in

Analyzing long-term impacts of ungulate herbivory on forest-recruitment dynamics at community and species level contrasting tree densities versus maximum heights

  • 1.

    Crawley, M. Herbivory: The Dynamics of Animal–Plant Interactions (Blackwell Scientific, Oxford, 1983).

    Google Scholar 

  • 2.

    Putman, R. Grazing in Temperate Ecosystems: Large Herbivores and the Ecology of the New Forest (Springer, Berlin, 1986).

    Google Scholar 

  • 3.

    Huntly, N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Syst. 1, 477–503 (1991).

    Article  Google Scholar 

  • 4.

    Skarpe, C. Impact of grazing in savanna ecosystems. Ambio 20, 351–356 (1991).

    Google Scholar 

  • 5.

    Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).

    PubMed  Article  Google Scholar 

  • 6.

    Bruce, T. C. Interplay between insects and plants–dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J. Exp. Bot. 2, 391 (2014).

    Google Scholar 

  • 7.

    Mason, N. W. H., Peltzer, D. A., Richardson, S. J., Bellingham, P. J. & Allen, R. B. Stand development moderates effects of ungulate exclusion on foliar traits in the forests of New Zealand: Ungulate impacts on foliar traits. J. Ecol. 98, 1422–1433 (2010).

    Article  Google Scholar 

  • 8.

    Faison, E. K., DeStefano, S., Foster, D. R., Motzkin, G. & Rapp, J. M. Ungulate browsers promote herbaceous layer diversity in logged temperate forests. Ecol. Evol. 6, 4591–4602 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Simončič, T., Bončina, A., Jarni, K. & Klopčič, M. Assessment of the long-term impact of deer on understory vegetation in mixed temperate forests. J. Veg. Sci. 30, 108–120 (2019).

    Article  Google Scholar 

  • 10.

    Schmitz, O. J. Herbivory from individuals to ecosystems. Annu. Rev. Ecol. Evol. Syst. 39, 133–152 (2008).

    Article  Google Scholar 

  • 11.

    Riginos, C. & Grace, J. B. Savanna tree density, herbivores, and the herbaceous community: Bottom-up vs. top-down effects. Ecology 89, 2228–2238 (2008).

    PubMed  Article  Google Scholar 

  • 12.

    Turkington, R. Top-down and bottom-up forces in mammalian herbivore–vegetation systems: An essay review. Botany 87, 723–739 (2009).

    Article  Google Scholar 

  • 13.

    Kos, M. et al. Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea: Bottom-up and top-down effects on herbivores. Funct. Ecol. 25, 1113–1124 (2011).

    Article  Google Scholar 

  • 14.

    Kuijper, D. P. J. et al. Bottom-up versus top-down control of tree regeneration in the Białowieża Primeval Forest, Poland: Abiotic and biotic control of tree regeneration. J. Ecol. 98, 888–899 (2010).

    Article  Google Scholar 

  • 15.

    Churski, M., Bubnicki, J. W., Jędrzejewska, B., Kuijper, D. P. J. & Cromsigt, J. P. G. M. Brown world forests: Increased ungulate browsing keeps temperate trees in recruitment bottlenecks in resource hotspots. New Phytol. 214, 158–168 (2017).

    PubMed  Article  Google Scholar 

  • 16.

    Fretwell, S. D. Food chain dynamics: The central theory of ecology?. Oikos 50, 291–301 (1987).

    Article  Google Scholar 

  • 17.

    Reimoser, F. & Putman, R. Impacts of wild ungulates on vegetation: Costs and benefits. In Ungulate Management in Europe—Problems and Practices (eds Putman, R. et al.) 144–191 (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  • 18.

    Bellingham, P. J. & Allan, C. N. Forest regeneration and the influences of white-tailed deer (Odocoileus virginianus) in cool temperate New Zealand rain forests. For. Ecol. Manag. 175, 71–86 (2003).

    Article  Google Scholar 

  • 19.

    Russell, F. L. & Fowler, N. L. Effects of white-tailed deer on the population dynamics of acorns, seedlings and small saplings of Quercus buckleyi. Plant Ecol. 173, 59–72 (2004).

    Article  Google Scholar 

  • 20.

    Casabon, C. & Pothier, D. Browsing of tree regeneration by white-tailed deer in large clearcuts on Anticosti Island, Quebec. For. Ecol. Manag. 253, 112–119 (2007).

    Article  Google Scholar 

  • 21.

    Pellerin, M. et al. Impact of deer on temperate forest vegetation and woody debris as protection of forest regeneration against browsing. For. Ecol. Manag. 260, 429–437 (2010).

    Article  Google Scholar 

  • 22.

    Tschöpe, O., Wallschläger, D., Burkart, M. & Tielbörger, K. Managing open habitats by wild ungulate browsing and grazing: A case-study in North-Eastern Germany: Managing open habitats by wild ungulate browsing and grazing. Appl. Veg. Sci. 14, 200–209 (2011).

    Article  Google Scholar 

  • 23.

    Millett, J. & Edmondson, S. The impact of 36 years of grazing management on vegetation dynamics in dune slacks. J. Appl. Ecol. 50, 1367–1376 (2013).

    Article  Google Scholar 

  • 24.

    Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. Biol. Conserv. 163, 115–121 (2013).

    Article  Google Scholar 

  • 25.

    Charles, G. K., Porensky, L. M., Riginos, C., Veblen, K. E. & Young, T. P. Herbivore effects on productivity vary by guild: Cattle increase mean productivity while wildlife reduce variability. Ecol. Appl. 27, 143–155 (2017).

    PubMed  Article  Google Scholar 

  • 26.

    Castleberry, S. B., Ford, W. M., Miller, K. V. & Smith, W. P. Influences of herbivory and canopy opening size on forest regeneration in a southern bottomland hardwood forest. For. Ecol. Manag. 131, 57–64 (2000).

    Article  Google Scholar 

  • 27.

    Filazzola, A., Tanentzap, A. J. & Bazely, D. R. Estimating the impacts of browsers on forest understories using a modified index of community composition. For. Ecol. Manag. 313, 10–16 (2014).

    Article  Google Scholar 

  • 28.

    Nishizawa, K., Tatsumi, S., Kitagawa, R. & Mori, A. S. Deer herbivory affects the functional diversity of forest floor plants via changes in competition-mediated assembly rules. Ecol. Res. 31, 569–578 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Boulanger, V. et al. Ungulates increase forest plant species richness to the benefit of non-forest specialists. Glob. Change Biol. 24, e485–e495 (2018).

    Article  Google Scholar 

  • 30.

    McGarvey, J. C., Bourg, N. A., Thompson, J. R., McShea, W. J. & Shen, X. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-atlantic temperate deciduous forest. Northeast. Nat. 20, 451–468 (2013).

    Article  Google Scholar 

  • 31.

    Kabeya, D. & Sakai, S. The role of roots and cotyledons as storage organs in early stages of establishment in Quercus crispula: a quantitative analysis of the nonstructural carbohydrate in cotyledons and roots. Ann. Bot. 92, 537–545 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Boege, K. & Marquis, R. J. Facing herbivory as you grow up: The ontogeny of resistance in plants. Trends Ecol. Evol. 20, 441–448 (2005).

    PubMed  Article  Google Scholar 

  • 33.

    Hanley, M. E., Lamont, B. B., Fairbanks, M. M. & Rafferty, C. M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. Evol. Syst. 8, 157–178 (2007).

    Article  Google Scholar 

  • 34.

    Diggle, P. J. Statistical Analysis of Spatial Point Patterns. (Arnold, 2003).

  • 35.

    Gratzer, G. & Waagepetersen, R. Seed dispersal, microsites or competition—What drives gap regeneration in an old-growth forest? An application of spatial point process modelling. Forests 9, 230 (2018).

    Article  Google Scholar 

  • 36.

    Szwagrzyk, J., Gratzer, G., Stępniewska, H., Szewczyk, J. & Veselinovic, B. High reproductive effort and low recruitment rates of European beech: Is there a limit for the superior competitor?. Pol. J. Ecol. 63, 198–212 (2015).

    Article  Google Scholar 

  • 37.

    Nopp-Mayr, U., Kempter, I., Muralt, G. & Gratzer, G. Herbivory on young tree seedlings in old-growth and managed mountain forests. Ecol. Res. 30, 479–491 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Shugart, H. H. A theory of forest dynamics. (Springer, 1984).

  • 39.

    Lertzman, K. B. Patterns of gap-phase replacement in a subalpine, old-growth forest. Ecology 73, 657–669 (1992).

    Article  Google Scholar 

  • 40.

    Kneeshaw, D. D. & Bergeron, Y. Canopy gap characteristics and tree replacement in the Southeastern Boreal forest. Ecology 79, 783–794 (1998).

    Article  Google Scholar 

  • 41.

    Wakeling, J. L., Staver, A. C. & Bond, W. J. Simply the best: The transition of savanna saplings to trees. Oikos 120, 1448–1451 (2011).

    Article  Google Scholar 

  • 42.

    Kobe, R. K., Pacala, S. W., Silander, J. A. Jr. & Canham, C. D. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5, 517–532 (1995).

    Article  Google Scholar 

  • 43.

    Zuidema, P. A., Brienen, R. J. W., During, H. J. & Güneralp, B. Do persistently fast-growing juveniles contribute disproportionately to population growth? A new analysis tool for matrix models and its application to rainforest trees. Am. Nat. 174, 709–719 (2009).

    PubMed  Article  Google Scholar 

  • 44.

    Tremblay, J.-P., Huot, J. & Potvin, F. Density-related effects of deer browsing on the regeneration dynamics of boreal forests. J. Appl. Ecol. 44, 552–562 (2007).

    Article  Google Scholar 

  • 45.

    Speed, J. D. M., Austrheim, G., Hester, A. J., Solberg, E. J. & Tremblay, J.-P. Regional-scale alteration of clear-cut forest regeneration caused by moose browsing. For. Ecol. Manag. 289, 289–299 (2013).

    Article  Google Scholar 

  • 46.

    Shelton, A. L., Henning, J. A., Schultz, P. & Clay, K. Effects of abundant white-tailed deer on vegetation, animals, mycorrhizal fungi, and soils. For. Ecol. Manag. 320, 39–49 (2014).

    Article  Google Scholar 

  • 47.

    Reimoser, F. & Reimoser, S. Ergebnisse aus dem Vergleichsflächenverfahren (‘Wildschaden-Kontrollzäune’) – ein Beitrag zur Objektivierung der Wildschadensbeurteilung. In Ist die natürliche Verjüngung des Bergwaldes gesichert? (ed. Müller, F.) 151–159 (Austrian Research Centre for Forests, Vienna, 2003).

    Google Scholar 

  • 48.

    ZAMG. Klimadaten von Österreich 1971–2000. (2013).

  • 49.

    Mucina, L., Grabherr, G. & Wallnöfer, S. Die Pflanzengesellschaften Österreichs. Teil III – Wälder und Gebüsche (Gustav Fischer Verlag, Stuttgart, 1993).

    Google Scholar 

  • 50.

    Reimoser, F., Schodterer, H. & Reimoser, S. Beurteilung des Schalenwildeinflusses auf die Waldverjüngung – Vergleich verschiedener Methoden des Wildeinfluss-Monitorings („WEM – Methodenvergleich”) (Austrian Research Centre for Forests, Vienna, 2014).

    Google Scholar 

  • 51.

    Reimoser, F., Armstrong, H. & Suchant, R. Measuring forest damage of ungulates: What should be considered. For. Ecol. Manag. 120, 47–58 (1999).

    Article  Google Scholar 

  • 52.

    Long, Z. T., Pendergast, T. H. & Carson, W. P. The impact of deer on relationships between tree growth and mortality in an old-growth beech-maple forest. For. Ecol. Manag. 252, 230–238 (2007).

    Article  Google Scholar 

  • 53.

    Van den Brink, P. J. & Ter Braak, C. J. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148 (1999).

    Article  Google Scholar 

  • 54.

    van den Brink, P. J., den Besten, P. J., de Bij, V. A. & ter Braak, C. J. F. Principal response curves technique for the analysis of multivariate biomonitoring time series. Environ. Monit. Assess. 152, 271–281 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Poulin, M., Andersen, R. & Rochefort, L. A new approach for tracking vegetation change after restoration: A case study with peatlands. Restor. Ecol. 21, 363–371 (2013).

    Article  Google Scholar 

  • 56.

    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer International Publishing, Berlin, 2018).

    Google Scholar 

  • 57.

    Van den Brink, P. J., Van den Brink, N. W. & Ter Braak, C. J. Multivariate analysis of ecotoxicological data using ordination: demonstrations of utility on the basis of various examples. Austr. J. Ecotoxicol. 9, 141–156 (2003).

    Google Scholar 

  • 58.

    R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • 59.

    Oksanen, J. et al. vegan: Community Ecology Package. (2019).

  • 60.

    RStudio Team. RStudio: Integrated Development Environment for R. (RStudio, Inc., 2016).

  • 61.

    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. (2019).

  • 62.

    Wickham, H. forcats: Tools for Working with Categorical Variables (Factors). (2018).

  • 63.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).

    Google Scholar 

  • 64.

    Henry, L. & Wickham, H. purrr: Functional Programming Tools. (2019).

  • 65.

    Wickham, H., Hester, J. & Francois, R. readr: Read Rectangular Text Data. (2018).

  • 66.

    Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. (2019).

  • 67.

    Müller, K. & Wickham, H. tibble: Simple Data Frames. (2019).

  • 68.

    Wickham, H. & Henry, L. tidyr: Easily Tidy Data with ‘spread()’ and ‘gather()’ Functions. (2019).

  • 69.

    McNamara, A., Rubia, E. A. de la, Zhu, H., Ellis, S. & Quinn, M. skimr: Compact and Flexible Summaries of Data. (2019).

  • 70.

    Allaire, J. J., Wickham, H., Ushey, K. & Ritchie, G. rstudioapi: Safely Access the RStudio API. (2017).

  • 71.

    Allaire, J. J. et al. rmarkdown: Dynamic Documents for R. (2018).

  • 72.

    Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. (2018).

  • 73.

    Baumgartner, J. hues: Distinct Colours Palettes Based on ‘iwanthue’. (2017).

  • 74.

    Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 75.

    Pacala, S. W. et al. Forest models defined by field measurements: Estimation error analysis and dynamics. Ecol. Monogr. 66, 1–43 (1996).

    Article  Google Scholar 

  • 76.

    Beckage, B. & Clark, J. S. Seedling survival and growth of three forest tree species: The role of spatial heterogeneity. Ecology 84, 1849–1861 (2003).

    Article  Google Scholar 

  • 77.

    Peltzer, D. A. et al. Disentangling drivers of tree population size distributions. For. Ecol. Manag. 331, 165–179 (2014).

    Article  Google Scholar 

  • 78.

    Reimoser, F., Odermatt, O., Roth, R. & Suchant, R. Die Beurteilung von Wildverbiss durch SOLL-IST-Vergleich. Allg Forst Jagdztg 168, 214–227 (1997).

    Google Scholar 

  • 79.

    Pépin, D. et al. Relative impact of browsing by red deer on mixed coniferous and broad-leaved seedlings—An enclosure-based experiment. For. Ecol. Manag. 222, 302–313 (2006).

    Article  Google Scholar 

  • 80.

    Jurena, P. N. & Archer, S. Woody plant establishment and spatial heterogeneity in grasslands. Ecology 84, 907–919 (2003).

    Article  Google Scholar 

  • 81.

    Cramer, M. D., Chimphango, S. B. M., Cauter, A. V., Waldram, M. S. & Bond, W. J. Grass competition induces N2 fixation in some species of African Acacia. J. Ecol. 95, 1123–1133 (2007).

    CAS  Article  Google Scholar 

  • 82.

    Hegland, S. J., Lilleeng, M. S. & Moe, S. R. Old-growth forest floor richness increases with red deer herbivory intensity. For. Ecol. Manag. 310, 267–274 (2013).

    Article  Google Scholar 

  • 83.

    Lilleeng, M. S., Hegland, S. J., Rydgren, K. & Moe, S. R. Red deer mediate spatial and temporal plant heterogeneity in boreal forests. Ecol. Res. 31, 777–784 (2016).

    Article  Google Scholar 

  • 84.

    Laurent, L., Mårell, A., Balandier, P., Holveck, H. & Saïd, S. Understory vegetation dynamics and tree regeneration as affected by deer herbivory in temperate hardwood forests. IForest – Biogeosciences For. 10, 837–844 (2017).

    Article  Google Scholar 

  • 85.

    Holladay, C.-A., Kwit, C. & Collins, B. Woody regeneration in and around aging southern bottomland hardwood forest gaps: Effects of herbivory and gap size. For. Ecol. Manag. 223, 218–225 (2006).

    Article  Google Scholar 

  • 86.

    Smit, C., Gusberti, M. & Müller-Schärer, H. Safe for saplings; safe for seeds?. For. Ecol. Manag. 237, 471–477 (2006).

    Article  Google Scholar 

  • 87.

    Pröll, G., Darabant, A., Gratzer, G. & Katzensteiner, K. Unfavourable microsites, competing vegetation and browsing restrict post-disturbance tree regeneration on extreme sites in the Northern Calcareous Alps. Eur. J. For. Res. 134, 293–308 (2015).

    Article  Google Scholar 

  • 88.

    Stephan, J. G. et al. Long-term deer exclosure alters soil properties, plant traits, understorey plant community and insect herbivory, but not the functional relationships among them. Oecologia 184, 685–699 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 89.

    Hidding, B., Tremblay, J.-P. & Côté, S. D. A large herbivore triggers alternative successional trajectories in the boreal forest. Ecology 94, 2852–2860 (2013).

    PubMed  Article  Google Scholar 

  • 90.

    Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165–1183 (1998).

    Article  Google Scholar 

  • 91.

    Owen-Smith, N. R. Adaptive Herbivore Ecology. From Resources to Populations in Variable Environments (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  • 92.

    Reimoser, F. & Reimoser, S. Richtiges Erkennen von Wildschäden am Wald (Zentralstelle Österr, Landesjagdverbände, 2017).

    Google Scholar 

  • 93.

    Ramirez, J. I. et al. Above- and below-ground cascading effects of wild ungulates in temperate forests. Ecosystems https://doi.org/10.1007/s10021-020-00509-4 (2020).

    Article  Google Scholar 

  • 94.

    Kral, F. Spät- und postglaziale Waldgeschichte der Alpen aufgrund der bisherigen Pollenanalysen (Österreichischer Agrarverlag, Vienna, 1979).

    Google Scholar 

  • 95.

    Mayer, H. & Ott, E. Gebirgswaldbau, Schutzwaldpflege: ein waldbaulicher Beitrag zur Landschaftsökologie und zum Umweltschutz (G. Fischer, Mumbai, 1991).

    Google Scholar 

  • 96.

    Mayer, M., Keßler, D. & Katzensteiner, K. Herbivory modulates soil CO2 fluxes after windthrow: A case study in temperate mountain forests. Eur. J. For. Res. 139, 383–391 (2020).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Massive, swift federal investment needed to address climate change, panelists say

    Cracking the secrets of an emerging branch of physics