee, L. How much do disasters cost? A comparison of disaster cost estimates in Australia. Int. J. Disaster Risk Reduct. 21, 419–429 (2017).
    Google Scholar 

    27.
    Kramer, H. A., Mockrin, M. H., Alexandre, P. M. & Radeloff, V. C. High wildfire damage in interface communities in California. Int. J. Wildland Fire 28, 641–650 (2019).
    Google Scholar 

    28.
    Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The Costs and Losses of Wildfires. NIST Special Publication 1215 (NIST, 2017).

    29.
    Fann, N. et al. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total Environ. 610, 802–809 (2018).
    Google Scholar 

    30.
    Read, P. & Denniss, R. With costs approaching $100 billion, the fires are Australia’s costliest natural disaster. The Conversation https://theconversation.com/with-costs-approaching-100-billion-the-fires-are-australias-costliest-natural-disaster-129433 (2020).

    31.
    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci.USA 115, 8252–8259 (2018).
    Google Scholar 

    32.
    Steffen, W. et al. The emergence and evolution of Earth system science. Nat. Rev. Earth Environ. 1, 54–63 (2020).
    Google Scholar 

    33.
    Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Environ. Resour. 38, 57–80 (2013).
    Google Scholar 

    34.
    Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).
    Google Scholar 

    35.
    Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 117, G04012 (2012).
    Google Scholar 

    36.
    Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).
    Google Scholar 

    37.
    Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690–696 (2019).
    Google Scholar 

    38.
    Lavorel, S., Flannigan, M. D., Lambin, E. F. & Scholes, M. C. Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems. Mitig. Adapt. Strateg. Global Change 12, 33–53 (2007).
    Google Scholar 

    39.
    Van Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochem. Cycles 22 (2008).

    40.
    Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4, e5102 (2009).
    Google Scholar 

    41.
    Pausas, J. G. & Ribeiro, E. The global fire–productivity relationship. Global Ecol. Biogeogr. 22, 728–736 (2013).
    Google Scholar 

    42.
    McKenzie, D. & Littell, J. S. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol. Appl. 27, 26–36 (2017).
    Google Scholar 

    43.
    Bowman, D. M., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecol. Biogeogr. 23, 821–824 (2014).
    Google Scholar 

    44.
    Haberle, S. G., Hope, G. S. & van der Kaars, S. Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events in the fossil record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 259–268 (2001).
    Google Scholar 

    45.
    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).
    Google Scholar 

    46.
    Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. Future area burned in Canada. Clim. Change 72, 1–16 (2005).
    Google Scholar 

    47.
    Abatzoglou, J. T. & Kolden, C. A. Climate change in western US deserts: potential for increased wildfire and invasive annual grasses. Rangel. Ecol. Manag. 64, 471–478 (2011).
    Google Scholar 

    48.
    Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez‐Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183 (2013).
    Google Scholar 

    49.
    Andreae, M. O. & Merlet, P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955–966 (2001).
    Google Scholar 

    50.
    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).
    Google Scholar 

    51.
    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
    Google Scholar 

    52.
    Cramer, W. et al. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. R. Soc. B Biol. Sci. 359, 331–343 (2004).
    Google Scholar 

    53.
    Kurz, W. et al. Quantifying the impacts of human activities on reported greenhouse gas emissions and removals in Canada’s managed forest: conceptual framework and implementation. Can. J. For. Res. 48, 1227–1240 (2018).
    Google Scholar 

    54.
    Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).
    Google Scholar 

    55.
    Bowman, D. Wildfire science is at a loss for comprehensive data. Nature 560, 7–8 (2018).
    Google Scholar 

    56.
    Foreman, P. W. A framework for testing the influence of Aboriginal burning on grassy ecosystems in lowland, mesic south–eastern Australia. Australian J. Botany 64, 626–642 (2016).
    Google Scholar 

    57.
    Van Wagner, C. Age-class distribution and the forest fire cycle. Can. J. For. Res. 8, 220–227 (1978).
    Google Scholar 

    58.
    Larsen, C. P. S. Fire and climate dynamics in the boreal forest of northern Alberta, Canada, from AD 1850 to 1989. Holocene 6, 449–456 (1996).
    Google Scholar 

    59.
    Bergeron, Y., Flannigan, M., Gauthier, S., Leduc, A. & Lefort, P. Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. AMBIO 33, 356–360 (2004).
    Google Scholar 

    60.
    Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, E535–E543 (2012).
    Google Scholar 

    61.
    Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).
    Google Scholar 

    62.
    Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).
    Google Scholar 

    63.
    Forkel, M. et al. Recent global and regional trends in burned area and their compensating environmental controls. Environ. Res. Commun. 1, 051005 (2019).
    Google Scholar 

    64.
    Schultz, M. G. et al. Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles 22, GB2002 (2008).
    Google Scholar 

    65.
    Clode, D. & Elgar, M. A. Fighting fire with fire: does a policy of broad-scale prescribed burning improve community safety? Soc. Nat. Resour. 27, 1192–1199 (2014).
    Google Scholar 

    66.
    Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116–126 (2009).
    Google Scholar 

    67.
    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
    Google Scholar 

    68.
    Justice, C. et al. The MODIS fire products. Remote Sens. Environ. 83, 244–262 (2002).
    Google Scholar 

    69.
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    Google Scholar 

    70.
    Burrows, N., Ward, B. & Robinson, A. Fuel dynamics and fire spread in spinifex grasslands of the Western Desert. Proc. R. Soc. Queensland 115, 69–76 (2009).
    Google Scholar 

    71.
    Bird, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
    Google Scholar 

    72.
    Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proc. Natl Acad. Sci. USA 113, 13684–13689 (2016).
    Google Scholar 

    73.
    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).
    Google Scholar 

    74.
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
    Google Scholar 

    75.
    Balch, J. K. et al. Switching on the Big Burn of 2017. Fire 1, 17 (2018).
    Google Scholar 

    76.
    Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
    Google Scholar 

    77.
    Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).
    Google Scholar 

    78.
    Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Change Biol. 15, 578–600 (2009).
    Google Scholar 

    79.
    Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009–1020 (2018).
    Google Scholar 

    80.
    Flannigan, M. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).
    Google Scholar 

    81.
    Hanes, C. C. et al. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49, 256–269 (2018).
    Google Scholar 

    82.
    Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).
    Google Scholar 

    83.
    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).
    Google Scholar 

    84.
    O’Connor, F. M. et al. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Rev. Geophys. 48, RG4005 (2010).
    Google Scholar 

    85.
    Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
    Google Scholar 

    86.
    Bowman, D. M., Walsh, A. & Prior, L. D. Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. J. Biogeogr. 31, 207–223 (2004).
    Google Scholar 

    87.
    Bird, R. B., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).
    Google Scholar 

    88.
    Cruz, M. et al. Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 284, 269–285 (2012).
    Google Scholar 

    89.
    Ndalila, M. N., Williamson, G. J. & Bowman, D. M. Geographic patterns of fire severity following an extreme Eucalyptus forest fire in southern Australia: 2013 Forcett-Dunalley fire. Fire 1, 40 (2018).
    Google Scholar 

    90.
    Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).
    Google Scholar 

    91.
    Styger, J., Marsden-Smedley, J. & Kirkpatrick, J. Changes in lightning fire incidence in the Tasmanian Wilderness World Heritage Area, 1980–2016. Fire 1, 38 (2018).
    Google Scholar 

    92.
    Bowman, D. M., Bliss, A., Bowman, C. J. & Prior, L. D. Fire caused demographic attrition of the Tasmanian palaeoendemic conifer Athrotaxis cupressoides. Austral Ecol. 44, 1322–1339 (2019).
    Google Scholar 

    93.
    Boer, M. M., de Dios, V. R. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).
    Google Scholar 

    94.
    van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–46 (2020).
    Google Scholar 

    95.
    Bowman, D. M. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. AMBIO 48, 350–362 (2019).
    Google Scholar 

    96.
    Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).
    Google Scholar 

    97.
    Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).
    Google Scholar 

    98.
    Setterfield, S. A., Rossiter‐Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Biodiversity research: turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854–861 (2010).
    Google Scholar 

    99.
    Van Marle, M. J. et al. Historic global biomass burning emissions based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).
    Google Scholar 

    100.
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
    Google Scholar 

    101.
    Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 9, 317–340 (2012).
    Google Scholar 

    102.
    Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Change 7, 906–911 (2017).
    Google Scholar 

    103.
    Stocker, T. F. et al. (eds) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge Univ. Press, 2013).

    104.
    Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).
    Google Scholar 

    105.
    Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
    Google Scholar 

    106.
    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).
    Google Scholar 

    107.
    Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 6, 781–785 (2016).
    Google Scholar 

    108.
    Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).
    Google Scholar 

    109.
    Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).
    Google Scholar 

    110.
    Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. Forestry Chron. 69, 187–192 (1993).
    Google Scholar 

    111.
    Wotton, B., Flannigan, M. & Marshall, G. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).
    Google Scholar 

    112.
    Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. & Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 24, 892–899 (2015).
    Google Scholar 

    113.
    Westerling, A. L., Turner, M. G., Smithwick, E. A., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).
    Google Scholar 

    114.
    Buotte, P. C. et al. Near-future forest vulnerability to drought and fire varies across the western United States. Glob. Change Biol. 25, 290–303 (2019).
    Google Scholar 

    115.
    Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).
    Google Scholar 

    116.
    Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).
    Google Scholar 

    117.
    Turco, M. et al. Decreasing fires in mediterranean Europe. PLoS ONE 11, e0150663 (2016).
    Google Scholar 

    118.
    Batllori, E., Parisien, M. A., Krawchuk, M. A. & Moritz, M. A. Climate change-induced shifts in fire for mediterranean ecosystems. Global Ecol. Biogeogr. 22, 1118–1129 (2013).
    Google Scholar 

    119.
    Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).
    Google Scholar 

    120.
    Harris, R. M., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? Wiley Interdiscip. Rev. Clim. Change 7, 910–931 (2016).
    Google Scholar 

    121.
    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
    Google Scholar 

    122.
    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).
    Google Scholar 

    123.
    Flannigan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549–560 (2009).
    Google Scholar 

    124.
    Podur, J. & Wotton, M. Will climate change overwhelm fire management capacity? Ecol. Model. 221, 1301–1309 (2010).
    Google Scholar 

    125.
    Teckentrup, L. et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).
    Google Scholar 

    126.
    Nepstad, D. C., Stickler, C. M., Filho, B. S. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. 363, 1737–1746 (2008).
    Google Scholar 

    127.
    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
    Google Scholar 

    128.
    Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B Biol. Sci. 367, 601–612 (2012).
    Google Scholar 

    129.
    Hurteau, M. D., Liang, S., Westerling, A. L. & Wiedinmyer, C. Vegetation-fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).
    Google Scholar 

    130.
    Liu, Z. & Wimberly, M. C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 542, 65–75 (2016).
    Google Scholar 

    131.
    Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).
    Google Scholar 

    132.
    Wilkin, K., Ackerly, D. & Stephens, S. Climate change refugia, fire ecology and management. Forests 7, 77 (2016).
    Google Scholar 

    133.
    Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G. & Ryan, M. G. Carbon storage on landscapes with stand-replacing fires. Bioscience 56, 598–606 (2006).
    Google Scholar 

    134.
    Wiggins, E. B. et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc. Natl Acad. Sci. USA 115, 12419–12424 (2018).
    Google Scholar 

    135.
    Donovan, V. M., Wonkka, C. L. & Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 44, 5986–5993 (2017).
    Google Scholar 

    136.
    Bladon, K. D. Rethinking wildfires and forest watersheds. Science 359, 1001–1002 (2018).
    Google Scholar 

    137.
    Cannon, S. H. & DeGraff, J. in Landslides–Disaster Risk Reduction (eds Sassa, K. & Canuti, P.) 177–190 (Springer, 2009).

    138.
    Garfin, G. et al. Managing for Future Risks of Fire, Extreme Precipitation, and Post-fire Flooding. Report to the U.S. Bureau of Reclamation, from the Project Enhancing Water Supply Reliability (Institute of the Environment, 2016).

    139.
    Sanderson, B. M. & Fisher, R. A. A fiery wake-up call for climate science. Nat. Clim. Change 515, 175–177 (2020).
    Google Scholar 

    140.
    King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).
    Google Scholar 

    141.
    Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).
    Google Scholar 

    142.
    Kolden, C. A. We’re not doing enough prescribed fire in the Western United States to mitigate wildfire risk. Fire 2, 30 (2019).
    Google Scholar 

    143.
    Fernandes, P. M. & Botelho, H. S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 12, 117–128 (2003).
    Google Scholar 

    144.
    Price, O. F., Penman, T. D., Bradstock, R. A., Boer, M. M. & Clarke, H. Biogeographical variation in the potential effectiveness of prescribed fire in south‐eastern Australia. J. Biogeogr. 42, 2234–2245 (2015).
    Google Scholar 

    145.
    Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493–498 (2008).
    Google Scholar 

    146.
    Stephens, S. L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For. Ecol. Manag. 105, 21–35 (1998).
    Google Scholar 

    147.
    Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel‐reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83–90 (2012).
    Google Scholar 

    148.
    Clarke, H. & Evans, J. P. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Climatol. 136, 513–527 (2019).
    Google Scholar 

    149.
    Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).
    Google Scholar 

    150.
    Williamson, G., Bowman, D. M. S., Price, O. F., Henderson, S. & Johnston, F. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 11, 125009 (2016).
    Google Scholar 

    151.
    Broome, R. A., Johnston, F. H., Horsley, J. & Morgan, G. G. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Med. J. Aust. 205, 407–408 (2016).
    Google Scholar 

    152.
    U.S. Environmental Protection Agency, Office of Air and Radiation. The Benefits and Costs of the Clean Air Act from 1990 to 2020: Final Report — Rev. A (U.S. Environmental Protection Agency, Office of Air and Radiation, 2011).

    153.
    Bowman, D. et al. Can air quality management drive sustainable fuels management at the temperate wildland–urban interface? Fire 1, 27 (2018).
    Google Scholar 

    154.
    Mistry, J. & Berardi, A. Bridging indigenous and scientific knowledge. Science 352, 1274–1275 (2016).
    Google Scholar 

    155.
    Reyes-García, V. & Benyei, P. Indigenous knowledge for conservation. Nat. Sustain. 2, 657–658 (2019).
    Google Scholar 

    156.
    Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B Biol. Sci. 280, 20132297 (2013).
    Google Scholar 

    157.
    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
    Google Scholar 

    158.
    Bowman, D. M. & Legge, S. Pyrodiversity — why managing fire in food webs is relevant to restoration ecology. Restor. Ecol. 24, 848–853 (2016).
    Google Scholar 

    159.
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).
    Google Scholar 

    160.
    Strader, S. M. Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010. Nat. Hazards 92, 543–565 (2018).
    Google Scholar 

    161.
    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).
    Google Scholar 

    162.
    Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
    Google Scholar 

    163.
    Borchers Arriagada, N. et al. Unprecedented smoke‐related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. https://doi.org/10.5694/mja2.50545 (2020).
    Article  Google Scholar 

    164.
    Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
    Google Scholar 

    165.
    Smith, A. M. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).
    Google Scholar 

    166.
    McWethy, D. B. et al. Rethinking resilience to wildfire. Nat. Sustain. 2, 797–804 (2019).
    Google Scholar 

    167.
    Curran, T., Perry, G., Wyse, S. & Alam, M. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 1, 3 (2018).
    Google Scholar 

    168.
    Bowman, D. M. J. S. & Stoof, C. Diversity helps fight wildfires. Nature 571, 478 (2019).
    Google Scholar 

    169.
    Cui, X. et al. Green firebreaks as a management tool for wildfires: Lessons from China. J. Environ. Manag. 233, 329–336 (2019).
    Google Scholar 

    170.
    Kolden, C. A. & Henson, C. A socio-ecological approach to mitigating wildfire vulnerability in the wildland urban interface: a case study from the 2017 Thomas fire. Fire 2, 9 (2019).
    Google Scholar 

    171.
    Eriksen, C. Gender and Wildfire: Landscapes of Uncertainty (Routledge, 2013).

    172.
    Huffman, M. R. Making a world of difference in fire and climate change. Fire Ecol. 10, 90–101 (2014).
    Google Scholar 

    173.
    Pratt, M. et al. The implications of megatrends in information and communication technology and transportation for changes in global physical activity. Lancet 380, 282–293 (2012).
    Google Scholar 

    174.
    Johnston, F. et al. Using smartphone technology to reduce health impacts from atmospheric environmental hazards. Environ. Res. Lett. 13, 044019 (2018).
    Google Scholar 

    175.
    Lovreglio, R., Kuligowski, E., Gwynne, S. & Strahan, K. A modelling framework for householder decision-making for wildfire emergencies. Int. J. Disaster Risk Reduct. 41, 101274 (2019).
    Google Scholar 

    176.
    Kulemeka, O. A review of wildland fire smartphone applications: a classification study from Australia, USA, Canada and South Africa. Int. J. Emerg. Serv. 4, 258–270 (2015).
    Google Scholar 

    177.
    Rappold, A. et al. Smoke Sense initiative leverages citizen science to address the growing wildfire‐related public health problem. GeoHealth 3, 443–457 (2019).
    Google Scholar 

    178.
    Maryam, H., Shah, M. A., Javaid, Q. & Kamran, M. A survey on smartphones systems for emergency management (SPSEM). Int. J. Adv. Comput. Sci. Appl. 7, 301–311 (2016).
    Google Scholar 

    179.
    Vardoulakis, S., Jalaludin, B. B., Morgan, G. G., Hanigan, I. C. & Johnston, F. H. Bushfire smoke: urgent need for a national health protection strategy. Med. J. Aust. 212, 349–353.e1 (2020).
    Google Scholar 

    180.
    Lipsett-Moore, G. J., Wolff, N. H. & Game, E. T. Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. 9, 2247 (2018).
    Google Scholar 

    181.
    Russell-Smith, J. et al. Deriving multiple benefits from carbon market-based savanna fire management: An Australian example. PLoS ONE 10, e0143426 (2015).
    Google Scholar 

    182.
    Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Environ. 11, e55–e63 (2013).
    Google Scholar 

    183.
    Andersen, A. N., Woinarski, J. C. Z. & Parr, C. L. Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecol. 37, 658–667 (2012).
    Google Scholar 

    184.
    Bowman, D. M., MacDermott, H. J., Nichols, S. C. & Murphy, B. P. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecol. Evol. 4, 4185–4194 (2014).
    Google Scholar 

    185.
    Murphy, B. P., Russell‐Smith, J. & Prior, L. D. Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Glob. Change Biol. 16, 331–343 (2010).
    Google Scholar 

    186.
    Petty, A. M., deKoninck, V. & Orlove, B. Cleaning, protecting, or abating? Making indigenous fire management “work” in northern Australia. J. Ethnobiol. 35, 140–163 (2015).
    Google Scholar 

    187.
    de Oliveira Andrade, R. Alarming surge in Amazon fires prompts global outcry. Nature https://doi.org/10.1038/d41586-019-02537-0 (23 Aug 2019).

    188.
    Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).
    Google Scholar 

    189.
    Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).
    Google Scholar 

    190.
    Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Change Biol. https://doi.org/10.1111/gcb.15158 (2020).
    Article  Google Scholar 

    191.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    Google Scholar 

    192.
    Bastin, J.-F. et al. Response to comments on “The global tree restoration potential”. Science 366, eaay8108 (2019).
    Google Scholar 

    193.
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
    Google Scholar 

    194.
    Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).
    Google Scholar 

    195.
    Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on “The global tree restoration potential”. Science 366, eaay8060 (2019).
    Google Scholar 

    196.
    Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M. & Poulter, B. Comment on “The global tree restoration potential”. Science 366, eaaz0388 (2019).
    Google Scholar 

    197.
    Grainger, A., Iverson, L. R., Marland, G. H. & Prasad, A. Comment on “The global tree restoration potential”. Science 366, eaay8334 (2019).
    Google Scholar 

    198.
    Luedeling, E. et al. Forest restoration: Overlooked constraints. Science 366, 315 (2019).
    Google Scholar 

    199.
    Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).
    Google Scholar 

    200.
    Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).
    Google Scholar 

    201.
    Nerini, F. F. et al. Connecting climate action with other sustainable development goals. Nat. Sustain. 2, 674–680 (2019).
    Google Scholar 

    202.
    Castree, N. Speaking for the ‘people disciplines’: Global change science and its human dimensions. Anthropocene Rev. 4, 160–182 (2017).
    Google Scholar 

    203.
    Stenzel, J. E. et al. Fixing a snag in carbon emissions estimates from wildfires. Glob. Change Biol. 25, 3985–3994 (2019).
    Google Scholar 

    204.
    Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552 (2019).
    Google Scholar 

    205.
    Meng, R. et al. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 191, 95–109 (2017).
    Google Scholar 

    206.
    Filkov, A., Duff, T. & Penman, T. Improving fire behaviour data obtained from wildfires. Forests 9, 81 (2018).
    Google Scholar 

    207.
    White, I. et al. The vulnerability of water supply catchments to bushfires: impacts of the January 2003 wildfires on the Australian capital territory. Australas. J. Water Resour. 10, 179–194 (2006).
    Google Scholar 

    208.
    Kliskey, A. et al. Planning for Idaho’s waterscapes: A review of historical drivers and outlook for the next 50 years. Environ. Sci. Policy 94, 191–201 (2019).
    Google Scholar 

    209.
    Stocks, B. & Martell, D. L. Forest fire management expenditures in Canada: 1970–2013. Forestry Chron. 92, 298–306 (2016).
    Google Scholar 

    210.
    Burton, C., Betts, R., Jones, C. & Williams, K. Will fire danger be reduced by using solar radiation management to limit global warming to 1.5 C compared to 2.0 C? Geophys. Res. Lett. 45, 3644–3652 (2018).
    Google Scholar 

    211.
    Bedia, J. et al. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric. For. Meteorol. 214, 369–379 (2015).
    Google Scholar 

    212.
    Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 259, 685–697 (2010).
    Google Scholar 

    213.
    Huang, Y., Wu, S. & Kaplan, J. O. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 121, 86–92 (2015).
    Google Scholar 

    214.
    de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 294, 35–44 (2013).
    Google Scholar 

    215.
    Fonseca, M. G. et al. Effects of climate and land‐use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Change Biol. 25, 2931–2946 (2019).
    Google Scholar 

    216.
    Le Page, Y. et al. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dynam. 8, 1237–1246 (2017).
    Google Scholar 

    217.
    Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9, 10073 (2019).
    Google Scholar 

    218.
    Fox-Hughes, P., Harris, R., Lee, G., Grose, M. & Bindoff, N. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 23, 309–321 (2014).
    Google Scholar 

    219.
    Syphard, A. D. et al. The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environ. Change 56, 41–55 (2019).
    Google Scholar 

    220.
    Yoon, J.-H. et al. Extreme fire season in California: a glimpse into the future? Bull. Am. Meteorol. Soc. 96, S5–S9 (2015).
    Google Scholar 

    221.
    Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).
    Google Scholar 

    222.
    Young, A. M., Higuera, P. E., Duffy, P. A. & Hu, F. S. Climatic thresholds shape northern high‐latitude fire regimes and imply vulnerability to future climate change. Ecography 40, 606–617 (2017).
    Google Scholar 

    223.
    Jones, M. W. et al. Climate change increases the risk of wildfires. ScienceBrief https://sciencebrief.org/briefs/wildfires (2020).

    224.
    Vitolo, C., Di Giuseppe, F., Krzeminski, B. & San-Miguel-Ayanz, J. A 1980–2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices. Sci. Data 6, 190032 (2019).
    Google Scholar 

    225.
    DiMiceli, C. et al. MOD44B v006. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid (NASA EOSDIS Land Processes DAAC, 2015).

    226.
    Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
    Google Scholar 

    227.
    Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).
    Google Scholar 

    228.
    Turco, M. et al. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 9, 13886 (2019).
    Google Scholar 

    229.
    Bowman, D. M., Murphy, B. P., Neyland, D. L., Williamson, G. J. & Prior, L. D. Abrupt fire regime change may cause landscape‐wide loss of mature obligate seeder forests. Glob. Change Biol. 20, 1008–1015 (2014).
    Google Scholar  More

  • in

    Microbial munchies

    Marine sediments comprise Earth’s largest organic carbon (OC) pool and a vast number of microorganism species (in the order of 1,029 species) that feed on it. However, the inaccessibility of the seafloor and the long timescales over which many sediment processes occur, has resulted in a limited and extremely patchy understanding of subseafloor biogeochemistry. Moreover, outside of data from specific sediment cores and laboratory experiments, how much energy microbes in marine sediments need to survive is not well known.

    James Bradley of Queen Mary University of London, UK, and colleagues, modelled the global degradation of OC in marine sediments deposited during the Quaternary and calculated the amount of energy subseafloor microbes use. Three different microbial metabolisms were considered — aerobic respiration, sulfate reduction and methanogenesis. 0.171 Pg C yr-1 of OC degradation was linked to sulfate reduction (64.5% of global Quaternary OC degraded), with another 0.076 C yr-1 (28.6%) associated with methanogenesis. Although aerobic respiration degraded only 0.018 Pg C yr-1 (6.9% of OC), it provided 54.5% (20.3 GW) of the power (energy flux) to the subseafloor. Sulfate reduction and methanogensis provided 39.1% (14.6 GW) and 6.4% (2.4 GW) of global subseafloor power, respectively. When these values were scaled on an individual cell basis, the average amount of power used per microbe was two orders of magnitude less than the lowest experimentally-based estimates of the minimum power required to sustain life. This result suggests that in situ microbial power requirements are much lower than previously thought. More

  • in

    Next generation sequencing-aided comprehensive geographic coverage sheds light on the status of rare and extinct populations of Aporia butterflies (Lepidoptera: Pieridae)

    1.
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. U.S.A. 101, 8998–9002 (2004).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Google Scholar 

    3.
    Koizumi, I., Usio, N., Kawai, T., Azuma, N. & Masuda, R. Loss of genetic diversity means loss of geological information: The endangered japanese crayfish exhibits remarkable historical footprints. PLoS ONE 7(3), e33986. https://doi.org/10.1371/journal.pone.0033986 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Nazari, V., Schmidt, B. C., Prosser, S. & Hebert, P. D. N. Century-old DNA barcodes reveal phylogenetic placement of the extinct Jamaican Sunset Moth, Urania sloanus Cramer (Lepidoptera: Uraniidae). PLoS ONE 11(10), e0164405. https://doi.org/10.1371/journal.pone.0164405 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Nazari, V., Tarmann, G. & Efetov, K. A. Phylogenetic position of the ‘extinct’ Fijian coconut moth, Levuana iridescens (Lepidoptera: Zygaenidae). PLoS ONE 14(12), e0225590. https://doi.org/10.1371/journal.pone.0225590 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Kim, Y. S. Illustrated Book of Korean Butterflies in Color (Kyo-Hak Publishing, Seoul, 2002).
    Google Scholar 

    7.
    Park, J. S., Cho, Y., Kim, M. J., Nam, S. H. & Kim, I. Description of complete mitochondrial genome of the black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), and comparison to papilionoid species. J. Asia-Pac. Entomol. 15, 331–341 (2012).
    CAS  Google Scholar 

    8.
    Park, H. C. et al. DNA barcode analysis for conservation of an endangered species, Aporia crataegi (Lepidoptera, Pieridae) in Korea. J. Seric. Entomol. Sci. 51, 201–206 (2013).
    Google Scholar 

    9.
    Della Bruna, C., Gallo, E. & Sbordoni, V. Pieridae, part I (2nd edition). Guide to the Butterflies of the Palearctic Region (ed. Bozano, G. C.) (Omnes Artes, 2013).

    10.
    Savela, M. Lepidoptera and some other life forms https://www.nic.funet.fi/pub/sci/bio/life/insecta/lepidoptera/ (2018). Accessed 10 November 2019.

    11.
    Braby, M. F., Vila, R. & Pierce, N. E. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher classification and biogeography. Zool. J. Linn. Soc. 147, 239–275 (2006).
    Google Scholar 

    12.
    Wahlberg, N., Rota, J., Braby, M. F., Pierce, N. E. & Wheat, C. W. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zool. Scr. 43, 641–650 (2014).
    Google Scholar 

    13.
    Ding, C. & Zhang, Y. Phylogenetic relationships of Pieridae (Lepidoptera: Papilionoidea) in China based on seven gene fragments. Entomol. Sci. 20, 15–23 (2017).
    Google Scholar 

    14.
    Klots, A. B. A generic classification of the Pieridae (Lepidoptera) together with a study of the male genitalia. Entomol. Am. 12, 13–242 (1933).
    Google Scholar 

    15.
    Braby, M. F. Provisional checklist of genera of the Pieridae (Lepidoptera: Papilionidae). Zootaxa 832, 1–16 (2005).
    Google Scholar 

    16.
    Chou, I. Monograph of Chinese Butterflies, First Volume (Henan Scientific and Technological Publishing House, Zhengzhou, 1999).
    Google Scholar 

    17.
    Wu, C. Fauna Sinica, Insecta vol. 52, Lepidoptera, Pieridae (Science Press, Beijing, 2010).
    Google Scholar 

    18.
    Ding, C. & Zhang, Y. Phylogenetic relationships of the genera Aporia and Mesapia (Lepidoptera: Pieridae) based on COI and EF1α gene sequences. Acta Entomol. Sin. 59(8), 880–887 (2016).
    Google Scholar 

    19.
    Della Bruna, C., Gallo, E., Sbordoni, V. & Bozano, G. C. Addenda to the genus Aporia Hübner, [1819] (Lepidoptera: Pieridae). Nachrichten des Entomologischen Vereins Apollo N. F. 29(4), 205–209 (2009).
    Google Scholar 

    20.
    Deodati, T. Filogenesi molecolare, barcoding e stima dei tempi evolutivi in tre gruppi di farfalle diurne (Insecta: Lepidoptera) a distribuzione Sino-Himalayana (PhD thesis) (University of Rome Tor Vergata, 2010).

    21.
    Allan, P. B. M. Moths and Memories 1st edn. (Watkins & Doncaster, Pudleston, 1948).
    Google Scholar 

    22.
    Jugovic, J., Črne, M. & Lužnik, M. Movement, demography and behaviour of a highly mobile species: A case study of the black-veined white, Aporia crataegi (Lepidoptera: Pieridae). Eur. J. Entomol. 114, 113–122 (2017).
    Google Scholar 

    23.
    Kim, T. G., Han, Y. G., Kwon, O. & Cho, Y. Changes in Aporia crataegi’s potential habitats in accordance with climate changes in the northeast Asia. J. Ecol. Environ. 38(1), 15–23 (2015).
    Google Scholar 

    24.
    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2014). Accessed 10 November 2019.

    25.
    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2010). Accessed 10 November 2019.

    26.
    Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).
    CAS  Google Scholar 

    27.
    Prosser, S. W. J., de Waard, J. R., Miller, S. E. & Hebert, P. D. N. DNA barcodes from century-old type specimens using next-generation sequencing. Mol. Ecol. Resour. 16(2), 487–497 (2016).
    CAS  PubMed  Google Scholar 

    28.
    Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. Lond. B 360, 1959–1967 (2005).
    CAS  Google Scholar 

    29.
    deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. Assembling DNA barcodes: Analytical protocols. Method Mol. Biol. Environ. Genet. 410, 275–293 (2008).
    CAS  Google Scholar 

    30.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    CAS  PubMed  Google Scholar 

    33.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  Google Scholar 

    35.
    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006).
    CAS  Google Scholar 

    36.
    Boc, A., Diallo, A. B. & Makarenkov, V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1), W573–W579 (2012).
    PubMed  PubMed Central  Google Scholar 

    37.
    Rambaut, A. Figtree v1.4. https://tree.bio.ed.ac.uk/software/figtree (2012). Accessed 23 November 2019.

    38.
    Kimura, M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res. 11, 247–269 (1968).
    CAS  PubMed  Google Scholar 

    39.
    Ramos-Onsins, S. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).
    CAS  PubMed  Google Scholar 

    40.
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Ramirez-Soriano, A., Ramos-Onsins, S. E., Rozas, J., Calafell, F. & Navarro, A. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179, 555–567 (2008).
    PubMed  PubMed Central  Google Scholar 

    42.
    Holsinger K. E. Tajima’s D, Fu’s F S, Fay and Wu’s H, and Zeng et al.’s E. in Lecture Notes in Population Genetics (ed. Holsinger, K. E. 2001-2019) 291–296 (University of Connecticut, 2017).

    43.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  PubMed Central  Google Scholar 

    44.
    Hudson, R. R. Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology (eds Futuyma, D. J. & Antonovics, J. D.) 1–44 (Oxford University Press, Oxford, 1990).
    Google Scholar 

    45.
    Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Ray, N., Currat, M. & Excoffier, L. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76–86 (2003).
    CAS  PubMed  Google Scholar 

    47.
    Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 13, 853–864 (2004).
    CAS  PubMed  Google Scholar 

    48.
    Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato, inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491–6495 (1994).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Tadokoro, T., Koide, Y. & Hori, K. Description of a new subspecies of Mesapia peloria from central Nepal, and taxonomic notes for other subspecies (Lepidoptera, Pieridae). Lepidoptera Sci. 65(2), 51–59 (2014).
    Google Scholar 

    50.
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4(1), 11 (2007).
    PubMed  PubMed Central  Google Scholar 

    51.
    Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 00, 1–14 (2019).
    Google Scholar 

    52.
    Ehlers, J., Astakhov, V., Gibbard, P. L., Mangerud, J. & Svendsen, J. I. Late pleistocene glaciations in Europe. In Encyclopedia of Quaternary Science (ed. Elias, S. A.) 1085–1095 (Elsevier, Hoboken, 2006).
    Google Scholar 

    53.
    King, R. A. & Ferris, C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol. Ecol. 7, 1151–1161 (1998).
    CAS  Google Scholar 

    54.
    Wallis, G. P. & Arntzen, J. W. Mitochondrial-DNA variation in the crested newt superspecies: Limited cytoplasmic gene flow among species. Evolution 43, 88–104 (1989).
    CAS  PubMed  Google Scholar 

    55.
    Dapporto, L. Speciation in Mediterranean refugia and post-glacial expansion of Zerynthia polyxena (Lepidoptera, Papilionidae). J. Zool. Syst. Evol. Res. 48(3), 229–237 (2010).
    Google Scholar 

    56.
    Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 18(22), 4541–4550 (2009).
    CAS  PubMed  Google Scholar 

    57.
    Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9(4), e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Sanmartin, I. Dispersal vs. vicariance in the Mediterranean: historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). J. Biogeogr. 30, 1883–1897 (2003).
    Google Scholar 

    59.
    Krijgsman, W. The Mediterranean: Mare nostrum of earth sciences. Earth Planet. Sci. Lett. 205, 1–12 (2002).
    ADS  CAS  Google Scholar 

    60.
    Steininger, F. F. & Rogl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.) 659–668 (Geological Society Special Publication. Blackwell Scientific Publications, Hoboken, 1996).
    Google Scholar 

    61.
    De Jong, H. In search of historical biogeographic patterns in the western Mediterranean terrestrial fauna. Biol. J. Linnean Soc. 65, 99–164 (1998).
    Google Scholar 

    62.
    Nazari, V., Ten Hagen, W. & Bozano, G. C. Molecular systematics and phylogeny of the ‘Marbled Whites’ (Lepidoptera: Nymphalidae, Satyrinae, Melanargia Meigen). Syst. Entomol. 35, 132–147 (2010).
    Google Scholar 

    63.
    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).
    Google Scholar 

    64.
    Dinca, V., Dapporto, L. & Vila, R. A combined genetic-morphometric analysis unravels the complex biogeographical history of Polyommatus icarus and Polyommatus celina common blue butterflies. Mol. Ecol. 20, 3921–3935 (2011).
    CAS  PubMed  Google Scholar 

    65.
    Sañudo-Restrepo, C. P., Dinca, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).
    PubMed  Google Scholar  More

  • in

    Comparing methods for estimating leaf area index by multi-angular remote sensing in winter wheat

    1.
    Delegido, J. et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46, 42–52 (2013).
    Google Scholar 
    2.
    Liang, L. et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 165, 123–134 (2015).
    ADS  Google Scholar 

    3.
    Meng, Q. Y. et al. Hot dark spot index method based on multi-angular remote sensing for leaf area index retrieval. Environ Earth Sci. 75, 732. https://doi.org/10.1007/s12665-016-5549-x (2016).
    Article  Google Scholar 

    4.
    Zhu, Y. H. et al. Exploring the potential of WorldView-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sens. 9, 1060. https://doi.org/10.3390/rs9101060 (2017).
    ADS  Article  Google Scholar 

    5.
    Guyot, G., Baret, F. & Jacquemoud, S. Imaging spectroscopy for vegetation studies. In Imaging Spectroscopy: Fundamentals and Prospective Applications (eds Toselli, F. & Bodechtel, J.) 145–165 (Kluwer Academic Publications, Dordrecht, 1992).
    Google Scholar 

    6.
    Mutanga, O., Adam, E. & Cho, M. A. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geo. Inf. 18, 399–406 (2012).
    ADS  Google Scholar 

    7.
    Broge, N. H. & Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76, 156–172 (2001).
    ADS  Google Scholar 

    8.
    Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004).
    ADS  Google Scholar 

    9.
    LeMaire, G. et al. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 112, 3846–3864 (2008).
    ADS  Google Scholar 

    10.
    Yang, X. H. et al. Comparison between radial basis function neural network and regression model for estimation of rice biophysical parameters using remote sensing. Pedosphere 19, 176–188 (2009).
    Google Scholar 

    11.
    Noh, H., Zhang, Q., Han, S. & Feng, L. A Neural network model of maize crop nitrogen stress assessment for multi-spectral imaging sensor. Biosyst. Eng. 94, 477–485 (2006).
    Google Scholar 

    12.
    Liu, M. L., Liu, X. N., Li, M., Fang, M. H. & Chi, W. X. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 106, 223–233 (2010).
    Google Scholar 

    13.
    Ye, X., Sakai, K., Garciano, L. Q., Asada, S.-I. & Sasao, A. Estimation of citrus yield from airborne hyperspectral images using a neural network model. Ecol. Model. 198, 426–432 (2006).
    Google Scholar 

    14.
    Walthall, C. et al. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sens. Environ. 92, 465–474 (2004).
    ADS  Google Scholar 

    15.
    Huang, Z., Turner, B. J., Dury, S. J., Wallis, I. R. & Foley, W. J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 93, 18–29 (2004).
    ADS  Google Scholar 

    16.
    Hansen, P. M. & Schjoerring, J. K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86, 542–553 (2003).
    ADS  Google Scholar 

    17.
    Darvishzadeh, R. et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 63, 409–426 (2008).
    ADS  Google Scholar 

    18.
    Nguyen, H. T. & Lee, B. W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur. J. Agron. 24, 349–356 (2006).
    Google Scholar 

    19.
    Jin, X. L. et al. Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agron. J. 105, 1385–1392 (2013).
    Google Scholar 

    20.
    Atzberger, C., Guérif, M., Baret, F. & Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electro. Agric. 73, 165–173 (2010).
    Google Scholar 

    21.
    Mirzaie, M. et al. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geo. Inf. 26, 1–11 (2014).
    ADS  Google Scholar 

    22.
    Durbha, S. S., King, R. L. & Younan, N. H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 107, 348–361 (2007).
    ADS  Google Scholar 

    23.
    Yang, G. J., Zhao, C. J., Xing, Z. R., Huang, W. J. & Wang, J. H. LAI inversion of spring wheat based on PROBA/CHRIS hyperspectral multi-angular data and PROSAIL model. Trans CSAE. 27, 88–94 (2011) (In Chinese with English abstract).
    CAS  Google Scholar 

    24.
    Chen, J. M., Menges, C. H. & Leblanc, S. G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 97, 447–457 (2005).
    ADS  Google Scholar 

    25.
    Wang, Q. et al. The potential of forest biomass inversion based on vegetation indices using multi-angel CHRIS-PROBA data. Remote Sens. 8, 891. https://doi.org/10.3390/rs8110891 (2016).
    ADS  Article  Google Scholar 

    26.
    Rougean, J. L. & Breon, F. M. Estimating PAR absorbed by vegetation from bidrectional reflectance measurements. Remote Sens. Environ. 51, 375–384 (1995).
    ADS  Google Scholar 

    27.
    Gemmell, F. & McDonald, A. J. View zenith angle effects on the forest information content of three spectral indices. Remote Sens. Environ. 72, 139–158 (2000).
    ADS  Google Scholar 

    28.
    Pocewicz, A., Vierling, L. A., Lentile, L. B. & Smith, R. View angle effects on relationships between MISR vegetation indices and leaf index in a recently burned ponderosa pine forest. Remote Sens. Environ. 107, 322–333 (2007).
    ADS  Google Scholar 

    29.
    Stagakis, S., Markos, N., Sykioti, O. & Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multi-angular CHRIS/PROBA observations. Remote Sens. Environ. 114, 977–994 (2010).
    ADS  Google Scholar 

    30.
    Hasegawa, K., Matsuyama, H., Tsuzuki, H. & Sweda, T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 114, 514–519 (2010).
    ADS  Google Scholar 

    31.
    Wu, C., Han, X., Niu, Z. & Dong, J. An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation. Int. J. Remote Sens. 31, 1079–1086 (2010).
    ADS  Google Scholar 

    32.
    Herrmann, I. et al. LAI assessment of wheat and potato crops by VENS and Sentinel-2 bands. Remote Sens. Environ. 115, 2141–2151 (2011).
    ADS  Google Scholar 

    33.
    Peñuelas, J. & Filella, I. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 16, 2727–2733 (1995).
    ADS  Google Scholar 

    34.
    Vogelmann, J. E., Rock, B. N. & Moss, D. M. Red-edge spectral measurements from Sugar Maple leaves. Int. J. Remote Sens. 14, 1563–1575 (1993).
    ADS  Google Scholar 

    35.
    He, L. et al. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 73, 170–185 (2016).
    CAS  Google Scholar 

    36.
    Shen, W. Y. et al. Inversion model for severity of powdery mildew in wheat leaves based on factor analysis-BP neural network. Trans CSAE. 31, 183–190 (2015) (in Chinese with English abstract).
    Google Scholar 

    37.
    Asner, G. P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 64, 234–253 (1998).
    ADS  Google Scholar 

    38.
    Verrelst, J., Schaepman, M. E., Koetz, B. & Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 11, 2341–2353 (2008).
    ADS  Google Scholar 

    39.
    He, L. et al. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sens. Environ. 174, 122–133 (2016).
    ADS  Google Scholar 

    40.
    Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., Harlan, J. C. Monitoring the vernal advancements and retrogradation of natural vegetation. In: NASA/GSFC, Final Report, Greenbelt, MD, USA (pp. 1–137) (1974).

    41.
    Jordan, C. F. Derivation of leaf area index from quality of light on the forest floor. Ecology 50, 663–666 (1969).
    Google Scholar 

    42.
    Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107 (1996).
    ADS  Google Scholar 

    43.
    Gamon, J. A., Penuelas, J. & Field, C. B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).
    ADS  Google Scholar 

    44.
    Peng, Y. & Gitelson, A. A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. Forest Meteorol. 151, 1267–1276 (2011).
    ADS  Google Scholar 

    45.
    Gitelson, A. A., Gritz, Y. & Merzlyak, M. N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282 (2003).
    CAS  PubMed  Google Scholar 

    46.
    Sims, D. A. & Gamon, J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 331–354 (2002).
    ADS  Google Scholar 

    47.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Google Scholar 

    48.
    Dash, J. & Curran, P. J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 25, 5403–5413 (2004).
    ADS  Google Scholar 

    49.
    Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. & Dextraze, L. Integrated narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426 (2002).
    ADS  Google Scholar 

    50.
    Qi, J., Chehbouni, A., Huete, A. R., Keer, Y. H. & Sorooshian, S. A modified soil vegetation adjusted index. Remote Sens. Environ. 48, 119–126 (1994).
    ADS  Google Scholar 

    51.
    Guyot, G., Baret, F. & Major, D. J. High spectral resolution: determination of spectral shifts between the red and the near infrared. Int. Arch. Photogramm. Remote Sens. 11, 750–760 (1988).
    Google Scholar 

    52.
    LeMaire, G., François, C. & Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 89, 1–28 (2004).
    ADS  Google Scholar 

    53.
    Wang, X. L. & Li, Z. B. Identifying the parameters of the Kernel Function in Support Vector Machines based on the Grid-Search method. Periodical of Ocean University of China 35, 859–862 (2005) (in Chinese with English abstract).
    MathSciNet  Google Scholar 

    54.
    Feng, C. X., Yu, Z. G., King, U., Baig, M. P. Threefold vs. Fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. J. Manuf. Syst. 24, 93–107 (2005). More

  • in

    Temperature increase altered Daphnia community structure in artificially heated lakes: a potential scenario for a warmer future

    1.
    IPCC. Summary for policymakers 1–32 (Cambridge, United Kingdom and New York, NY, USA, 2014).
    2.
    Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).
    CAS  PubMed  Google Scholar 

    3.
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793 (2009).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. USA 109, 19310–19314 (2012).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
    PubMed  Google Scholar 

    6.
    De Senerpont Domis, L. N., Bartosiewicz, M., Davis, C. & Cerbin, S. The effect of small doses of toxic cyanobacterial food on the temperature response of Daphnia galeata: is bigger better? Freshw. Biol. 58, 560–572 (2013).

    7.
    Magnuson, J. J. et al. Historical trends in lake and river ice cover in the northen hemisphere. Science 289, 1743–1746 (2000).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Schoebel, C. N., Tellenbach, C., Spaak, P. & Wolinska, J. Temperature effects on parasite prevalence in a natural hybrid complex. Biol. Lett. 7, 108–111 (2011).
    PubMed  Google Scholar 

    9.
    Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).
    Google Scholar 

    10.
    Verschoor, A. M., Van Dijk, M. A., Huisman, J. & Van Donk, E. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw. Biol. 58, 597–611 (2013).
    CAS  Google Scholar 

    11.
    Zander, A., Bersier, L.-F. & Gray, S. M. Effects of temperature variability on community structure in a natural microbial food web. Glob. Change Biol. 23, 56–67 (2017).
    ADS  Google Scholar 

    12.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Google Scholar 

    15.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Google Scholar 

    16.
    Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13, 372–391 (2018).
    PubMed  PubMed Central  Google Scholar 

    17.
    Scranton, K. & Amarasekare, P. Predicting phenological shifts in a changing climate. Proc. Natl. Acad. Sci. USA 114, 13212–13217 (2017).
    CAS  PubMed  Google Scholar 

    18.
    Hulme, P. E. Climate change and biological invasions: evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).
    PubMed  Google Scholar 

    19.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 

    20.
    Van Doorslaer, W. et al. Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Glob. Change Biol. 15, 3046–3055 (2009).
    ADS  Google Scholar 

    21.
    Bellard, C. et al. Will climate change promote future invasions?. Glob. Change Biol. 19, 3740–3748 (2013).
    ADS  Google Scholar 

    22.
    Holzapfel, A. M. & Vinebrooke, R. D. Environmental warming increases invasion potential of alpine lake communities by imported species. Glob. Change Biol. 11, 2009–2015 (2005).
    Google Scholar 

    23.
    Burns, C. W. Predictors of invasion success by Daphnia species: influence of food, temperature and species identity. Biol. Invas. 15, 859–869 (2013).
    Google Scholar 

    24.
    Spaak, P., Fox, J. & Hairston, N. G. Jr. Modes and mechanisms of a Daphnia invasion. Proc. Biol. Sci. 279, 2936–2944 (2012).
    PubMed  PubMed Central  Google Scholar 

    25.
    Wejnerowski, Ł., Sikora-Koperska, A. & Dawidowicz, P. Temperature elevation reduces the sensitivity of invasive cladoceran Daphnia lumholtzi to filamentous cyanobacterium Raphidiopsis raciborskii. Freshw Biol 935–946, https://doi.org/10.1111/fwb.13480 (2020).

    26.
    Wittmann, M. J., Gabriel, W., Harz, E.-M., Laforsch, C. & Jeschke, J. Can Daphnia lumholtzi invade European lakes?. NeoBiota 16, 39–57 (2013).
    Google Scholar 

    27.
    Keller, B., Wolinska, J., Manca, M. & Spaak, P. Spatial, environmental and anthropogenic effects on the taxon composition of hybridizing Daphnia. Philos. Trans. R. Soc. Lond, B Biol. Sci. 363, 2943–2952 (2008).
    Google Scholar 

    28.
    Petrusek, A. et al. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool Scr. 37, 507–519 (2008).
    Google Scholar 

    29.
    Zeis, B., Horn, W., Gigengack, U., Koch, M. & Paul, R. J. A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir. Freshw. Biol. 55, 2296–2304 (2010).
    Google Scholar 

    30.
    Van Doorslaer, W., Stoks, R., Duvivier, C., Bednarska, A. & De Meester, L. Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63, 1867–1878 (2009).
    PubMed  Google Scholar 

    31.
    Woszczyk, M. et al. Stable C and N isotope record of short term changes in water level in lakes of different morphometry: Lake Anastazewo and Lake Skulskie, central Poland. Org. Geochem. 76, 278–287 (2014).
    CAS  Google Scholar 

    32.
    Bernatowicz, P., Radzikowski, J., Paterczyk, B., Bebas, P. & Slusarczyk, M. Internal structure of Daphnia ephippium as an adaptation to dispersion. Zool Anz. 277, 12–22 (2018).
    Google Scholar 

    33.
    Moss, B. et al. Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshw. Rev. 2, 103–130 (2009).
    Google Scholar 

    34.
    Ma, X., Hu, W., Smilauer, P., Yin, M. & Wolinska, J. Daphnia galeata and D. dentifera are geographically and ecologically separated whereas their hybrids occur in intermediate habitats: A survey of 44 Chinese lakes. Mol. Ecol. 28, 785–802 (2019).

    35.
    Dzialowski, A. R., Lennon, J. T. & Smith, V. H. Food web structure provides biotic resistance against plankton invasion attempts. Biol. Invas. 9, 257–267 (2007).
    Google Scholar 

    36.
    Birks, H. H., Whiteside, M. C., Stark, D. M. & Bright, R. C. Recent paleolimnology of three lakes in Northwestern Minnesota. Quat. Res. 6, 249–272 (1976).
    Google Scholar 

    37.
    Tsugeki, N. K., Ishida, S. & Urabe, J. Sedimentary records of reduction in resting egg production of Daphnia galeata in Lake Biwa during the 20th century: a possible effect of winter warming. J. Paleolimnol. 42, 155–165 (2009).
    ADS  Google Scholar 

    38.
    Keller, B., Wolinska, J., Tellenbach, C. & Spaak, P. Reproductive isolation keeps hybridizing Daphnia species distinct. Limnol. Oceanogr. 52, 984–991 (2007).
    ADS  Google Scholar 

    39.
    Spaak, P. & Boersma, M. Predator mediated coexistence of hybrid and parental Daphnia taxa. Arch. Für Hydrobiol. 167, 55–76 (2006).
    Google Scholar 

    40.
    Kozłowski, J., Czarnołęski, M. & Dańko, M. Can optimal resource allocation models explain why ectotherms grow larger in cold?. Integr. Comput. Biol. 44, 480–493 (2004).
    Google Scholar 

    41.
    Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comput. Biol. 44, 498–509 (2004).
    Google Scholar 

    42.
    Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).
    ADS  CAS  PubMed  Google Scholar 

    43.
    Gliwicz, Z. M. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272, 201–210 (1994).
    Google Scholar 

    44.
    Maszczyk, P. et al. Combined effects of elevated epilimnetic temperature and metalimnetic hypoxia on the predation rate of planktivorous fish. J. Plankton Res. 41, 709–722 (2019).
    PubMed  PubMed Central  Google Scholar 

    45.
    Świerzowski, A. & Godlewska, M. Effects of hydropower plant activities on fish population, abundance and distribution. Arch. Pol. Fish. 9, 157–172 (2001).
    Google Scholar 

    46.
    Thorslund, A. E. Potential uses of wastewaters and heated effluents. European Inland Fisheries Advisory Commission Occasional Paper No. 5. (Food and Agriculture Organization of the United Nations, 1971).

    47.
    Warren, G. J., Evans, M. S., Jude, D. J. & Ayers, J. C. Seasonal variations in copepod size: effects of temperature, food abundance, and vertebrate predation. J. Plankton Res. 8, 841–853 (1986).
    Google Scholar 

    48.
    Tunowski, J. Zooplankton structure in heated lakes with differing thermal regimes and water retention. Arch. Pol. Fish. 17, 291–303 (2009).
    Google Scholar 

    49.
    Tunowski, J. Changes in zooplankton abundance and community structure in the cooling channel system of the Konin and Pątnów power plants. Arch. Pol. Fish. 17, 279–289 (2009).
    Google Scholar 

    50.
    Stibor, H. & Lampert, W. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88, 129–138 (2000).
    Google Scholar 

    51.
    Tereshchenko, V. G., Kapusta, A., Wilkońska, H. & Strelnikova, A. P. Long-term changes in 0+ fish assemblages in the littoral zone of heated lakes. I. Diversity, evennes and dynamic phase portrait of species structure. Arch Pol Fish 15, 415–430 (2007).

    52.
    Brzezinski, T. Filamentous cyanobacteria alter the relative fitness in a Daphnia hybrid species complex. Freshw. Biol. 60, 101–110 (2015).
    Google Scholar 

    53.
    Dziuba, M. K., Cerbin, S. & Wejnerowski, L. Is bigger better? A possibility for adaptation of Daphnia to filamentous cyanobacteria in the face of global warming. Hydrobiologia 798, 105–118 (2017).
    Google Scholar 

    54.
    Socha, D. & Hutorowicz, A. Changes in the quantitative relations of the phytoplankton in heated lakes. Arch. Pol. Fish. 17, 239–251 (2009).
    Google Scholar 

    55.
    Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Change 5, 665–668 (2015).
    ADS  Google Scholar 

    56.
    Van Doorslaer, W. et al. Experimental thermal microevolution in community-embedded Daphnia populations. Clim. Res. 43, 81–89 (2010).
    Google Scholar 

    57.
    Wolinska, J., Löffler, A. & Spaak, P. Taxon-specific reaction norms to predator cues in a hybrid Daphnia complex. Freshw. Biol. 52, 1198–1209 (2007).
    Google Scholar 

    58.
    Wolinska, J., Bittner, K., Ebert, D. & Spaak, P. The coexistence of hybrid and parental Daphnia: the role of parasites. Proc Biol Sci 273, 1977–1983 (2006).
    PubMed  PubMed Central  Google Scholar 

    59.
    Lindberg, R. T. & Collins, S. Quality–quantity trade-offs drive functional trait evolution in a model microalgal ‘climate change winner’. Ecol. Lett. 23, 780–790 (2020).
    PubMed  Google Scholar 

    60.
    Lampert, W. Daphnia: model herbivore, predator and prey. Pol. J. Ecol. 54, 607–620 (2006).
    Google Scholar 

    61.
    Bartosiewicz, M. et al. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. 4, 132–144 (2019).
    CAS  Google Scholar 

    62.
    Stawecki, K., Zdanowski, B. & Pyka, J. P. Long-term changes in post-cooling water loads from power plants and thermal and oxygen conditions in stratified lakes. Arch. Pol. Fish. 21, 331–342 (2013).
    CAS  Google Scholar 

    63.
    Bledzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe. Cladocera & Copepoda (Calanoida, Cyclopoida) Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. (Springer International Publishing Switzerland, 2016).

    64.
    Appleby, P. G. Chronostratigraphic techniques in recent sediments. In Last, W.M. and Smol, J.P., editors, Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques. (Kluwer Academic, London, 2001).

    65.
    Bruel, R. & Sabatier, P. Serac: a R package for ShortlivED RAdionuclide Chronology of recent sediment cores. J. Environ. Activity https://doi.org/10.31223/osf.io/f4yma (2020).
    Article  Google Scholar 

    66.
    Szczuciński, W. et al. Modern sedimentation and sediment dispersal pattern on the continental shelf off the Mekong River delta, South China Sea. Glob. Planet. Change 110, 195–213 (2013).
    ADS  Google Scholar 

    67.
    Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z. & Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 56, 222–241 (2010).
    PubMed  Google Scholar 

    68.
    Brede, N. et al. Microsatellite markers for European Daphnia. Mol. Ecol. Notes 6, 536–539 (2006).
    CAS  Google Scholar 

    69.
    Toonen, R. J. & Hughes, S. Increased throughput for fragment analysis on ABI Prism 377 automated sequencer using a membrane comb and STR and software. Biotechniques 31, 1320–1324 (2001).
    CAS  PubMed  Google Scholar 

    70.
    Alberto, F. MsatAllele: Visualizes the scoring and binning of microsatellite fragment sizes. R Package Version 104 (2013).

    71.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  Google Scholar 

    72.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet Resour. 4, 359–361 (2012).
    Google Scholar 

    75.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Google Scholar 

    76.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Google Scholar 

    77.
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2006).
    PubMed  Google Scholar 

    78.
    Bohonak, A. J. IBD (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154 (2002).
    CAS  PubMed  Google Scholar  More