in

Animal invaders threaten protected areas worldwide

  • 1.

    United Nations Environment Programme–World Conservation Monitoring Centre (UNEP-WCMC), International Union for the Conservation of Nature (IUCN) & (NGS), N. G. S. Protected planet report 2018. (Cambridge, UK; Gland, Switzerland; Washington, DC, 2018).

  • 2.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).

    PubMed  Google Scholar 

  • 5.

    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS  PubMed  Google Scholar 

  • 6.

    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).

    Google Scholar 

  • 7.

    Hulme, P. E. Protected land: threat of invasive species. Science 361, 561–562 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    IPBES: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (eds. Díaz, S. et al.) 56 p. (IPBES secretariat, Bonn, Germany, 2019). https://doi.org/10.5281/zenodo.3553579.

  • 9.

    Maxwell, S., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Blackburn, T. M., Bellard, C. & Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 17, 203–207 (2019).

    Google Scholar 

  • 11.

    Strayer, D. L. Eight questions about invasions and ecosystem functioning. Ecol. Lett. 15, 1199–1210 (2012).

    PubMed  Google Scholar 

  • 12.

    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).

    CAS  PubMed  Google Scholar 

  • 13.

    Macdonald, I. A. W., Loope, L. L., Usher, M. B. & Hamann, O. Wildlife Conservation and The Invasion of Nature Reserves by Introduced Species: A Global Perspective 215–256 (Wiley, 1989).

  • 14.

    Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol. 23, 5331–5343 (2017).

    ADS  Google Scholar 

  • 15.

    Dudley, N., Stolton, S. & Shadie, S. Guidelines for Applying Protected Area Management Categories (International Union for Conservation of Nature, 2008).

  • 16.

    Foxcroft, L. C., Pyšek, P., Richardson, D. M. & Genovesi, P. Plant Invasions in Protected Areas. Invading Nature, Springer Series in Invasion Ecology 7 (Springer, 2017).

  • 17.

    Shackleton, R. T., Foxcroft, L. C., Pyšek, P., Wood, L. E. & Richardson, D. M. Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biol. Conserv. 243, 108424, https://doi.org/10.1016/j.biocon.2020.108424 (2020).

    Article  Google Scholar 

  • 18.

    Pyšek, P., Jarosik, V. & Kucera, T. Inclusion of native and alien species in temperate nature reserves: An historical study from Central Europe. Conserv. Biol. 17, 1414–1424 (2003).

    Google Scholar 

  • 19.

    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    ADS  PubMed  Google Scholar 

  • 20.

    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).

    PubMed  Google Scholar 

  • 21.

    Dukes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders? Trends Ecol. Evol. 14, 135–139 (1999).

    CAS  PubMed  Google Scholar 

  • 22.

    Elton, C. The ecology of invasions by plants and animals 18 (Methuen, London, 1958).

    Google Scholar 

  • 23.

    Fridley, J. D. et al. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).

    CAS  PubMed  Google Scholar 

  • 24.

    Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).

    Google Scholar 

  • 25.

    Bellard, C. et al. Will climate change promote future invasions? Glob. Change Biol. 19, 3740–3748 (2013).

    ADS  Google Scholar 

  • 26.

    Li, X. P., Liu, X., Kraus, F., Tingley, R. & Li, Y. M. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 14, 411–417 (2016).

    Google Scholar 

  • 27.

    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    PubMed  Google Scholar 

  • 28.

    Gaston, K. J., Jackson, S. E., Nagy, A., Cantu-Salazar, L. & Johnson, M. Protected areas in Europe – Principle and practice. Ann. Ny. Acad. Sci. 1134, 97–119 (2008).

    ADS  PubMed  Google Scholar 

  • 29.

    Hulme, P. E. et al. Greater Focus Needed on Alien Plant Impacts in Protected Areas. Conserv. Lett. 7, 459–466 (2014).

    Google Scholar 

  • 30.

    Thuiller, W., Gueguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Foxcroft, L. C., Jarosik, V., Pyšek, P., Richardson, D. M. & Rouget, M. Protected-Area Boundaries as Filters of Plant Invasions. Conserv. Biol. 25, 400–405 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Kraus, F. Alien reptiles and amphibian. A scientific compendium and analysis. Invading nature: Springer series in invasion ecology 4 (2009).

  • 33.

    Long, J. Introduced Mammals of The World (CSIRO Publishing, 2001).

  • 34.

    Redding, D. W. et al. Location-level processes drive the establishment of alien bird populations worldwide. Nature 571, 103–106 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Bellard, C., Rysman, J.-F., Leroy, B., Claud, C. & Mace, G. M. A global picture of biological invasion threat on islands. Nat. Ecol. Evol. 1, 1862–1869 (2017).

    PubMed  Google Scholar 

  • 36.

    Loope, L. L., Hughes, R. F. & Meyer, J.-Y. Plant invasions in protected areas of tropical pacific islands, with special reference to Hawaii. (eds. Foxcroft, L. C. et al.) 313–348 (Springer, 2014).

  • 37.

    McKinney, M. L. Influence of settlement time, human population, park shape and age, visitation and roads on the number of alien plant species in protected areas in the USA. Divers. Distrib. 8, 311–318 (2002).

    Google Scholar 

  • 38.

    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 39.

    Pyšek, P. et al. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23, 237–244 (2008).

    PubMed  Google Scholar 

  • 40.

    Spear, D., Foxcroft, L. C., Bezuidenhout, H. & McGeoch, M. A. Human population density explains alien species richness in protected areas. Biol. Conserv. 159, 137–147 (2013).

    Google Scholar 

  • 41.

    Foxcroft, L. C., Spear, D., van Wilgen, N. J. & McGeoch, M. A. Assessing the association between pathways of alien plant invaders and their impacts in protected areas. Neobiota, 1–25 (2019).

  • 42.

    UN Environment World Conservation Monitoring Centre, International Union for Conservation of Nature. Protected Planet: The World Database on Protected Areas (WDPA), (version of April 2019 downloaded). www.protectedplanet.net (2019).

  • 43.

    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Global patterns of protection of elevational gradients in mountain ranges. Proc. Natl Acad. Sci. USA 115, 6004–6009 (2018).

    CAS  PubMed  Google Scholar 

  • 44.

    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Reply to You et al: The World Database on Protected Areas is an invaluable resource for global conservation assessments and planning. Proc. Natl Acad. Sci. USA 115, E9029–E9030 (2018).

    CAS  PubMed  Google Scholar 

  • 45.

    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Google Scholar 

  • 46.

    Duncan, R. P., Blackburn, T. M. & Sol, D. The ecology of bird introductions. Annu. Rev. Ecol. Evol. S 34, 71–98 (2003).

    Google Scholar 

  • 47.

    Sayre, R. et al. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units. J. Oper. Oceanogr. 12, S47–S56 (2019).

    Google Scholar 

  • 48.

    Olson, D. M. et al. Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Google Scholar 

  • 49.

    Capinha, C. et al. Diversity, biogeography and the global flows of alien amphibians and reptiles. Divers. Distrib. 23, 1313–1322 (2017).

    Google Scholar 

  • 50.

    Liu, X. et al. Risks of biological invasion on the belt and road. Curr. Biol. 29, 499–505.e494 (2019).

    CAS  PubMed  Google Scholar 

  • 51.

    Dyer, E. E., Redding, D. W. & Blackburn, T. M. The global avian invasions atlas, a database of alien bird distributions worldwide. Sci. Data 4, sdata201741 (2017).

    Google Scholar 

  • 52.

    Capellini, I., Baker, J., Allen, W. L., Street, S. E. & Venditti, C. The role of life history traits in mammalian invasion success. Ecol. Lett. 18, 1099–1107 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Dyer, E. E. et al. The global distribution and drivers of alien bird species richness. PLoS Biol. 15, e2000942 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Sander, N., Abel, G. J., Bauer, R. & Schmidt, J. Visualising Migration Flow Data with Circular Plots. (Vienna Institute of Demography, Vienna, 2014).

  • 56.

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 57.

    Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

    PubMed  Google Scholar 

  • 58.

    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).

    Google Scholar 

  • 59.

    Cohen, J. M. et al. Spatial scale modulates the strength of ecological processes driving disease distributions. Proc. Natl Acad. Sci. USA 113, E3359–E3364 (2016).

    CAS  PubMed  Google Scholar 

  • 60.

    Magnusson, A. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 0.1.3. https://github.com/glmmTMB (2017).

  • 61.

    Fournier, A., Penone, C., Pennino, M. G. & Courchamp, F. Predicting future invaders and future invasions. P. Natl Acad. Sci. USA 116, 7905–7910 (2019).

    CAS  Google Scholar 

  • 62.

    Thuiller, W. et al. The European functional tree of bird life in the face of global change. Nat. Commun. 5, 3118 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Hill, M. P., Gallardo, B. & Terblanche, J. S. A global assessment of climatic niche shifts and human influence in insect invasions. Glob. Ecol. Biogeogr. 26, 679–689 (2017).

    Google Scholar 

  • 65.

    Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 23, 1356–1365 (2014).

    Google Scholar 

  • 66.

    Li, Y. M., Liu, X., Li, X. P., Petitpierre, B. & Guisan, A. Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species. Glob. Ecol. Biogeogr. 23, 1094–1104 (2014).

    Google Scholar 

  • 67.

    Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).

    PubMed  Google Scholar 

  • 68.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 25, 1965–1978 (2005).

    Google Scholar 

  • 69.

    Araújo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15 (2008).

    Google Scholar 

  • 70.

    Barbet-Massin, M. & Jetz, W. The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios. Glob. Change Biol. 21, 2917–2928 (2015).

    ADS  Google Scholar 

  • 71.

    Ferger, S. W., Schleuning, M., Hemp, A., Howell, K. M. & Böhning‐Gaese, K. Food resources and vegetation structure mediate climatic effects on species richness of birds. Glob. Ecol. Biogeogr. 23, 541–549 (2014).

    Google Scholar 

  • 72.

    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).

    Google Scholar 

  • 73.

    Li, Y. et al. Climate and topography explain range sizes of terrestrial vertebrates. Nat. Clim. Change 6, 498–502 (2016).

    ADS  Google Scholar 

  • 74.

    Dalby, L., McGill, B. J., Fox, A. D. & Svenning, J. C. Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. Glob. Ecol. Biogeogr. 23, 550–562 (2014).

    Google Scholar 

  • 75.

    Nogues-Bravo, D. & Araujo, M. B. Species richness, area and climate correlates. Glob. Ecol. Biogeogr. 15, 452–460 (2006).

    Google Scholar 

  • 76.

    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).

    Google Scholar 

  • 77.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed  Google Scholar 

  • 78.

    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).

    PubMed  Google Scholar 

  • 79.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods. Ecol. Evol. 3, 327–338 (2012).

    Google Scholar 

  • 80.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed  Google Scholar 

  • 81.

    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT startup wraps food in silk for better shelf life

    Unlocking the secrets of a plastic-eater