in

An osmolality/salinity-responsive enhancer 1 (OSRE1) in intron 1 promotes salinity induction of tilapia glutamine synthetase

  • 1.

    Fiol, D. F. & Kültz, D. Osmotic stress sensing and signaling in fishes. FEBS J. 274, 5790–5798 (2007).

    CAS  PubMed  Google Scholar 

  • 2.

    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Turner, G. F. Adaptive radiation of cichlid fish. Curr. Biol. 17, R827–R831 (2007).

    CAS  PubMed  Google Scholar 

  • 4.

    Fiess, J. C. et al. Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146, 252–264 (2007).

    PubMed  Google Scholar 

  • 5.

    Kültz, D. & Onken, H. Long-term acclimation of the teleost Oreochromis mossambicus to various salinities: two different strategies in mastering hypertonic stress. Mar. Biol. 117, 527–533 (1993).

    Google Scholar 

  • 6.

    Moorman, B. P., Lerner, D. T., Grau, E. G. & Seale, A. P. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity. J. Exp. Biol. 218, 731–739 (2015).

    PubMed  Google Scholar 

  • 7.

    Breves, J. P. et al. Acute salinity challenges in Mozambique and Nile tilapia: Differential responses of plasma prolactin, growth hormone and branchial expression of ion transporters. Gen. Comp. Endocrinol. 167, 135–142 (2010).

    CAS  PubMed  Google Scholar 

  • 8.

    Gardell, A. M. et al. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis. J. Exp. Biol. 216, 4615–4625 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Kammerer, B. D., Cech, J. J. & Kültz, D. Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 157, 260–265 (2010).

    PubMed  Google Scholar 

  • 10.

    Kültz, D., Bastrop, R., Jürss, K. & Siebers, D. Mitochondria-rich (MR) cells and the activities of the Na+K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities. Comp. Biochem. Physiol. B Comp. Biochem. 102, 293–301 (1992).

    Google Scholar 

  • 11.

    Sacchi, R., Gardell, A. M., Chang, N. & Kültz, D. Osmotic regulation and tissue localization of the myo-inositol biosynthesis pathway in tilapia (Oreochromis mossambicus) larvae. J. Exp. Zool. A Ecol. Genet. Physiol. 321, 457–466 (2014).

    CAS  PubMed  Google Scholar 

  • 12.

    Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).

    CAS  PubMed  Google Scholar 

  • 13.

    Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2011).

    PubMed  Google Scholar 

  • 14.

    Ong, C.-T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Dickel, D. E., Visel, A. & Pennacchio, L. A. Functional anatomy of distant-acting mammalian enhancers. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20120359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Rim, J. S. et al. Transcription of the sodium/myo-inositol cotransporter gene is regulated by multiple tonicity-responsive enhancers spread over 50 kilobase pairs in the 5′-flanking region. J. Biol. Chem. 273, 20615–20621 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Wang, X. & Kültz, D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc. Natl. Acad. Sci. USA 114, E2729–E2738 (2017).

    CAS  PubMed  Google Scholar 

  • 19.

    Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A. & Bejerano, G. Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Smith, A. N. et al. A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. J. Biol. Chem. 271, 9947–9954 (1996).

    CAS  PubMed  Google Scholar 

  • 21.

    Cleves, P. A. et al. An intronic enhancer of Bmp6 underlies evolved tooth gain in sticklebacks. PLoS Genet. 14, e1007449 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Veauvy, C. M. et al. Ammonia affects brain nitrogen metabolism but not hydration status in the Gulf toadfish (Opsanus beta). Aquat. Toxicol. 74, 32–46 (2005).

    CAS  PubMed  Google Scholar 

  • 23.

    Essex-Fraser, P. A. et al. Expression of four glutamine synthetase genes in the early stages of development of rainbow trout (Oncorhynchus mykiss) in relationship to nitrogen excretion. J. Biol. Chem. 280, 20268–20273 (2005).

    CAS  PubMed  Google Scholar 

  • 24.

    Webb, J. T. & Brown, G. W. Some properties and occurrence of glutamine synthetase in fish. Comp. Biochem. Physiol. B 54, 171–175 (1976).

    CAS  PubMed  Google Scholar 

  • 25.

    Chew, S. F. et al. Intestinal osmoregulatory acclimation and nitrogen metabolism in juveniles of the freshwater marble goby exposed to seawater. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 180, 511–520 (2010).

    CAS  Google Scholar 

  • 26.

    Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005).

    CAS  PubMed  Google Scholar 

  • 27.

    Tok, C. Y. et al. Glutamine accumulation and up-regulation of glutamine synthetase activity in the swamp eel, Monopterus albus (Zuiew), exposed to brackish water. J. Exp. Biol. 212, 1248–1258 (2009).

    CAS  PubMed  Google Scholar 

  • 28.

    Kopp, R. E. et al. Usable science for managing the risks of sea-level rise. Earths Future 7, 1235–1269 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Savenije, H. H. G. Salinity and Tides in Alluvial Estuaries 1st edn. (Elsevier, Amsterdam, 2005).

    Google Scholar 

  • 30.

    Kültz, D. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 218, 1907–1914 (2015).

    PubMed  Google Scholar 

  • 31.

    Wedderburn, S. D., Barnes, T. C. & Hillyard, K. A. Shifts in fish assemblages indicate failed recovery of threatened species following prolonged drought in terminating lakes of the Murray-Darling Basin, Australia. Hydrobiologia 730, 179–190 (2014).

    CAS  Google Scholar 

  • 32.

    Cañedo-Argüelles, M., Kefford, B. & Schäfer, R. Salt in freshwaters: causes, effects and prospects – introduction to the theme issue. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20080002 (2019).

    Google Scholar 

  • 33.

    Aquaculture Genomics, Genetics and Breeding Workshop et al. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genom. 18, 191 (2017).

    Google Scholar 

  • 34.

    Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol. 91, 145–155 (2017).

    CAS  PubMed  Google Scholar 

  • 35.

    Kutach, A. K. & Kadonaga, J. T. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol. Cell. Biol. 20, 4754–4764 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    CAS  PubMed  Google Scholar 

  • 37.

    Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Zomorodipour, A., Jahromi, E. M., Ataei, F. & Valimehr, S. Position dependence of an enhancer activity of the human beta-globin intron-ii, within a heterologous gene. J. Mol. Med. Ther. 1, 19–24 (2017).

    Google Scholar 

  • 39.

    Marshall, W. S. Osmoregulation in estuarine and intertidal fishes. In Fish Physiology, Vol. 32 (eds McCormick, S. D. et al.) 395–434 (Academic Press, Boca Raton, 2012).

    Google Scholar 

  • 40.

    Sacchi, R., Li, J., Villarreal, F., Gardell, A. M. & Kültz, D. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium. J. Exp. Biol. 216, 4626–4638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Kalujnaia, S. et al. Seawater acclimation and inositol monophosphatase isoform expression in the European eel (Anguilla anguilla) and Nile tilapia (Orechromis niloticus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R369–R384 (2013).

    CAS  PubMed  Google Scholar 

  • 42.

    Gardell, A. M., Qin, Q., Rice, R. H., Li, J. & Kültz, D. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines. PLoS ONE 9, e95919 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Diamond, J. Quantitative evolutionary design. J. Physiol. 542, 337–345 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Takenaka, M., Preston, A. S., Kwon, H. M. & Handler, J. S. The tonicity-sensitive element that mediates increased transcription of the betaine transporter gene in response to hypertonic stress. J. Biol. Chem. 269, 29379–29381 (1994).

    CAS  PubMed  Google Scholar 

  • 45.

    Ferraris, J. D. et al. ORE, a eukaryotic minimal essential osmotic response element the aldose reductase gene in hyperosmotic stress. J. Biol. Chem. 271, 18318–18321 (1996).

    CAS  PubMed  Google Scholar 

  • 46.

    Bai, L. et al. Characterization of cis-elements required for osmotic response of rat Na(+)/H(+) exchanger-2 (NHE-2) gene. Am. J. Physiol. 277, R1112-1119 (1999).

    CAS  PubMed  Google Scholar 

  • 47.

    Ko, B. C. B., Ruepp, B., Bohren, K. M., Gabbay, K. H. & Chung, S. S. M. Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene. J. Biol. Chem. 272, 16431–16437 (1997).

    CAS  PubMed  Google Scholar 

  • 48.

    Takeuchi, K., Toyohara, H., Kinoshita, M. & Sakaguchi, M. Role of taurine in hyperosmotic stress response of fish cells. Fish. Sci. 68, 1177–1180 (2002).

    Google Scholar 

  • 49.

    Takeuchi, K., Toyohara, H., Kinoshita, M. & Sakaguchi, M. Ubiquitous increase in taurine transporter mRNA in tissues of tilapia (Oreochromis mossambicus) during high-salinity adaptation. Fish Physiol. Biochem. 23, 173–182 (2000).

    CAS  Google Scholar 

  • 50.

    Ozasa, H. & Gould, K. G. Protective effect of taurine from osmotic stress on chimpanzee spermatozoa. Arch. Androl. 9, 121–126 (1982).

    CAS  PubMed  Google Scholar 

  • 51.

    Foskett, J. K., Bern, H. A., Machen, T. E. & Conner, M. Chloride cells and the hormonal control of teleost fish osmoregulation. J. Exp. Biol. 106, 255–281 (1983).

    CAS  PubMed  Google Scholar 

  • 52.

    Rose, A. B. Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8, 1444–1453 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Wang, B. et al. Functional analysis of the promoter region of Japanese flounder (Paralichthys olivaceus) β-actin gene: a useful tool for gene research in marine fish. Int. J. Mol. Sci. 19, 1401 (2018).

    PubMed Central  Google Scholar 

  • 54.

    Bates, N. P. & Hurst, H. C. An intron 1 enhancer element mediates oestrogen-induced suppression of ERBB2 expression. Oncogene 15, 473–481 (1997).

    CAS  PubMed  Google Scholar 

  • 55.

    Bruhat, A. et al. Regulatory elements in the first intron contribute to transcriptional regulation of the beta 3 tubulin gene by 20-hydroxyecdysone in Drosophila Kc cells. Nucleic Acids Res. 18, 2861–2867 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Gallegos, J. E. & Rose, A. B. The enduring mystery of intron-mediated enhancement. Plant Sci. 237, 8–15 (2015).

    CAS  PubMed  Google Scholar 

  • 57.

    Tourmente, S. et al. Enhancer and silencer elements within the first intron mediate the transcriptional regulation of the beta 3 tubulin gene by 20-hydroxyecdysone in Drosophila Kc cells. Insect Biochem. Mol. Biol. 23, 137–143 (1993).

    CAS  PubMed  Google Scholar 

  • 58.

    Lis, M. & Walther, D. The orientation of transcription factor binding site motifs in gene promoter regions: does it matter?. BMC Genom. 17, 185 (2016).

    Google Scholar 

  • 59.

    Kumada, Y. et al. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc. Natl. Acad. Sci. USA 90, 3009–3013 (1993).

    ADS  CAS  PubMed  Google Scholar 

  • 60.

    Woo, S. K., Dahl, S. C., Handler, J. S. & Kwon, H. M. How Salt Regulates Genes: Function of a Rel-like Transcription Factor TonEBP. Am. J. Physiol. Ren. Physiol. 278, F1006-1012 (2000).

    CAS  Google Scholar 

  • 61.

    Cheung, C. Y. & Ko, B. C. NFAT5 in cellular adaptation to hypertonic stress—regulations and functional significance. J. Mol. Signal 8, 5 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Lorgen, M., Jorgensen, E. H., Jordan, W. C., Martin, S. A. M. & Hazlerigg, D. G. NFAT5 genes are part of the osmotic regulatory system in Atlantic salmon (Salmo salar). Mar. Genom. 31, 25–31 (2017).

    Google Scholar 

  • 63.

    López-Rodrı́guez, C. et al. Bridging the NFAT and NF-κB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 15, 47–58 (2001).

    PubMed  Google Scholar 

  • 64.

    Fiol, D. F. & Kültz, D. Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells. Proc. Natl. Acad. Sci. USA 102, 927–932 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 65.

    Gelev, V. et al. A new paradigm for transcription factor TFIIB functionality. Sci. Rep. 4, 3664 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Kato, M., Hata, N., Banerjee, N., Futcher, B. & Zhang, M. Q. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 5, R56 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Mandriani, B. et al. Identification of p53-target genes in Danio rerio. Sci. Rep. 6, 32474 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Pino, L. K. et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2017).

    ADS  MathSciNet  PubMed  Google Scholar 

  • 69.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). https://www.R-project.org.

  • 70.

    Sharma, V. et al. Panorama: a targeted proteomics knowledge base. J. Proteome Res. 13, 4205–4210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs

    The closed eye harbours a unique microbiome in dry eye disease