in

A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism

  • 1.

    Baross, J. A. & Hoffman, S. E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph. 15, 327–345 (1985).

    • CAS
    • Google Scholar
  • 2.

    McCollom, T. M. Abiotic methane formation during experimental serpentinization of olivine. Proc. Natl Acad. Sci. USA 113, 13965–13970 (2016).

  • 3.

    McDermott, J. M., Seewald, J. S., German, C. R. & Sylva, S. P. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl Acad. Sci. USA 112, 7668–7672 (2015).

  • 4.

    Ménez, B. et al. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564, 59–63 (2018).

    • PubMed
    • Google Scholar
  • 5.

    Klein, F. & Bach, W. Fe-Ni-Co-O-S phase relations in peridotite–seawater interactions. J. Petrol. 50, 37–59 (2009).

    • CAS
    • Google Scholar
  • 6.

    Martin, W. F. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. B 362, 1887–1925 (2007).

    • CAS
    • Google Scholar
  • 7.

    Preiner, M. et al. Serpentinization: connecting geochemistry, ancient metabolism and industrial hydrogenation. Life 8, 41 (2018).

  • 8.

    Sleep, N. H., Bird, D. K. & Pope, E. C. Serpentinite and the dawn of life. Philos. Trans. R. Soc. B 366, 2857–2869 (2011).

    • CAS
    • Google Scholar
  • 9.

    Schrenk, M. O., Brazelton, W. J. & Lang, S. Q. Serpentinization, carbon, and deep life. Rev. Miner. Geochem. 75, 575–606 (2013).

    • CAS
    • Google Scholar
  • 10.

    Arndt, N. T. & Nisbet, E. G. Processes on the young Earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 40, 521–549 (2012).

    • CAS
    • Google Scholar
  • 11.

    Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).

  • 12.

    Müller, V., Chowdhury, N. P. & Basen, M. Electron bifurcation: a long-hidden energy-coupling mechanism. Annu. Rev. Microbiol. 72, 331–353 (2018).

    • PubMed
    • Google Scholar
  • 13.

    Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008).

  • 14.

    Sousa, F. L. & Martin, W. F. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochim. Biophys. Acta 1837, 964–981 (2014).

  • 15.

    Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

  • 16.

    Huber, C. & Wächtershäuser, G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276, 245–248 (1997).

  • 17.

    He, C., Tian, G., Liu, Z. & Feng, S. A mild hydrothermal route to fix carbon dioxide to simple carboxylic acids. Org. Lett. 12, 649–651 (2010).

  • 18.

    Varma, S. J., Muchowska, K. B., Chatelain, P. & Moran, J. Native iron reduces CO2 to intermediates and endproducts of the acetyl-CoA pathway. Nat. Ecol. Evol. 2, 1019–1024 (2018).

  • 19.

    Roldan, A. et al. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Chem. Commun. 51, 7501–7504 (2015).

    • CAS
    • Google Scholar
  • 20.

    Rajendran, S. & Nasir, S. Hydrothermal altered serpentinized zone and a study of Ni-magnesioferrite–magnetite–awaruite occurrences in Wadi Hibi, Northern Oman Mountain: discrimination through ASTER mapping. Ore Geol. Rev. 62, 211–226 (2014).

    • Google Scholar
  • 21.

    Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London 154, 377–402 (1997).

  • 22.

    Rickard, D. & Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007).

  • 23.

    McCollom, T. M. & Seewald, J. S. Serpentinites, hydrogen, and life. Elements 9, 129–134 (2013).

    • CAS
    • Google Scholar
  • 24.

    Hunger, S. & Benning, L. G. Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem. Trans. 8, 1 (2007).

  • 25.

    Findlay, A. J. et al. Iron and sulfide nanoparticle formation and transport in nascent hydrothermal vent plumes. Nat. Commun. 10, 1597 (2019).

  • 26.

    Schmitt-Kopplin, P. et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl Acad. Sci. USA 107, 2763–2768 (2010).

  • 27.

    Dayhoff, M. O. & Eck, R. V. Evolution of the structure of ferredoxin based on surviving relics of primitive amino acid sequences. Science 152, 363–366 (1966).

    • PubMed
    • Google Scholar
  • 28.

    White, L. M., Bhartia, R., Stucky, G. D., Kanik, I. & Russell, M. J. Mackinawite and greigite in ancient alkaline hydrothermal chimneys: identifying potential key catalysts for emergent life. Earth Planet. Sci. Lett. 430, 105–114 (2015).

    • CAS
    • Google Scholar
  • 29.

    Kelley, D. S. et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412, 145–149 (2001).

  • 30.

    Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491 (2002).

    • CAS
    • Google Scholar
  • 31.

    Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S. & Lilley, M. D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 74, 941–952 (2010).

    • CAS
    • Google Scholar
  • 32.

    Lang, S. Q. et al. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field. Sci. Rep. 8, 755 (2018).

  • 33.

    Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).

    • Google Scholar
  • 34.

    Horita, J. & Berndt, M. E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Sci. Rep. 285, 1055–1057 (1999).

    • CAS
    • Google Scholar
  • 35.

    Schuchmann, K. & Müller, V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382–1385 (2013).

  • 36.

    Eickenbusch, P. et al. Origin of short-chain organic acids in serpentinite mud volcanoes of the Mariana convergent margin. Front. Microbiol. 10, 1729 (2019).

  • 37.

    Etiope, G. & Schoell, M. Abiotic gas: atypical, but not rare. Elements. 10, 291–296 (2014).

    • CAS
    • Google Scholar
  • 38.

    McCollom, T. M. & Seewald, J. S. Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate. Geochim. Cosmochim. Acta 67, 3625–3644 (2003).

    • CAS
    • Google Scholar
  • 39.

    McCollom, T. M. & Seewald, J. S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243, 74–84 (2006).

    • CAS
    • Google Scholar
  • 40.

    McCollom, T. M. & Seewald, J. S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65, 3769–3778 (2001).

    • CAS
    • Google Scholar
  • 41.

    Menon, S. & Ragsdale, S. W. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase. Biochemistry 35, 15814–15821 (1996).

  • 42.

    Jeoung, J.-H. & Dobbek, H. Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase. Conserv. Exhib. 318, 1461–1464 (2007).

    • CAS
    • Google Scholar
  • 43.

    Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R. & Meyer, O. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293, 1281–1285 (2001).

  • 44.

    Chabrière, E. et al. Crystal structures of the key anaerobic enzyme pyruvate ferredoxin oxidoreductase free and in complex with pyruvate. Nat. Struct. Biol. 6, 182–190 (1999).

    • PubMed
    • Google Scholar
  • 45.

    Volbeda, A. et al. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580–587 (1995).

  • 46.

    Martin, W. F. Carbon-metal bonds: rare and primordial in metabolism. Trends Biochem. Sci. 44, 807–818 (2019).

  • 47.

    Buckel, W. & Thauer, R. K. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+(Rnf) as electron acceptors: a historical review. Front. Microbiol. 9, 401 (2018).

  • 48.

    Vasiliadou, R., Dimov, N., Szita, N., Jordan, S. & Lane, N. Possible mechanisms of CO2 reduction by H2 via prebiotic vectorial electrochemistry. Interface Focus 9, 20190073 (2018).

    • Google Scholar
  • 49.

    Kaufmann, M. On the free energy that drove primordial anabolism. Int. J. Mol. Sci. 10, 1853–1871 (2009).

  • 50.

    Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

  • 51.

    Lane, N. & Martin, W. F. The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012).

  • 52.

    Jordan, S. F., Nee, E. & Lane, N. Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide. Interface Focus 9, 20100067 (2019).

    • Google Scholar
  • 53.

    Jordan, S. F. et al. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 3, 1705–1714 (2019).

    • PubMed
    • Google Scholar
  • 54.

    Kitadai, N. et al. Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Sci. Adv. 5, eaav7848 (2019).

  • 55.

    Muchowska, K. B. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).

  • 56.

    Lovley, D. R. & Phillips, E. J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51, 683–689 (1986).

  • 57.

    Igarashi, K., Yamamura, Y. & Kuwabara, T. Natural synthesis of bioactive greigite by solid–gas reactions. Geochim. Cosmochim. Acta 191, 47–57 (2016).

    • CAS
    • Google Scholar
  • 58.

    Kato, S., Yumoto, I. & Kamagata, Y. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl. Environ. Microbiol. 81, 67–73 (2015).

    • PubMed
    • Google Scholar
  • 59.

    Mayumi, D. et al. Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. Nat. Commun. 4, 1998 (2013).

  • 60.

    Deng, X., Chan, C. K. & Tüysüz, H. Spent tea leaf templating of cobalt-based mixed oxide nanocrystals for water oxidation. ACS Appl. Mater. Interfaces 8, 32488–32495 (2016).

  • 61.

    Yu, M., Moon, G., Bill, E. & Tüysüz, H. Optimizing Ni−Fe oxide electrocatalysts for oxygen evolution reaction by using hard templating as a toolbox. ACS Appl. Energy Mater. 2, 1199–1209 (2019).

    • CAS
    • Google Scholar
  • 62.

    Hanselmann, K. W. Microbial energetics applied to waste repositories. Experientia 47, 645–687 (1991).

    • CAS
    • Google Scholar
  • 63.

    Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev. 25, 175–243 (2001).

  • 64.

    Wang, G., Spivack, A. J. & Hondt, S. D. Gibbs energies of reaction and microbial mutualism in anaerobic deep subseafloor sediments of ODP Site 1226. Geochim. Cosmochim. Acta 74, 3938–3947 (2010).

    • CAS
    • Google Scholar
  • 65.

    Wagner, T., Ermler, U. & Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354, 114–117 (2015).

    • Google Scholar
  • 66.

    Mayumi, D. et al. Methane production from coal by a single methanogen. Science 354, 222–225 (2016).

  • 67.

    Hoffman, B. M. et al. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).


  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events