More stories

  • in

    N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont

    1.
    Lee, S. Y. et al. Reassessment of mangrove ecosystem services. Glob. Ecol. Biogeogr. 23, 726–743 (2014).
    Google Scholar 
    2.
    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).
    Google Scholar 

    3.
    Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20(1), GB1012. https://doi.org/10.1029/2005GB002570 (2006).
    ADS  CAS  Article  Google Scholar 

    4.
    Kristensen, E., Bouillon, S., Dittmard, T. & Marchande, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).
    CAS  Google Scholar 

    5.
    Reef, R., Feller, I. C. & Lovelock, C. E. Nutrition of mangroves. Tree Physiol. 30(9), 1148–1160 (2010).
    CAS  PubMed  Google Scholar 

    6.
    Woolfe, K. J., Dale, P. J. & Brunskill, G. J. Sedimentary C/S relationships in a large tropical estuary: evidence for refractory carbon inputs from mangroves. Geo-Mar. Lett. 15(3–4), 140–144 (1995).
    ADS  Google Scholar 

    7.
    Woitchik, A. F. et al. Nitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon (Kenya): relative importance of biological nitrogen fixation. Biogeochemistry 39(1), 15–35 (1997).
    CAS  Google Scholar 

    8.
    Zuberer, D. & Silver, W. S. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl. Environ. Microbiol. 35(3), 567–575 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).
    ADS  Google Scholar 

    10.
    Welsh, D. T. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem. Ecol. 19, 321–342 (2003).
    CAS  Google Scholar 

    11.
    Stief, P. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10(12), 7829–7846 (2013).
    ADS  Google Scholar 

    12.
    Gilbertson, W. W., Solan, M. & Prosser, J. I. Differential effects of microorganism–invertebrate interactions on benthic nitrogen cycling. FEMS Microbiol. Ecol. 82, 11–12 (2012).
    PubMed  Google Scholar 

    13.
    Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M. & Widdicombe, S. Bioturbation: impact on the marine nitrogen cycle. Biochem. Soc. Trans. 39, 315–320 (2011).
    CAS  PubMed  Google Scholar 

    14.
    Magri, M. et al. Benthic N pathways in illuminated and bioturbated sediments studied with network analysis. Limnol. Oceanogr. 63, S68–S84. https://doi.org/10.1002/lno.10724 (2018).
    CAS  Article  Google Scholar 

    15.
    Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43 (2008).
    ADS  Google Scholar 

    16.
    Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchioco, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749. https://doi.org/10.1038/s41598-019-40315-0 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Cuellar-Gempeler, C. & Leibold, M. A. Multiple colonist pools shape fiddler crab-associated bacterial communities. ISME J. 12(3), 825–837 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Reinsel, K. A. Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: season-dependent effects in one tidal cycle. J. Exp. Mar. Biol. Ecol. 313, 1–17 (2004).
    Google Scholar 

    19.
    Nordhaus, I., Diele, K. & Wolff, M. Activity patterns, feeding and burrowing behaviour of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. J. Exp. Mar. Biol. Ecol. 374, 104–112 (2009).
    Google Scholar 

    20.
    Nordhaus, I. & Wolff, M. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Mar. Biol. 151, 1665–1681 (2007).
    Google Scholar 

    21.
    Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A. & Iribarne, O. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci. 92, 629–638 (2011).
    ADS  CAS  Google Scholar 

    22.
    Quintana, C. O. et al. Carbon mineralization pathways and bioturbation in coastal Brazilian sediments. Sci. Rep. 5, 16122. https://doi.org/10.1038/srep16122 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Thongtham, N. & Kristensen, E. Physical and chemical characteristics of mangrove crab (Neoepisesarma versicolor) burrows in the Bangrong mangrove forest, Phuket, Thailand; with emphasis on behavioural response to changing environmental conditions. Vie et Milieu 53, 141–151 (2003).
    Google Scholar 

    24.
    De la Iglesia, H. O., Rodríguez, E. M. & Dezi, R. E. Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides. Physiol. Behav. 55(5), 913–919 (1994).
    PubMed  Google Scholar 

    25.
    Arfken, A., Song, B., Bowman, J. S. & Piehler, M. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 12(9), e0185071. https://doi.org/10.1371/journal.pone.0185071 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Caffrey, J. M., Hollibaugh, J. T. & Mortazavi, B. Living oysters and their shells as sites of nitrification and denitrification. Mar. Pollut. Bull. 112(1–2), 86–90 (2016).
    CAS  PubMed  Google Scholar 

    27.
    Glud, R. N. et al. Copepod carcasses as microbial hot spots for pelagic denitrification. Limnol. Oceanogr. 60, 2026–2036 (2015).
    ADS  CAS  Google Scholar 

    28.
    Heisterkamp, I. M. et al. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol. 15(7), 1943–1955 (2013).
    CAS  PubMed  Google Scholar 

    29.
    Ray, N. E., Henning, M. C. & Fulweiler, R. W. Nitrogen and phosphorus cycling in the digestive system and shell biofilm of the eastern oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 621, 95–105 (2019).
    ADS  CAS  Google Scholar 

    30.
    Stief, P. et al. Freshwater copepod carcasses as pelagic microsites of dissimilatory nitrate reduction to ammonium. FEMS Microbiol. Ecol. 94(10), fiy144. https://doi.org/10.1093/femsec/fiy144 (2018).
    CAS  Article  PubMed Central  Google Scholar 

    31.
    Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3, 292. https://doi.org/10.3389/fmicb.2012.00292 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Foshtomi, M. Y. et al. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE 10, e0130116. https://doi.org/10.1371/journal.pone.0130116 (2015).
    CAS  Article  Google Scholar 

    33.
    Pelegri, S. P., Nielsen, L. P. & Blackburn, T. H. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 105(3), 285–290 (1994).
    ADS  Google Scholar 

    34.
    Stief, P. & Beer, D. D. Probing the microenvironment of freshwater sediment macrofauna: Implications of deposit-feeding and bioirrigation for nitrogen cycling. Limnol. Oceanogr. 51, 2538–2548 (2006).
    ADS  Google Scholar 

    35.
    Pischedda, L., Cuny, P., Esteves, J. L., Pogiale, J. C. & Gilbert, F. Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. Hydrobiologia 680, 109–124 (2012).
    CAS  Google Scholar 

    36.
    Poulsen, M., Kofoed, M. V., Larsen, L. H., Schramm, A. & Stief, P. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment. Syst. Appl. Microbiol. 37, 51–59 (2014).
    CAS  PubMed  Google Scholar 

    37.
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16196. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).
    CAS  Article  Google Scholar 

    38.
    Samuiloviene, A. et al. The effect of chironomid larvae on nitrogen cycling and microbial communities in soft sediments. Water 11, 1931. https://doi.org/10.3390/w11091931 (2019).
    CAS  Article  Google Scholar 

    39.
    Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves nd consequences of increasing nitrogen availability for these systems. Plant Soil 410, 1–19 (2017).
    CAS  Google Scholar 

    40.
    Nagata, R. M., Moreira, M. Z., Pimentel, C. R. & Morandini, A. C. Food web characterization based on d15N and d13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Mar. Ecol. Progr. Ser. 519, 13–27 (2015).
    ADS  CAS  Google Scholar 

    41.
    Alfaro-Espinoza, G. & Ullrich, M. S. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph–mangrove interaction. Front. Microbiol. 6, 445. https://doi.org/10.3389/fmicb.2015.00445 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Jiménez, M.F.S.-S., Cerqueda-García, D., Montero-Muñoz, J. L., Aguirre-Macedo, M. L. & García-Maldonado, J. Q. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 6, e5583. https://doi.org/10.7717/peerj.5583 (2018).
    CAS  Article  Google Scholar 

    43.
    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78(23), 8264–8271 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Dias, A. C. F. et al. The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie Van Leeuwenhoek 98, 541–551 (2010).
    PubMed  Google Scholar 

    45.
    Grim, S. L. & Dick, G. J. Photosynthetic versatility in the genome of Geitlerinema sp. PCC (formerly Oscillatoria limnetica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front. Microbiol. 7, 1546. https://doi.org/10.3389/fmicb.2016.01546 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Zehr, J. P., Church, M. J. & Moisander, P. H. Diversity, distribution and biogeochemical significance of nitrogen-fixing microorganisms in anoxic and suboxic ocean environments. In Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences (ed. Neretin, L.) 64, 337–369 (Springer, Berlin, 2006).
    Google Scholar 

    47.
    Brauer, V. S. et al. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community. Front. Microbiol. 7, 795. https://doi.org/10.3389/fmicb.2014.00795 (2015).
    Article  Google Scholar 

    48.
    Beltrán, Y., Centeno, C. M., García-Oliva, F., Legendre, P. & Falcón, L. I. N2 fixation rates and associated diversity (nifH) of microbialite and mat-forming consortia from different aquatic environments in Mexico. Aquat. Microb. Ecol. 65, 15–24 (2012).
    Google Scholar 

    49.
    Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607. https://doi.org/10.1038/srep15607 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Rasigraf, O., Schmitt, J., Jetten, M. S. M. & Lüke, C. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment. Microbiol. Open 6(4), 1. https://doi.org/10.1002/mbo3.475 (2017).
    CAS  Article  Google Scholar 

    51.
    Zhang, S. et al. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Sci. Rep. 6, 36178. https://doi.org/10.1038/srep36178 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132(3), 203–208 (1995).
    CAS  PubMed  Google Scholar 

    53.
    Kraft, B. et al. Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Jiang, X., Dang, H. & Jiao, N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLoS ONE 10(2), e0117473. https://doi.org/10.1371/journal.pone.0117473 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Xu, T. et al. Genomic insight into Aquimarina longa SW024T: its ultra-oligotrophic adapting mechanisms and biogeochemical functions. BMC Genom. 16, 772. https://doi.org/10.1186/s12864-015-2005-3 (2015).
    CAS  Article  Google Scholar 

    56.
    Li, J. et al. Janibacter alkaliphilus sp. nov., isolated from coral Anthogorgia sp. Antonie Van Leeuwenhoek 102(1), 157–162 (2012).
    CAS  PubMed  Google Scholar 

    57.
    Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. R. 61(4), 533–616 (1997).
    CAS  Google Scholar 

    58.
    Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 85(2), 348–357 (2013).
    CAS  PubMed  Google Scholar 

    59.
    Glaeser, S. P. & Kämpfer, P. The family Sphingomonadaceae. In The Prokaryotes (eds Rosenberg, E. et al.) 641–707 (Springer, Berlin, 2014).
    Google Scholar 

    60.
    Katayama, Y., Hiraishi, A. & Kuraishi, H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141, 1469–1477 (1995).
    CAS  PubMed  Google Scholar 

    61.
    Kraft, B., Tegetmeyer, H. E., Meier, D., Geelhoed, J. S. & Strous, M. Rapid succession of uncultured marine bacterialand archaeal populations in a denitrifying continuous culture. Environ. Microbiol. 16(10), 3275–3286 (2014).
    CAS  PubMed  Google Scholar 

    62.
    Härtig, E. & Zumft, W. G. Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system. J. Bacteriol. Res. 181(1), 161–166 (1999).
    Google Scholar 

    63.
    Marchant, H. K. et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 11, 1799–1812 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Patureau, D., Zumstein, E., Delgenes, J. P. & Moletta, R. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb. Ecol. 39(2), 145–152 (2000).
    CAS  PubMed  Google Scholar 

    65.
    Ji, B. et al. Aerobic denitrification: a review of important advances of the last 30 years. Biotechnol. Bioproc. E 20(4), 643–651 (2015).
    CAS  Google Scholar 

    66.
    Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).
    ADS  CAS  PubMed  Google Scholar 

    67.
    Luvizotto, D. M. et al. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. An. Acad. Bras. Ciênc. 91, e20180373. https://doi.org/10.1590/0001-3765201820180373 (2018).
    CAS  Article  PubMed  Google Scholar 

    68.
    Weihrauch, D., Sandra Fehsenfeld, S. & Quijada-Rodriguez, A. Nitrogen excretion in aquatic crustaceans. In Acid–Base Balance and Nitrogen Excretion in Invertebrate (eds Weihrauch, D. & O’Donnell, M.) 1–25 (Springer, Berlin, 2017).
    Google Scholar 

    69.
    Jiang, D.-H., Lawrence, A. L., Neill, W. H. & Gong, H. Effects of temperature and salinity on nitrogenous excretion by Litopenaeus vannamei juveniles. J. Exp. Mar. Biol. Ecol. 253(2), 193–209 (2000).
    CAS  PubMed  Google Scholar 

    70.
    Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Citadin, M., Costa, T. M. & Netto, S. A. The response of meiofauna and microphytobenthos to engineering effects of fiddler crabs on a subtropical intertidal sandflat. Aust. Ecol. 41(5), 572–579 (2016).
    Google Scholar 

    72.
    Dyea, A. H. & Lasiak, T. A. Assimilation efficiencies of fiddler crabs and deposit-feeding gastropods from tropical mangrove sediments. Comp. Biochem. Phys. Part A 87(2), 341–344 (1987).
    Google Scholar 

    73.
    Hopkins, P. Growth and regeneration patterns in the fiddler crab, Uca pugilator. Biol. Bull. 163, 301–319 (1982).
    Google Scholar 

    74.
    Masunari, S. Distribuição e abundância dos caranguejos Uca Leach (Crustacea, Decapoda, Ocypodidae) na Baía de Guaratuba, Paraná, Brasil. Rev. Bras. Zool. 23(4), 901–914 (2006).
    Google Scholar 

    75.
    Fusi, M. et al. Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa. Hydrobiologia 803(1), 251–263 (2017).
    Google Scholar 

    76.
    Hemmi, J. M. & Zeil, J. Burrow surveillance in fiddler crabs I. Description of behaviour. J. Exp. Biol. 206, 3935–3950 (2003).
    PubMed  Google Scholar 

    77.
    Christy, J. H. Predation and the reproductive behavior of fiddler crabs (Genus Uca). In Evolutionary Ecology of Social and Sexual Systems—Crustaceans as Model Organisms (eds Duffy, E. J. & Thiel, M.) 211–231 (Oxford University Press, Oxford, 2007).
    Google Scholar 

    78.
    Teal, J. M. Respiration of crabs in Georgia salt marshes and its relation to their ecology. Physiol. Zool. 32, 1–14 (1959).
    Google Scholar 

    79.
    Michaels, R. E. & Zieman, J. C. Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations. J. Exp. Mar. Biol. Ecol. 444, 104–113 (2013).
    Google Scholar 

    80.
    Alongi, D. M. Impact of global change on nutrient dynamics in mangrove forests. Forests 9(10), 596. https://doi.org/10.3390/f9100596 (2018).
    Article  Google Scholar 

    81.
    Barrera-Alba, J. J., Gianesella, S. M. F., Moser, G. A. O. & Saldanha-Corrêa, F. M. P. Bacterial and phytoplankton dynamics in a sub-tropical Estuary. Hydrobiologia 598, 229–246 (2008).
    Google Scholar 

    82.
    Bérgamo, A. L. Característica da hidrografia, circulação e transporte de sal: Barra de Cananéia, sul do Mar de Cananéia e Baía do Trapandé (Master in Physical Oceanography) (Universidade de São Paulo, São Paulo, Instituto Oceanográfico, 2000).
    Google Scholar 

    83.
    Cunha-Lignon, M. Dinâmica do Manguezal no Sistema Cananéia-Iguape, Estado de São Paulo—Brasil. Dissertação (Master in Biological Oceanography). Instituto Oceanográfico, Universidade de São Paulo, São Paulo (2001).

    84.
    Milani, C. et al. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS ONE 8, e68739. https://doi.org/10.1371/journal.pone.0068739 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    85.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

    87.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    88.
    Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29(23), 3100–3101 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357. https://doi.org/10.1038/nmeth.1923 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    90.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    91.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2014).
    CAS  PubMed  Google Scholar 

    92.
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).
    CAS  Article  PubMed  Google Scholar 

    93.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. Res. 215, 403–410 (1990).
    CAS  Google Scholar 

    94.
    Huson, D. H. & Mitra, S. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol. Biol. 856, 415–429 (2012).
    CAS  PubMed  Google Scholar 

    95.
    Risgaard-Petersen, N. et al. Anaerobic ammonium oxidation in an estuarine. Aquat. Microb. Ecol. 36, 293–304 (2004).
    Google Scholar 

    96.
    Tréguer, P. & Le Corre, P. Manuel d’analysis des sels nutritifs dans l’eau de mer 2nd edn, 110 (Université de Bretagne Occidentale, Brest, 1975).
    Google Scholar 

    97.
    Kana, T. M. et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).
    CAS  Google Scholar 

    98.
    Colt, J. Dissolved gas concentration in water: computation as functions of temperature, salinity and pressure 2nd edn. (Elsevier, Amsterdam, 2012).
    Google Scholar 

    99.
    De Brabandere, L. et al. Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry 126(1–2), 131–152 (2015).
    Google Scholar 

    100.
    Warembourg, F. R. Nitrogen fixation in soil and plant systems. In Nitrogen Isotope Techniques (eds Knowles, R. & Blackburn, T. H.) 127–156 (Academic Press, Cambridge, 1993).
    Google Scholar 

    101.
    Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68(3), 1312–1318 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Bonaglia, S. et al. Denitrification and DNRA at the Baltic Sea oxic–anoxic interface: substrate spectrum and kinetics. Limnol. Oceanogr. 61(5), 1900–1915 (2016).
    ADS  CAS  Google Scholar  More

  • in

    Publisher Correction: The tuatara genome reveals ancient features of amniote evolution

    Department of Anatomy, University of Otago, Dunedin, New Zealand
    Neil J. Gemmell, Kim Rutherford, Tim A. Hore, Nicolas Dussex, Helen Taylor, Hideaki Abe & Donna M. Bond

    LOEWE-Center for Translational Biodiversity Genomics, Senckenberg Museum, Frankfurt, Germany
    Stefan Prost

    South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
    Stefan Prost

    School of Life Sciences, Arizona State University, Tempe, AZ, USA
    Marc Tollis, Melissa Wilson & Shawn M. Rupp

    School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
    Marc Tollis

    School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
    David Winter

    Peralta Genomics Institute, Oakland, CA, USA
    J. Robert Macey, Charles G. Barbieri & Dustin P. DeMeo

    School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
    David L. Adelson, Terry Bertozzi, Lu Zeng, R. Daniel Kortschak & Joy M. Raison

    Department of Ecology and Genetics – Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
    Alexander Suh, Valentina Peona, Claire R. Peart & Vera M. Warmuth

    Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
    Alexander Suh & Valentina Peona

    Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
    Terry Bertozzi

    Amedes Genetics, Amedes Medizinische Dienstleistungen, Berlin, Germany
    José H. Grau

    Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
    José H. Grau

    Department of Earth Sciences, Montana State University, Bozeman, MT, USA
    Chris Organ

    Department of Biochemistry, University of Otago, Dunedin, New Zealand
    Paul P. Gardner

    European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
    Matthieu Muffato, Mateus Patricio, Konstantinos Billis, Fergal J. Martin & Paul Flicek

    Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Bent Petersen

    Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
    Lin Kang & Pawel Michalak

    Center for One Health Research, Virginia–Maryland College of Veterinary Medicine, Blacksburg, VA, USA
    Pawel Michalak

    Institute of Evolution, University of Haifa, Haifa, Israel
    Pawel Michalak

    Manaaki Whenua – Landcare Research, Auckland, New Zealand
    Thomas R. Buckley & Victoria G. Twort

    School of Biological Sciences, The University of Auckland, Auckland, New Zealand
    Thomas R. Buckley & Victoria G. Twort

    School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
    Yuanyuan Cheng

    Biomatters, Auckland, New Zealand
    Hilary Miller

    Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
    Ryan K. Schott

    The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
    Melissa D. Jordan & Richard D. Newcomb

    Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
    José Ignacio Arroyo

    Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
    Nicole Valenzuela, Valeria Velásquez Zapata & Zhiqiang Wu

    Instituto de Investigaciones Biomédicas ‘Alberto Sols’ CSIC-UAM, Madrid, Spain
    Jaime Renart

    Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilian University of Munich, Planegg-Martinsried, Germany
    Claire R. Peart & Vera M. Warmuth

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
    Didac Santesmasses, Marco Mariotti & Roderic Guigó

    School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
    James M. Paterson

    Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
    Daniel G. Mulcahy & Vanessa L. Gonzalez

    Austrian Institute of Technology (AIT), Center for Health and Bioresources, Molecular Diagnostics, Vienna, Austria
    Stephan Pabinger

    AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
    Tracey Van Stijn & Shannon Clarke

    San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
    Oliver Ryder

    Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
    Scott V. Edwards

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
    Steven L. Salzberg

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Lindsay Anderson & Nicola Nelson

    Ngatiwai Trust Board, Whangarei, New Zealand
    Clive Stone, Clive Stone, Jim Smillie & Haydn Edmonds More

  • in

    Liberalizing the killing of endangered wolves was associated with more disappearances of collared individuals in Wisconsin, USA

    Data sources
    Our dataset includes all collared wolves monitored by telemetry (virtually all VHF radio-transmitters) in Wisconsin (WI) between 1979 and April 2012, published previously in full detail5. The dataset includes 486 wolves fitted with collars by the Wisconsin Department of Natural Resources (WDNR) or its agents, plus 27 collared wolves initially captured in the neighboring state of Michigan, which later migrated to Wisconsin (for a total n = 513 individuals).
    Our dataset includes 257 wolves that were reported by the WDNR as ‘lost-to-follow-up’ (LTF) because they were not detected via repeated aerial telemetry. LTF may occur for various reasons: (a) individuals that have moved permanently out of telemetry range (i.e., migrants), (b) collars that stopped transmitting because of battery depletion or mechanical failure, and (c) unreported poaching followed by destruction of the transmitter (cryptic poaching). The WDNR suspended telemetry monitoring and assigned an LTF to a wolf if their personnel were unable to detect the collar signal after several months of statewide aerial or ground telemetry. However, the WDNR did not quantify telemetry effort. Dead wolves (n = 242) were recovered by the mortality signals emitted from their collars, after legal killing by management agents, or after private citizens reported a dead wolf between monitoring flights41,42. Some LTF wolves were subsequently recovered by means other than telemetry, such as reporting by private citizens. For these cases we used the estimated date of LTF for the endpoint (i.e., death from various causes or disappearance). For fuller treatment of disappearances, detection, and causes of individual wolf death see5.
    Estimating conditional hazards
    Our analyses exploit the survival history of monitored wolves, measured in days from date of collaring until date of endpoint (i.e., date of death, last monitoring date, or end of our analysis period on April 15, 2012) for each monitored individual.
    We modeled endpoint-specific hazard and subhazard in a competing risk framework, which are extensions of survival (or ‘time-to-event’) analyses. Survival analyses estimate ‘time-to-event’ functions, which describe the probability of observing a time interval (T) to an endpoint (‘event’) within a specified analysis time (t) that a subject was observed, such that (Sleft(tright)=P(T >t)) . Alternatively, these techniques allow for calculating the hazard function, ({h}_{k}(t)), or the instantaneous rate of occurrence of a particular endpoint k conditional on not experiencing any endpoint until time t30,43,44. We also used the (conditional) hazard functions for all endpoints to estimate the probability of any endpoint up to a particular time T, i.e., the incidence over time for particular endpoints, such as LTF or death by vehicle collision, nonhuman cause, etc.
    Semi-parametric, Cox proportional hazard models estimate how the endpoint-specific ({h}_{k}(t)) changes as a function of survival time and a set of hypothetical covariates; (Sleft(tright)={e}^{-{h}_{k}(t,x,beta )}), where x is a vector of covariates acting on the hazard, and β is a vector of their respective parameter estimates. The estimation of covariate effects on the endpoint-specific hazard is modeled as ({h}_{k}left(tright)= {h}_{0k}(t){e}^{({beta }_{1}{x}_{1}+dots +{beta }_{j}{x}_{j})}), where ({h}_{0k}(t)) is an unestimated baseline hazard function (i.e., semi-parametric) and ({beta }_{j}) represent estimates of hazard ratios (HRs) for each covariate ({x}_{j}) (HR  1 an increase in hazard).
    The estimated HRs, ({beta }_{j}), are assumed proportional throughout the analysis time, t, (only differ multiplicatively between categorical covariate levels). Furthermore, we include time-varying effects on hazards and incidences by including interactions between covariates and monitoring time (in days) (see “Model covariates” section)43,44,45. These models allow us to estimate covariate effects on the rate of occurrence of an endpoint looking only at those wolves reaching that endpoint (so that the presence of other endpoints would not affect these estimates). Inference from hazards is limited in the presence of other endpoints competing to bring about the end of monitoring because interaction between endpoint hazards is unaccounted for. Interactions between endpoints are crucial for our tests of hypotheses that relate legal killing to poaching (i.e., illegal killing, both reported poaching and cryptic poaching through the LTF endpoint) at an individual level.
    Estimating unconditional incidences
    Competing risk analyses extend standard survival analysis by considering multiple endpoints simultaneously (e.g.: multiple causes of death or disappearance). These models are useful for estimating the incidence of a particular endpoint while accounting for the potential occurrence of all other competing endpoints (e.g., the incidence of wolf-poaching in the presence of other causes of death or LTF). In a competing risk framework, individuals can potentially experience one of multiple mutually exclusive endpoints at each interval T. Because only one endpoint can occur first, we refer to the endpoints as ‘competing’ over time, and to the respective probabilities over time as ‘competing risks’.
    Rather than estimating the endpoint-specific HRs, as in the Cox model explained above, competing risk analyses estimate the cumulative incidence function (CIF) for each endpoint, defined by the failure probability (Prob(Tle t,D=k)); the cumulative probability of endpoint k occurring over time in the presence of other competing endpoints30,31,46. Competing risk analysis accounts for the CIF of any endpoint being a function of all endpoint-specific hazards, ({h}_{k}(t)), reflecting the rate of occurrence of that endpoint as well as how it is influenced by others32.
    Although CIFs can be derived by using all endpoint-specific HRs derived from Cox models, such a procedure cannot estimate the magnitude of the relative difference between covariate CIFs for each endpoint. Using Fine-Gray (FG) models instead of Cox models allows us to estimate differences in CIFs for a given endpoint conditional on covariates31,47. FG models are also semi-parametric (i.e., the baseline subhazard function is not estimated) and assume proportionality of subhazard functions, defined as the risk of failure at time t from endpoint k in subjects that have yet to reach an endpoint or have experienced any other endpoint30,31,47. Therefore, FG models estimate the subhazard functions of endpoint-specific CIFs using similar regression techniques as the Cox model (but on the subhazard rather than the hazard thus yielding SHR rather than HR for ratios that compare to a standard), but parameter interpretation changes. Subhazards are interpreted as relative incidence in the presence of other endpoints29,30,31.
    In sum, endpoint-specific Cox models and their HRs allow us to test the hypothesis that liberalized wolf-killing affected the rate of occurrence of any endpoint; for example, if liberalized killing increased or decreased the rate of occurrence of reported poaching or LTF. By contrast, the FG models and their SHRs allow us to account for the simultaneous presence of all competing endpoints to test if and how much liberalized killing affected the probability and incidence of reported poaching or LTF, in addition to the potential simultaneous effects of other covariates described after data preparation. CIFs allow us to visualize those effects on incidence while considering the prevalence of each endpoint in the population.
    Data preparation
    For wolves monitored until death, our endpoints classify the cause of death by 5 mutually exclusive causes of death similar to5: “collision” (trauma caused by vehicles; n = 24, 4.7%), “legal” (lethal control by management agencies; n = 32, 6.2%), “poached” (illegal human-caused killing; n = 88, 17.2%), “nonhuman” (causes unrelated to people, e.g.: other wolves or diseases; n = 77, 15.0%) and “uncertain” (uncertain cause but the wolf carcass was recovered, i.e.: difficult to discern in necropsy; n = 21, 4.1%). We added a sixth distinct category of LTF endpoint (n = 231, 45.0%, and see Supplementary Data S1) and we address 40 collared wolves missing endpoint dates (7.7%) below.
    We defined the date of endpoint either as the recorded date of death for wolves monitored by telemetry until death (n = 242, 47.2% of sample) or as the date of last telemetry contact for LTF wolves (n = 231, 45.0%). Some of the LTF wolves were found dead later (n = 51), through means other than telemetry (e.g., visual detection), which might bias to a later date of ‘death’, if carcasses were found long after the actual date of death which was not uncommon5. Given the sensitivity of time-to-event models to the accuracy of endpoint dates and because most (n = 206, 78% of the LTF subsample) were never detected again, our step to restrict the record histories of LTF wolves to the last date of monitoring is an important yet imperfect improvement in measurement precision.
    Accounting for all individuals at risk of experiencing an endpoint at any particular time T (the ‘risk set’) is essential for obtaining unbiased estimates of HR, SHR, and CIF43,44,48. Omitting a class of individuals (e.g., LTF) strongly biased risk estimates for four populations of wolves, and in the Wisconsin wolf population specifically, as summarized above5,9.
    Model covariates
    We included three time-dependent categorical covariates in our models. Time-dependent covariates are variables that change value due to external events at a known date, either for individual wolves or all wolves. For example, we modeled policy period as time-dependent by changing the covariate value at the dates of policy change for a particular individual’s history of monitoring. To assign categorical values of the time-dependent covariates to each monitored wolf, we split each history at each specified date of change in covariate value. We refer to the splits for a monitored wolf as ‘spells’, because they refer to briefer time periods within an individual’s total monitoring time T. So, the time-dependent categorical covariates have a duration that overlaps the monitoring period for collared wolves during that period, but the wolves have individual spells that might be less than or equal to the duration (see example in Supplementary Table S1).
    Our main covariate of interest is policy that liberalized wolf-killing (lib_kill where 1 = liberalized killing, 0 = full protection). Gray wolves experienced full protection under the ESA from 1979 to March 31, 2003. From April 1, 2003, wolves in WI and MI were subject to 11 alternating sequential, non-overlapping periods in which wolf-killing policies were first liberalized and then restricted for varied durations (Supplementary Table S2)5,12,28. Although WDNR or its agents occasionally killed a wolf during full protection periods, in capture-related accidents or after verified threats to human safety, these were rare and few. By contrast, liberalized killing periods were characterized by an announcement of policy change that allowed managers or private landowners to kill wolves for perceived or verified losses of domestic animals. Liberalized killing periods included:

    ‘Downlisting’ to threatened status (one period starting April 1, 2003; 670 days, Supplementary Table S2)—allows for lethal control in defense of human property or safety as well as for population management or conservation purposes under ESA section Rule 4(d).

    Issuing of sub-permits for “take” (“to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct” [ESA]) of wolves by managers and sometimes private landowners (periods within 2005 and 2006; 263 days, Supplementary Table S2) under ESA sections 9 and 10.

    ‘Delisting’, or removing ESA protections entirely (periods of 2007, 2009 and 2012; 701 days, Supplementary Table S2).

    Choosing to end our study on April 14, 2012 presented several advantages. First, the WDNR summarized wolf census data and population reports for the preceding year on April 15th. Second, we could compare our results to prior work12,21,49. Third, the April 2012 passage of Act 169 enacting the first wolf-hunting seasons since wolf bounties were terminated in the 1950s50 was a qualitatively different policy signal than those of the liberalized killing periods (Supplementary Table S2).
    Our second binary covariate, winter, produced spells for October–March (‘1’, winter) and April-September (‘0’, summer). Our inclusion of this variable is warranted by robust independent evidence of seasonal differences in both overall and endpoint-specific mortality21,51,52. Most LTF endpoints occurred during winter months (143/231 = 62% of LTF wolves, with n = 40 wolves censored).
    Our third covariate had three levels for periods with different methods of censusing wolves (method_change). In the winter of 1994–1995 the wolf census methods changed, and did so again sometime between summer 2000 and winter 2003–2004, with changes in monitoring techniques and protocols for data handling18,23. Those changes affected effort and training of wolf census-takers, so might have affected the detection and monitoring effort for collared wolves also. Although there is some ambiguity in the literature over the exact dates of these changes, we opted for the following splits based on year of endpoint: 1979–1994 (‘1’), 1995–2000 (‘2’) and 2001–2012 (‘3’).
    Imputation for 2012 records without endpoint data
    We right-censored the interval for individuals that did not experience an endpoint during the analysis period (start of monitoring until April 14, 2012), meaning they are considered as part of the risk set from collaring until the end of the analysis period. Our dataset includes 40 wolves without attributed mortality of disappearance data, because we could not find their endpoint (i.e., cause of death or disappearance) in public records after December 31st, 2011 (see supplementary data files for WDNR monitoring records for 2012 and 2013). Although 14 of those 40 wolves were later found dead in mortality reports between May 2012 and October 2013 (Supplementary Data S2), those reports did not reveal the last date of monitoring but rather a lengthy interval without a record of monitoring followed by discovery of the dead animal. Therefore, we conservatively censored those 14 wolves at April 14, 2012 to consider them as within the risk set (monitored) for the corresponding time intervals, yet without experiencing an endpoint during that time. For the other 26 censored wolves that vanished from public records after December 31st, 2011, our repeated efforts to obtain data were not fulfilled by the WDNR. We submitted four separate requests to the WDNR (1 open records request, 1 state Natural Heritage Inventory request, a personal request to research staff who have published analyses with those data, and we enlisted the aid of the lieutenant governor and governor’s offices to request those data) for all collared wolves monitored in the state in 2012. Therefore, we simulated their endpoints in three scenarios described below.
    We imputed either an LTF or censored status to the n = 26 wolves with missing endpoints based on the rationale that if any of these monitored wolves had suffered a death rather than a disappearance, their deaths should have appeared in mortality records spanning January 1, 2012 (when missing records for these wolves begin) to October 31, 2013, as happened with the 14 wolves with missing endpoint but found in subsequent mortality reports and therefore censored. Thus, the two remaining possibilities are that these wolves were either LTF or survived our analysis period and beyond October 31, 2013 which means they must be included in the risk set but be censored for endpoint analyses because they do not fit our 6 categories of endpoint.
    For our simulation scenarios, we developed a series of FG imputation models (IMs) with LTF as the endpoint of interest using the above covariates for the full, original dataset (i.e., with all 40 wolves with missing data classified as ‘censored’ on April 14, 2012). We then used the most appropriate FG model (accounting for Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood (LL), parsimony and proportionality assumptions) to predict the probability of LTF incidence by April 14, 2012 for each of the 26 wolves. Because we assumed all 26 wolves were alive on April 14, 2012 (i.e., each is imputed their maximum survival time) for all models, whereas they might actually have disappeared earlier in 2012, our approach is conservative because it likely underestimates the relative incidence of LTF.
    To calculate each of the 26 wolves’ probability of LTF, we first calculated the baseline CIF for the best IM and multiplied it by the exponentiated lib_kill and winter coefficients in Model 2 to obtain a probability of LTF for each wolf during winter periods with liberalized killing, as wolves experienced during the period beginning January 28, 2012 until April 14, 2012 (Supplementary Table S2). Then we ran 1,000 simulations for each wolf going LTF, using a Bernoulli distribution with the LTF probability for each wolf as the probability of success (‘LTF’). For our MAIN imputation scenario, each wolf was imputed an LTF endpoint (on April 14, 2012) if the simulated occurrence of the LTF endpoint was higher than the probability of LTF predicted from the FG model (used as an imputation threshold), ({p}_{i,SIM}left(ltfright) >{p}_{i,FG}(ltf)), otherwise we censored that wolf. To analyze sensitivity to the MAIN scenario, we also developed HIGH and LOW scenarios following a similar imputation process (Supplementary Data S3). For the HIGH imputation scenario, we increased the threshold probability for going LTF by half the difference between ({p}_{i,FG}(ltf)) and 1; ({p}_{i,HI}left(ltfright)={p}_{i,FG}left(ltfright)+(1-{p}_{i,FG}left(ltfright)/2). For the LOW imputation scenario, we decreased the threshold probability for going LTF by half of ({p}_{i,FG}(ltf)); ({p}_{i,LO}left(ltfright)={p}_{i,FG}left(ltfright)-{p}_{i,FG}(ltf)/2). The LOW and HIGH scenarios provided bounds on the point estimates of relative hazard and incidence for the simulated LTF process in the MAIN scenario.
    Statistical tests
    To model all endpoint-specific HRs, we employed Lunn & McNeil’s (1995 Method B) data augmentation method. Namely, we augmented the data by our 6 endpoint categories and employed stratified joint Cox multiple regression (on endpoint) with interactions between covariates and each endpoint. Our initial model included all interactions. We then discarded the weakest first to follow model selection procedures while retaining the policy variable in all models (7 models total, Supplementary Table S5). The approach provides us with covariate HRs for all endpoints and we use those HRs for estimating the CIFs by policy period for each endpoint. We model HR distributions of covariates for our poaching and LTF by exponentiating a normal distribution parameterized with the covariate coefficients and standard deviations obtained from their respective Cox models.
    We also ran separate FG univariate and multivariate models, which mirrored the best stratified joint Cox model, to estimate FG CIFs for each endpoint. We compared CIFs visually to identify the most appropriate CIF model estimate (Cox or FG), following53.
    Given the complete survival history of each individual wolf was split into multiple spells, we clustered all our regression analyses using a unique identifier for each wolf, following methods in54. Clustering on wolf identity accounts for auto-correlation (e.g., all spells are analyzed within-subjects) and avoids pseudo-replication of observations. We evaluated compliance with the proportionality assumptions for each model through the inclusion of time-varying coefficients (tvc). A tvc is an interaction of each parameter with analysis time which models changes in that parameter’s effect over time; i.e., non-proportionality. Endpoint-specific models with significant non-proportionality in a covariate (tvc) cannot provide predictions of risk or incidence due to computational limitations. We further verified proportionality using Schoenfeld residuals43,44,48, which should show a random pattern against time as evidence of compliance with the PH assumption. We selected the best regression models considering AIC, BIC, LL, parsimony, and compliance with model assumptions. When we set aside a best model because of non-proportionality, we present and discuss the best model but our CIF calculations use parameters from the same Cox or FG model without the tvc. We visually assessed goodness-of-fit for each selected endpoint-specific Cox model by Cox-Snell residual plots, which should show the Nelson-Aalen cumulative hazard closely following the line of Cox-Snell residuals if the model is a good fit. We conducted all statistical analyses in Stata 15 (StatCorp, College Station, TX, 2015; see supplementary materials for statistical code). More

  • in

    Economic and social constraints on reforestation for climate mitigation in Southeast Asia

    1.
    Tollefson, J. The hard truths of climate change—by the numbers. Nature 573, 324–327 (2019).
    CAS  Google Scholar 
    2.
    Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

    3.
    Egli, F. & Stunzi, A. A dynamic climate finance allocation mechanism reflecting the Paris Agreement. Environ. Res. Lett. 14, 114024 (2019).
    Google Scholar 

    4.
    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).
    Google Scholar 

    5.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    CAS  Google Scholar 

    6.
    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2015).
    Google Scholar 

    7.
    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).
    Google Scholar 

    8.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    CAS  Google Scholar 

    9.
    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).
    CAS  Google Scholar 

    10.
    Luedeling, E. et al. Forest restoration: overlooked constraints. Science 366, 315 (2019).
    Google Scholar 

    11.
    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).
    CAS  Google Scholar 

    12.
    Cohn, A. S. et al. Smallholder agriculture and climate change. Annu. Rev. Environ. Resour. 42, 347–375 (2017).
    Google Scholar 

    13.
    Lazos-Chavero, E. et al. Stakeholders and tropical reforestation: challenges, trade-offs, and strategies in dynamic environments. Biotropica 48, 900–914 (2016).
    Google Scholar 

    14.
    Barr, C. M. & Sayer, J. A. The political economy of reforestation and forest restoration in Asia–Pacific: critical issues for REDD. Biol. Conserv. 154, 9–19 (2012).
    Google Scholar 

    15.
    Wilson, K. A. et al. Optimal restoration: accounting for space, time and uncertainty. J. Appl. Ecol. 48, 715–725 (2011).
    Google Scholar 

    16.
    Kettle, C. J. Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodivers. Conserv. 19, 1137–1151 (2010).
    Google Scholar 

    17.
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
    CAS  Google Scholar 

    18.
    Estoque, R. C. et al. The future of Southeast Asia’s forests. Nat. Commun. 10, 1829 (2019).
    Google Scholar 

    19.
    Hengl, T. et al. Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. PeerJ 6, e5457 (2018).
    Google Scholar 

    20.
    Budiharta, S. et al. Restoring degraded tropical forests for carbon and biodiversity. Environ. Res. Lett. 9, 114020 (2014).
    Google Scholar 

    21.
    Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Sci. Data 6, 101 (2019).
    Google Scholar 

    22.
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
    CAS  Google Scholar 

    23.
    Löfqvist, S. & Ghazoul, J. Private funding is essential to leverage forest and landscape restoration at global scales. Nat. Ecol. Evol. 3, 1612–1615 (2019).
    Google Scholar 

    24.
    Meyfroidt, P. & Lambin, E. F. The causes of the reforestation in Vietnam. Land Use Policy 25, 182–197 (2008).
    Google Scholar 

    25.
    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).
    Google Scholar 

    26.
    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).
    CAS  Google Scholar 

    27.
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
    Google Scholar 

    28.
    Sheil, D. et al. Forest restoration: transformative trees. Science 366, 316–317 (2019).
    Google Scholar 

    29.
    Delzeit, R. et al. Forest restoration: expanding agriculture. Science 366, 316–317 (2019).
    Google Scholar 

    30.
    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).
    Google Scholar 

    31.
    National Inventory Submissions 2019 (UNFCCC, 2019); https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2019

    32.
    Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).
    Google Scholar 

    33.
    Financing Emission Reductions for the Future: State of Voluntary Carbon Markets 2019 (Forest Trends’ Ecosystem Marketplace, 2019).

    34.
    Tobón, W. et al. Restoration planning to guide Aichi targets in a megadiverse country. Conserv. Biol. 31, 1086–1097 (2017).
    Google Scholar 

    35.
    Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).
    Google Scholar 

    36.
    Miettinen, J. & Liew, S. C. Degradation and development of peatlands in Peninsular Malaysia and in the islands of Sumatra and Borneo since 1990. Land Degrad. Dev. 21, 285–296 (2010).
    Google Scholar 

    37.
    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).
    Google Scholar 

    38.
    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).
    Google Scholar 

    39.
    Land Cover CCI Product User Guide Version 2 (ESA, 2017); http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf

    40.
    Graham, V., Laurance, S. G., Grech, A. & Venter, O. Spatially explicit estimates of forest carbon emissions, mitigation costs and REDD+ opportunities in Indonesia. Environ. Res. Lett. 12, 044017 (2017).
    Google Scholar 

    41.
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).
    Google Scholar 

    42.
    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).
    Google Scholar 

    43.
    Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting a Critical Opportunity (Univ. Cambridge, 2018); https://doi.org/10.17863/CAM.39153

    44.
    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).
    Google Scholar 

    45.
    Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).
    Google Scholar 

    46.
    Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on ‘The global tree restoration potential’. Science 366, eaay8060 (2019).
    Google Scholar 

    47.
    Veldman, J. W. et al. Comment on ‘The global tree restoration potential’. Science 366, eaay7976 (2019).
    Google Scholar 

    48.
    Buendia, C. et al. (eds) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).

    49.
    Fritz, S. et al. Mapping global cropland and field size. Glob. Change Biol. 21, 1980–1992 (2015).
    Google Scholar 

    50.
    Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Glob. Change Biol. 25, 3609–3624 (2019).
    Google Scholar 

    51.
    Cameron, C., Hutley, L. B., Friess, D. A. & Brown, B. High greenhouse gas emissions mitigation benefits from mangrove rehabilitation in Sulawesi, Indonesia. Ecosyst. Serv. 40, 101035 (2019).
    Google Scholar 

    52.
    World Development Report 2013: Jobs (World Bank, 2012).

    53.
    The World Bank Annual Report 2018 (World Bank, 2018).

    54.
    FAOSTAT (FAO, 2017); http://www.fao.org/faostat/en/#data

    55.
    Producer Prices-Annua (FAO, 2017); http://www.fao.org/faostat/en/#data/PP

    56.
    Global Agro-Ecological Zones: Suitability and Potential Yield — Agro-Climatic Yield (International Institute for Applied Systems Analysis, 2015); http://gaez.fao.org/Main.html#

    57.
    Employment by Sex and Age—ILO Modelled Estimates (International Labour Organization, 2014); https://ilostat.ilo.org/data

    58.
    World Development Indicators (The World Bank, 2018); http://data.worldbank.org/data-catalog/world-development-indicators

    59.
    Naylor, R. L., Higgins, M. M., Edwards, R. B. & Falcon, W. P. Decentralization and the environment: assessing smallholder oil palm development in Indonesia. Ambio 48, 1195–1208 (2019).
    Google Scholar 

    60.
    Hewson, J., Crema, S. C., González-Roglich, M., Tabor, K. & Harvey, C. A. New 1 km resolution datasets of global and regional risks of tree cover loss. Land 8, 14 (2019).
    Google Scholar 

    61.
    The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2016); http://protectedplanet.net

    62.
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).
    CAS  Google Scholar 

    63.
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).
    Google Scholar 

    64.
    Page, S. E. et al. Review of Peat Surface Greenhouse Gas Emissions from Oil Palm Plantations in Southeast Asia White Paper No. 15 (International Council on Clean Transportation, 2011).

    65.
    Reijnders, L. & Huijbregts, M. A. J. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 16, 477–482 (2008).
    Google Scholar 

    66.
    Saragi-Sasmito, M. F., Murdiyarso, D., June, T. & Sasmito, S. D. Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests. Mitig. Adapt. Strateg. Glob. Change 24, 521–533 (2019).
    Google Scholar 

    67.
    R v.3.6.0 (R Foundation for Statistical Computing, 2019).

    68.
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package v.2.5-8.

    69.
    QGIS Geographic Information System Version 2.14 (Open Source Geospatial Foundation Project, 2019); http://qgis.org More

  • in

    Characterization of deep-sea benthic invertebrate megafauna of the Galapagos Islands

    1.
    Darwin, C. The Voyage of the Beagle (1839).
    2.
    Forbes, E. Report on the Mollusca and Radiata of the Aegean Sea: And on Their Distribution, Considered as Bearing on Geology (1843).

    3.
    De La Beche, H. T. Researches in Theoretical Geology (FJ Huntington & co., New York, 1837).
    Google Scholar 

    4.
    Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, Hachette, 1859).
    Google Scholar 

    5.
    Caccone, A. et al. Phylogeography and history of giant Galápagos tortoises. Evolution 56, 2052–2066 (2002).
    PubMed  Google Scholar 

    6.
    Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton University Press, Princeton, 1999).
    Google Scholar 

    7.
    Wikelski, M. & Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37–38 (2000).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Glynn, P. W. & Wellington, G. M. Corals and Coral Reefs of the Galapagos Islands (University of California Press, California, 1983).
    Google Scholar 

    9.
    McCosker, J. E. & Rosenblatt, R. H. The fishes of the Galápagos Archipelago: an update. Proc. Calif. Acad. Sci. 61, 167–195 (2010).
    Google Scholar 

    10.
    Salinas de León, P. et al. Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ 4, e1911 (2016).
    PubMed  PubMed Central  Google Scholar 

    11.
    Wellington, G. M. The Galápagos coastal marine environment (1975).

    12.
    Witman, J. D. & Smith, F. Rapid community change at a tropical upwelling site in the Galápagos Marine Reserve. Biodivers. Conserv. 12, 25–45 (2003).
    Google Scholar 

    13.
    Corliss, J. B., Dymond, J., Gordon, L. I. & Edmond, J. M. on the Galapagos Rift. Science 203, 16 (1979).
    Google Scholar 

    14.
    Hessler, R. R. & Smithey Jr, W. M. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In Hydrothermal Processes at Seafloor Spreading Centers 735–770 (Springer, 1983).

    15.
    Harpp, K. S. & White, W. M. Tracing a mantle plume: isotopic and trace element variations of Galápagos seamounts. Geochem. Geophys. Geosystems 2 (2001).

    16.
    Lubetkin, M. et al. Nontronite-bearing tubular hydrothermal deposits from a Galapagos seamount. Deep Sea Res. Part II Top. Stud. Oceanogr. https://doi.org/10.1016/j.dsr2.2017.09.017 (2017).
    Article  Google Scholar 

    17.
    Karl, D. M., Wirsen, C. & Jannasch, H. Deep-sea primary production at the Galapagos hydrothermal vents. Sci. States 207, 1345–1347 (1980).
    CAS  Google Scholar 

    18.
    Rhoads, D. C., Lutz, R. A., Revelas, E. C. & Cerrato, R. M. Growth of bivalves at deep-sea hydrothermal vents along the Galapagos Rift. Science 214, 911–913 (1981).
    ADS  CAS  PubMed  Google Scholar 

    19.
    Van Dover, C. L., Berg Jr, C. J. & Turner, R. D. Recruitment of marine invertebrates to hard substrates at deep-sea hydrothermal vents on the East Pacific Rise and Galapagos spreading center. Deep Sea Res. Part Oceanogr. 35, 1833–1849 (1988).
    ADS  Google Scholar 

    20.
    Iwamoto, T. & McCosker, J. E. Notes on Galápagos grenadiers (Pisces, Gadiformes, Macrouridae), with the description of a new species of Coryphaenoides. Rev. Biol. Trop. 49, 21–27 (2001).
    PubMed  Google Scholar 

    21.
    Long, D. J., McCosker, J. E., Blum, S. & Klapfer, A. Tropical Eastern Pacific records of the prickly shark, Echinorhinus cookei (Chondrichthyes: Echinorhinidae). Pac. Sci. 65, 433–440 (2011).
    Google Scholar 

    22.
    McCosker, J. E., Long, D. J. & Baldwin, C. C. Description of a new species of deepwater catshark, Bythaelurus giddingsi sp. Nov., from the Galápagos Islands (Chondrichthyes: Carcharhiniformes: Scyliorhinidae). Zootaxa 59, 48–59 (2012).
    Google Scholar 

    23.
    Cerutti-Pereyra, F., Yanez, A., Ebert, D. A., Arnés-Urgellés, C. & Salinas-De-León, P. New record and range extension of the deepsea skate, Bathyraja Abyssicola (Chondrichthyes: Arhynchobatidae). The Galapagos Islands. https://doi.org/10.5281/zenodo.1400829 (2018).
    Article  Google Scholar 

    24.
    Cairns, S. D. Deep-water octocorals (Cnidaria, Anthozoa) from the Galápagos and Cocos Islands. Part 1: Suborder Calcaxonia. ZooKeys 729, 1–46 (2018).
    Google Scholar 

    25.
    Cairns, S. D. New records of Stylasteridae (Hydrozoa: Hydroida) from the Galápagos and Cocos Islands (1991).

    26.
    Faxon, W. Reports on an exploration off the west coast of Mexico, Central and South America, and off the Galapagos Islands by the US Fish Commission steamer «Albatross» during 1891…. XV. Mem. Mus. Comp. Zool. 18, 1–292 (1895).
    Google Scholar 

    27.
    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).
    ADS  Google Scholar 

    28.
    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
    CAS  PubMed  Google Scholar 

    29.
    Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).
    PubMed  Google Scholar 

    30.
    Gates, A. R., Morris, K. J., Jones, D. O. & Sulak, K. J. An association between a cusk eel (Bassozetus sp.) and a black coral (Schizopathes sp.) in the deep western Indian Ocean. Mar. Biodivers. 47, 971–977 (2017).
    Google Scholar 

    31.
    Salinas-de-León, P. et al. Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift. Sci. Rep. 8, 1788 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    32.
    Harris, P., Macmillan-Lawler, M., Rupp, J. & Baker, E. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).
    ADS  Google Scholar 

    33.
    Geist, D. J., Snell, H., Snell, H., Goddard, C. & Kurz, M. D. A paleogeographic model of the Galápagos Islands and biogeographical and evolutionary implications. Galápagos Nat. Lab. Earth Sci. Am. Geophys. Union Wash. DC USA 145–166 (2014).

    34.
    Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl. Acad. Sci. 107, 9707–9711 (2010).
    ADS  CAS  PubMed  Google Scholar 

    35.
    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (Wiley, Hoboken, 2008).
    Google Scholar 

    36.
    Rogers, A. The biology of seamounts. Adv. Mar. Biol. 30, 305–350 (1994).
    Google Scholar 

    37.
    Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59 (1986).
    ADS  Google Scholar 

    38.
    Palacios, D. M. Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: regional and local influences. Deep-Sea Res. Part II Top. Stud. Oceanogr. 51, 43–57 (2004).
    ADS  Google Scholar 

    39.
    Edgar, G. J., Banks, S., Fariña, J. M., Calvopiña, M. & Martínez, C. Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J. Biogeogr. 31, 1107–1124 (2004).
    Google Scholar 

    40.
    Koslow, J. et al. Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. Mar. Sci. 57, 548–557 (2000).
    Google Scholar 

    41.
    Watling, L. & Norse, E. A. Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv. Biol. 12, 1180–1197 (1998).
    Google Scholar 

    42.
    Breedy, O., van Ofwegen, L. P. & Vargas, S. A new family of soft corals (Anthozoa, Octocorallia, Alcyonacea) from the aphotic tropical eastern Pacific waters revealed by integrative taxonomy. Syst. Biodivers. 10, 351–359 (2012).
    Google Scholar 

    43.
    Ardron, J. A. et al. A systematic approach towards the identification and protection of vulnerable marine ecosystems. Mar. Policy 49, 146–154 (2014).
    Google Scholar 

    44.
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).
    PubMed  Google Scholar 

    45.
    Miloslavich, P. et al. Marine biodiversity in the atlantic and pacific coasts of south america: knowledge and gaps. PLoS ONE 6, e14631 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for seamounts: research links to conservation and management. PLoS ONE 7, e29232 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Sinton, C. W., Christie, D. M. & Duncan, R. A. Geochronology of Galápagos seamounts. J. Geophys. Res. Solid Earth 101, 13689–13700 (1996).
    CAS  Google Scholar 

    48.
    Christie, D. et al. Drowned islands downstream from the Galapagos hotspot imply extended speciation times. Nature 355, 246 (1992).
    ADS  Google Scholar 

    49.
    Watling, L., Guinotte, J., Clark, M. R. & Smith, C. R. A proposed biogeography of the deep ocean floor. Prog. Oceanogr. 111, 91–112 (2013).
    ADS  Google Scholar 

    50.
    Dirección del Parque Nacional Galápagos. Plan de Manejo de las Areas Protegidas de Galápagos par el Buen Vivir (2014).

    51.
    Carey, S. et al. Exploring the undersea world of the Galápagos Islands. Ocean. Mag 29, 32–34 (2016).
    Google Scholar 

    52.
    Salinas-De-León, P., Acuña-Marrero, D., Carrión-Tacuri, J. & Sala, E. Valor ecológico de los ecosistemas marinos de Darwin y Wolf, Reserva Marina de Galápagos. 15 (2015).

    53.
    Acuña-Marrero, D. et al. Spatial patterns of distribution and relative abundance of coastal shark species in the Galapagos Marine Reserve. Mar. Ecol. Prog. Ser. 593, 73–95 (2018).
    ADS  Google Scholar 

    54.
    Acuña-Marrero, D. et al. Whale shark (Rhincodon typus) seasonal presence, residence time and habitat use at Darwin Island Galapagos Marine Reserve. PLoS ONE 9, e115946 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    55.
    Ministerio del Ambiente del Ecuador. Acuerdo Ministerial 076/2018. (2018).

    56.
    Ramirez-Llodra, E. et al. Man and the last great wilderness: human impact on the deep sea. PLoS ONE 6, e22588 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Roberts, C. M. Deep impact: the rising toll of fishing in the deep sea. Trends Ecol. Evol. 17, 242–245 (2002).
    MathSciNet  Google Scholar 

    58.
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
    ADS  CAS  PubMed  Google Scholar 

    59.
    Danovaro, R., Dell’Anno, A. & Pusceddu, A. Biodiversity response to climate change in a warm deep sea: biodiversity and climate change in the deep sea. Ecol. Lett. 7, 821–828 (2004).
    Google Scholar 

    60.
    Danovaro, R., Dell’Anno, A., Fabiano, M., Pusceddu, A. & Tselepides, A. Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study. Trends Ecol. Evol. 16, 505–510 (2001).
    Google Scholar 

    61.
    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anthr. 5, 4 (2017).
    Google Scholar 

    62.
    Etnoyer, P. et al. Deep-sea coral collection protocols. NOAA Tech. Memo. NMFS-OPR 28 (2006).

    63.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  Google Scholar 

    64.
    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).
    CAS  PubMed  Google Scholar 

    65.
    Wieczorek, J. et al. Darwin core: an evolving community-developed biodiversity data standard. PLoS ONE 7, e29715 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Ontrup, J., Ehnert, N., Bergmann, M. & Nattkemper, T. W. BIIGLE-Web 2.0 Enabled Labelling and Exploring of Images from the Arctic Deep-Sea Observatory HAUSGARTEN. 1–7 (IEEE, 2009). More

  • in

    Scale-free vertical tracking microscopy

    1.
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Menden-Deuer, S. & Kiørboe, T. HORIZONS small bugs with a big impact: linking plankton ecology with ecosystem processes. J. Plankton Res. 38, 1036–1043 (2016).
    CAS  Google Scholar 

    4.
    Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).
    CAS  Google Scholar 

    5.
    McManus, M. A. & Woodson, C. B. Plankton distribution and ocean dispersal. J. Exp. Biol. 215, 1008–1016 (2012).
    PubMed  PubMed Central  Google Scholar 

    6.
    Schuech, R. & Menden-Deuer, S. Going ballistic in the plankton: anisotropic swimming behavior of marine protists. Limnol. Oceanogr. Fluids Environ. 4, 1–16 (2014).
    Google Scholar 

    7.
    von Wangenheim, D. et al. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6, e26792 (2017).
    PubMed  PubMed Central  Google Scholar 

    8.
    Berg, H. C. How to track bacteria. Rev. Sci. Instrum. 42, 868–871 (1971).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods 14, 1107–1114 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Darnige, T. et al. Lagrangian 3D tracking of fluorescent microscopic objects in motion. Rev. Sci. Instrum. 88, 055106 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Drescher, K., Goldstein, R. E., Michel, N., Polin, M. & Tuval, I. Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105, 1–4 (2010).
    Google Scholar 

    12.
    Cong, L. et al. Rapid whole-brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, 1–20 (2017).
    Google Scholar 

    13.
    Ploug, H. & Jørgensen, B. B. A net-jet flow system for mass transfer and micro electrode studies in sinking aggregates. Mar. Ecol. Prog. Ser. 176, 279 (1999).
    CAS  Google Scholar 

    14.
    Drescher, K., Leptos, K. C. & Goldstein, R. E. How to track protists in three dimensions. Rev. Sci. Instrum. 80, 1–7 (2009).
    Google Scholar 

    15.
    Verasztó, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, 1–19 (2018).
    Google Scholar 

    16.
    Sauma-Pérez, T., Johnson, C. G., Yang, L. & Mullin, T. An experimental study of the motion of a light sphere in a rotating viscous fluid. J. Fluid Mech. 847, 119–133 (2018).
    Google Scholar 

    17.
    Van Nierop, E. A. et al. Drag and lift forces on bubbles in a rotating flow. J. Fluid Mech. 571, 439–454 (2007).
    Google Scholar 

    18.
    Mukundakrishnan, K., Hu, H. H. & Ayyaswamy, P. S. The dynamics of two spherical particles in a confined rotating flow: Pedalling motion. J. Fluid Mech. 599, 169–204 (2008).
    Google Scholar 

    19.
    Wolf, A. & Schwarz, R. P. Culture Vessel. NASA technical paper 3143 (1999).

    20.
    Schwarz, R. P., Goodwin, T. J. & Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Salzen, E. A. The density of sea urchin eggs, embryos and larvae. Exp. Cell Res. 12, 615–625 (1957).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Leal, L. G. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Vol. 7 (Cambridge University Press, 2007).

    23.
    Marcos, F. H. C., Powers, T. R. & Stocker, R. Bacterial rheotaxis. Proc. Natl Acad. Sci. USA 109, 4780–4785 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Rusconi, R., Guasto, J. S. & Stocker, R. Bacterial transport suppressed by fluid shear. Nat. Phys. 10, 212–217 (2014).
    CAS  Google Scholar 

    25.
    Mathijssen, A. J. T. M. et al. Oscillatory surface rheotaxis of swimming E. coli bacteria. Nat. Commun. 10, 7–9 (2019).
    Google Scholar 

    26.
    Strathmann, R. R. Larval feeding in echinoderms. Integr. Comp. Biol. 15, 717–730 (1975).
    Google Scholar 

    27.
    Strathmann, R. R. & Grünbaum, D. Good eaters, poor swimmers: compromises in larval form. Integr. Comp. Biol. 46, 312–322 (2006).
    PubMed  PubMed Central  Google Scholar 

    28.
    Emlet, R. B. Flow fields around ciliated larvae: effects of natural and artificial tethers. Mar. Ecol. Prog. Ser. 63, 211–225 (1990).
    Google Scholar 

    29.
    Gonzalez, P., Jiang, J. Z. & Lowe, C. J. The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae). Front. Zool. 15, 1–24 (2018).
    Google Scholar 

    30.
    Keeling, P. J. & del Campo, J. Marine protists are not just big bacteria. Curr. Biol. 27, R541–R549 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Cheriton, O. M., McManus, M. A., Stacey, M. T. & Steinbuck, J. V. Physical and biological controls on the maintenance and dissipation of a thin phytoplankton layer. Mar. Ecol. Prog. Ser. 378, 55–69 (2009).
    Google Scholar 

    32.
    Zimorski, V., Rauch, C., Van, J. J., Tielens, A. G. M. & Martin, W. F. (eds.) Euglena: Biochemistry, Cell and Molecular Biology. 979 (2017).

    33.
    Kim, I.-H., Prusti, R. K., Song, P.-S., Häder, D.-P. & Häder, M. Phototaxis and photophobic responses in Stentor coeruleus action spectrum and role of Ca2+ fluxes. Biochim. Biophys. Acta 799, 298–304 (1984).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Mackie, G. O., Spencer, A. N. & Strathmann, R. Electrical activity associated with ciliary reversal in an echinoderm larva. Nature 223, 1384 (1969).
    Google Scholar 

    35.
    Gemmell, B. J., Jiang, H. & Buskey, E. J. A new approach to micro-scale particle image velocimetry (μPIV) for quantifying flows around free-swimming zooplankton. J. Plankton Res. 36, 1396–1401 (2014).
    Google Scholar 

    36.
    Nielsen, L. T. & Kiørboe, T. Feeding currents facilitate a mixotrophic way of life. ISME J. 9, 2117–2127 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Conzelmann, M. et al. Neuropeptides regulate swimming depth of Platynereis larvae. Proc. Natl Acad. Sci. USA 108, E1174–E1183 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Fenchel, T. & Ockelmann, K. W. Larva on a string. Ophelia 56, 171–178 (2002).
    Google Scholar 

    39.
    Gilpin, W., Prakash, V. N. & Prakash, M. Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae. Nat. Phys. 13, 380–386 (2017).
    CAS  Google Scholar 

    40.
    Pernet, B. in Evolutionary Ecology of Marine Invertebrate Larvae, Vol. 1 (Oxford University Press, 2018).

    41.
    Jékely, G. et al. Mechanism of phototaxis in marine zooplankton. Nature 456, 395–399 (2008).
    PubMed  PubMed Central  Google Scholar 

    42.
    Tosches, M. A., Bucher, D., Vopalensky, P. & Arendt, D. Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell 159, 46–57 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Drescher, K., Goldstein, R. E. & Tuval, I. Fidelity of adaptive phototaxis. Proc. Natl Acad. Sci. USA 107, 11171–11176 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Costa, M., Goldberger, A. L. & Peng, C. K. Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 1–18 (2005).
    Google Scholar 

    45.
    Nguyen, J. P. et al. Whole-brain calcium imaging with cellular resolution in freely behaving C. elegans. Proc. Natl Acad. Sci. USA 113, E1074-81 (2016).
    PubMed  PubMed Central  Google Scholar 

    46.
    Hardy, A. C. & Bainbridge, R. Experimental observations on the vertical migrations of plankton animals. J. Mar. Biol. Assoc. UK 33, 409–448 (1954).
    Google Scholar 

    47.
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2008).
    Google Scholar 

    48.
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    DeLong, E. F. The microbial ocean from genomes to biomes. Nature 459, 200–206 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Lukežič, A. et al. Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Computer Vis. 126, 671–688 (2018).
    Google Scholar 

    52.
    Zhu, Z. et al. Distractor-aware siamese networks for visual object tracking. Lect. Notes Comput. Sci. 11213, 103–119 (2018).
    Google Scholar 

    53.
    Batten, C. F., Holburn, D. M., Breton, B. C. & Caldwell, N. H. M. Sharpness search algorithms for automatic focusing in the scanning electron microscope. Scanning 23, 112–113 (2001).
    Google Scholar 

    54.
    Batten, C. F. Autofocusing and Astigmatism Correction in the Scanning Electron Microscope. MPhil thesis, University of Cambridge (2000).

    55.
    Strathmann, M. F. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast: Data and Methods for the Study of Eggs, Embryos and Larvae (University of Washington Press, 2017). More

  • in

    The elusive search for tipping points

    1.
    Gladwell, M. The Tipping Point: How Little Things Can Make a Big Difference (Little, Brown and Company, 2000).
    2.
    Barnosky, A. D. et al. Nature 486, 52–58 (2012).
    CAS  Article  Google Scholar 

    3.
    Ehrlich, P. R. & Ehrlich, A. H. Proc. R. Soc. B 280, 20122845 (2013).
    Article  Google Scholar 

    4.
    Rockström, J. et al. Nature 461, 472–475 (2009).
    Article  Google Scholar 

    5.
    Dudney, J., Hobbs, R. J., Heilmayr, R., Battles, J. J. & Suding, K. N. Trends Ecol. Evol. 33, 863–873 (2018).
    Article  Google Scholar 

    6.
    Hillebrand, H. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1256-9 (2020).

    7.
    Hallett, L. M. et al. Ecology 95, 1693–1700 (2014).
    Article  Google Scholar 

    8.
    Berdugo, M. et al. Science 367, 787–790 (2020).
    CAS  Article  Google Scholar 

    9.
    Benedetti-Cecchi, L., Tamburello, L., Maggi, E. & Bulleri, F. Curr. Biol. 25, 1867–1872 (2015).
    CAS  Article  Google Scholar 

    10.
    Millar, C. I. & Stephenson, N. L. Science 349, 823–826 (2015).
    CAS  Article  Google Scholar 

    11.
    Monger, C. et al. Front. Ecol. Environ. 13, 13–19 (2015).
    Article  Google Scholar 

    12.
    Turner, M. G. et al. Phil. Trans. R. Soc. B 375, 20190105 (2020).
    Article  Google Scholar  More