More stories

  • in

    Fasting season length sets temporal limits for global polar bear persistence

    1.
    Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).
    CAS  Google Scholar 
    2.
    Regehr, E. V. et al. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biol. Lett. 12, 20160556 (2016).
    Google Scholar 

    3.
    Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010); corrigendum 177, 230–231 (2014).

    4.
    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).
    Google Scholar 

    5.
    Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 13, 138–145 (2015).
    Google Scholar 

    6.
    Stern, H. S. & Laidre, K. L. Sea-ice indicators of polar bear habitat. Cryosphere 10, 2027–2041 (2016).
    Google Scholar 

    7.
    Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706 (2012).
    Google Scholar 

    8.
    Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. Effects of earlier sea ice breakup on survival and population size of polar bears in Western Hudson Bay. J. Wildl. Manag. 71, 2673–2683 (2007).
    Google Scholar 

    9.
    Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).
    Google Scholar 

    10.
    Rode, K. D. et al. A tale of two polar bear populations: ice habitat, harvest, and body condition. Popul. Ecol. 54, 3–18 (2012).
    Google Scholar 

    11.
    Bromaghin, J. F. et al. Polar bear population dynamics in the Southern Beaufort Sea during a period of sea ice decline. Ecol. Appl. 25, 634–651 (2016).
    Google Scholar 

    12.
    Lunn, N. J. et al. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecol. Appl. 26, 1302–1320 (2016).
    Google Scholar 

    13.
    Obbard, M. E. et al. Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Sci. 2, 15–32 (2016).
    Google Scholar 

    14.
    Hunter, C. M. et al. Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology 91, 2883–2897 (2010).
    Google Scholar 

    15.
    Molnár, P. K., Derocher, A. E., Klanjscek, T. & Lewis, M. A. Predicting climate change impacts on polar bear litter size. Nat. Commun. 2, 186 (2011).
    Google Scholar 

    16.
    De la Guardia, L. C., Derocher, A. E., Myers, P. G., van Scheltinga, A. D. T. & Lunn, N. J. Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century. Glob. Change Biol. 19, 2675–2687 (2013).
    Google Scholar 

    17.
    Hamilton, S. G. et al. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago. PLoS ONE 9, e113746 (2014).
    Google Scholar 

    18.
    Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data Version 1 (1979–2016) (NASA DAAC at the National Snow and Ice Data Center, accessed 7 June 2017).

    19.
    Arnould, J. P. Y. & Ramsay, M. A. Milk production and milk consumption in polar bears during the ice-free period in western Hudson Bay. Can. J. Zool. 72, 1365–1370 (1994).
    Google Scholar 

    20.
    Dyck, M., Campbell, M., Lee, D. S., Boulanger, J. & Hedman, D. Aerial Survey of the Western Hudson Bay Polar Bear Sub-Population 2016. 2017 Final Report (Wildlife Research Section, Department of Environment, Government of Nunavut, 2017).

    21.
    Manning, T. H. Geographical Variation in the Polar Bear Ursus Maritimus Phipps. Rep. Ser. No. 13 (Canadian Wildlife Service, 1971).

    22.
    Derocher, A. E. & Stirling, I. Geographic variation in growth of polar bears (Ursus maritimus). J. Zool. Lond. 245, 65–72 (1998).
    Google Scholar 

    23.
    Derocher, A. E. & Wiig, Ø. Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. J. Zool. Lond. 256, 343–349 (2002).
    Google Scholar 

    24.
    Obbard, M. E. et al. Re-assessing abundance of Southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arctic Sci. 4, 634–655 (2018).
    Google Scholar 

    25.
    Peacock, E., Taylor, M. K., Laake, J. & Stirling, I. Population ecology of polar bears in Davis Strait, Canada and Greenland. J. Wildl. Manag. 77, 463–476 (2013).
    Google Scholar 

    26.
    Galicia, M. P., Thiemann, G. W., Dyck, M. G. & Ferguson, S. H. Characterization of polar bear (Ursus maritimus) diets in the Canadian high arctic. Polar Biol. 38, 1983–1992 (2015).
    Google Scholar 

    27.
    Laidre, K. L. et al. Interrelated ecological impacts of climate change on an apex predator. Ecol. Appl. 30, e02071 (2020).
    Google Scholar 

    28.
    Stapleton, S., Peacock, E. & Garshelis, D. Aerial surveys suggest long-term stability in the seasonally ice-free Foxe Basin (Nunavut) polar bear population. Mar. Mammal Sci. 32, 181–201 (2016).
    Google Scholar 

    29.
    Regehr, E. V. et al. Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Sci. Rep. 8, 16780 (2018).
    Google Scholar 

    30.
    Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. & Amstrup, S. C. Polar bear population status in the Northern Beaufort Sea, Canada, 1971–2006. Ecol. Appl. 21, 859–876 (2011).
    Google Scholar 

    31.
    Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science 359, 568–572 (2018).
    CAS  Google Scholar 

    32.
    Aars, J. et al. The number and distribution of polar bears in the western Barents Sea. Polar Res. 36, 1374125 (2017).
    Google Scholar 

    33.
    Moss, R. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies (IPCC, 2008).

    34.
    Molnár, P. K., Derocher, A. E., Lewis, M. A. & Taylor, M. K. Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proc. R. Soc. B 275, 217–226 (2008).
    Google Scholar 

    35.
    Ingolfsson, O. & Wiig, Ø. Late Pleistocene fossil find in Svalbard: the oldest remains of a polar bear (Ursus maritimus Phipps, 1744) ever discovered. Polar Res. 28, 455–462 (2008).
    Google Scholar 

    36.
    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).
    CAS  Google Scholar 

    37.
    Durner, G. M. et al. Predicting 21st century polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).
    Google Scholar 

    38.
    Cherry, S. G., Derocher, A. E., Thiemann, G. W. & Lunn, N. J. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. J. Anim. Ecol. 82, 912–921 (2013).
    Google Scholar 

    39.
    Smith, R. D., Kortas, S. & Meltz, B. J. A. Curvilinear Coordinates for Global Ocean Models. Tech. Note LA-UR-95-1146 (Los Alamos National Laboratory, 1997).

    40.
    Amstrup, S. C., Marcot, B. G. & Douglas, D. C. in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications (eds DeWeaver, E. T. et al.) 213–268 (American Geophysical Union, 2008).

    41.
    Regehr, E. V., Hunter, C. M., Caswell, H., Amstrup, S. C. & Stirling, I. Survival and breeding of polar bears in the Southern Beaufort Sea in relation to sea ice. J. Anim. Ecol. 79, 117–127 (2009).
    Google Scholar 

    42.
    Whiteman, J. P. et al. Summer declines in activity and body temperature offer polar bears limited energy savings. Science 349, 295–298 (2015).
    CAS  Google Scholar 

    43.
    Whiteman, J. P. et al. Phenotypic plasticity and climate change: can polar bears respond to longer Arctic summers with an adaptive fast? Oecologia 186, 369–381 (2018).
    Google Scholar 

    44.
    Fetterer, F., Knowles, K., Meier, W. & Savoie, M. Sea Ice Index (National Snow and Ice Data Center, 2002).

    45.
    Furnell, D. J. & Oolooyuk, D. Polar bear predation on ringed seals in ice-free water. Can. Field-Nat. 94, 88–89 (1980).
    Google Scholar 

    46.
    Stirling, I., Lunn, N. J. & Iacozza, J. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climate change. Arctic 52, 294–306 (1999).
    Google Scholar 

    47.
    Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C. & Zwally, H. J. Deriving long-term time series of ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. 104, 15803–15814 (1999).
    Google Scholar 

    48.
    Meier, W. N. & Stewart, J. S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 14, 035005 (2019).
    Google Scholar 

    49.
    Durner, G. M. et al. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Glob. Change Biol. 23, 3460–3473 (2017).
    Google Scholar 

    50.
    Durner, G. M. et al. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Polar Biol. 34, 975–984 (2011).
    Google Scholar 

    51.
    Pagano, A. M., Durner, G. M., Amstrup, S. C., Simac, K. S. & York, G. S. Long-distance swimming by polar bears (Ursus maritimus) of the Southern Beaufort Sea during years of extensive open water. Can. J. Zool. 90, 663–676 (2012).
    Google Scholar 

    52.
    Derocher, A. E. & Stirling, I. Aspects of survival in juvenile polar bears. Can. J. Zool. 74, 1246–1252 (1996).
    Google Scholar 

    53.
    Molnár, P. K., Klanjscek, T., Derocher, A. E., Obbard, M. E. & Lewis, M. A. A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears. J. Exp. Biol. 212, 2313–2323 (2009).
    Google Scholar 

    54.
    Best, R. C. Thermoregulation in resting and active polar bears. J. Comp. Physiol. 146, 63–73 (1982).
    Google Scholar 

    55.
    Mathewson, P. D. & Porter, W. P. Simulating polar bear energetics during a seasonal fast using a mechanistic model. PLoS ONE 8, e72863 (2013).
    CAS  Google Scholar 

    56.
    Pagano, A. M. et al. Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical? J. Exp. Biol. 221, jeb175372 (2018).
    Google Scholar 

    57.
    Derocher, A. E. & Stirling, I. Distribution of polar bears (Ursus maritimus) during the ice-free period in Western Hudson Bay. Can. J. Zool. 68, 1395–1403 (1990).
    Google Scholar 

    58.
    Lunn, N. J., Stirling, I., Andriashek, D. & Richardson, E. Selection of maternity dens by female polar bears in western Hudson Bay, Canada and the effects of human disturbance. Polar Biol. 27, 350–356 (2004).
    Google Scholar 

    59.
    Parks, E. K., Derocher, A. E. & Lunn, N. J. Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Can. J. Zool. 84, 1281–1294 (2006).
    Google Scholar 

    60.
    Derocher, A. E., Stirling, I. & Andriashek, D. Pregnancy rates and serum progesterone levels of polar bears in Western Hudson Bay. Can. J. Zool. 70, 561–566 (1992).
    CAS  Google Scholar 

    61.
    Lee, P. C., Majluf, P. & Gordon, I. J. Growth, weaning and maternal investment from a comparative perspective. J. Zool. Lond. 225, 99–114 (1991).
    Google Scholar 

    62.
    Oftedal, O. T. The adaptation of milk secretion to the constraints of fasting in bears, seals, and baleen whales. J. Dairy Sci. 76, 3234–3246 (1993).
    CAS  Google Scholar 

    63.
    Derocher, A. E., Andriashek, D. & Arnould, J. P. Y. Aspects of milk composition and lactation in polar bears. Can. J. Zool. 71, 561–567 (1993).
    Google Scholar 

    64.
    Stapleton, S., Atkinson, S., Hedman, D. & Garshelis, D. Revisiting Western Hudson Bay: using aerial surveys to update polar bear abundance in a sentinel population. Biol. Conserv. 170, 38–47 (2014).
    Google Scholar 

    65.
    Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 

    66.
    Regehr, E. V., Wilson, R. R., Rode, K. D. & Runge, M. C. Resilience and Risk—a Demographic Model to Inform Conservation Planning for Polar Bears Open-File Report 2015–1029 (US Geological Survey, 2015).

    67.
    Molnár, P. K., Lewis, M. A. & Derocher, A. E. Estimating Allee dynamics before they can be observed: polar bears as a case study. PLoS ONE 9, e85410 (2014).
    Google Scholar 

    68.
    Rode, K. D. et al. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Glob. Change Biol. 20, 76–88 (2014).
    Google Scholar 

    69.
    Laliberté, F., Howell, S. E. L. & Kushner, P. J. Regional variability of a projected sea ice‐free Arctic during the summer months. Geophys. Res. Lett. 43, 256–263 (2016).
    Google Scholar 

    70.
    Massonnet, F. et al. Constraining projections of summer Arctic sea ice. Cryosphere 6, 1383–1394 (2012).
    Google Scholar 

    71.
    McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).
    Google Scholar 

    72.
    McNutt, J. W. & Gusset, M. Declining body size in an endangered large mammal. Biol. J. Linn. Soc. 105, 8–12 (2012).
    Google Scholar 

    73.
    Amstrup, S. C. & Durner, G. M. Survival rates of radio-collared female polar bears and their dependent young. Can. J. Zool. 73, 1312–1322 (1995).
    Google Scholar  More

  • in

    Scale in the study of Indigenous burning

    1.
    Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).
    Article  Google Scholar 
    2.
    Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).
    Article  Google Scholar 

    3.
    Bragdon, K. J. Native People of Southern New England, 1500–1650 Vol. 221 (Univ. Oklahoma Press, 1996).

    4.
    Stone, G. D. Settlement Ecology: The Social and Spatial Organization of Kofyar Agriculture (Univ. Arizona Press, 1996).

    5.
    Whitlock, C. & Anderson, R. S. in Fire and Climatic Change in Temperate Ecosystems of the Western Americas Ecological Studies Vol. 160 (eds Veblen, T. T. et al.) 3–31 (Springer, 2003).

    6.
    Roos, C. I., Williamson, G. J. & Bowman, D. M. J. S. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).
    Article  Google Scholar 

    7.
    Day, G. M. The Indian as an ecological factor in the northeastern forest. Ecology 34, 329–346 (1953).
    Article  Google Scholar 

    8.
    Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England (Hill and Wang, 2011).

    9.
    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
    Article  Google Scholar 

    10.
    Roos, C. I. et al. Pyrogeography, historical ecology, and the human dimensions of fire regimes. J. Biogeogr. 41, 833–836 (2014).
    Article  Google Scholar 

    11.
    Bowman, D. M. J. S. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
    Article  Google Scholar 

    12.
    Swetnam, T. W. et al. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA. Phil. Trans. R. Soc. B 371, 20150168 (2016).
    Article  Google Scholar 

    13.
    Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
    Article  Google Scholar 

    14.
    Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl Acad. Sci. USA 115, 8143–8148 (2018).
    CAS  Article  Google Scholar 

    15.
    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    16.
    Flannery, T. The Future Eaters: An Ecological History of the Australasian Lands and People (Grove, 2002). More

  • in

    Reduced ecosystem services of desert plants from ground-mounted solar energy development

    1.
    Halmo, D. B., Stoffle, R. W. & Evans, M. J. Paitu Nanasuagaindu Pahonupi (Three Sacred Valleys): cultural significance of Gosiute, Paiute, and Ute plants. Hum. Organ. 52, 142–150 (1993).
    Google Scholar 
    2.
    Stoffle, R. W., Halmo, D. B. & Austin, D. E. Cultural landscapes and traditional cultural properties: a southern Paiute view of the Grand Canyon and Colorado River. Am. Indian Q. 21, 229–249 (1997).
    Google Scholar 

    3.
    Lee, R. B. in Man the Hunter (eds Lee, R. B. & DeVore, I.) 30–48 (Aldine, 1968).

    4.
    Smith, M., Veth, P., Hiscock, P. & Wallis, L. A. in Desert Peoples, Archaeological Perspectives Vol. 1 (eds Veth, P. et al.) Ch. 1 (Blackwell, 2005).

    5.
    Stoffle, R. W. & Evans, M. J. Holistic conservation and cultural triage: American Indian perspectives on cultural resources. Hum. Organ 49, 91–99 (1990).
    Google Scholar 

    6.
    Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (UC Press, 2005).

    7.
    Saenz-Hernandez, C., Corrales-Garcia, J. & Aquino-Perez, G. in Cacti: Biology and Uses (ed. Nobel, P. S.) 211–234 (UC Press, 2002).

    8.
    Larsen, L. & Harlan, S. L. Desert dreamscapes: residential landscape preference and behavior. Landsc. Urban Plan. 78, 8–100 (2006).
    Google Scholar 

    9.
    Rokeach, M. The Nature of Human Values (Free Press, 1973).

    10.
    Schwartz, S. H. & Bilksy, W. Toward a universal psychology structure of human values. J. Person. Soc. Psychol. 58, 878–891 (1987).
    Google Scholar 

    11.
    Kamakura, W. A. & Novak, T. P. Value system segmentation: exploring the meaning of LOV. J. Consum. Res. 19, 119–132 (1992).
    Google Scholar 

    12.
    Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy—critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).
    Google Scholar 

    13.
    Hernandez, R. R. et al. Techno-ecological synergies of solar energy produce beneficial outcomes across industrial-ecological boundaries to mitigate global change. Nat. Sustain. 2, 560–568 (2019).
    Google Scholar 

    14.
    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).
    CAS  Google Scholar 

    15.
    Folke, C. et al. Resilience and sustainable development: building adaptive capacity in a world of transformations. AMBIO 31, 437–440 (2002).
    Google Scholar 

    16.
    Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).
    CAS  Google Scholar 

    17.
    Chan, K. M. A. et al. Where are cultural and social in ecosystem services? A framework for constructive engagement. BioScience 62, 744–756 (2012).
    Google Scholar 

    18.
    Farber, S. C., Constanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).
    Google Scholar 

    19.
    Copeland, S. M., Bradford, J. B., Duniway, M. C. & Schuster, R. M. Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere 8, e01823 (2017).

    20.
    Durant, S. M. et al. Forgotten biodiversity in desert ecosystems. Science 336, 1379–1380 (2012).
    CAS  Google Scholar 

    21.
    McDonald, R. I. et al. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4, e6802 (2009).
    Google Scholar 

    22.
    Hernandez, R. R. et al. Solar energy development impacts on terrestrial ecosystems. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015a).
    CAS  Google Scholar 

    23.
    Hernandez, R. R. et al. The land-use efficiency of big solar. Environ. Sci. Technol. 48, 1315–1323 (2014).
    CAS  Google Scholar 

    24.
    Lovich, J. E. & Bainbridge, D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration. Environ. Manag. 24, 309–326 (1999).
    CAS  Google Scholar 

    25.
    Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, USA. Environ. Sci. Technol. 51, 14472–14482 (2017).
    CAS  Google Scholar 

    26.
    Potter, C. Landsat time series analysis of vegetation changes in solar energy development areas of the Lower Colorado Desert, southern California. J. Geosci. Environ. Prot. 4, 1–6 (2016).
    Google Scholar 

    27.
    Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361, 1019–1022 (2018).
    CAS  Google Scholar 

    28.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    CAS  Google Scholar 

    29.
    Bidak, L. M., Kamal, S. A., Halmy, M. W. A. & Heneidy, S. Z. Goods and services provided by native plants in desert ecosystems: examples from the northwestern coastal desert of Egypt. Glob. Ecol. Conserv. 3, 433–447 (2015).
    Google Scholar 

    30.
    Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).
    CAS  Google Scholar 

    31.
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).
    CAS  Google Scholar 

    32.
    Brooks, M. L. & Matchett, J. R. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980-2004. J. Arid Environ. 67, 148–164 (2006).
    Google Scholar 

    33.
    Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).
    CAS  Google Scholar 

    34.
    Drennan, P. M. & Nobel, P. S. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23, 767–781 (2000).
    CAS  Google Scholar 

    35.
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
    Google Scholar 

    36.
    Daily, G. C. & Matson, P. A. Ecosystem services: from theory to implementation. Proc. Natl Acad. Sci. USA 105, 9455–9456 (2008).
    CAS  Google Scholar 

    37.
    Kuletz, V. L. The Tainted Desert: Environmental and Social Ruin in the American West (Routledge, 1998).

    38.
    Adamson, J. American Indian Literature, Environmental Justice, and Ecocriticism (Univ. Arizona Press, 2001).

    39.
    Romero, H., Mendez, M. & Smith, P. Mining development and environmental injustice in the Atacama Desert of northern Chile. Environ. Justice 5, 70–76 (2012).
    Google Scholar 

    40.
    Vine, D. Base Nation: How U.S. Military Bases Abroad Harm America and the World (Henry Holt and Co., 2015).

    41.
    Tsosie, R. Indigenous people and environmental justice: the impact of climate change. Univ. Col. Law Rev. 78, 1625–1678 (2007).
    Google Scholar 

    42.
    Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 12, 493–515 (2017).
    Google Scholar 

    43.
    Brookshire, D. & Kaza, N. Planning for seven generations: energy planning of American Indian tribes. Energy Policy 62, 1506–1514 (2013).
    Google Scholar 

    44.
    Bronin, S. C. The promise and perils of renewable energy on tribal lands. Tulane Environ. Law J. 26, 221–237 (2013).
    Google Scholar 

    45.
    Polis, G. A. The Ecology of Desert Communities (Univ. Arizona Press, 1991).

    46.
    Aranda-Rickert, A., Diez, P. & Marazzi, B. Extrafloral nectar fuels ant life in deserts. AoB PLANTS 6, plu068 (2014).
    Google Scholar 

    47.
    Rickleffs, R. E. & Hainsworth, F. R. Tenperature regulation in nestling cactus wren: the nest environment. Condor 71, 32–37 (1969).
    Google Scholar 

    48.
    Pfeiler, E. & Markow, T. A. Phylogeography of the cactophilic Drosophila and other arthropods associated with cactus necroses in the Sonoran Desert. Insects 2, 218–231 (2011).
    Google Scholar 

    49.
    Pellmyr, O., Thompson, J. N., Brown, J. M. & Harrison, R. G. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148, 827–847 (1996).
    Google Scholar 

    50.
    Abella, S. R. & Berry, K. H. Enhancing and restoring habitat for the desert tortoise. J. Fish. Wildl. Manag. 7, 255–279 (2016).
    Google Scholar 

    51.
    Hernandez, R. R. et al. Efficient use of land to meet sustainable energy needs. Nat. Clim. Change 5, 353–358 (2015).
    Google Scholar 

    52.
    Clark, W. C., van Kerkhoff, L., Lebel, L. & Gallopin, G. C. Crafting usable knowledge for sustainable development. Proc. Natl Acad. Sci. USA 113, 4570–4578 (2016).
    CAS  Google Scholar  More

  • in

    Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability

    Study area
    The study area is located in the north-eastern Italian Alps (Argentario range, in Val di Cembra and Valsugana; Autonomous Province of Trento), covers c. 16 km2 and ranges between 500 and 1,000 m a.s.l. The topography is generally mild, but steeper slopes ( > 30°) occur in the northern portion. The climate is continental and characterized by a mean temperature of 1.0 °C in January and 21.0 °C in July, and a mean annual rainfall of 966 mm (average 2000–2018; https://www.meteotrentino.it). There is occasional snow cover between December and March, although the soil is mostly frozen at night. The study area is covered by 80.0% forest, mostly as relatively homogeneous secondary growth stands interspersed with small pastures. The forests are dominated by Pinus sylvestris with abundant shrub undergrowth, and by mixed stands of Fagus sylvatica, Picea abies and Abies alba and, to a lower extent, by Quercus petraea stands.
    Roe deer is the primary large herbivore in the study area (6–9 individuals km−2; ref. values from Autonomous Province of Trento Wildlife Office). Adult roe deer do not have natural predators in this landscape, but young fawns may be predated by red fox (Vulpes vulpes). The fine-scale food selection of roe deer in the Alps has been described as mainly dependent on shrubs or regeneration of tree species as well as a diversity of herbaceous plants from the undergrowth from spring to fall, switching between items according to the temporal trends of availability48. In the winter time, roe deer strongly select for forested environments and opportunistically for supplemental food where available22.
    Supplemental feeding management of roe deer is conducted at  > 50 distinct feeding sites within the study area (FS; Supplementary Information S1: Fig. S1) and authorized year-round within a larger zone of c. 45 km2 (official authorization: “Autonomous Province of Trento order n. 2852/2013”). FS are typically shaped as wooden hopper dispensers that provide a continuous supply of corn accessible through a tray (Fig. 1). They have been deployed and provided continuously with food (at least in fall and winter) for many years (i.e., for longer that the average lifespan of roe deer in our study area). They are managed by private hunters for roe deer but are also attended sporadically by red deer (Cervus elaphus), as well as non-target mammals (Meles meles, Sciurus vulgaris, Apodemus sp., Microtus sp.) and birds (Garrulus glandarius, Columba palumbus).
    Experimental design
    We took advantage of roe deer use of a focal, identifiable resource—the FS—to design an in situ experimental manipulation of resource availability. We created three successive experimental phases based on the availability of this resource—pre-closure, closure and post-closure—by physically managing the accessibility of food at the FS. During the closure phase, access to forage at FS was transitorily restricted by placing wooden boards obstructing the tray; boards were then removed again in the post-closure phase (Fig. 1).
    The experiment was conducted between January and April, when the use of high-nutritional supplemental feed (i.e., corn) by roe deer is the most intense17, for three consecutive winters (2017, 2018 and 2019). We implemented the experiment on 18 individuals, of which seven could be manipulated in two consecutive years—five individuals were recaptured and two collar deployments spanned two winters—leading to a total of 25 individual winter trajectories i.e., “animal-years” (21 adults: 15 females, 6 males; 4 yearlings: 2 females, 2 males; sample size n = 4, 11 and 10 in 2017, 2018 and 2019 respectively; see Supplementary Information S1 for details). Because roe deer captures at middle to low density in Alpine, heavily forested environments are rare events that have to rely on low-efficiency techniques such as box traps and because we had to account for stakeholder acceptance, repeating the experiment on single individuals in consecutive years allowed us to take full advantage of our sample.
    Roe deer were captured using baited box traps (n = 21 capture events) or net drives (n = 2), and were fitted with GPS-GSM radio collars programmed to acquire hourly GPS locations for a year, after which they were released via a drop-off mechanism. Captures and marking were performed complying with ethical and welfare rules, under authorization of the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015); all methods and experiments were carried out in accordance with the relevant guidelines and regulations. Radio-collared roe deer moved an average of 61.2 m per hour. This value of the average hourly movement distance (l) was subsequently utilized in the analyses described below.
    For all captured animals, we assumed a post-capture response in ranging behaviour. We therefore considered the first re-visitation of the capture location as a likely sign of resettlement in the original range and we used this time as onset of the experimental pre-closure phase. Although not all the individuals were manipulated at the same time, we avoided interference between capture operations and FS manipulations, and between co-occurring different manipulation phases (i.e., ensuring that co-occurring manipulations occurred in separate areas).
    During the pre-closure phase, we ensured a continuous supply of food at all managed FS—i.e., that were provisioned at least once in the month prior to the experiment—located within 500 m of each roe deer locations (known through twice-daily download of GSM-transmitted GPS relocations). At the end of the pre-closure phase, we identified the “manipulated” FS (M) for each individual as the managed FS with the largest number of locations within a radius (l) during this initial phase, and considered it as the FS to which an individual is most familiar. All other managed FS were considered as “alternate” (A) FS. During the closure phase, corn was made inaccessible at M for a duration of approximately 15 days, depending on personnel availabilities (min = 14.0 days, max = 18.1, mean = 15.5). M was then re-opened, thereby initiating the post-closure phase. During both pre- and post-closure phases, corn was available ad libitum at M. All A FS had corn available ad libitum throughout the duration of the experiment. To ensure a continuous supply of food during the experiment, field personnel visited and replenished the FS every third day. Across the experimental manipulations, we used a total of twelve distinct FS as M, and 23 distinct FS as A (mean = 4.04 A sites per animal-year, (sigma hspace{0.17em})= 1.43; of these, an average of 1.76, (sigma hspace{0.17em})= 1.13, were actually used by roe deer; see Supplementary Information S1: Table S1 for details on the identity of M and A for all animal-years). M sites were separate from A sites by an average distance of 702.5 m ((sigma hspace{0.17em})= 310.5), and M and used A sites by an averaged distance of 567.5 m ((sigma hspace{0.17em})= 235.7).
    Data preparation
    To ensure meaningful comparisons between animal-years, we homogenized the durations of each experimental phase to the minimum length of the closure phase in our sample (i.e., 14 days). Specifically, we truncated the movement data by removing initial excess positions for the pre-closure and closure phases, and terminal excess positions for the post-closure phase. GPS acquisition success was extremely high (99.57% during the experiment) and we did not interpolate missing fixes in the collected data.
    The analyses of space-use and movement behaviour were based on spatially-explicit, raw movement trajectories. The analyses of resource use, instead, relied on spatially-implicit, state time series derived from the underlying movement data. To this end, we created an initial time series, for each animal-year, by intersecting the relocations with three spatial domains: vegetation (the matrix; V), manipulated FS (M) and alternate FS (A). We converted FS locations (M and A) into areas by buffering them. To investigate the sensitivity of buffer choice we considered six buffer sizes: l (i.e., 61.2 m) multiplied by 0.5, 1, 1.5, 2, 3 and 4. We associated all locations falling outside M and A to the state V. The three-state time series was then converted into three single-state presence/absence time series.
    Preference for feeding sites
    We calculated each individual’s preference for FS (({h}_{FS})) as the relative use of FS over natural vegetation during the pre-closure phase (i.e., the proportion of GPS fixes classified as either M or A). Because preference is considered to be temporally dynamic37, we chose to evaluate ({h}_{FS}) for each year separately in case individuals were manipulated in two separate winters. This reasoning allowed to account for the influence of individual condition and of the relative quality and quantity of vegetation resources on ({h}_{FS}). We included ({h}_{FS}) in all space-use, movement, and resource use analyses described below.
    The variability of ({h}_{FS}) across animal-years was maximal when FS attendance was defined as a GPS location within a distance equal to the population mean hourly step length (l) i.e., 61.2 m from the FS (interquartile range = 0.278, mean = 0.343; Supplementary Information S2: Table S1). Accordingly, the results described below are based on this definition (see Supplementary Information S6 for a sensitivity analysis). At this scale, ({h}_{FS}) did not differ consistently between sex (mean for females = 0.346; mean for males = 0.336; t-test: p value = 0.901).
    Analysis
    We analysed how the experimental manipulation, and its interaction with both preference for FS and sex, affected roe deer space-use, movement behaviour, and resource use.
    General modelling approach
    We analysed the roe deer responses to the experiment using mixed effect models. The final fixed-effect structure was developed progressively, beginning with simple formulations and evaluating the consistency of our results to ascertain that our data could support more complex formulations. For example, regarding the analysis of home range size, we first fitted a simple function of the experimental phase (i.e., home range size ~ Phase), then evaluated a potential additive effect of preference for feeding sites (i.e., home range size ~ Phase + ({h}_{FS})), and then an interaction between the two covariates (i.e., home range size ~ Phase + ({h}_{FS})+ Phase:({h}_{FS})). We repeated this procedure when evaluating the effects of sex, and eventually, assessed the full fixed effect structure. We did not find irregularities in the behaviour of the nested models (i.e., marked changes in absolute parameter values or sign). In the full model, fixed effect terms were dropped when statistically non-significant (p value  > 0.05). We considered “animal-year” as the sampling unit to account for the fact that an individual may respond independently to manipulations in different years. The choice of an “animal-year” random effect (instead of an “animal” random effect) did not qualitatively affect our results (Supplementary Information S8).
    Space-use
    We assessed the changes of home range and core area sizes (P1.1), and space-use overlap (P1.2, P3.1) between experimental phases. We calculated utilization distributions (UD)49 for each animal-year and experimental phase using a Gaussian kernel density estimation. After visual inspection, we chose to compute the UDs at a spatial resolution of 10 m and with a fixed bandwidth set to half the average hourly movement distance (i.e., l/2 = 30.6 m).
    For home range and core area sizes, we calculated the area (in hectares) corresponding to the 95% and 50% UD contours, respectively, during each experimental phase (Phase; three levels; reference level: Pre-closure). We then analysed the log-transformed areas using a linear mixed-effect model (LMM) with five fixed effects: Phase, ({h}_{FS}), Sex (categorical predictor; reference level: Female), and two interaction terms (Phase:({h}_{FS}) and Phase:Sex). We included animal-year (ind) as random intercept.
    We estimated the space-use overlaps for three pairs of UDs—pre- and post-closure, pre-closure and closure, and closure and post-closure (Contrast; three levels; reference level: Pre-/Closure)—using the volume of intersection statistic (VI)50. VI ranges from 0 (no overlap) to 1 (complete overlap). We analysed the logit-transformed overlaps using an LMM with Contrast, hFS, Sex, Contrast:hFS and Contrast:Sex as fixed effects, and ind as random intercept.
    Movement behaviour
    We investigated the movement responses of roe deer to the experiment (P1.3) by analysing the changes in hourly step length (Euclidean distance between two successive relocations) and turning angle ({theta }_{t}) (angle between two successive movement steps). We analysed the log-transformed step length, ({s}_{t}) and, because turning angles range between (-pi) and (pi), and were symmetric around 0, the logit-transformed absolute turning angle, ({varphi }_{t}=logleft(frac{left|{theta }_{t}right|}{1-left|{theta }_{t}right|}right)). We used LMMs with Phase, ({h}_{FS}), Sex, Phase:hFS and Phase:Sex as fixed effects, and ind as random intercept. Because step length was characterized by strong serial autocorrelation at short temporal lags and at circadian periodicities (a common pattern in animal movement trajectories51), we also included step length measured at lags 1, 2 and 24 h (i.e., ({s}_{t-1},{s}_{t-2}),({s}_{t-24})) as fixed effects to reduce the autocorrelation of the model residuals.
    Resource use
    To test whether the experiment led to a transitory change in resource use (P1.4a–b, P3.2), we fitted separate mixed-effect logistic regression models to the three single-state presence/absence time series (({u}_{M,t}), ({u}_{A,t}) and ({u}_{V,t})) using Phase, ({h}_{FS}), Sex, Phase:({h}_{FS}) and Phase:Sex as fixed effects, and ind as random intercept. The pre-closure level for Phase was dropped for ({u}_{V}) to avoid circularity (({h}_{FS}=1-{{stackrel{-}{u}}_{V,t}}_{Pre-closure})). We also included the response variables measured at lags 1, 2 and 24 h (e.g., ({u}_{M,t-1},{u}_{M,t-2}),({u}_{M,t-24})) as fixed effects to reduce the autocorrelation of the model residuals. However, for the sake of conciseness and clarity, we omitted these response lags when visualizing resource use predictions. Because the model results were consistent regardless of the inclusion of the response lags (Supplementary Information S5: Tables S1, S2), this decision had no impact on the interpretation. Two animal-years were excluded from the analyses of resource use due to the absence of suitable A-state: F4-2017 did not seem to have visited any alternate FS (A) prior to the experiment; and F16-2016 had two distinct, highly-used FS during pre-closure, but only the second most visited FS could be manipulated (due to stakeholder acceptance). While the use of A was more variable when including these two outliers, the general patterns remained unchanged (Supplementary Information S5: Tables S1, S3).
    Software
    All analyses were conducted in the R environment52. We used the packages adehabitatLT and adehabitatHR53 for the spatial analyses, fitted all mixed-effect models via Maximum Likelihood with the package lme454. We obtained the p-values for the fixed effects using afex55 and coefficients of determination using MuMin56.
    Ethical statement
    All experimental protocols and data collection were approved by the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015). All experiments and methods were performed in accordance with relevant guideline and regulations. More

  • in

    Global wind patterns and the vulnerability of wind-dispersed species to climate change

    1.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    Google Scholar 
    2.
    Hampe, A. Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol. 37, 666–673 (2011).
    Google Scholar 

    3.
    Kremer, A. et al. Long‐distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15, 378–392 (2012).
    Google Scholar 

    4.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 

    5.
    Felicísimo, Á. M., Muñoz, J. & González-Solis, J. Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS ONE 3, e2928 (2008).
    Google Scholar 

    6.
    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).
    Google Scholar 

    7.
    Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
    Google Scholar 

    8.
    Smith, D. J. et al. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79, 1134–1139 (2013).
    CAS  Google Scholar 

    9.
    Austerlitz, F., Dutech, C., Smouse, P. E., Davis, F. & Sork, V. L. Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99, 193–204 (2007).
    CAS  Google Scholar 

    10.
    Bullock, J. M. & Clarke, R. T. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124, 506–521 (2000).
    CAS  Google Scholar 

    11.
    Gassmann, M. I. & Pérez, C. F. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int. J. Biometeorol. 50, 280–291 (2006).
    Google Scholar 

    12.
    Skarpaas, O. & Shea, K. Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. Am. Naturalist 170, 421–430 (2007).
    Google Scholar 

    13.
    Wang, Z. F. et al. Pollen and seed flow under different predominant winds in wind-pollinated and wind-dispersed species Engelhardia roxburghiana. Tree Genet. Genomes 12, 19 (2016).
    CAS  Google Scholar 

    14.
    Soubeyrand, S., Enjalbert, J., Sanchez, A. & Sache, I. Anisotropy, in density and in distance, of the dispersal of yellow rust of wheat: experiments in large field plots and estimation. Phytopathology 97, 1315–1324 (2007).
    CAS  Google Scholar 

    15.
    Born, C., le Roux, P. C., Spohr, C., McGeoch, M. A. & van Vuuren, B. J. Plant dispersal in the sub‐Antarctic inferred from anisotropic genetic structure. Mol. Ecol. 21, 184–194 (2012).
    Google Scholar 

    16.
    Geremew, A., Woldemariam, M. G., Kefalew, A., Stiers, I. & Triest, L. Isotropic and anisotropic processes influence fine-scale spatial genetic structure of a keystone tropical plant. AoB Plants 10, plx076 (2018).
    Google Scholar 

    17.
    Brown, J. K. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).
    CAS  Google Scholar 

    18.
    Vanschoenwinkel, B., Gielen, S., Seaman, M. & Brendonck, L. Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117, 125–134 (2008).
    Google Scholar 

    19.
    Ahmed, S., Compton, S. G., Butlin, R. K. & Gilmartin, P. M. Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc. Natl Acad. Sci. USA 106, 20342–20347 (2009).
    CAS  Google Scholar 

    20.
    Larson-Johnson, K. Field observations of Carpinus (Betulaceae) demonstrate high dispersal asymmetry and inform migration simulations with implications for times of rapid climate change. Int. J. Plant Sci. 177, 389–399 (2016).
    Google Scholar 

    21.
    Nathan, R. et al. Spread of North American wind‐dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).
    Google Scholar 

    22.
    Sorte, C. J. Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos 122, 161–170 (2013).
    Google Scholar 

    23.
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
    CAS  Google Scholar 

    24.
    Molinos, J. G., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).
    Google Scholar 

    25.
    Higgins, S. I. et al. Forecasting plant migration rates: managing uncertainty for risk assessment. J. Ecol. 91, 341–347 (2003).
    Google Scholar 

    26.
    Bullock, J. M. et al. Modelling spread of British wind‐dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).
    Google Scholar 

    27.
    Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc. R. Soc. B 276, 3081–3087 (2009).
    Google Scholar 

    28.
    Davis, H. G., Taylor, C. M., Lambrinos, J. G. & Strong, D. R. Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc. Natl Acad. Sci. USA 101, 13804–13807 (2004).
    CAS  Google Scholar 

    29.
    Dullinger, S., Dirnböck, T. & Grabherr, G. Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arct. Antarct. Alp. Res. 35, 434–441 (2003).
    Google Scholar 

    30.
    Payette, S. The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Rev. Palaeobot. Palynol. 79, 7–30 (1993).
    Google Scholar 

    31.
    Sandel, B., Monnet, A. C., Govaerts, R. & Vorontsova, M. Late Quaternary climate stability and the origins and future of global grass endemism. Ann. Bot. 119, 279–288 (2016).
    Google Scholar 

    32.
    Svenning, J. C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).
    Google Scholar 

    33.
    Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob. Ecol. Biogeogr. 16, 449–459 (2007).
    Google Scholar 

    34.
    Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058 (2010).
    Google Scholar 

    35.
    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).
    Google Scholar 

    36.
    Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D. & Hamilton, H. Multiple axes of ecological vulnerability to climate change. Glob. Change Biol. 26, 2798–2813 (2020).
    Google Scholar 

    37.
    Keeley, A. T. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).
    Google Scholar 

    38.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Timing of propagule release significantly alters the deposition area of resulting aerial dispersal. Diversity Distrib. 16, 288–299 (2010).
    Google Scholar 

    39.
    Nathan, R. et al. Long‐distance biological transport processes through the air: can nature’s complexity be unfolded in silico? Divers. Distrib. 11, 131–137 (2005).
    Google Scholar 

    40.
    Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landsc. Ecol. 27, 777–797 (2012).
    Google Scholar 

    41.
    Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc. Ecol. 23, 19–36 (2008).
    Google Scholar 

    42.
    Fernández‐López, J. & Schliep, K. rWind: download, edit and include wind data in ecological and evolutionary analysis. Ecography 42, 804–810 (2019).
    Google Scholar 

    43.
    Thompson, S. & Katul, G. Plant propagation fronts and wind dispersal: an analytical model to upscale from seconds to decades using superstatistics. Am. Naturalist 171, 468–479 (2008).
    Google Scholar 

    44.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Can mechanistically parameterised, anisotropic dispersal kernels provide a reliable estimate of wind-assisted dispersal? Ecol. Model. 222, 1673–1682 (2011).
    Google Scholar 

    45.
    Regal, P. J. Pollination by wind and animals: ecology of geographic patterns. Annu. Rev. Ecol. Syst. 13, 497–524 (1982).
    Google Scholar 

    46.
    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).
    Google Scholar 

    47.
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
    Google Scholar 

    48.
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
    Google Scholar 

    49.
    Owens, J. N. The Reproductive Biology of Lodgepole Pine Extension Note 07 (Forest Genetics Council of British Columbia, 2006).

    50.
    Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3, 55–68 (2019).
    Google Scholar 

    51.
    Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl Acad. Sci. USA 108, 11704–11709 (2011).
    CAS  Google Scholar 

    52.
    Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L. & Hamilton, D. A. Jr Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol. Monogr. 69, 375–407 (1999).
    Google Scholar 

    53.
    Wang, T., O’Neill, G. A. & Aitken, S. N. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163 (2010).
    CAS  Google Scholar 

    54.
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 

    55.
    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).
    Google Scholar 

    56.
    van Etten, J. R Package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).
    Google Scholar 

    57.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    58.
    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).
    Google Scholar 

    59.
    Little, E. L. Jr Atlas of United States Trees. Volume 1, Conifers and Important Hardwoods Miscellaneous Publication 1146 (US Department of Agriculture, 1971).

    60.
    Wang, T., Hamann, A., Yanchuk, A., O’Neill, G. A. & Aitken, S. N. Use of response functions in selecting lodgepole pine populations for future climates. Glob. Change Biol. 12, 2404–2416 (2006).
    Google Scholar 

    61.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    62.
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 

    63.
    R Core Team (2017). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/

    64.
    Kling, M. M. & Ackerly, D. D. Scripts and Data used in ‘Global Wind Patterns and the Vulnerability of Wind-Dispersed Species to Climate Change (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3860687

    65.
    Kling, M. M. Windscape R Package v.1.0.0 (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3857730 More

  • in

    Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish

    1.
    The Global Burden of Disease: 2004 Update (WHO, 2004).
    2.
    Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).
    CAS  PubMed  Google Scholar 

    3.
    Schmid-Hempel, P. Variation in immune defence as a question of evolutionary ecology. Proc. R. Soc. B. 270, 357–366 (2003).
    PubMed  Google Scholar 

    4.
    Schmid-Hempel, P. Evolutionary Parasitology (Oxford Univ. Press, 2013).

    5.
    Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc. Natl Acad. Sci. USA 110, 18360–18367 (2013).
    CAS  PubMed  Google Scholar 

    6.
    von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 12, 1089–1093 (2011).
    Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Lambrecht, B. N. & Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 18, 1076–1083 (2017).
    CAS  PubMed  Google Scholar 

    9.
    Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).
    CAS  PubMed  Google Scholar 

    10.
    Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin. Invest. 125, 2228–2233 (2015).
    PubMed  PubMed Central  Google Scholar 

    11.
    Lafferty, K. D. Biodiversity loss decreases parasite diversity: theory and patterns. Philos. Trans. R. Soc. Lond. B 367, 2814–2827 (2012).
    Google Scholar 

    12.
    Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).
    Google Scholar 

    13.
    McDade, T. W., Georgiev, A. V. & Kuzawa, C. W. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Public Health 2016, 1–16 (2016).
    PubMed  PubMed Central  Google Scholar 

    14.
    Lindstrom, K. M., Foufopoulos, J., Parn, H. & Wikelski, M. Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proc. R. Soc. B 271, 1513–1519 (2004).
    PubMed  Google Scholar 

    15.
    Mayer, A., Mora, T., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).
    CAS  PubMed  Google Scholar 

    16.
    Scharsack, J. P., Kalbe, M., Harrod, C. & Rauch, G. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R. Soc. B 274, 1523–1532 (2007).
    PubMed  Google Scholar 

    17.
    Kaczorowski, K. J. et al. Continuous immunotypes describe human immune variation and predict diverse responses. Proc. Natl Acad. Sci. USA 114, E6097–E6106 (2017).
    CAS  PubMed  Google Scholar 

    18.
    Herman, A. et al. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol. Ecol. 27, 4397–4416 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Fumey, J. et al. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol. Biol. 18, 43 (2018).
    PubMed  PubMed Central  Google Scholar 

    20.
    Gibert, J. & Deharveng, L. Subterranean ecosystems: a truncated functional biodiversity. BioScience 52, 473–481 (2002).

    21.
    Tabin, J. A. et al. Temperature preference of cave and surface populations of Astyanax mexicanus. Dev. Biol. 441, 338–344 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811 (2017).
    PubMed  PubMed Central  Google Scholar 

    23.
    Trama, A. M. et al. Lymphocyte phenotypes in wild-caught rats suggest potential mechanisms underlying increased immune sensitivity in post-industrial environments. Cell Mol. Immunol. 9, 163–174 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L. & Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc. Natl Acad. Sci. USA 112, 9668–9673 (2015).
    CAS  PubMed  Google Scholar 

    25.
    Xiong, S., Krishnan, J., Peuss, R. & Rohner, N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev. Biol. 441, 297–304 (2018).
    CAS  PubMed  Google Scholar 

    26.
    Wiens, G. D. & Vallejo, R. L. Temporal and pathogen-load dependent changes in rainbow trout (Oncorhynchus mykiss) immune response traits following challenge with biotype 2 Yersinia ruckeri. Fish Shellfish Immunol. 29, 639–647 (2010).
    CAS  PubMed  Google Scholar 

    27.
    Krishnan, J. et al. Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression. J. Exp. Zool. B https://doi.org/10.1002/jez.b.22933 (2020).

    28.
    Moller, A. M., Korytar, T., Kollner, B., Schmidt-Posthaus, H. & Segner, H. The teleostean liver as an immunological organ: intrahepatic immune cells (IHICs) in healthy and benzo[a]pyrene challenged rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 46, 518–529 (2014).
    CAS  PubMed  Google Scholar 

    29.
    Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238–1246 (2003).
    CAS  PubMed  Google Scholar 

    30.
    Stockdale, W. T. et al. Heart regeneration in the Mexican cavefish. Cell Rep. 25, 1997–2007 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Ramsey, S. et al. Transcriptional noise and cellular heterogeneity in mammalian macrophages. Philos. Trans. R. Soc. Lond. B. 361, 495–506 (2006).
    CAS  Google Scholar 

    32.
    Ogryzko, N. V., Renshaw, S. A. & Wilson, H. L. The IL-1 family in fish: swimming through the muddy waters of inflammasome evolution. Dev. Comp. Immunol. 46, 53–62 (2014).

    33.
    Wittamer, V., Bertrand, J. Y., Gutschow, P. W. & Traver, D. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117, 7126–7135 (2011).
    CAS  PubMed  Google Scholar 

    34.
    Sunyer, J. O. Evolutionary and functional relationships of B cells from fish and mammals: Insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect. Disord. Drug Targets 12, 200–212 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Lugo-Villarino, G. et al. Identification of dendritic antigen-presenting cells in the zebrafish. Proc. Natl Acad. Sci. USA 107, 15850–15855 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Haugland, G. T. et al. Phagocytosis and respiratory burst activity in lumpsucker (Cyclopterus lumpus L.) leucocytes analysed by flow cytometry. PLoS ONE 7, e47909 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Lieschke, G. J. & Trede, N. S. Fish immunology. Curr. Biol. 19, R678–R682 (2009).
    CAS  PubMed  Google Scholar 

    38.
    Balla, K. M. et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116, 3944–3954 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Bolnick, D. I., Shim, K. C., Schmerer, M. & Brock, C. D. Population-specific covariation between immune function and color of nesting male threespine stickleback. PLoS ONE 10, e0126000 (2015).
    PubMed  PubMed Central  Google Scholar 

    40.
    Peuß, R. et al. Label-independent flow cytometry and unsupervised neural network method for de novo clustering of cell populations. Preprint at bioRxiv https://doi.org/10.1101/603035 (2020).

    41.
    van der Meer, W., Scott, C. S. & de Keijzer, M. H. Automated flagging influences the inconsistency and bias of band cell and atypical lymphocyte morphological differentials. Clin. Chem. Lab. Med. 42, 371–377 (2004).
    PubMed  Google Scholar 

    42.
    Getz, G. S. Thematic review series: the immune system and atherogenesis. Bridging the innate and adaptive immune systems. J. Lipid Res. 46, 619–622 (2005).
    CAS  PubMed  Google Scholar 

    43.
    Wan, F. et al. Characterization of gammadelta T cells from zebrafish provides insights into their important role in adaptive humoral immunity. Front. Immunol. 7, 675 (2016).
    PubMed  Google Scholar 

    44.
    Shilpi, Paul,S. & Lal, G. Role of gamma-delta (gammadelta) T cells in autoimmunity. J. Leukoc. Biol. 97, 259–271 (2015).
    PubMed  Google Scholar 

    45.
    Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).
    CAS  PubMed  Google Scholar 

    47.
    Fay, N. S., Larson, E. C. & Jameson, J. M. Chronic Inflammation and gammadelta T. Cells Front. Immunol. 7, 210 (2016).
    PubMed  Google Scholar 

    48.
    Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).
    CAS  PubMed  Google Scholar 

    49.
    Bolli, N. et al. Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 115, 3329–3340 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Stachura, D. L. et al. Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118, 1274–1282 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Reavie, L. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat. Immunol. 11, 207–215 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).
    CAS  PubMed  Google Scholar 

    53.
    Cheng, J. et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87, 479–490 (1996).
    CAS  PubMed  Google Scholar 

    54.
    Anjos-Afonso, F. et al. CD34(–) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13, 161–174 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094–2097 (1996).
    CAS  PubMed  Google Scholar 

    57.
    Naito, Y. et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell Biol. 27, 3008–3022 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Laszlo, G., Hathcock, K. S., Dickler, H. B. & Hodes, R. J. Characterization of a novel cell-surface molecule expressed on subpopulations of activated T and B cells. J. Immunol. 150, 5252–5262 (1993).
    CAS  PubMed  Google Scholar 

    59.
    Fänge, R. & Nilsson, S. The fish spleen: structure and function. Experientia 41, 152–158 (1985).
    PubMed  Google Scholar 

    60.
    Steinel, N. C. & Bolnick, D. I. Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front. Immunol. 8, 827 (2017).
    PubMed  PubMed Central  Google Scholar 

    61.
    Cervenak, L., Magyar, A., Boja, R. & Laszlo, G. Differential expression of GL7 activation antigen on bone marrow B cell subpopulations and peripheral B cells. Immunol. Lett. 78, 89–96 (2001).
    CAS  PubMed  Google Scholar 

    62.
    Secombes, C. J., Wang, T. & Bird, S. The interleukins of fish. Dev. Comp. Immunol. 35, 1336–1345 (2011).
    CAS  PubMed  Google Scholar 

    63.
    Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 e114 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    66.
    Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Mitchell, R. G., Russell, W. H. & Elliott, W. R. Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution (Texas Tech Press, 1977).

    68.
    Espinasa, L. et al. A new cave locality for Astyanax cavefish in Sierra de El Abra, Mexico. Subterr. Biol. 26, 39–53 (2018).
    Google Scholar 

    69.
    Embryo Surface Sanitation (Egg Bleaching) Protocol https://zebrafish.org/wiki/protocols/ess (ZIRC, 2019).

    70.
    Peuß, R., Eggert, H., Armitage, S. A. & Kurtz, J. Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues. Proc. R. Soc. B 282, 20152041 (2015).
    PubMed  Google Scholar 

    71.
    Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36e (2002).
    Google Scholar 

    72.
    Zhang, Y. A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Rowe, R. G., Mandelbaum, J., Zon, L. I. & Daley, G. Q. Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18, 707–720 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Stachura, D. L. et al. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122, 3918–3928 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    de Jong, J. L. & Zon, L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Ann. Rev. Genet. 39, 481–501 (2005).
    PubMed  Google Scholar 

    76.
    Athanasiadis, E. I. et al. Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis. Nat. Commun. 8, 2045 (2017).
    PubMed  PubMed Central  Google Scholar 

    77.
    Zeng, A. et al. Prospectively isolated tetraspanin(+) neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173, 1593–1608 (2018).
    CAS  PubMed  Google Scholar 

    78.
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    CAS  Google Scholar 

    79.
    Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).
    PubMed  PubMed Central  Google Scholar 

    80.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    81.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    A seawater-sulfate origin for early Earth’s volcanic sulfur

    1.
    Farquhar, J., Zerkle, A. L. & Bekker, A. in The Atmosphere – History 2nd edn, Vol. 6 (ed. Farquhar, J.) 91–138 (Elsevier, 2014).
    2.
    Lyons, T. W., Reinhard, C. T. & Planesky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
    Google Scholar 

    3.
    Holland, H. D. Volcanic gases, black smokers and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).
    Google Scholar 

    4.
    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).
    Google Scholar 

    5.
    Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. R. Soc. A 376, 2017048 (2018).
    Google Scholar 

    6.
    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).
    Google Scholar 

    7.
    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B. 363, 903–915 (2006).
    Google Scholar 

    8.
    Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 228–232 (2011).
    Google Scholar 

    9.
    Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
    Google Scholar 

    10.
    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).
    Google Scholar 

    11.
    Symonds, R. B., Rose, W. I., Bluth, G. J. S. & Gerlach, T. M. in Volatiles in Magmas Vol. 30 (eds Caroll, M. R. & Halloway, J. R.) 1–66 (Mineralogical Society of America, 1994).

    12.
    Oppenheimer, C., Fischer, T. P. & Scaillet, B. in The Crust 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 111–179 (Elsevier, 2014).

    13.
    National Academies of Sciences, Engineering and Medicine. Volcanic Eruptions and their Repose, Unrest, Precursors, and Timing (The National Academy Press, 2017).

    14.
    Drummond, S. E. Jr Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation. PhD thesis, Pennsylvania State Univ. (1981).

    15.
    German, C. R. & Von Damm, K. L. in The Oceans and Marine Geochemistry Vol. 6 (ed. Elderfield, H.) 181–222 (Elsevier, 2006).

    16.
    Giggenbach, W. F. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161 (1987).
    Google Scholar 

    17.
    Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).
    Google Scholar 

    18.
    Ohmoto, H. in The Precambrian Earth: Tempos and Events Vol. 12 (eds Erickson, P. G. et. al.) 361–387 (Elsevier, 2004).

    19.
    Ohmoto, H. et al. Oxygen, iron and sulfur geochemical cycles on early Earth: paradigms and contradictions. Geol. Soc. Am. Spec. Pap. 504, 55–95 (2014).
    Google Scholar 

    20.
    Burnham, C. W. & Ohmoto, H. in Granitic Magmatism and Related Mineralization Vol. 8 (eds. Ishihara, S. & Takenouchi, S.) 1–11 (1980).

    21.
    Berry, A. J. et al. A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet. Sci. Lett. 483, 114–123 (2018).
    Google Scholar 

    22.
    Carroll, M. R. & Webster, J. D. in Volatiles in Magmas Vol. 30 (eds Caroll, M. R. & Halloway, J. R.) 231–280 (Mineralogical Society of America, 1994).

    23.
    Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source region? Contrib. Mineral. Petrol. 106, 129–141 (1991).
    Google Scholar 

    24.
    Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).
    Google Scholar 

    25.
    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).
    Google Scholar 

    26.
    Richards, J. P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallurgy. Lithos 233, 27–45 (2015).
    Google Scholar 

    27.
    Chappell, B. W. & White, A. J. R. Two contrasting granite types. Pac. Geol. 8, 173–174 (1974).
    Google Scholar 

    28.
    Ishihara, S. The magnetite-series and ilmenite-series granitic rocks. Min. Geol. 27, 291–305 (1977).
    Google Scholar 

    29.
    Savarino, J. et al. UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys. Res. Lett. 30, 2131 (2003).
    Google Scholar 

    30.
    Hattori, S. et al. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism. Proc. Natl Acad. Sci. USA 110, 17661–17656 (2019).
    Google Scholar 

    31.
    Whitehill, A. R., Jiang, B., Guo, H. & Ono, S. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospheric aerosols. Atmos. Chem. Phys. 15, 1843–1864 (2015).
    Google Scholar 

    32.
    Sasaki, A. & Ishihara, S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan. Contrib. Mineral. Petrol. 68, 107–115 (1979).
    Google Scholar 

    33.
    Alt, J. C., Shanks, W. C. & Jackson, M. C. Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett. 119, 477–494 (1993).
    Google Scholar 

    34.
    Ohmoto, H. et al. Chemical processes of Kuroko formation. Econ. Geol. Mon. 5, 570–604 (1983).

    35.
    Ohmoto, H. Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol. Rev. 10, 135–177 (1996).
    Google Scholar 

    36.
    Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) 517–611 (Wiley, 1997).

    37.
    Kishima, N. A thermodynamic study on the pyrite–pyrrhotite–magnetite–water system at 300–500 °C with relevance to the fugacity/concentration quotient of aqueous H2S. Geochim. Cosmochim. Acta 53, 2143–2155 (1989).
    Google Scholar 

    38.
    Schoonen, M. A. A. & Barnes, H. L. Mechanisms of pyrite and marcasite formation from solutions. III. Hydrothermal processes. Geochim. Cosmochim. Acta 55, 3491–3504 (1991).
    Google Scholar 

    39.
    Graham, U. M. & Ohmoto, H. Experimental study of formation mechanisms of hydrothermal pyrite. Geochim. Cosmochim. Acta 58, 2187–2202 (1994).
    Google Scholar 

    40.
    Kerrich, R. & Said, N. Extreme positive Ce anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province: oxygenated marine bottom waters. Chem. Geol. 280, 232–241 (2011).
    Google Scholar 

    41.
    Kerrich, R., Said, N., Manikyamba, C. & Wyman, D. Sampling oxygenated Archean hydrosphere: implications from fractionations of Th/U and Ce/Ce* in hydrothermally altered volcanic sequences. Gondwana Res. 23, 506–525 (2013).
    Google Scholar 

    42.
    van Keken, P. E., Kiefer, B. & Peacock, S. M. High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosyst. 3, 1056 (2002).
    Google Scholar 

    43.
    Hyndman, R. D. & Peacock, S. M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432 (2003).
    Google Scholar 

    44.
    Tomkins, A. G. & Evans, K. A. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth Planet. Sci. Lett. 428, 73–83 (2015).
    Google Scholar 

    45.
    Scaillet, B., Clemente, B., Evans, B. & Pichavant, M. Redox control of sulfur degassing in silicic magmas. J. Geophys. Res. 103, 23937–23949 (1998).
    Google Scholar 

    46.
    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusions and volcanic gas data. J. Volcanol. 140, 217–240 (2005).
    Google Scholar 

    47.
    Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).
    Google Scholar 

    48.
    Ishihara, S. et al. in Evolution of Early Earth’s Atmosphere, Hydrosphere and Biosphere—Constraints from Ore Deposits Vol. 198 (eds Kesler, S. E. & Ohmoto, H.) 67–80 (Geological Society of America, 2006).

    49.
    Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 2017, 1602365 (2017).
    Google Scholar 

    50.
    Delano, J. W. Redox history of the Earth’s interior since ~3,900 Ma: implications for prebiotic molecules. Orig. Life Evol. Biosphere 31, 311–341 (2001).
    Google Scholar 

    51.
    Nicklas, R. W., Puchtel, I. S. & Ash, R. D. Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochim. Cosmochim. Acta 222, 447–446 (2018).
    Google Scholar 

    52.
    Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).
    Google Scholar 

    53.
    Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79–83 (2011).
    Google Scholar 

    54.
    Watanabe, Y., Farquhar, J. & Ohmoto, H. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324, 370–373 (2008).
    Google Scholar 

    55.
    Oduro, H. et al. Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proc. Natl Acad. Sci. USA 108, 17635–17638 (2011).
    Google Scholar 

    56.
    Ohmoto et al. (Bio)geochemical cycles of S, C, Fe, and O on the hotter Archean Earth. Goldschmidt Abstr. 2018, abstr. 1913 (2018).

    57.
    Ohmoto, H., Watanabe, Y. & Kumazawa, K. Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billion years ago. Nature 429, 395–399 (2004).
    Google Scholar 

    58.
    Finlayson-Pitts, B. J. & Pitts, J. N. Chemistry of the Upper and Lower Atmosphere (Academic Press, 1999).

    59.
    Seccombe, P. K. Sulphur isotope and trace metal composition of stratiform sulphides as an ore guide in the Canadian Shield. J. Geochem. Explor. 8, 117–137 (1977).
    Google Scholar 

    60.
    Jamieson, J. W., Wing, B. A., Farquhar, J. & Hamington, M. D. Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat. Geosci. 6, 61–64 (2013).
    Google Scholar 

    61.
    Vaughan, D. J. & Craig, J. R. in Geochemistry of Hydrothermal Ore Deposits 2nd edn (ed. Barnes, H. L.) 367–434 (Wiley, 1979).

    62.
    Mysen, B. & Boettcher, A. L. Melting of a hydrous mantle. I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol. 16, 520–548 (1975).
    Google Scholar 

    63.
    Gaetani, G. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998).
    Google Scholar 

    64.
    Henderson, P. & Henderson, G. M. The Cambridge Handbook of Earth Science Data (Cambridge Univ. Press, 2009).

    65.
    Deines, P. & Harris, J. W. Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim. Cosmochim. Acta 59, 3173–3188 (1995).
    Google Scholar 

    66.
    Rudnick, R. L., Eldridge, C. S. & Bulanova, G. P. Diamond growth history from in situ measurement of Pb and S isotopic compositions of sulfide inclusions. Geology 21, 13–16 (1993).
    Google Scholar 

    67.
    Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298, 2369–2371 (2002).
    Google Scholar 

    68.
    Hickman, A. H. Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Isl. Arc 21, 1–31 (2012).
    Google Scholar 

    69.
    van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. in Earth’s Oldest Rocks (eds van Kranendonk, M. J. et al.) 307–337 (Elsevier, 2007). More

  • in

    Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins

    1.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.
    CAS  PubMed  Google Scholar 
    2.
    Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol. 2014;68:195–215.
    CAS  PubMed  Google Scholar 

    3.
    Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.
    CAS  PubMed  Google Scholar 

    4.
    Engelstädter J, Hurst GDD. The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst. 2009;40:127–49.
    Google Scholar 

    5.
    Ma WJ, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol. 2017;30:868–88.
    PubMed  Google Scholar 

    6.
    Bondy EC, Hunter MS. Sex ratios in the haplodiploid herbivores, aleyrodidae and thysanoptera: a review and tools for study. Adv Insect Physiol. 2019;56:251–81.
    Google Scholar 

    7.
    Hunter MS, Perlman SJ, Kelly SE. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc Natl Acad Sci USA. 2003;270:2185–90.
    Google Scholar 

    8.
    Beckmann JF, Ronau JA, Hochstrasser MA. Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2017;2:17007.
    PubMed  PubMed Central  Google Scholar 

    9.
    Harumoto T, Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature 2018;557:252–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA. 2010;107:769–74.
    CAS  PubMed  Google Scholar 

    11.
    Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol. 2014;80:5844–53.
    PubMed  PubMed Central  Google Scholar 

    12.
    Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio . 2015;6:e01732–15.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Snyder AK, Rio RVM. ‘Wigglesworthia morsitans’ folate (vitamin B9) biosynthesis contributes to tsetse host fitness. Appl Environ Microbiol. 2015;81:5375–86.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:676–87.
    PubMed  Google Scholar 

    15.
    Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol. 2002;11:2123–35.
    CAS  PubMed  Google Scholar 

    16.
    Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–89.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, et al. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 2008;22:2591–9.
    CAS  PubMed  Google Scholar 

    18.
    Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2012;29:3781–92.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Skaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol. 2010;10:142.
    PubMed  PubMed Central  Google Scholar 

    20.
    McCutcheon JP, Von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21:1366–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013;153:1567–78.
    CAS  PubMed  Google Scholar 

    22.
    Koga R, Meng XY, Tsuchida T, Fukatsu T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci USA. 2012;109:E1230–E1237.
    CAS  PubMed  Google Scholar 

    23.
    Fukatsu T, Nikoh N. Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl Environ Microbiol. 1998;64:3599–606.
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA. 2009;106:9063–8.
    CAS  PubMed  Google Scholar 

    25.
    Rao Q, Wang S, Su YL, Bing XL, Liu SS, Wang XW. Draft genome sequence of ‘Candidatus Hamiltonella defensa’ an endosymbiont of the whitefly Bemisia tabaci. J Bacteriol. 2012;194:3558.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Xue J, Zhou X, Zhang CX, Yu LL, Fan HW, Wang Z, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014;15:521.
    PubMed  PubMed Central  Google Scholar 

    27.
    Santos-Garcia D, Juravel K, Freilich S, Zchori-Fein E, Latorre A, Moya A, et al. To B or not to B: comparative genomics suggests Arsenophonus as a source of B vitamins in whiteflies. Front Microbiol. 2018;9:2254–70.
    PubMed  PubMed Central  Google Scholar 

    28.
    Ouvrard D, Martin JH. The whiteflies: taxonomic checklist of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). 2019. http://www.hemiptera-databases.org/whiteflies/.

    29.
    Yang P. The greenhouse whiteflies and plant quarantine. Chin Bull Entomol. 1981;18:69–71.
    Google Scholar 

    30.
    Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science . 2007;318:1769–72.
    CAS  PubMed  Google Scholar 

    31.
    Zchori-Fein E, Lahav T, Freilich S. Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front Microbiol. 2014;5:310.
    PubMed  PubMed Central  Google Scholar 

    32.
    Luan JB, Shan HW, Isermann P, Huang JH. Cellular and molecular remodelling of a host cell for vertical transmission of bacterial symbionts. Proc R Soc B. 2016;283:20160580.
    PubMed  Google Scholar 

    33.
    Luan JB, Sun XP, Fei ZJ, Douglas AE. Maternal inheritance of a single somatic animal cell displayed by the bacteriocyte in the whitefly Bemisia tabaci. Curr Biol. 2018;28:459–65.
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Shan HW, Luan JB, Liu YQ, Douglas AE, Liu SS. The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. Proc R Soc B. 2019;286:20191677.
    CAS  PubMed  Google Scholar 

    35.
    Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genom. 2015;16:226.
    Google Scholar 

    36.
    Scott IAW, Workman PJ, Drayton GM, Burnip GM. First record of Bemisia tabaci biotype Q in New Zealand. N Z Plant Prot. 2007;60:264–70.
    CAS  Google Scholar 

    37.
    Qin L, Pan LL, Liu SS. Further insight into reproductive incompatibility between putative cryptic species of the Bemisia tabaci whitefly complex. Insect Sci. 2016;23:215–24.
    CAS  PubMed  Google Scholar 

    38.
    Xu XR, Li NN, Bao XY, Douglas AE, Luan JB. Patterns of host cell inheritance in the bacterial symbiosis of whiteflies. Insect Sci. 2019; https://doi.org/10.1111/1744-7917.12708.

    39.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.
    CAS  PubMed  Google Scholar 

    40.
    Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol. 2006;72:3646–52.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Hadjistylli M, Schwartz SA, Brown JK, Roderick GK. Isolation and characterization of nine microsatellite loci from Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. J Insect Sci. 2014;14:148.
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Bondy EC, Hunter MS. Determining the egg fertilization rate of Bemisia tabaci using a cytogenetic technique. J Vis Exp. 2019;https://doi.org/10.3791/59213.

    43.
    Ankrah NYD, Luan JB, Douglasa AE. Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling. J Bacteriol 2017;199:e00872–16.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Ren FR, Bai B, Hong JS, Huang YZ, Luan JB. A microbiological assay for biotin determination in insects. Insect Sci. 2020; https://doi.org/10.1111/1744-7917.12827.

    45.
    Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc R Soc B. 2014;281:1838.
    Google Scholar 

    46.
    Duron O, Morel O, Noël V, Buysse M, Binetruy F, Lancelot R, et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr Biol. 2018;28:1896–902.
    CAS  PubMed  Google Scholar 

    47.
    Pant NC, Fraenkel G. The function of the symbiotic yeasts of two insect species, Lasioderma serricorne F. and Stegobium (Sitodrepa) paniceum L. Science. 1950;112:498–500.
    CAS  PubMed  Google Scholar 

    48.
    Byrne DN, Bellows TS Jr. Whitefly biology. Annu Rev Entomol. 1991;36:431–57.
    Google Scholar 

    49.
    Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity. 2009;102:365–71.
    CAS  PubMed  Google Scholar 

    50.
    Ma WJ, Pannebakker BA, van de Zande L, Schwander T, Wertheim B, Beukeboom LW. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp. BMC Evol Biol. 2015;15:84.
    PubMed  PubMed Central  Google Scholar 

    51.
    Sloan DB, Moran NA. The evolution of genomic instability in the obligate endosymbionts of whiteflies. Genome Biol Evol. 2013;5:783–93.
    PubMed  PubMed Central  Google Scholar 

    52.
    Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan JB, et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016;14:110.
    PubMed  PubMed Central  Google Scholar 

    53.
    Luan JB, Chen W, Hasegawa DK, Simmons A, Wintermantel WM, Ling KS, et al. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol. 2015;7:2635–47.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Russell JA, Latorre A, Sabater-Muñoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2003;12:1061–75.
    CAS  PubMed  Google Scholar 

    55.
    Manzano-Marı́n A, Coeur d’acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 2020;14:259–73.
    Google Scholar 

    56.
    Ayoubi A, Talebi AA, Fathipour Y, Mehrabadi M. Coinfection of the secondary symbionts, Hamiltonella defensa and Arsenophonus sp. contribute to the performance of the major aphid pest, Aphis gossypii (Hemiptera: Aphididae). Insect Sci. 2020;27:86–98.
    PubMed  Google Scholar 

    57.
    Thao MLL, Baumann P. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol. 2004;48:140–4.
    CAS  PubMed  Google Scholar 

    58.
    Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143.
    PubMed  PubMed Central  Google Scholar 

    59.
    Nováková E, Husník F, Šochová E, Hypša V. Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol. 2015;81:6189–99.
    PubMed  PubMed Central  Google Scholar 

    60.
    Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.
    CAS  PubMed  Google Scholar 

    61.
    Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 2006;4:e188.
    PubMed  PubMed Central  Google Scholar 

    62.
    McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104:19392–7.
    CAS  PubMed  Google Scholar 

    63.
    McCutcheon JP, McDonald BR, Moran NA. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 2009;106:15394–9.
    CAS  PubMed  Google Scholar 

    64.
    Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng XY, et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc Natl Acad Sci USA. 2018;115:E5970–E5979.
    CAS  PubMed  Google Scholar 

    65.
    Kapantaidaki DE, Ovcarenko I, Fytrou N, Knott KE, Bourtzis K, Tsagkarakou A. Low levels of mitochondrial DNA and symbiont diversity in the worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). J Hered. 2014;106:80–92.
    PubMed  Google Scholar 

    66.
    Douglas AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 2017;23:65–69.
    PubMed  Google Scholar 

    67.
    Smykal V, Raikhel AS. Nutritional control of insect reproduction. Curr Opin Insect Sci. 2015;11:31–38.
    PubMed  PubMed Central  Google Scholar 

    68.
    Wheeler D. The role of nourishment in oogenesis. Ann Rev Entomol. 1996;41:407–31.
    CAS  Google Scholar 

    69.
    Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science. 2011;332:254–6.
    CAS  PubMed  Google Scholar  More