in

Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs

[adace-ad id="91168"]
  • 1.

    Heck, K. L. et al. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11, 1198–1210 (2008).

    Google Scholar 

  • 2.

    Bakker, E. S., Pagès, J. F., Arthur, R. & Alcoverro, T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39, 162–179 (2016).

    Google Scholar 

  • 3.

    Naiman, R. J. & Rogers, K. H. Large animals and system-level characteristics in river corridors. Bioscience 47, 521–529 (1997).

    Google Scholar 

  • 4.

    McCarthy, T. S., Ellery, W. N. & Bloem, A. Some observations on the geomorphological impact of hippopotamus (Hippopotamus amphibius L.) in the Okavango Delta, Botswana. Afr. J. Ecol. 36, 44–56 (1998).

    Google Scholar 

  • 5.

    Deocampo, D. M. Sedimentary structures generated by Hippopotamus amphibius in a lake-margin wetland, Ngorongoro Crater, Tanzania. Palaios 17, 212–217 (2002).

    ADS  Google Scholar 

  • 6.

    Subalusky, A. L., Dutton, C. L., Rosi-Marshall, E. J. & Post, D. M. The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. Freshw. Biol. 60, 512–525 (2015).

    CAS  Google Scholar 

  • 7.

    Grey, J. & Harper, D. Using stable isotope analyses to identify allochthonous inputs to Lake Naivasha mediated via the hippopotamus gut. Isotopes Environ. Health Stud. 38, 245–250 (2002).

    CAS  PubMed  Google Scholar 

  • 8.

    Dawson, J., Pillay, D., Roberts, P. J. & Perissinotto, R. Declines in benthic macroinvertebrate community metrics and microphytobenthic biomass in an estuarine lake following enrichment by hippo dung. Sci. Rep. 6, 37359 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Stears, K. et al. Effects of the hippopotamus on the chemistry and ecology of an ephemeral river. Proc. Natl. Acad. Sci. USA 115, E5028–E5037 (2018).

    CAS  PubMed  Google Scholar 

  • 10.

    Dutton, C. L., Subalusky, A. L., Hamilton, S. K., Rosi, E. J. & Post, D. M. Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills. Nat. Commun. 9, 1–10 (2018).

    CAS  Google Scholar 

  • 11.

    Wolanski, E. & Gereta, E. Oxygen cycle in a hippo pool, Serengeti National Park, Tanzania. Afr. J. Ecol. 37, 419–423 (1999).

    Google Scholar 

  • 12.

    Gereta, E. & Wolanski, E. Wildlife-water quality interactions in the Serengeti National Park, Tanzania. Afr. J. Ecol. 36, 1–14 (1998).

    Google Scholar 

  • 13.

    McCauley, D. J. et al. Carbon stable isotopes suggest that hippopotamus-vectored nutrients subsidize aquatic consumers in an East African river. Ecosphere 6, 1–11 (2015).

    Google Scholar 

  • 14.

    Masese, F. O. et al. Are large herbivores vectors of terrestrial subsidies for riverine food webs?. Ecosystems 18, 686–706 (2015).

    CAS  Google Scholar 

  • 15.

    Masese, F. O. et al. Trophic structure of an African savanna river and organic matter inputs by large terrestrial herbivores: A stable isotope approach. Freshw. Biol. 63, 1365–1380 (2018).

    CAS  Google Scholar 

  • 16.

    Jones, R. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229, 73–91 (1992).

    CAS  Google Scholar 

  • 17.

    Field, C. A study of the feeding habits of the hippopotamus (Hippopotamus amphibius Linn.) in the Queen Elizabeth National Park, Uganda, with some management implications. Zool. Afr. 5, 71–86 (1970).

    Google Scholar 

  • 18.

    McNaughton, S. Ecology of a grazing ecosystem: the Serengeti. Ecol. Monogr. 55, 259–294 (1985).

    Google Scholar 

  • 19.

    Taipale, S. J., Brett, M. T., Pulkkinen, K. & Kainz, M. J. The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition. FEMS Microbiol. Ecol. 82, 50–62 (2012).

    CAS  PubMed  Google Scholar 

  • 20.

    Taipale, S. J. et al. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology 95, 563–576 (2014).

    PubMed  Google Scholar 

  • 21.

    Wenzel, A., Bergström, A. K., Jansson, M. & Vrede, T. Survival, growth and reproduction of Daphnia galeata feeding on single and mixed Pseudomonas and Rhodomonas diets. Freshw. Biol. 57, 835–846 (2012).

    CAS  Google Scholar 

  • 22.

    Guo, F., Kainz, M. J., Sheldon, F. & Bunn, S. E. The importance of high-quality algal food sources in stream food webs – current status and future perspectives. Freshw. Biol. 61, 815–831 (2016).

    CAS  Google Scholar 

  • 23.

    Cyrus, D., Jerling, H., MacKay, F. & Vivier, L. Lake St Lucia, Africa’s largest estuarine lake in crisis: Combined effects of mouth closure, low levels and hypersalinity. S. Afr. J. Sci. 107, 1–13 (2011).

    Google Scholar 

  • 24.

    Taylor, R. H. Hippopotamuses. In Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (eds Perissinotto, R. et al.) 355–366 (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 25.

    Iverson, S., Frost, K. & Lowry, L. Fatty acid signatures reveal fine scale structure of foraging distribution of harbor seals and their prey in Prince William Sound, Alaska. Mar. Ecol. Prog. Ser. 151, 255–271 (1997).

    ADS  CAS  Google Scholar 

  • 26.

    Napolitano, G. E. Fatty acids as trophic and chemical markers in freshwater ecosystems. In Lipids in Freshwater ecosystems (eds Arts, M. T. & Wainman, B. C.) 21–44 (Springer, New York, 1999).

    Google Scholar 

  • 27.

    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mammal Sci. 22, 759–801 (2006).

    Google Scholar 

  • 28.

    Pasquaud, S., Lobry, J. & Elie, P. Facing the necessity of describing estuarine ecosystems: A review of food web ecology study techniques. Hydrobiologia 588, 159–172 (2007).

    Google Scholar 

  • 29.

    Parrish, C., Abrajano, T. & Budge, S. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. Handb. Environ. Chem. 5, 193–223 (2000).

    Google Scholar 

  • 30.

    Budge, S. M., Parrish, C. C. & Mckenzie, C. H. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Mar. Chem. 76, 285–303 (2001).

    CAS  Google Scholar 

  • 31.

    Dalsgaard, J., St. John, M., Kattner, G., Muller-Navarra, D. & Hagen, W. Fatty acid trophic markers in pelagic marine environment. In Advances in Marine Biology Vol. 46 (eds Southward, A. J. et al.) 225–340 (Academic Press, Cambridge, 2003).

    Google Scholar 

  • 32.

    Haddad, R. I., Martens, C. S. & Farrington, J. W. Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Org. Geochem. 19, 205–216 (1992).

    CAS  Google Scholar 

  • 33.

    Harvey, H. R. Fatty acids and sterols as source markers of organic matter in sediments of the North Carolina continental slope. Deep Sea Res. 41, 783–796 (1994).

    ADS  CAS  Google Scholar 

  • 34.

    Brett, M. T., Muller-Navarra, D. C., Ballantyne, A. P., Ravet, J. L. & Goldman, C. R. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 51, 2428–2437 (2006).

    ADS  CAS  Google Scholar 

  • 35.

    Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org. Geochem. 29, 1547–1559 (1998).

    CAS  Google Scholar 

  • 36.

    Torres-ruiz, M., Wehr, J. D. & Perrone, A. A. Trophic relations in a stream food web : importance of fatty acids for macroinvertebrate consumers. J. North Am. Benthol. Soc. 26, 509–522 (2007).

    Google Scholar 

  • 37.

    Moyo, S., Chari, L. D., Villet, M. H. & Richoux, N. B. Decoupled reciprocal subsidies of biomass and fatty acids in fluxes of invertebrates between a temperate river and the adjacent land. Aquat. Sci. 79, 689–703 (2017).

    CAS  Google Scholar 

  • 38.

    Arts, M. T., Ackman, R. G. & Holub, B. J. ‘Essential fatty acids’ in aquatic ecosystems: A crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58, 122–137 (2001).

    CAS  Google Scholar 

  • 39.

    Brett, M. T. & Muller-Navarra, D. C. The role of highly unsaturated fatty acids in aquatic food web processes. Freshw. Biol. 38, 483–499 (1997).

    CAS  Google Scholar 

  • 40.

    Müller-Navarra, D. C., Brett, M. T., Liston, A. M. & Goldman, C. R. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403, 74–77 (2000).

    ADS  PubMed  Google Scholar 

  • 41.

    Brett, M. T., Kainz, M. J., Taipale, S. J. & Seshan, H. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad. Sci. USA 106, 21197–21201 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Hixson, S. M., Sharma, B., Kainz, M. J., Wacker, A. & Arts, M. T. Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems. Environ. Rev. 23, 141–424 (2015).

    Google Scholar 

  • 43.

    Perissinotto, R., Stretch, D. D. & Taylor, R. H. Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 44.

    Whitfield, A. K. & Taylor, R. H. A review of the importance of freshwater inflow to the future conservation of Lake St Lucia. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 838–848 (2009).

    Google Scholar 

  • 45.

    Humphries, M. S., Green, A. N. & Finch, J. M. Evidence of El Niño driven desiccation cycles in a shallow estuarine lake: The evolution and fate of Africa’s largest estuarine system, Lake St Lucia. Glob. Planet. Change 147, 97–105 (2016).

    ADS  Google Scholar 

  • 46.

    Perissinotto, R., Carrasco, N. K. & Taylor, R. H. Physico-chemical environment. In Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (eds Perissinotto, R. et al.) 169–186 (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 47.

    Zikhali, V., Tirok, K. & Stretch, D. Sediment resuspension in a shallow lake with muddy substrates: St Lucia, South Africa. Cont. Shelf Res. 108, 112–120 (2015).

    ADS  Google Scholar 

  • 48.

    Prinsloo, A. S., Pillay, D. & O’Riain, M. J. Multiscale drivers of hippopotamus distribution in the St Lucia Estuary, South Africa. Afr. Zool. https://doi.org/10.1080/15627020.2020.1717377 (2020).

    Article  Google Scholar 

  • 49.

    Riera, P. & Richard, P. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar. Coast. Shelf Sci. 42, 347–360 (1996).

    ADS  Google Scholar 

  • 50.

    Couch, C. A. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuar. Coast. Shelf Sci. 28, 433–442 (1989).

    ADS  Google Scholar 

  • 51.

    Carrasco, N. K. & Perissinotto, R. The comparative diet of the dominant zooplankton species in the St Lucia Estuary, South Africa. J. Plankton Res. 33, 479–490 (2011).

    Google Scholar 

  • 52.

    Indarti, E., Majid, M. I. A., Hashim, R. & Chong, A. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J. Food Compos. Anal. 18, 161–170 (2005).

    CAS  Google Scholar 

  • 53.

    Richoux, N. B., Jaquemet, S., Bonnevie, B. T., Cherel, Y. & McQuaid, C. D. Trophic ecology of Grey-headed albatrosses from Marion Island, Southern Ocean: insights from stomach contents and diet tracers. Mar. Biol. 157, 1755–1766 (2010).

    Google Scholar 

  • 54.

    Richoux, N. B. & Froneman, P. W. Trophic ecology of dominant zooplankton and macrofauna in a temperate, oligotrophic South African estuary: A fatty acid approach. Mar. Ecol. Prog. Ser. 357, 121–137 (2008).

    ADS  Google Scholar 

  • 55.

    Bergamino, L., Dalu, T. & Richoux, N. B. Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses. Hydrobiologia 732, 133–145 (2014).

    CAS  Google Scholar 

  • 56.

    Richoux, N. B., Bergamino, L., Moyo, S. & Dalu, T. Spatial and temporal variability in the nutritional quality of basal resources along a temperate river/estuary continuum. Org. Geochem. 116, 1–12 (2018).

    CAS  Google Scholar 

  • 57.

    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual (Plymouth, United Kingdom, 2015).

    Google Scholar 

  • 58.

    Meziane, T. & Tsuchiya, M. Fatty acids as tracers of organic matter in the sediment and food web of a mangrove/intertidal flat ecosystem, Okinawa, Japan. Mar. Ecol. Prog. Ser. 200, 49–57 (2000).

    ADS  CAS  Google Scholar 

  • 59.

    Kharlamenko, V. I., Kiyashko, S. I., Imbs, A. B. & Vyshkvartzev, D. I. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Mar. Ecol. Prog. Ser. 220, 103–117 (2001).

    ADS  CAS  Google Scholar 

  • 60.

    Hall, D., Lee, S. Y. & Meziane, T. Fatty acids as trophic tracers in an experimental estuarine food chain: Tracer transfer. J. Exp. Mar. Bio. Ecol. 336, 42–53 (2006).

    CAS  Google Scholar 

  • 61.

    Blaber, S. J. M. Tropical Estuarine Fishes. Ecology, Exploitation and Conservation (Blackwell Science Ltd., New York, 2000).

    Google Scholar 

  • 62.

    Cyrus, D. P. Fish and Fisheries. In Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (eds Perissinotto, R. et al.) 291–315 (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 63.

    Pillay, D., Bownes, S. J. & Nel, H. A. Benthic Invertebrates. In Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (eds Perissinotto, R. et al.) 227–245 (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 64.

    Cyrus, D. & Vivier, L. Status of the estuarine fish fauna in the St Lucia estuarine system, South Africa, after 30 months of mouth closure. Afr. J. Aquat. Sci. 31, 71–81 (2006).

    Google Scholar 

  • 65.

    Meziane, T., Bodineau, L., Retiere, C. & Thoumelin, G. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. J. Sea Res. 38, 47–58 (1997).

    ADS  Google Scholar 

  • 66.

    Steinke, T. O. & Ward, C. J. Litter production by mangroves. II. St Lucia and Richards Bay. S. Afr. J. Bot. 54, 445–454 (1988).

    Google Scholar 

  • 67.

    Adams, J. B. & Human, L. R. D. Investigation into the mortality of mangroves at St. Lucia Estuary. S. Afr. J. Bot. 107, 121–128 (2016).

    Google Scholar 

  • 68.

    Mbande, S., Froneman, W. & Whitfield, A. K. The primary carbon sources utilised by fishes in the Mngazi and Mngazana estuaries, South Africa: A preliminary assessment. Afr. J. Aquat. Sci. 29, 195–204 (2004).

    Google Scholar 

  • 69.

    Whitfield, A. K. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish Biol. Fish. 27, 75–110 (2017).

    Google Scholar 

  • 70.

    Wakeham, S. G. & Canuel, E. A. Fatty acids and sterols of particulate matter in a brackish and seasonally anoxic coastal salt pond. Org. Geochem. 16, 703–713 (1990).

    CAS  Google Scholar 

  • 71.

    Degerman, R. et al. Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon. Hydrobiologia 805, 131–146 (2018).

    CAS  Google Scholar 

  • 72.

    Lewison, R. Population responses to natural and human-mediated disturbances: Assessing the vulnerability of the common hippopotamus (Hippopotamus amphibius). Afr. J. Ecol. 45, 407–415 (2007).

    Google Scholar 

  • 73.

    Lewison, R. & Pluháček, J. Hippopotamus amphibius. IUCN Red List Threatened Species. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T10103A18567364.en (2017).

    Article  Google Scholar 

  • 74.

    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl. Acad. Sci. USA 113, 868–873 (2016).

    ADS  CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms

    Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies